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Abstract

The sequence-to-sequence (Seq2Seq) approach
has recently been widely used in grammatical
error correction (GEC) and shows promising
performance. However, the Seq2Seq GEC ap-
proach still suffers from two issues. First, a
Seq2Seq GEC model can only be trained on
parallel data, which, in GEC task, is often
noisy and limited in quantity. Second, the de-
coder of a Seq2Seq GEC model lacks an ex-
plicit awareness of the correctness of the token
being generated. In this paper, we propose a
unified decoding intervention framework that
employs an external critic to assess the appro-
priateness of the token to be generated incre-
mentally, and then dynamically influence the
choice of the next token. We discover and in-
vestigate two types of critics: a pre-trained left-
to-right language model critic and an incremen-
tal target-side grammatical error detector critic.
Through extensive experiments on English and
Chinese datasets, our framework consistently
outperforms strong baselines and achieves re-
sults competitive with state-of-the-art methods.

1 Introduction

Automatically correcting grammatical errors is an
important task of practical value in the NLP field.
The potential applications include document proof-
reading, writing assistant, language learning edu-
cation, text post-processing for automatic speech
recognition (Leng et al., 2021), etc. There are
two mainstream approaches to grammatical error
correction (GEC), namely sequence-to-sequence
(Seq2Seq) (Sun et al., 2021; Rothe et al., 2021)
and sequence-to-edit (Seq2Edit) (Awasthi et al.,
2019; Omelianchuk et al., 2020). The Seq2Seq
approach treats GEC as a monolingual text trans-
lation/transduction task, whereas the Seq2Edit ap-
proach casts GEC into a sequence labeling task.
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Input: But there had no buyers .
Reference: But there were no buyers .

was were are would . . .Candidate:

GEC:
log pθÒ

´0.59 ´0.91 ´3.50 ´4.60

Critic:
Penalty Ó

0.8 0.3 0.95 0.99

log pθ ´ λ Penalty
e.g. λ “ 0.8

Final: ´1.23 ´1.15 ´4.26 ´5.39 . . .

✔

But there
sentence
Generated

. . .

Figure 1: Decoding intervention uses a critic to score
the correctness of the token attaching to the partially
generated target sentence. The final score of a candidate
token is the log-probability from the GEC model sub-
tracted by the critic penalty, which is scaled by λ.

Recent studies show that the Seq2Seq approach
consistently outperforms the Seq2Edit approach
on a variety of languages and datasets, especially
in handling more complex errors such as word-
ordering ones (Qorib et al., 2022; Zhang et al.,
2022b). However, the Seq2Seq approach still suf-
fers from two issues.

First, a Seq2Seq model can only utilize parallel
sentence pairs as training data, in which the input
sentence is potentially ungrammatical whereas the
target one is considered as correct. Usually, a ma-
jor proportion of the training data is automatically
collected from language learner websites such as
Lang-8. On the one hand, the Lang-8 data contains
a certain amount of noises, considering the volun-
tary contributors may make mistakes as well. On
the other hand, the data scale is quite limited, com-
pared with the non-parallel data used for training
large language models. For instance, the cleaned
version of English Lang-8 corpus (CLang8) con-
tains only 2.4M sentence pairs (Rothe et al., 2021).

Data augmentation is a popular approach for ad-
dressing the limited scale issue, i.e., synthesizing



large amount of training data (Grundkiewicz et al.,
2019; Stahlberg and Kumar, 2021). However, it
can be very difficult and tricky to control the error
distribution in the generated data so that it resem-
bles the realistic scenario. Moreover, it brings a
heavy computational cost to train a GEC model
with very large training data.

The second issue of the Seq2Seq GEC model
is that the decoder lacks an explicit awareness or
evaluation of whether the generated token is correct
during decoding. There are indeed several works
that perform grammatical error detection (GED)
for the input sentence, and use the results as extra
features for the encoder so that the decoder pays
extra attention to the erroneous spans in an im-
plicit manner (Chen et al., 2020; Yuan et al., 2021;
Zhang et al., 2022b). However, we are not aware
of any previous works that explicitly checks the
correctness of generated tokens during decoding
(e.g., target-side GED). As pointed out by Mita and
Yanaka (2021), a Seq2Seq GEC model tends to gen-
erate wrong corrections when the model encounters
errors unseen in the training data.

In this work, we propose a decoding intervention
framework to address both issues of the Seq2Seq
GEC approach. As illustrated in Figure 1, we em-
ploy an external critic to assess the appropriateness
of the token to be generated incrementally, and
then dynamically influence the choice of the next
token. Specifically, at each decoding step, the critic
will evaluate the appropriateness of the candidate
tokens, if the token is inappropriate, the critic will
punish the generation of the token by reducing the
log-probability score of the token.

