
Under review as a conference paper at ICLR 2023

SDMUSE: STOCHASTIC DIFFERENTIAL MUSIC EDIT-
ING AND GENERATION VIA HYBRID REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

While deep generative models have empowered music generation, it remains a
challenging and under-explored problem to edit an existing musical piece at fine
granularity. In this paper, we propose SDMuse, a unified Stochastic Differential
Music editing and generation framework, which can not only compose a whole
musical piece from scratch, but also modify existing musical pieces in many
ways, such as combination, continuation, inpainting, and style transferring. The
proposed SDMuse follows a two-stage pipeline to achieve music generation and
editing on top of a hybrid representation including pianoroll and MIDI-event. In
particular, SDMuse first generates/edits pianoroll by iteratively denoising through
a stochastic differential equation (SDE) based on a diffusion model generative
prior, and then refines the generated pianoroll and predicts MIDI-event tokens
auto-regressively. We evaluate the generated music of our method on ailabs1k7
pop music dataset in terms of quality and controllability on various music editing
and generation tasks. Experimental results demonstrate the effectiveness of our
proposed stochastic differential music editing and generation process, as well as
the hybrid representations.

1 INTRODUCTION

With the development of deep learning and generative models, automatic music composition has
received much research attention (Dong et al., 2018; Huang & Yang, 2020; Ren et al., 2020; Ju
et al., 2021; Wu & Yang, 2021; Zhang et al., 2022), and also has a lot of successful applications,
such as movie soundtracks, virtual singers, and auxiliary composing. However, as the aesthetics of
music are diverse for different groups of people, or even for each individual, there is no musical
piece in the world that simultaneously satisfies everyone’s taste for any scenario. In many cases, one
may feel unsatisfied with certain bars of a musical piece, if not with the whole piece, and he or she
would like to edit them, which is impossible except for a professional such as a music composer.
AI solutions like symbolic music generation methods (Huang & Yang, 2020; Hsiao et al., 2021) can
help, but they would regenerate a completely new piece that may be totally different from the former
one without preserving those “satisfying” parts. The same thing happens when someone wants to
extend an existing musical piece, modify the style or combine several pieces. Therefore, besides the
effort on improving generative quality (Ren et al., 2020; Ju et al., 2021) in a broad sense, it is also
crucial and much demanded to study how to edit and modify existing musical pieces.

There are only a few works studying music editing tasks, mainly focusing on global music style
transfer (Cı́fka et al., 2020; Wu & Yang, 2021) or music genre transfer (Brunner et al., 2018). The
most related work (Wu & Yang, 2021) to ours achieves music style transfer with Transformer VAE
on pre-defined musical attributes like rhythmic intensity and polyphony. The musical attributes are
song-level, prohibiting users from editing certain part of a musical piece. In addition, users can only
control and edit the pre-defined attributes, which severely limits its application. Other works (Cı́fka
et al., 2020; Brunner et al., 2018) have similar limitations. So far, no one has explored editing mu-
sical pieces at fine granularity in the same flexible way as image editing, such as inpainting (Pathak
et al., 2016) and outpainting (Wang et al., 2014).

Existing state-of-the-art music generation works (Hsiao et al., 2021; Ren et al., 2020; Zhang et al.,
2022) with high generative quality are based on MIDI-event representation (an illustration of MIDI-
event is in Figure 1c). As validated by the success of these methods, the MIDI-event representation is

1

Under review as a conference paper at ICLR 2023

(a) Music sheet. (b) Pianoroll.

NOTE [Pitch: 61, Velocity: 115, Duration: 69]
NOTE [Pitch: 63, Velocity: 109, Duration: 45]
NOTE [Pitch: 66, Velocity: 118, Duration: 49]
NOTE [Pitch: 68, Velocity: 112, Duration: 60]
NOTE [Pitch: 70, Velocity: 112, Duration: 79]
NOTE [Pitch: 66, Velocity: 112, Duration: 148]
NOTE [Pitch: 63, Velocity: 118, Duration: 173]
NOTE [Pitch: 68, Velocity: 115, Duration: 711]

...

(c) MIDI-event tokens.

