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Abstract

Entity disambiguation (ED), which links the001
mentions of ambiguous entities to their refer-002
ent entities in a knowledge base, serves as a003
core component in entity linking (EL). Exist-004
ing generative approaches show better accu-005
racy compared to classification approaches on006
conventional benchmarks. Nevertheless, gen-007
erative approaches suffer from large-scale pre-008
training and inefficient generation. Most impor-009
tantly, entity descriptions, which could contain010
crucial information to distinguish similar en-011
tities from each other, are often overlooked.012
We propose an encoder-decoder model to dis-013
ambiguate entities with more detailed entity014
descriptions. Given text and candidate enti-015
ties, the encoder learns interactions between016
the text and each candidate entity, producing017
representations for each entity candidate. The018
decoder then fuses the representations of entity019
candidates together and select the correct entity.020
Our experiments, conducted on various entity021
disambiguation benchmarks, demonstrate the022
strong and robust performance of this model,023
particularly +1.5% in the ZELDA benchmark024
compared with GENRE. Furthermore, we in-025
tegrate this approach into the retrieval/reader026
framework and observe +1.5% improvements027
in end-to-end entity linking in the GERBIL028
benchmark compared with EntQA.029

1 Introduction030

Entity linking (EL) extracts references (a.k.a. men-031

tions) to entities within a document and associates032

these mentions with their corresponding entries in033

a knowledge base (KB). EL is a fundamental com-034

ponent in automatic text comprehension, with vari-035

ous practical applications such as question answer-036

ing, text analysis, recommender systems, semantic037

search, and information retrieval.038

As the most critical component of EL workflows,039

entity disambiguation (ED) aims to select the cor-040

rect entity from a set of candidate entities, given041

textual references. For instance, the entity men- 042

tion ‘Bert’ may stand for ‘the famous language 043

model’ (Devlin et al., 2018) or ‘the golden yellow 044

Muppet character’ depending on the given context. 045

Therefore, models need to understand context to 046

disambiguate entities correctly. 047

Owing to its practical significance in the industry 048

and the latest developments in utilizing pre-trained 049

language models (Devlin et al., 2018; Lewis et al., 050

2020; Liu et al., 2019; Raffel et al., 2020), var- 051

ious approaches for entity disambiguation have 052

been introduced in recent years. Primarily, existing 053

methods can be categorized into two styles: clas- 054

sification approaches (Yamada et al., 2022; Févry 055

et al., 2020) or generative approaches (De Cao et al., 056

2021). Classification approaches such as (Yamada 057

et al., 2022) predict the masked entity titles while 058

generative approaches such as (De Cao et al., 2021) 059

directly decode entity titles. 060

The recently proposed ZELDA benchmark 061

(Milich and Akbik, 2023) standardizes the exper- 062

imental setup (consistent training data, entity vo- 063

cabulary, and candidate lists) and shows that gen- 064

erative approaches such as (De Cao et al., 2021) 065

have significantly stronger performance under this 066

experimental setup. 067

However, authors in (Zhang et al., 2022) argue 068

that generative approaches require large scale pre- 069

training. In particular, (De Cao et al., 2021) criti- 070

cally relies on a prefix tree (also known as a trie) de- 071

rived from Wikipedia to constrain the beam search 072

in order to produce a valid entity title in a given 073

knowledge base (KB), which might be inefficient 074

memory-wise. In addition, since it directly gen- 075

erates a valid entity without reading their descrip- 076

tions, crucial information in the descriptions might 077

be ignored. Therefore, disentangling significantly 078

similar entities proves challenging with this method 079

(Milich and Akbik, 2023). 080

To better disentangle similar entities, in this pa- 081

per we propose an encoder-decoder model that de- 082
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codes entities by utilizing their descriptions. Our083