The key to our decoding interventions is to find
a suitable critic. We discover and investigate two
useful critics. The first critic is a pre-trained left-
to-right language model (LM). Using the language
model as the critic can take advantage of its knowl-
edge learned from the vast amount of text. If the
language model gives a low probability to a token,
then the token is probably wrong even if the GEC
model gives it a high probability. The second critic
is a GED model which is an ideal critic to incorpo-
rate the explicit awareness of correctness into the
Seq2Seq GEC model during the decoding process.
However, the conventional GED cannot be directly
used as the critic because it does not match the
incremental manner of the decoding process. To
address this problem, we propose an incremental
target-side GED, which acts in a Seq2Seq manner

making judgments on the token to be generated yt
based on both the input sentence x and the tokens
generated so far yăt.

We conduct experiments on three English
GEC datasets, including two English-as-a-second-
language (ESL) datasets, a multi-domain native-
English dataset, and a Chinese dataset. Experi-
mental results demonstrate that our decoding inter-
vention brings consistent and substantial improve-
ments on all datasets. The results also show that
with the help of decoding intervention, our GEC
model can achieve comparable performance to the
state-of-the-art models on all datasets under com-
parable settings without any re-training.

Our code is available at https://github.c
om/Jacob-Zhou/gecdi

2 The Basic Seq2Seq GEC Model

This work aims to improve the Seq2Seq GEC ap-
proach. In this section, we briefly describe it.
Given a potentially erroneous sentence, a Seq2Seq
GEC model tries to generate a correct one without
changing its meaning, similar to machine transla-
tion, yet in a monolingual fashion.

We adopt the widely-used Transformer archi-
tecture (Vaswani et al., 2017) as our model back-
bone, which comprises an encoder and a decoder.
Given an input sentence x “ x1 . . . xn, the en-
coder first encodes it into a sequence of hidden
states h “ h1 . . . hn. At each timestamp, given
the input sentence representation h and the previ-
ously generated tokens yăt, the decoder calculates
a probability distribution over the vocabulary for
the next-token generation:

pθpyt | yăt,xq “ Decoderpyăt,hq. (1)

The score of an output sentence y is the sum of the
log-probabilities of all predicted tokens:

spx,yq “

|y|
ÿ

t“1

log pθpyt | yăt,xq. (2)

During training, Seq2Seq models commonly em-
ploy the teacher forcing method, aiming to max-
imize the log-likelihood of the ground-truth next
token gt, given the input sentence x and the previ-
ous ground-truth tokens găt:

Lpθ,x, gq “ ´

|g|
ÿ

t“1

log pθpgt | găt,xq. (3)

https://github.com/Jacob-Zhou/gecdi
https://github.com/Jacob-Zhou/gecdi


The main advantage of teacher forcing is that it
allows for parallel training.

The inference of Seq2Seq GEC models is to
find the best output sentence y˚ by solving the
following optimization problem:

y˚ “ argmax
yPY

spx,yq, (4)

where Y is the set of all possible sentences. This
optimization problem is typically tackled using the
beam search algorithm, in which the model predicts
a token at each decoding step, appends it to the
partial sentence, and subsequently selects the top k
partial sentences based on their scores for the next
decoding step.

3 Decoding Intervention

In this work, we propose a decoding intervention
framework to improve the Seq2Seq GEC. Con-
cretely, we use an external critic model to dynam-
ically evaluate the correctness of the next token
predicted by the GEC model during decoding. The
evaluation produces a penalty score to the existing
probability distribution from the GEC model as
follows:

spx,yq “

|y|
ÿ

t“1

`

log pθpyt | yăt,xq

´ λ ˆ Penaltypyt,yăt,xq
˘

.

(5)

The first term is the original probability from the
GEC model. The logarithm transform stretches the
probability into a wider range and thus makes it
more influential. This also gives more flexibility to
the design of the critic model1.

The second term is the penalty score from the
critic model to “yt” given the input sentence x and
the generated prefix yăt and λ is a coefficient that
controls the trade-off between two model scores.
Please note that λ is not a global hyper-parameter
but is instead decided by the scores in a token-wise
manner. We detail this in Section 3.3.

From Eq. (5), we can draw two characteristics
of our framework.

• Incremental. Similar to the Seq2Seq GEC
model, the critic model incrementally evaluates
a target sentence from left to right, token by token.

1Based on our early-stage trials, we find it problematic to
directly integrate the probabilities of the GEC model and the
critic model via weighted interpolation, since the models usu-
ally have different vocabulary spaces and smaller vocabulary
leads to a relatively larger probability for each token.

• Dynamic. The critic model dynamically in-
fluences the choice of tokens during decoding, in
contrast to re-ranking N complete sentences.

Moreover, the critic model may or may not use
the input sentence x. In this work, we discover and
investigate two useful critic models, i.e., a pure left-
to-right pre-trained language model which does not
use x, and an incremental target-side GED model
that uses x.

3.1 Left-to-Right Pre-trained LM
A conventional pre-trained left-to-right language
model, unlike masked language models (e.g.,
BERT (Devlin et al., 2019)) and Seq2Seq mod-
els (e.g., BART (Lewis et al., 2020)), can be natu-
rally used to evaluate the possibility of a sentence
y, which is factored as product of probabilities of
tokens in an incremental manner.

pπpyq “

|y|
ź

t“1

pπpyt | yătq, (6)

where π denotes parameters of the language model.
The possibility of a token, i.e., pπpyt | yătq, can
also be understood as how likely the token appears
after previous tokens yăt.

The GEC task aims to produce a correct sentence
that keeps the same meaning as the input sentence.
We propose to use a language model to evaluate the
correctness of a sentence from a purely linguistic
perspective, without referring to its input sentence.

In this work, we select the GPT-2 models, which
are trained on a very large amount of sentences,
much more than the parallel sentences that are used
for training GEC models, as the pure left-to-right
language models. The rationale is that if the lan-
guage model gives a low probability to a token,
then the token is probably wrong even if the GEC
model gives it a high probability. Specifically, we
define the penalty from the language model critic
as follows.

Penaltylmpyt,yăt,xq “ 1 ´ pπpyt | yătq (7)

3.2 Incremental Target-side GED
As discussed in Section 1, one potential weakness
of Seq2Seq GEC models is that the decoder may
be unaware of the correctness of its output tokens.
Several recent works try to alleviate this issue by
performing GED on the input sentence, and using
the GED labels as extra inputs to the encoder (Chen
et al., 2020; Yuan et al., 2021; Zhang et al., 2022b).



Type Generated Tokens Next
COR The quick brown fox jumps
RED The quick brown fox already
SUB The quick brown fox runs
MISS The quick brown fox over

Table 1: Examples of the four GED labels, i.e., cor-
rect (COR), redundant errors (RED), substitution errors
(SUB), and missing errors (MISS). In this example, the
input sentence is “The quick brown fox jump over the
lazy dog”, and the reference is “The quick brown fox
jumps over the lazy dog”.

To some extent, this approach can make the model
more explicitly aware of the correction process. In
this work, we for the first time propose to apply an
incremental target-side GED to the output sentence
under our framework, which we believe is a more
effective intervention strategy.

Given an input sentence x, a partial target sen-
tence generated so far yăt, and a candidate token
yt to be generated, the GED model judges the cor-
rection of yt into four labels, as shown in Table 1.
Please notice that the GED model must look at x,
instead of only accessing yăt. The reason is that
the GED model as a critic provides a complemen-
tary impact versus the language model critic that
the target sentence should keep the same meaning
as the input sentence. In the absence of x, many
tokens can be considered correct given yăt.

Formally, we design the penalty from the GED
critic model as follows.

Penaltygedpyt,yăt,xq “ 1 ´ pΦpCOR | yďt,xq,
(8)

where Φ is the model parameters, and “COR” is the
correct label as shown in Table 1.

Training Our incremental target-side GED acts
in a Seq2Seq manner, which is much like the GEC
model, requiring parallel sentence pairs for train-
ing. Yet we cannot directly use the GEC training
data, because the target sentences are all correct.
The other consideration is that it is obviously ben-
eficial that errors in the target sentences are more
consistent with those generated by GEC models.
Basically, we use the baseline GEC model to gen-
erate K output sentences which may be erroneous
via beam search. Then we obtain the error labels
for each token (subword, to be accurate) using the
editing distance algorithm, which is the same as the
evaluation metrics. Section 4 gives more details.

3.3 Coefficient for the Critics
The coefficient λ in Eq. (5) is important for leverag-
ing the power of the critic model. Instead of using
a fixed value for all contexts, we find it is bene-
ficial to dynamically set the value by comparing
the confidences from the two participating models.
Intuitively, a model can be trusted if it has high
confidence in its prediction, as a strong correlation
holds between a model’s confidence and the accu-
racy of its prediction (Guo et al., 2017; Kull et al.,
2019). After several experimental trials, we find
the following formula works quite well, especially
when we use two critics at the same time. Here we
use the language model critic for illustration.

λ “ α ˆ
β ˆ Entropyp pθp¨q q ` 1

β ˆ Entropyp pπp¨q q ` 1
. (9)

where pθp¨q and pπp¨q refer to the probability distri-
bution of the GEC model and the language model
over their own vocabulary space V; α ą 0 is a
coefficient that controls the overall scale of penalty
scores, and β ě 0 governs their variation, both
of which aim to balance the influence of the critic
models.

For the GED critic, we simply replace pπp¨q with
pΦp¨q. Please notice that its vocabulary only con-
tains the four GED tags2.

We separately select α and β for the two
critics based on dev data. The search space
of α is t0.1, 0.2, . . . , 1.0u and that of β is
t0.01, 0.1, . . . , 100u. In Section 5, we study the
impact of α and β. Results show that our decoding
intervention is robust on a wide range of α and β.