approach is mainly inspired by a recent work on084

question answering (Izacard and Grave, 2021). In085

particular, we make the following contributions:086

We summarize our contributions in the following:087

• We propose a new ED approach, using an088

encoder-decoder model. Given text and entity089

candidates, the encoder learns the interactions090

between the text and each entity candidate,091

generating representations for each candidate.092

Subsequently, the decoder fuses these candi-093

date entity representations and generates cor-094

rect entities. At inference, instead of relying095

on a constrained beam search, it only needs096

simple greedy decoding.097

• We follow the standard evaluation practice098

(ensuring consistent knowledge base, training099

corpus and entity candidate lists) and rigor-100

ously evaluate this approach in several ED101

benchmarks (Milich and Akbik, 2023) and102

show its strong and robust performance.103

• We integrate our approach into an end-to-end104

entity linking pipeline and show large im-105

provements compared with the current state-106

of-the-art in GERBIL (Usbeck et al., 2015)107

benchmark. To the best of our knowledge,108

our approach is the first retrieval-augmented109

generation approach in EL.110

• We propose retrieval augmented entity linking111

using Large Language Models (LLMs), e.g.,112

GPT-4 and evaluate it in GERBIL (Usbeck113

et al., 2015) benchmark. Our results show that114

with augmented entity retrieval, GPT-4 out-115

performs the current SoTA on some datasets116

but in general, it underperforms compared to117

fine-tuning-based approaches.118

Our approach outperforms strongest ED base-119

lines (De Cao et al., 2021; Févry et al., 2020; Ya-120

mada et al., 2022) on ZELDA benchmark and EL121

baselines (De Cao et al., 2021; Zhang et al., 2022;122

Shavarani and Sarkar, 2023) on GEBIL benchmark123

(Usbeck et al., 2015).124

2 Related Work125

Entity Disambiguation. Existing ED ap-126

proaches typically fall into two main categories:127

classification approaches and generative ap-128

proaches.129

For classification approaches, LUKE (Yamada 130

et al., 2022) and FEVRY (Févry et al., 2020) are 131

two of the most well-known approaches due to their 132

strong performance. LUKE is based on masked en- 133

tity prediction. To be more specific, during the pre- 134

training, LUKE combines input text and ground- 135

truth entities as input tokens. Then, it randomly 136

masks entities from those ground-truth entities and 137

predict those masked entities by leveraging both 138

the input text and those unmasked entities. Their 139

model is trained on a large entity-annotated corpus 140

obtained from Wikipedia and achieves the current 141

SoTA in several ED benchmark datasets. 142

For generative approaches, GENRE (De Cao 143

et al., 2021) uses BART weights from (Lewis et al., 144

2020) and is trained on a Wikipedia corpus, learn- 145

ing to generate entity names in an autoregressive 146

manner, conditioned on the provided context. At 147

inference, GENRE employs a constrained beam 148

search strategy that forces each generated name to 149

be in a predefined entity set. 150

Conventionally, ED methods are evaluated on six 151

datasets, MSNBC, AQUAINT, ACE2004, WNED- 152

CWEB (CWEB) and WNED-WIKI (WIKI) 153

(Gabrilovich et al., 2013; Guo and Barbosa, 2018). 154

Nevertheless, as shown in Milich and Akbik (2023), 155

those different ED methods use significantly dif- 156

ferent amounts of training data (ranging from 2 to 157

20 million annotated text) obtained with diverse 158

sampling methodologies and enhanced weak labels 159

(Orr et al., 2020; Broscheit, 2020), and completely 160

different knowledge bases (ranging from few thou- 161

sands to over 6 million) from different sources, 162

YAGO (Suchanek et al., 2007) or KILT (Petroni 163

et al., 2021) and different candidate lists (Hoffart 164

et al., 2011; Pershina et al., 2015). Thus, compar- 165

ing various approaches is highly challenging. It is 166

impossible to conclude which approach performs 167

best (Milich and Akbik, 2023). 168

ZELDA (Milich and Akbik, 2023) benchmark 169

is proposed to unify the training data set, entity 170

vocabulary, and candidate lists to facilitate direct 171

comparability of ED approaches. For this reason, 172

we compare our approach with SoTA approaches 173

on ZELDA benchmark. Our experiment is rigor- 174

ously conducted using the same training data, entity 175

vocabulary, and candidate lists without additional 176

information from Wikipedia or using weak labels. 177

Entity Linking. Different from ED, the key chal- 178

lenge of EL is its significantly large search space. 179

A system can potentially generate any subset of 180
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conceivable spans in the document, each of which181