Using both critics When we use two critics at
the same time, we directly add penalties from the
two critic models in Eq. (5).

. . . ´ λlm ˆ Penaltylmpyt,yăt,xq

´ λged ˆ Penaltygedpyt,yăt,xq
˘

(10)

For simplicity, we directly re-use the hyper-
parameters separately selected above, and find the
performance is satisfactory.

4 Experiments

Datasets In this paper, we conduct experiments
on two languages: English and Chinese.

2To avoid the entropy imbalance resulting from different
vocabulary sizes between the two critics, we normalize the
entropies to a range of r0, 1s. This normalization is achieved
by dividing by the upper bound of the entropy (log|V|).



System
English Chinese

CoNLL-14 test BEA-19 test GMEGWIKI test MuCGEC test
P R F0.5 P R F0.5 P R F0.5 P R F0.5

Omelianchuk et al. (2020) 77.5 40.1 65.3 79.2 53.9 72.4 – – – – – –
Rothe et al. (2021) – – 66.1 – – 72.1 – – – – – –
Sun et al. (2021) 71.0 52.8 66.4 – – 72.9 – – – – – –
Yasunaga et al. (2021) 78.0 40.6 65.8 79.4 55.0 72.9 57.9 33.6 50.6: – – –
Sun and Wang (2022) – – – 78.7 63.2 75.0 – – – – – –
Zhang et al. (2022b) 74.7 49.0 67.6 75.1 65.5 72.9 – – – 54.69 29.10 46.51
Vanilla Decoding 76.1 48.3 68.2 76.3 60.7 72.5 72.3 34.7 59.4 56.13 29.38 47.41
Decoding Intervention
├ Language Model 77.0 48.6 68.9 76.2 61.1 72.6 72.7 35.5 60.1 55.55 30.51 47.66
├ Target-side GED 78.6 46.3 69.0 77.5 59.5 73.0 75.0 33.5 60.1 56.94 30.06 48.24
└ Both 79.2 46.8 69.6 77.4 59.9 73.1 75.6 34.4 61.0 56.74 31.00 48.61

Table 2: Results on GEC test datasets. :: The model of Yasunaga et al. (2021) in GMEGWIKI dataset is only trained
on synthetic data, which makes direct comparisons less meaningful.

For English, we follow the convention of using
BEA-19 dev set (Bryant et al., 2019) for method-
ological development and the BEA-19 and CoNLL-
14 test sets for final evaluation. It should be noted
that both the BEA-19 and CoNLL-14 test sets are
collected from ESL learners. To better understand
the effectiveness of our method in real-world sce-
narios, we also conduct experiments on GMEG-
wiki dev/test set (Napoles et al., 2019), a multi-
domain dataset derived from native English speak-
ers. For performance metrics, we use M2Scorer on
CoNLL-14 and ERRANT v2.0.0 on the others.

For Chinese, we conduct experiments on the
MuCGEC dataset (Zhang et al., 2022a), a multi-
reference and multi-source dataset3 and use the
official ChERRANT scorer to measure the perfor-
mance.

Baseline & general settings The GEC model
used in this paper is a BART model (Lewis et al.,
2020) fine-tuned on GEC datasets. Detailed infor-
mation on this model can be found in Appendix B.

We take “Vanilla Decoding” as our baseline,
which refers to decoding using the original proba-
bility score as defined in Eq. (2).

During the decoding process, we employ the
commonly used beam-search algorithm to find the
sequence with the highest score spx,yq. For all
experiments, we use a beam size of 12.

We repeat all the experiments 4 times with dif-
ferent random seeds and report the average results.

Language model critic We take off-the-shelf
GPT-2 models as our language model critics. For

3Please note that we omit the experiments on the NLPCC-
18 (Zhao et al., 2018) since it is included in MuCGEC.

ESL datasets, we use the gpt2 model, while
for the GMEG-wiki dataset, we opt for the
larger gpt2-large model. For the Chinese
dataset, MuCGEC, we employ the uer/gpt2-
chinese-cluecorpussmall.

Target-side GED critic We initialize the back-
bone of our target-side GED critic models with
pre-trained BART models. Specifically, we use the
facebook/bart-base for ESL datasets, the
larger facebook/bart-large for the GMEG-
wiki dataset, and the fnlp/bart-large-
chinese for the MuCGEC dataset.

We use the FCE, NUCLE, W&I+LOCNESS
train set to generate the English training data. And,
we use the HSK train set (Zhang, 2009) for Chinese
critic models training4. Hyper-parameter details
can be found in Appendix C.

4.1 Main Results

The main results are presented in Table 2. Re-
sults show that compared to the baseline “Vanilla
Decoding”, our decoding intervention consistently
improves F0.5 scores across all datasets, regard-
less of the critic used. The two critics improve
the model’s performance in different ways. The
language model critic is better at improving the
recall rate, while the target-side GED critic is bet-
ter at improving the precision rate. Results also
show that our decoding intervention can be further
improved by combining the two critics (“Both”).
Specifically, “Both” achieves 1.4, 0.6, 1.6, and 1.2
F0.5 improvement on the CoNLL-2014, BEA-19,

4We allocate 90% of the generated data for training and
10% for development.



Input Scientists can not conclude whether this smell tactic is used to attract the Danman (evil partner
in crime whom has mad guitar skillz) or to ward of predators (PhD supervisors) .

Reference 0 . . . crime who has mad guitar skillz) or to ward of predators (PhD supervisors) .
Reference 1 . . . crime who has mad guitar skills) or to ward off predators (PhD supervisors) .
Vanilla Decoding . . . crime who has mad guitar skills) or to ward of predators (PhD supervisors) .
Decoding Intervention
├ Language Model . . . crime who has mad guitar skills) or to ward off predators (PhD supervisors) .
├ Target-side GED . . . crime who has mad guitar skills) or to ward of predators (PhD supervisors) .
└ Both . . . crime who has mad guitar skills) or to ward off predators (PhD supervisors) .

Input Girls were first admitted to Hurlstone Agricultural High School in 1978 .
Reference Girls were first admitted to Hurlstone Agricultural High School in 1978 .
Vanilla Decoding The girls were first admitted to Hurlstone Agricultural High School in 1978 .
Decoding Intervention
├ Language Model The girls were first admitted to Hurlstone Agricultural High School in 1978 .
├ Target-side GED Girls were first admitted to Hurlstone Agricultural High School in 1978 .
└ Both Girls were first admitted to Hurlstone Agricultural High School in 1978 .

Table 3: Qualitative examples of decoding intervention versus vanilla decoding. Corrections marked in “Blue” are
correct or suggested by the reference, while those in “Red” are incorrect.

GMEG-wiki, and MuCGEC test sets, respectively.
We also compare our model with the recent state-

of-the-art models. Note that our baseline model is
already competitive with the state-of-the-art mod-
els. The tricks that we have used to improve the
baseline model’s performance are listed in Ap-
pendix B.3. Results show that our decoding in-
tervention method (“Both”) achieves an absolute
improvement of 2.0 F0.5 on the CoNLL-2014 and
2.10 on the MuCGEC. It is worth noting that the
best performance in the BEA-19 test is achieved by
Sun and Wang (2022) with an F0.5 score of 75.0.
However, it can not be directly compared with our
results since they use a private synthesized dataset
and the size of it is hundreds of times larger than
our training data (300M vs. our 2.4M).

4.2 Qualitative Examples

We include two qualitative examples in Table 3.
In the first example, the baseline “Vanilla De-

coding” and the decoding intervention using the
target-side GED as the critic both fail to correct the
error “ward of ” to “ward off ”. It is because the
error pattern (“ward of ” to “ward off ”) has not ap-
peared in the training data of both the GEC model
and the target-side GED. However, the language
model critic is able to correct this error successfully,
demonstrating that a language model, pre-trained
on vast amounts of data, can help the GEC model
identify and correct errors that do not appear in the
GEC training data.

In the second example, the input sentence is
grammatically correct. Yet, the baseline “Vanilla
Decoding” introduces a new error by inserting a
definite article “The” before “Girls”. The language

model critic fails to correct this by intervening in
the decoding process, since the sentence with the
definite article is still grammatically correct, albeit
with a different meaning.

These two examples also show that the “Both”,
which uses the target-side GED and the language
model at the same time, manages to integrate the
advantages of both critics.

5 Ablation Studies

Impact of critic sizes We perform experiments
using four distinct sizes of language models and
two different sizes of target-side GEDs.

As shown in Table 4, we can observe that, on
BEA-19, the ESL learners dataset, a larger critic
only results in a slight improvement in the F0.5

score (+0.07 for language models, and +0.08 for
target-side GEDs). However, on the GMEG-wiki, a
multi-domain dataset from native speakers, a larger
critic can lead to a large improvement on F0.5 score
(+0.30 for language models, and +0.76 for target-
side GEDs). This may be because the errors on
the ESL dataset are relatively simple and can be
captured by smaller critics. In contrast, errors on
the multi-domain native dataset are more complex
and may require domain knowledge to identify.

Due to the uniform size of the Chinese GPT-2
models we found, we only performed experiments
on the target-side GEDs for the Chinese dataset.
The results show that a larger target-side GED is
more effective when used with the Chinese dataset.