could correspond to an entity in a large KB, typ-182

ically containing millions of entities. To manage183

this overwhelming scale, existing approaches break184

down EL into two stage tasks: mention detection185

(MD) and entity disambiguation (ED). These tasks186

are often tackled with varying degrees of indepen-187

dence.188

In most of these approaches, the sequence of189

subproblems is consistent: first, the system identi-190

fies possible entity mentions, and then it links these191

mentions to specific entries in the given knowledge192

base. This MD→ED classic pipeline is utilized in193

most methods. They either assume that mentions194

are provided in advance, following the example of195

Gupta et al. (2017) or take a different route by em-196

ploying readily available entity recognition systems197

to first identify mentions and then disambiguate198

them through the ED process, as evidenced in the199

works of Hoffart et al. (2011); Li et al. (2020). Fur-200

thermore, some research (Kolitsas et al., 2018; De201

Cao et al., 2021) trains an end-to-end autoregres-202

sive model that jointly performs MD→ED by beam203

search.204

Recently, (Zhang et al., 2022) has shown that205

the classic MD (i.e., retrieval) → ED (i.e., reader)206

approach suffers from identifying mentions with-207

out prior knowledge of their corresponding entities,208

which is unnatural and challenging. To fix this209

problem, the authors flip the order of MD and ED,210

and propose an ED → MD pipeline. Their key ob-211

servation is that finding relevant candidate entities212

is easy without the knowledge of their specific men-213

tions. Their ED → MD approach achieves SoTA214

results on the in-domain AIDA-CoNLL dataset215

(Hoffart et al., 2011) and GERBIL benchmark (Us-216

beck et al., 2015). Although their retriever (se-217

lect top-k candidate entities) performs remarkably218

well, the majority of errors are attributed to their219

reader (which predicts the final entities and men-220

tion spans).221

A recent work (Shavarani and Sarkar, 2023)222

proposes a structured prediction approach and223

achieves 88.6% on AIDA-CoNLL test-b by using224

the PPRforNED (Pershina et al., 2015) candidate225

list. However, Yang et al. (2018); Milich and Akbik226

(2023) question this candidate list since it is unclear227

how candidates were pruned. The entity candidates228

generated by PPRforNED (Pershina et al., 2015)229

were found to be well-tailored to the AIDA-CoNLL230

test-b evaluation dataset, with high recall and low231

ambiguity. Models (Yamada et al., 2022; Févry 232

et al., 2020) improve significantly when using these 233

lists instead of the more generic lists by (Hoffart 234

et al., 2011) and (Ganea and Hofmann, 2017), re- 235

spectively. Without the handcrafted PPRforNED 236

(Pershina et al., 2015) candidate list, the result 237

of ADIA-CONLL test-b in (Shavarani and Sarkar, 238

2023) is the same as (Zhang et al., 2022), 85.8%. 239

As discussed in ZELDA (Milich and Akbik, 240

2023), using additional signals makes comparison 241

unfair and indirect. Moreover, in real world en- 242

tity linking applications, additional signals such as 243

pruned candidate lists may not be available. There- 244

fore, same as our comparison methodology in ED, 245

we do not bring any additional signals and aim to 246

conduct an end-to-end direct entity linking compar- 247

ison precisely by using the same training data and 248

same knowledge base, KILT (Petroni et al., 2021) 249

as EntQA (Zhang et al., 2022) and GENRE (De 250

Cao et al., 2021). 251

3 Model 252

3.1 Entity Disambiguation 253

We formalize the ED task as follows. Given a set 254

of candidate entities denoted as E in a Knowledge 255

Base (KB), and an input text D with a single men- 256

tion flagged with two special start token and end 257

token, the goal is to find the proper entity e ∈ E 258

that corresponds to the mention in D. 259

In Figure 1, we show an example of entity disam- 260

biguation. Given a text with annotated mention that 261

represents what we want to disambiguate, we add 262

special tokens <s1> and <e1> before and after the 263

mention to denote the corresponding mention that 264

we want to disambiguate. We concatenate input 265

text with information from each entity candidate 266

including entity title and entity description, and 267

feed it into the encoder model to form an entity rep- 268

resentation and the decoder model takes the fused 269

entity representations from all those candidates to 270

generate the correct entity name. 271

3.2 Entity Linking 272

We formalize the EL task as follows. Given a set 273

of entities denoted as E in a Knowledge Base (KB), 274

and an input document D, the objective is to iden- 275

tify every entity e ∈ E along with a mention m 276

such that m ∈ D and m links to e. Typically, 277

the length of D varies from few words (e.g., short 278

queries) to few thousands of words (e.g., news). 279

To handle long document entity linking, previous 280
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Figure 1: Pipeline of the fusion entity decoding for entity disambiguation. Given a text ‘DUBLIN 1996-12-07 Jack
Charlton’s relationship with the people of Ireland was cemented on Saturday when the Englishman was officially
declared one of their own. (few sentences are abbreviated here) That is why this is so emotional a night for me ,
<s1> Charlton <e1> said’. Follow (De Cao et al., 2021), we add special tokens <s1> and <e1> to denote the
corresponding mention to disambiguate. Given candidate entities ‘Charlton Athletic F.C.’, ‘Jack Charlton’, ‘Bobby
Charlton’, ‘Suzanne Charlton’ from KB, we concatenate text with each entity candidate, including its entity title and
its description. The Encoder learns interactions between the text and each entity candidate and produces suitable
representations for each entity candidate; decoder concatenates those representations and selects the correct entity.

research (Zhang et al., 2022) typically segments281

each document D into sentence chunks. For each282

sentence chunk p, most approaches (Hoffart et al.,283

2011; Li et al., 2020) commonly break down the284

task of EL for a sentence chunk p into two main285

components: mention detection (MD) and entity286

disambiguation (ED), and first extract mentions287

from passages (MD) and then link to entities (ED).288

Zhang et al. (2022) introduce a different two-289

stage process, instead of first identifying mentions290

and then link them entities, it first retrieve top-k291

candidate entities, followed by the reader’s task292

of picking up the accurate entities along with pre-293

dicting their associated mention spans. Figure 2294

illustrates an instance of end-to-end EL employing295

the retrieval-plus-reader approach. Our approach296

follow this pipeline.297

3.2.1 Bi-encoder EL Retrieval298

Entity Embedding. Following (Wu et al., 2019),299

we represent an entity e as a combination of its300

title and description using the format: [CLS]301

title(e) [ENT] description(e) [SEP].302

[ENT] is a special token to separate the entity ti-303

tle and description representation. For Wikipedia304

entities, we consider up to 128 tokens for their de-305

scriptions. We use an encoder encE to produce an306

embedding for an entity e.307

Passage Embedding. For each passages p with308

its document topics t, we also concatenate those309

information using the following format: [CLS] p310

[SEP] t [SEP]. We use another encoder encP to311

produce an embedding for a passage p.312

Training. The score of an entity e and a passage313

p is given as s(e, p) = encE(e)⊤encP (p). Same314

as (Zhang et al., 2022), we train the retriever using315

a multi-label variant of noise contrastive estimation 316

(NCE) (Zhang and Stratos, 2021). 317

Figure 2: Example of document level entity linking
from AIDA test. Given a document, FUSIONED splits it
into smaller passage chunks. Given the current passage
‘That is why this is so emotional a night for me, Charlton
said.’, the bi-encoder entity retrieval picks up top 100
entity candidates, e.g., ‘Charlton Athletic F.C.’, ‘Bobby
Charlton’, ‘Jack Charlton’. FUSIONED then decodes
linked entities and mentions using entity candidate lists.