Effectiveness of the dynamic coefficient As
mentioned in Section 4.1, the language model and
the target-side GED exhibit specific tendencies



Size P R F0.5

BEA-19 dev
Vanilla Decoding 64.85 39.44 57.40
Decoding Intervention
├ Language Model
│├ gpt2 117M 65.12 39.83 57.74
│├ gpt2-medium 345M 65.10 39.65 57.64
│├ gpt2-large 774M 65.10 39.92 57.76
│└ gpt2-xl 1.5B 65.30 39.75 57.81
└ Target-side GED
├ bart-base 110M 66.52 37.86 57.72
└ bart-large 400M 66.01 38.71 57.80

GMEGWIKI dev
Vanilla Decoding 70.21 32.85 57.19
Decoding Intervention
├ Language Model
│├ gpt2 117M 70.76 33.31 57.76
│├ gpt2-medium 345M 70.91 33.36 57.88
│├ gpt2-large 774M 71.13 33.50 58.07
│└ gpt2-xl 1.5B 71.07 33.54 58.06
└ Target-side GED
├ bart-base 110M 71.16 32.10 57.22
└ bart-large 400M 73.01 31.84 57.98

MuCGEC dev
Vanilla Decoding 55.69 28.87 46.88
Decoding Intervention
└ Target-side GED
├ bart-base 139M 56.44 28.60 47.15
└ bart-large 406M 55.82 29.83 47.48

Table 4: Results on GEC dev datasets of different sizes
of GPT-2 and target-side GED models.

when improving the GEC model. However, we
also observed that a critic tends to decrease one
score when improving another. For instance, while
the target-side GEDs improve the precision score,
they also result in a decline in the recall score. It
might be caused by the misjudgment of the critics
when they are unconfident. As a result, the im-
provement of the F0.5 score is potentially hindered.
To address this issue, we propose a coefficient strat-
egy that dynamically adjusts the coefficient of the
critic at each decoding time step according to the
confidence levels of the critic and the GEC model.

Results in Table 5 show that the dynamic coef-
ficient strategy can alleviate the decrease in either
the precision score or recall score. Furthermore,
this strategy can even lead to an improvement of
the P score on the BEA-19 dataset when using the
language model as the critic and an improvement
of the R score on the MuCGEC dataset when em-
ploying the target-side GED as the critic.

Robustness of the decoding intervention The
dynamic coefficient strategy of the decoding in-

P R F0.5

BEA-19 dev
Vanilla Decoding 64.85 39.44 57.40
Decoding Intervention
├ Language Model 65.30 39.75 57.81
│└ w/o dynamic coefficient 64.33 40.30 57.43
└ Target-side GED 66.01 38.71 57.80
└ w/o dynamic coefficient 66.09 38.59 57.79

GMEGWIKI dev
Vanilla Decoding 70.21 32.85 57.19
Decoding Intervention
├ Language Model 71.13 33.50 58.07
│└ w/o dynamic coefficient 70.23 33.08 57.34
└ Target-side GED 73.01 31.84 57.98
└ w/o dynamic coefficient 73.44 31.49 57.95

MuCGEC dev
Vanilla Decoding 55.69 28.87 46.88
Decoding Intervention
├ Language Model 55.88 30.02 47.59
│└ w/o dynamic coefficient 55.85 30.00 47.57
└ Target-side GED 55.82 29.83 47.48
└ w/o dynamic coefficient 56.43 28.68 47.20

Table 5: Results on GEC dev datasets of w/ or w/o
dynamic coefficient strategy. Underline means the result
is inferior to the vanilla decoding baseline.

tervention contains two hyper-parameters: an α
for controlling the global scale of the coefficient
and a β for the coefficient’s variability. We use a
heatmap to visualize the impact of these two hyper-
parameters on the F0.5 score, as shown in Figure 2.

In general, our decoding intervention is robust
to the hyper-parameters, and surpasses the baseline
in most cases. However, we can also observe some
interesting phenomena. Compared to the target-
side GEDs, the language models are more sensitive
to hyper-parameters, particularly to the variability
β. Specifically, on the English dataset, when vari-
ability β is small, meaning that the λ is almost the
same at different decoding time steps, the language
model not only fails to gain improvement but even
leads to a decrease in the F0.5 score when α is
large. Although the target-side GEDs are robust to
the hyper-parameters, they tend to perform better
with a larger α and smaller β in English, and with
a moderate α and larger β in Chinese.

6 Related Works

6.1 Grammatical Error Correction

There exist two main approaches: sequence-
to-sequence (Seq2Seq) and sequence-to-edit
(Seq2Edit). The Seq2Seq-based approach regard-
ing GEC as a monolingual machine translation task,
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Figure 2: Model performance (F0.5) of decoding intervention compared to vanilla decoding with different scale
α and variability β. The x-axis is β and y-axis is α. The red cells denote superior performance of decoding
intervention compared to the vanilla decoding. The blue cells represent inferior performance. A deeper color
indicates a larger performance difference.

is the most widely used approach in the GEC com-
munity recently. Though the Seq2Seq-based ap-
proach has achieved the state-of-the-art (SOTA)
performance on various benchmarks (Sun et al.,
2021; Rothe et al., 2021; Zhang et al., 2022b, inter
alia), they typically have a slow inference speed
due to their autoregressive decoding process.

In order to deal with the slow inference speed
of the Seq2Seq-based approach, numerous recent
works focus on the second approach, the Seq2Edit-
based approach (Gu et al., 2019; Awasthi et al.,
2019; Omelianchuk et al., 2020; Zhang et al., 2023,
inter alia). This approach regards GEC as a se-
quence labeling task. A Seq2Edit model is trained
to predict the edit operations (e.g., keep, insert,
delete, replace) for each token in the input sen-
tence to transform it into a correct one. The
most representative work, GECToR (Omelianchuk
et al., 2020), achieves a comparable performance to
the state-of-the-art Seq2Seq approach, with a 10x
faster inference speed.

6.2 Decoding Intervention

The idea of decoding interventions has been widely
used in many NLP tasks. Existing works can be
categorized into two temporal stages: early and
contemporary.

Early-stage works are mainly used to improve
the performance of Seq2Seq-based approaches by
using a language model trained on a large amount
of monolingual data to intervene in the decod-
ing process remedying the lack of parallel data

(Gülçehre et al., 2015; Kannan et al., 2018; Zhao
et al., 2019, inter alia). To the best of our knowl-
edge, these early-stage works mainly focus on
tasks like machine translation and automatic speech
recognition, with no known attempts to apply them
to GEC. This kind of decoding intervention has be-
come less popular in recent years, as the advent of
powerful pre-trained models has largely mitigated
the problem of lacking parallel data.

Recent works, on the other hand, mostly focus
on using decoding interventions to steer pre-trained
language models towards generating desired out-
puts, such as certain topics, sentiments, or the
avoidance or inclusion of specific words (Dathathri
et al., 2020; Krause et al., 2021; Liu et al., 2021;
Chen et al., 2022, inter alia).

Our work shares similarities with early-stage
works in that we also use a language model to
intervene in the decoding process. However, we
distinguish ourselves by focusing on the GEC task
and proposing the use of a target-side GED model
to incorporate explicit grammaticality awareness
into the decoding process. It is worth noting that
there is a work conducts a decoding intervention
in GEC (Sun and Wang, 2022). However, their
motivation is to adjust the precision-recall trade-
off.

7 Conclusions

In this paper, we propose a unified decoding inter-
vention framework for GEC models. Within this
framework, we discover and investigate two useful



critics: the language model critic and the target-
side GED critic. Among them, the target-side GED
critic represents a novel contribution. While most
existing research has employed GED on the input
side, this work is the first to leverage GED on the
target side to assist GEC. Although the concept of
a language model critic may not be entirely new,
we argue that it is still worth investigating its effec-
tiveness on the GEC task, especially in the era of
pre-trained language models.

Experiments conducted on four English and Chi-
nese GEC datasets lead to several promising find-
ings. Firstly, the decoding intervention framework
can consistently and substantially improve the per-
formance of GEC models, regardless of whether
a language model or error detector is used as the
critic. Secondly, The language model critic is better
at improving the recall rate, while the target-side
GED critic is better at improving the precision rate.
Thirdly, while the size of the critic has a minor
impact on the ESL dataset, it becomes substantial
on the multi-domain English dataset from native
speakers, as well as the Chinese dataset. Finally,
aided by the decoding intervention framework, our
baseline GEC model shows competitive perfor-
mance when compared to state-of-the-art models.

Limitations

The use of the critic introduces additional com-
putational costs and GPU memory usage. Con-
sequently, the decoding intervention has slower
decoding speeds than the vanilla decoding, espe-
cially in the native writing dataset where a larger
critic is required for better performance. In the fu-
ture, we will further explore methods to reduce the
computational costs of the decoding intervention
framework, for example, distilling a larger critic
into a small one, or using a lightweight mechanism
to decide when to use the critic.

Besides, this work primarily focuses on the de-
coding intervention framework for GEC models.
It would be interesting to investigate whether the
decoding intervention framework can be applied to
other Seq2Seq-based approaches in different NLP
tasks, such as machine translation and text summa-
rization, or how to design a suitable critic for these
tasks. We leave these questions for future work.
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Dataset #Sentences %Error Usage
CLang8 2,372,119 57.8 Pre-training
FCE 34,490 62.6 Fine-tuning I
NUCLE 57,151 38.2 Fine-tuning I
W&I+LOCNESS 34,308 66.3 Fine-tuning I&II
BEA-19 Dev 4,384 65.2 Validation
GMEGWIKI Dev 992 – Validation
CoNLL-14 Test 1,312 72.3 Testing
BEA-19 Test 4,477 – Testing
GMEGWIKI Test 992 82.3 Testing

Table 6: Statistics of English GEC datasets. #Sentences
denotes the number of sentences.%Error refers to the
proportion of erroneous sentences.