3.2.2 Fusion EL Reader 318

We use a similar architecture to the one we used for 319

ED (Figure 1), while the model generates both en- 320

tity names and mentions instead of only generating 321

entity names as this was the case in ED. 322

Given a passage chunk p along with its 323

truncated original document D, the retrieval 324

retrieves the top-k candidate entities e1, · · · , ek. 325
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Then, for each retrieved candidate entity ei,326

we concatenate the document D, the current327

passage chunk p, the entity title of ei, and328

the entity description of ei. We add special329

tokens <extra_id_0>, <extra_id_1>,330

<extra_id_2>, <extra_id_3> be-331

fore the document, the current passage332

chunk, the entity name, and the entity de-333

scription, respectively. The input format334

becomes <extra_id_0> D <extra_id_1>335

p <extra_id_2> title(ei)336

<extra_id_3> description(ei).337

The encoder independently processes input338

data for each entity candidate ei and then339

merges the resulting representations from all340

the candidates. Finally, the decoder performs341

the attention over the merged representations342

of all the retrieved entities. If no candidate343

entities are linked, the decoder output an empty344

string. Otherwise, for each linked entity ei,345

it outputs ei <extra_id_4> mi1, · · · ,min346

where mi1, · · · ,min are all mentions from p347

which links to ei. Finally, we use a special token348

<extra_id_5> to split the decoding output349

from each entity ei. Therefore, the final output350

sting is e1 <extra_id_4> m11, · · ·m1n351

<extra_id_5> e2 <extra_id_4>352

m21, · · ·m2n <extra_id_5> · · · ei353

<extra_id_4> mi1, · · · ,min.354

4 Experiment355

We conduct extensive experiments to demon-356

strate the performance of our proposed approach357

(FUSIONED) over 20 datasets, addressing both358

single-entity disambiguation and end-to-end entity359

linking. The goal of our experiments is to facilitate360

a direct comparison, illustrating that under identi-361

cal conditions (without incorporating extra training362

data or taking additional signals into account), our363

approach outperforms the current SoTA.364

4.1 Entity Disambiguation365

Setup. We follow the experiment setup in366

ZELDA benchmark (Milich and Akbik, 2023),367

using their training data, entity vocabulary and368

the more generic candidate list. We initialize the369

weights of our model using FLAN-T5-base (Chung370

et al., 2022) 220M to match the number of param-371

eters of SoTA models (274M for LUKE (Yamada372

et al., 2022) and FEVRY (Févry et al., 2020), 178M373

for GENRE (De Cao et al., 2021)). We train the374

model for 60k steps with a learning rate 0.0001 us- 375

ing Adam optimizer (Kingma and Ba, 2015), with a 376

batch size of 12 on 12 NVIDIA Tesla V100 32GB. 377

Given a context with a mention, we consider ap- 378

proximately 250 tokens surrounding the annotated 379

mention. For each entity candidate, we concatenate 380

the entity name, a special token, and the entity de- 381

scription, truncating to a maximum of 140 tokens. 382

Then, for each context, we utilize the candidate list 383

from the benchmark (Milich and Akbik, 2023). We 384

only consider the top 200 entity candidates from 385

this list. We evaluate checkpoints every 2000 steps 386

for the last 8000 steps in AIDA-B, selecting the 387

best checkpoint. 388

Datasets. At inference, we evaluate the model 389

using greedy decoding on 9 datasets: AIDA- 390

B (Hoffart et al., 2011), TWEEKI (Botzer 391

et al., 2021), REDDIT-POSTS and REDDIT- 392

COMMENTS (Botzer et al., 2021), WNED- 393

WIKI and WNED-CWEB (Guo and Barbosa, 394

2018), SLINKS-TOP and SLINKS-SHADOW 395

and SLINKS-TAIL (Provatorova et al., 2021). 396

These datasets are collected from diverse sources: 397

news (AIDA-B), annotated tweets (TWEEKI), top- 398

scoring Reddit posts and comments (REDDIT- 399

POSTS and REDDIT-COMMENTS), Wikipedia 400

articles (WNED-WIKI and WNED-CWEB). In par- 401

ticular, (Provatorova et al., 2021) categorizes en- 402

tities into three cases based on their appearance 403

frequency in Wikipedia: SLINKS-TOP, where the 404

ground truth entity is the most frequent; SLINKS- 405

SHADOW, where a more popular entity overshad- 406

ows the correct disambiguation; and SLINKS- 407

TAIL, for rare long-tail entities. 408

Baselines. We examine two methods presented 409

in (Févry et al., 2020) using a candidate list 410

(FEVRYCL) and without any restriction on the 411

search space (FEVRYALL). Additionally, for one 412

of the ED SoTA approaches LUKE (Yamada et al., 413

2022), we present results of two models LUKEPPRE 414

and LUKEPFT on ZELDA (Milich and Akbik, 415

2023) benchmark. 416

GENRE (De Cao et al., 2021) employs a prefix 417

tree derived from all entity titles in the KB to re- 418

strict the generation process. While GENRE does 419

not utilize candidate lists during training, in in- 420

ference the prefix tree can be generated using the 421

candidate lists GENRECL or without candidate lists 422

GENREALL. 423

We also list CL-RECALL, which is the recall 424
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Method AIDA-
B

TWEEKI REDDIT-
POSTS

REDDIT-
COMM

WNED-
CWEB

WNED-
WIKI

SLINKS-
TAIL

SLINKS-
SHADOW

SLINKS-
TOP

AVG

Baselines
CL-RECALL 91.1 94.0 98.4 98.3 92.4 98.8 98.8 56.7 73.1 89.1
Classification
FEVRYALL 79.2 71.8 88.5 84.1 68.0 84.3 63.8 43.4 53.1 70.7
FEVRYCL 79.5 76.9 89.0 86.5 70.3 84.5 87.6 31.9 47.7 72.7
LUKEPPRE 79.3 73.8 76.1 69.9 66.8 68.4 97.7 20.4 50.8 67.0
LUKEPFT 81.2 77.9 81.5 78.5 70.3 76.5 98.0 22.5 51.8 71.0
Generative
GENREALL 72.4 75.9 88.8 83.9 66.5 85.2 95.3 38.7 43.5 72.2
GENRECL 78.6 80.1 92.8 91.5 73.6 88.4 99.6 37.3 52.8 77.2
FUSIONED 80.1 81.4 93.9 92.3 73.6 89.0 98.3 41.5 57.9 78.7

Table 1: Comparison between FusionED with both classification or generative based SoTA in ZELDA Benchmark
(Milich and Akbik, 2023). Baselines number are taken from (Milich and Akbik, 2023). We emphasize the leading
model by formatting it in bold and the second-best model by using an underline for each dataset. CL-RECALL
represents the recall of the candidate list in ZELDA, indicating the highest possible accuracy using its candidate list.