Dataset #Sentences %Error Usage
Lang8 1,220,906 89.5 Training
HSK 15,6870 60.8 Training
MuCGEC dev 1,125 95.1 Validation
MuCGEC test 5,938 92.2 Testing

Table 7: Statistics of Chinese GEC datasets.

A Dataset Statistics

The information of all datasets used in our English
and Chinese experiments is listed in Table 6.

B Details of GEC Model

B.1 Hyper-parameters
The main hyper-parameters adopted by our
GEC are presented in Table 8. We use
the facebook/bart-large for English and
fnlp/bart-large-chinese for Chinese.
For fine-tuning BART on GEC data, we directly
utilize the same hyper-parameters described in Kat-
sumata and Komachi (2020). When confronting
sentences longer than the max input length, we
keep them unchanged during predicting.

B.2 Train procedure
We adopt a three-stage finetuning strategy for our
English GEC model, following Omelianchuk et al.
(2020):

STAGE 1: We train GEC model on the cleaned
version of the Lang8 dataset (CLang8) released by
Rothe et al. (2021);

STAGE 2: We fine-tune the model on FCE
dataset (Yannakoudakis et al., 2011), NUCLE
dataset (Dahlmeier et al., 2013) and the W&I +
LOCNESS train-set (Bryant et al., 2019);

STAGE 3: We further fine-tune the model on the
W&I + LOCNESS test set only.
For Chinese, we use Chinese Lang8 dataset (Zhao
et al., 2018) and HSK dataset as the finetuning data,
following Zhang et al. (2022b).

Configuration Value
Fine-tuning

Pre-trained Model BART-large (Lewis et al., 2020)
Number of epochs 60
Devices 2 Tesla V100 GPU (32GB)

Batch size
40960 (E);
16384 (C)

tokens

Update frequency 10

Optimizer
AdamW (Loshchilov and Hutter, 2019)
(β1 “ 0.9, β2 “ 0.999, ϵ “ 1 ˆ 10´8)

Max input length 64 (E); 128 (C)

Loss function
Label smoothed cross entropy

(label-smoothing=0.1)
(Szegedy et al., 2016)

Dropout 0.3
Weight decay 1 ˆ 10´2 (E); 0 (C)
Gradient clip 0.1 (E); 1.0 (C)
Learning rate (E Stage 1) 3 ˆ 10´5

Learning rate (E Stage 2) 5 ˆ 10´6

Learning rate (E Stage 3) 3 ˆ 10´6

Learning rate (C) 3 ˆ 10´6

Warmup updates (E Stage 1) 2000
Warmup updates (E Stage 2 & 3) 0
Warmup updates (C) 2000

Generation
Beam size 12
Max input length 64 (E); 128 (C)

Table 8: Hyper-parameter values used in our GEC
model. E and C denote the English and Chinese model,
respectively.

B.3 Tricks

As shown in the Table 2, our baseline model out-
performs most previous works on two datasets:
CoNLL-14 and MuCGEC. The reasons are as fol-
lows:

CoNLL-14: We use the same hyperparameters
as Katsumata and Komachi (2020), but different
from them, we follow the suggestion of Rothe
et al. (2021) to post-process the model’s output
on CoNLL-14 to make its tokenization more con-
sistent with the evaluation data. For instance, we
remove spaces in Hyphenated words like "face - to
- face" to produce "face-to-face". We implemented
this post-processing step after observing that our
GED critic performs better than vanilla decoding
for this type of tokenization error, thereby isolating
improvements not attributable to syntactic factors.

MuCGEC: The improvement of our
baseline model on this dataset comes from
two aspects: While we employ the same
“fnlp/bart-large-chinese” as previous
works, the model’s parameters were updated earlier
this year, resulting in a substantial performance
boost (from 46.51 to 47.04). We noticed that the
Chinese correction model sometimes produces
repeated tokens during decoding, e.g., Input: "为



怎么呢？", Output: "为什么呢？为什么呢？".
To counter this, we use a simple decoding rule
that limits the model’s output to no more than 1.8
times the length of the input, leading to further
improvement (from 47.04 to 47.41). A better
solution, as suggested by Jiang et al. (2023), is to
filter out the instances of which the output length
is more than 1.5 times the input length during
training.

C Details of Target-side GED Critic

C.1 Hyper-parameters
During training, we use the AdamW optimizer
(Loshchilov and Hutter, 2019) with a weight de-
cay of 0.01, β1 “ 0.9 and β2 “ 0.98. The BART
model and the classifier have a learning rate of
5ˆ106 and 2.5ˆ107, respectively. We use an expo-
nential decay scheduler with a decay rate of 0.75
and a decay step of 5000. The batch size is 65536
tokens, and the maximum sequence length is 1024.
The dropout rate is set to 0.3, and the label smooth-
ing rate is set to 0.01. The maximum number of
epochs is set to 5.