of the candidate list in ZELDA. It reflects the best425

possible accuracy if we always select the correct426

entity from the candidate list.427

Experimental Results. Table 1 reports the accu-428

racy of FUSIONED compared with SoTA models.429

Clearly, FUSIONED achieves the highest perfor-430

mance across six datasets and secures the three431

position in two datasets. According to Table 1432

and as it was previously pointed out by (Milich433

and Akbik, 2023), GENRE shows significantly bet-434

ter performance over classification-based baselines.435

However, it struggles to disambiguate entities in436

SLINKS-TOP and SLINKS-SHADOW. One pos-437

sible interpretation is that it never uses any entity438

description to disambiguate entities with a similar439

title. Thus, it favors decoding into the most promi-440

nent case where the generated entity title will be441

most similar to the mention text.442

It is worth mentioning that FUSIONED demon-443

strates an over +4 point accuracy improvement444

compared to GENRE on SLINKS-TOP and445

SLINKS-SHADOW datasets. These datasets in-446

volve ambiguous entities with similar titles. In-447

corporating information from entity descriptions448

is a prominent reason for FUSIONED’s enhanced449

performance.450

Table 2 shows the accuracy of different ap-451

proaches across various difficulty brackets in the452

WNED-WIKI dataset. [0.4 - 0.3] represents the453

most difficult test cases while 1 represents the easi-454

est ones. Our model has the highest accuracy across455

most different brackets (+5% in [0.4 - 0.3]), sug-456

gesting that using entity descriptions can help dis-457

ambiguate closed entities in most challenging test458

cases. While it underperforms GENRE for easiest459

cases, possibly due to our model being trained with460

only 30% of the data, limited by computational 461

constraints. 462

4.2 Entity Linking 463

Setup. For EL, we adhere to the established con- 464

vention (De Cao et al., 2021; Zhang et al., 2022) 465

by presenting the InKB Micro F1 score for both 466

the in-domain and out-of-domain datasets. Specif- 467

ically, for the in-domain scenario, we train FU- 468

SIONED using the AIDA-CoNLL dataset (Hoffart 469

et al., 2011). For the out-of-domain tests, follow- 470

ing the same practice, we evaluate it on seven test 471

sets: MSNBC (Cucerzan, 2007), Derczynski (Der) 472

(Derczynski et al., 2015), KORE 50 (K50) (Hoffart 473

et al., 2012), N3-Reuters-128 (R128), N3-RSS-500 474

(R500) (Röder et al., 2014), and OKE challenge 475

2015 and 2016 (OKE15 and OKE16) (Nuzzolese 476

et al., 2015). For KB, we utilize the 2019 Wikipedia 477

dump, as supplied within the KILT benchmark 478

(Petroni et al., 2021), encompassing a total of 5.9 479

million entities for our knowledge base (KB). 480

Retriever Training. Following (Zhang et al., 481

2022), we initialize weights of both the passage en- 482

coder (encP ) and the entity encoder (encE) using 483

BLINK (Wu et al., 2019) retrievers that have been 484

pretrained on Wikipedia hyperlinks. We also fine- 485

tune retrievers using NCE objective with hard neg- 486

ative mining and follow the same sampling strategy 487

as (Zhang et al., 2022) (90% from random sample 488

and 10% from hard negatives) . We reproduce their 489

retriever by matching their top-100 recall numbers 490

reported in their paper. We use FAISS (Johnson 491

et al., 2019) to speed up vector similarity search. 492

Reader Training. We create the reader dataset 493

by selecting the top 100 candidates from the re- 494

trieval process. For each ground truth entity, we 495
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Method 1 [1 - 0.9] [0.9 - 0.8] [0.8 - 0.7] [0.7 - 0.6] [0.6 - 0.5] [0.5 - 0.4] [0.4 - 0.3]
CL-RECALL 99.7 97.2 99.2 98.3 98.3 99.1 98.8 99.6
FEVRYCL 94.8 92.2 88.8 87.2 84.1 80.0 76.0 72.2
LUKEPFT 91.5 90.4 86.3 80.3 77.8 73.8 62.2 56.2
GENRECL 97.1 94.2 91.2 85.6 87.8 86.9 86.9 79.7
FUSIONED 96.4 92.4 90.8 87.5 86.1 88.1 87.1 85.0

Table 2: Accuracy across various difficulty brackets was assessed for different approaches in the WNED-WIKI
dataset. [0.4 - 0.3] is the most difficult bracket while 1 is the easiest. We emphasize the leading model by highlighting
it in bold and denote the runner-up with an underline for each bracket. Our model shows the best performance
across most different brackets, suggesting that using entity descriptions can help disambiguate closed entities in
most challenging tests.

In-domain Out-of-domain
Method AIDA-B MSNBC Der K50 R128 R500 OKE15 OKE16 AVG
Hoffart et al. (2011) 72.8 65.1 32.6 55.4 46.4 42.4 63.1 0 47.2
Steinmetz and Sack (2013) 42.3 30.9 26.5 46.8 18.1 20.5 46.2 46.4 34.7
Moro et al. (2014) 48.5 39.7 29.8 55.9 23.0 29.1 41.9 37.7 38.2
Kolitsas et al. (2018) 82.4 72.4 34.1 35.2 50.3 38.2 61.9 52.7 53.4
Broscheit (2019) 79.3 - - - - - - -
Martins et al. (2019) 81.9 - - - - - - -
Van Hulst et al. (2020) 80.5 72.4 41.1 50.7 49.9 35.0 63.1 58.3 56.4
De Cao et al. (2021) 83.7 73.7 54.1 60.7 46.7 40.3 56.1 50.0 58.2
De Cao et al. (2021) 85.5 - - - - - - -
Zhang et al. (2022) 85.8 72.1 52.9 64.5 54.1 41.9 61.1 51.3 60.5
Shavarani and Sarkar (2023) 85.8 63.1 59.1 53.7 47.1 44.4 59.5 56.6 58.7
GPT-4 (zero-shot) Shavarani and Sarkar (2023) 54.1 - - - - - - -
GPT-4 + retrieval (zero-shot) 58.4 42.4 40.1 69.0 35.1 29.4 58.3 53.1 48.3
GPT-4 + retrieval (zero-shot)* 59.1 42.5 41.0 67.6 36.4 30.1 58.4 53.0 48.5
FUSIONED 86.5 73.6 56.8 65.1 53.1 41.6 62.3 56.6 62.0

Table 3: InKB Micro F1 on the GERBIL benchmark with respect to in-domain and out-of-domain test sets. We
highlight the top-performing model in bold and the runner-up in underline for each dataset. For (Shavarani and
Sarkar, 2023), to make a fair comparison, we use their AIDA-testb result without external additional candidate set
(Pershina et al., 2015). For GPT-4 + retrieval (zero-shot)*, we additionally filter entities generated by the model
using candidate entities obtained from entity retrieval and this slightly improve its overall performance.

create an entity title and mention pair. The model is496

initialized with the FLAN-T5-large model (Chung497

et al., 2022). We finetune the model for 20k steps498

with a learning rate of 0.0001 using the Adam opti-499

mizer (Kingma and Ba, 2015), with a batch size of500

8, employing 8 NVIDIA Tesla A100 40GB GPUs.501

Following the approach in (Zhang et al., 2022), we502

evaluate the models every 1000 steps in AIDA and503

select the best checkpoint. We use a linear decay504

learning rate scheduler that starts at 0, warms up to505

the peak learning rate, and then decays back to 0.506

The warm-up rate is set to 1%.507

Inference. During inference, we employ a slid-508

ing window approach to split the document into509

passages with a window size of 20 tokens and a510

stride of 10 tokens to avoid cutting off any men-511

tions. For each split passage, we first retrieve the512

top 100 entity candidates using the bi-encoder, fol-513

lowed by a FUSIONED reader to decode correct514

entities along with their mentions. 515

Experimental Results. Table 3 shows results of 516

FUSIONED compared with different entity linking 517

systems. Clearly, FUSIONED achieves the best in- 518

domain test (+0.7% F1 for AIDA-B (Hoffart et al., 519

2011)) without using any handcrafted candidate list 520

(Pershina et al., 2015) 521

Overall, FUSIONED achieves the best averaged 522

F1 score across the all evaluation datasets; +1.5% 523

over EntQA(Zhang et al., 2022) and +2.8% over 524

the latest work (Shavarani and Sarkar, 2023) in EL. 525

The reason for the lower performance on OKE15 526

and OKE16 (Nuzzolese et al., 2015) is consis- 527

tent with the observation made by (De Cao et al., 528

2021): these datasets include coreference annota- 529

tions (such as pronouns and common nouns linked 530

to entities), for which our model lacks training. In 531

contrast, many other systems incorporate a compo- 532

nent in their pipelines specifically designed to use 533
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these annotations.534

Compared to the previous retrieval-plus-reader535

approach, EntQA (Zhang et al., 2022), FUSIONED536

improves by +1.5% on MSNBC, +3.9% on Der,537

+0.6% on K50, and +4.7% on OKE16.538

4.3 Case Study: Retrieval-augmented LLMs539

for Entity Linking540

Datasets GPT-4 + retrieval FUSIONED
P R F1 P R F1

AIDA-B 52.0 66.6 58.4 84.4 88.7 86.5
MSNBC 32.6 60.7 42.4 75.6 71.7 73.6
Der 29.2 63.9 40.1 55.2 58.5 56.8
K50 70.3 67.8 69.0 72.0 59.4 65.1
R128 25.6 55.6 35.1 56.3 50.2 53.1
R500 19.2 62.8 29.4 31.6 60.7 41.6
OKE15 64.1 53.5 58.3 80.1 51.0 62.3
OKE16 60.7 47.2 53.1 76.8 44.8 56.6

Table 4: In contrast to FUSIONED, GPT-4 + retrieval
demonstrates improved recall (R) across all datasets
except AIDA-B and MSNBC, while exhibiting inferior
precision (P) across all datasets.

(Shavarani and Sarkar, 2023) has benchmarked541

LLMs for EL using the approach introduced in542

(De Cao et al., 2021) where it produces a markup543

around the mentions followed by the linked entity544

name. However, the results are much worse than545

our approach, 54.1 vs 86.5. Although LLMs pos-546

sess comprehensive knowledge about entities, they547

face a limitation in directly reasoning about specific548

Wikipedia URLs and Wikipedia names.549

We conduct a preliminary study to assess the550

performance of retrieval-augmented prompting for551

linking entities using LLMs. This approach in-552

volves utilizing the same retrieval models that553

we described before, which are initialized using554

BLINK (Wu et al., 2019) weights and fine-tuned555

based on AIDA (Hoffart et al., 2011). For the556

reader, we replace the FUSIONED with GPT-4.557

More precisely, we provide GPT-4 with truncated558

documents (up to 50 tokens), input passages, and559

entity candidates, including entity title and entity560

description (up to 50 tokens). We prompt it to link561

entities from the candidate entity sets and identify562

their corresponding mentions. To the best of our563

knowledge, we are the first to propose retrieval-564

augmented LLMs for EL.565

Table 4 presents a detailed comparison between566

FUSIONED and GPT-4 + retrieval. GPT-4 + re-567

trieval shows better recall (R) in all datasets ex-568

cept MSNBC, but it has lower precision (P) in all 569

datasets. The inferior precision of GPT-4 might 570

stem from 1) ambiguity in defining entities, where 571

it considers instances like ‘Spoon’, ‘Pasta’, ‘Sci- 572

entist’ as entities diverge from actual ground truth 573

labels in MSNBC (Cucerzan, 2007); 2) linking am- 574

biguous partial names to famous entities (e.g., in a 575

dataset based on tweets (Derczynski et al., 2015), 576

a given query is ‘I’m going home to Wisconsin’, 577

it links the ambiguous entity ‘Wisconsin’ to the 578

Wisconsin state, but it may refer to ‘University of 579

Wisconsin–Madison’). Our preliminary results sug- 580

gest that future research should focus on enhancing 581

the precision of LLMs by using varied prompts to 582

match SoTA fine-tuned models. 583

5 Conclusion 584

We propose a an encoder-decoder model architec- 585

ture to enhance the disambiguation of entities by 586

providing more detailed descriptions. The encoder, 587

when given text and candidate entities learns the 588

interactions between the text and each entity candi- 589

date, generating representations for each candidate. 590

The decoder then combines these representations 591

to produce the correct entity. Our experiments, 592

conducted on various entity disambiguation bench- 593

marks, demonstrate the model’s strong and robust 594

performance. Furthermore, we integrate this ap- 595

proach into the retrieval/reader EL framework and 596

observe improvements on the GERBIL benchmark 597

compared with previous SoTA. We also propose 598

entity retrieval-augmented large language models 599

(LLMs) for EL. Results show that compared to 600

FUSIONED, LLMs generally underperform while 601

they demonstrate strong improvements compared 602

to SoTA over some datasets. 603

6 Limitations and Ethical Considerations 604

The scope of our ED and EL models are limited 605

to traditional Wikipedia and News datasets. We 606

have not investigated its effectiveness in diverse 607

domains such as biomedical research, e-commerce, 608

and product catalogs. Furthermore, this paper fo- 609

cuses exclusively on the English corpus, and ex- 610

ploring the potential of our model in amultilingual 611

setting would be an interesting expansion for fu- 612

ture research. This includes investigating the ad- 613

vantages of projecting entity linking concepts from 614

one language to another and employing multilin- 615

gual representation learning to enhance our base 616

model. While our retrieval-augmented LLMs ex- 617
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hibit notable performance improvements for certain618

datasets in EL, they underperform compared to the619

other approaches. Investigating how to enhance620

the performance of LLMs using different prompt621

further is an interesting direction for exploration.622

Our models are trained using datasets com-623

prised of existing textual collections sourced from624

Wikipedia and News. Recent studies have brought625

attention to potential societal biases ingrained in626

established corpora. We acknowledge the potential627

risk that our EL models may inherit such biases.628
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A Additional experiments on named 848

entity disambiguation benchmark 849

We also run a small ablation experiment on tradi- 850

tional named entity disambiguation datasets using 851

FLAN-T5-large as base model to compare the cor- 852

responding large model. Unlike a standard bench- 853

mark, models which test on those datasets typically 854

trained using different corpus and linked to differ- 855

ent KB which maybe subset of YAGO (Suchanek 856

et al., 2007) and KILT (Petroni et al., 2021). Re- 857

producing those results might be a challenge due 858

to the incomplete release of their entity vocabu- 859

lary 1 2. And comparison is indirect since training 860

datasets are different and may overlap with some 861

test datasets used in out-of-domain evaluation 3. 862

We avoid training our model on Wikipedia 863

datasets to prevent test data leakage. Instead, we 864

conduct ablation experiments, training on AIDA 865

and evaluating it in both in-domain AIDA-B and 866

out-domain datasets such as MSNBC, AQUAINT, 867

ACE2004, WNED-CWEB (CWEB), and WNED- 868

WIKI (WIKI) (Gabrilovich et al., 2013; Guo and 869

Barbosa, 2018) to provide a direct comparison. 870

At the inference, we rely on the same candidate 871

lists provided in (De Cao et al., 2021) 4. Instead of 872

decoding entity names, we decode the correspond- 873

ing entity number in the given ordered candidate 874

list. 875

Table 5 presents a comparison of InKB Mi- 876

cro F1 results between GENER and FUSIONED 877

when trained on the AIDA dataset and evaluated 878

in both in-domain and out-of-domain scenarios. 879

FUSIONED shows much better performance com- 880

pared to GENER, supporting our claim that our 881

model does not require significant pre-training. It 882

is worth noting that our numbers are not directly 883

comparable with SoTA models, as those models 884

are trained on different corpus. 885

B Entity linking experiments in GPT-4 886

Our prompt template is as follows: 887

Given a input passage and a 888

candidate entity list (each 889

element in this list is a pair 890

1https://github.com/facebookresearch/
GENRE/issues/26

2https://github.com/facebookresearch/
GENRE/issues/72

3https://github.com/facebookresearch/
GENRE/issues/13

4https://github.com/facebookresearch/
GENRE/tree/main/examples_genre
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In-domain Out-of-domain
Method AIDA-B MSNBC AQUAINT ACE2004 CWEB WIKI AVG
De Cao et al. (2021) 88.6 88.1 77.1 82.3 71.9 71.7 80.0
FUSIONED 91.7 92.4 82.0 87.1 75.8 78.6 84.6

Table 5: InKB Micro F1 comparison of GENER and FUSIONED when training in AIDA dataset and evaluate the
performance on both in-domain and out-of-domain. The goal of this experiments is to provide a direct comparison.

with entity title and entity891

description), your task is to892

select entities from this list893

and link them to mentions which894

appear in given passage. For895

each linkage, please output896

the entity title and mention,897

separated by @#@ on each line.898

You can use the truncated899

document as context information.900

passage: ... , entities: ...901

, document: ...902

For each passage, we first retrieve the top-100903

entity candidates, then feed this passage, entity can-904

didates, and the corresponding truncated document905

into this template to produce a prompt. Subse-906

quently, we call the GPT-4-16k API to get results.907

Then we parse results and evaluate those in GER-908

BIL benchmark.909

GPT-4 + retrieval GPT-4 + retrieval*
Dataset P R F1 P R F1
AIDA-B 52.0 66.6 58.4 53.2 66.5 59.1
MSNBC 32.6 60.7 42.4 32.8 60.5 42.5
Der 29.2 63.9 40.1 30.2 63.9 41.0
K50 70.3 67.8 69.0 72.0 59.4 65.1
R128 25.6 55.6 35.1 27.2 55.2 36.4
R500 19.2 62.8 29.4 20.1 61.0 30.1
OKE15 64.1 53.5 58.3 64.6 53.3 58.4
OKE16 60.7 47.2 53.1 61.5 46.5 53.0

Table 6: Breakdown of the score, Precision (P), Recall
(R) and F1 for the GPT-4 + retrieval method.

Table 6 presents the results of GPT-4 in the GER-910

BIL benchmark (Usbeck et al., 2015). For GPT-4 +911

retrieval (zero-shot)*, we additionally filter entities912

generated by the model using candidate entities913

obtained from entity retrieval and this improves its914

precision and slightly improve its performance over915

all datasets except K50 and OKE16.916
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