Figure 1: The illustrations of different symbolic music representations.

appropriate for the model to generate and model music performance details such as velocity, but not
for humans to perceive and edit since the data format is not intuitive enough. Another widely used
music representation pianoroll (an illustration of pianoroll is in Figure 1b) is closer to the way of
human perception, but the methods (Dong et al., 2018; Yang et al., 2017) based on it cannot achieve
comparable generation quality with MIDI-event-based ones. In this work, we consider using both
of the representations, which we call hybrid representation, to achieve fine-grained music editing.

Specifically, we define a series of fine-grained music editing tasks and propose a unified Stochastic
Differential Music editing and generation framework via hybrid representation, named SDMuse.
SDMuse can not only generate a whole musical piece from scratch either unconditionally or con-
ditioned on some control signals (such as chord progression), but also edit existing musical pieces
in different ways, including stroke-based generation/editing, inpainting, outpainting, combination
and style transferring. As pianoroll is easier for humans to understand and edit, and MIDI-event
sequence is more suitable for generation, we design a two-stage pipeline based on a hybrid rep-
resentation. In the first stage, a diffusion model generative prior is applied and the pianorolls are
obtained by iteratively denoising through a stochastic differential equation (SDE). The progressive
generation feature of our diffusion model allows us to implement a series of music editing opera-
tions in this stage. In the second stage, the generated pianoroll will be refined with more precise
music performance details (velocity, fine-grained onset position, etc.) by generating the final MIDI-
event sequence in an auto-regressive manner, enjoying the benefits of MIDI-event representation for
high-quality music generation.

We evaluate SDMuse on ailabs1k7 pop music dataset (Hsiao et al., 2021) in terms of quality and
controllability in various music editing and generation tasks. Both objective and subjective results
demonstrate the effectiveness of the stochastic differential process and hybrid representation in SD-
Muse. To our best knowledge, we are the first one to formulate and address fine-grained music edit-
ing, which aims to edit existing musical pieces at fine granularity according to diverse demands and
provide humans with new ways to collaborate with models during music composition. The generated
samples can be found on our demo page https://SDMuse.github.io/posts/sdmuse/.

2 BACKGROUND

2.1 SYMBOLIC MUSIC REPRESENTATION

Most previous symbolic music generation works are based on two most common music representa-
tions: pianoroll and MIDI-event. Pianoroll-based approaches (Yang et al., 2017; Dong et al., 2018)
use pianorolls to represent music scores, with the horizontal axis representing time and the vertical
axis representing pitch. Pianoroll is just like an image, so pianoroll-based methods use image-based
operations to generate music. Pianoroll is closer to the way of humans perceiving musical pieces,
making it more suitable for being understood and edited by humans. However, most state-of-the-
art music generation works are MIDI-event-based approaches (Huang & Yang, 2020; Hsiao et al.,
2021). They convert a musical piece to a MIDI-event token sequence, and use methods from natural
language processing to deal with the token sequence. MIDI-event-based methods can better learn
the temporal dependency between different musical events, so as to show more robust generation
performance. We list the advantages and disadvantages of these two representations as shown in
Table 1 and explain them in detail in Appendix A. To summarize, pianoroll is more appropriate for
extracting and controlling perceptive information like structure, while the MIDI-event sequence is
more ideal for generating and modeling precise music performance details, such as velocity and

2

https://SDMuse.github.io/posts/sdmuse/

Under review as a conference paper at ICLR 2023

Table 1: Differences between MIDI-event and pianoroll.

MIDI-event Pianoroll

! precise details (velocity, precise position) ! prior music information

Pros & Cons ! regard a note as the unit ! reflect music structure directly
! robust to generate music pieces ! easy to control and adjust
% need more data to learn the embedding % treat onset and other pos samely

Suitable Usage
Scenarios generating & modeling perceiving & editing

fine-grained onset position. In this work, we propose SDMuse with a two-stage pipeline, including
pianoroll and MIDI-event generation stages that apply hybrid representation to take advantage of
these two symbolic music representations.

2.2 SYMBOLIC MUSIC EDITING

Though tremendous progress is made in symbolic music generation and other automatic music com-
position tasks, there are only a handful of works regarding symbolic music editing tasks. The exist-
ing music editing works mainly focus on global music style transfer (Cı́fka et al., 2020; Wu & Yang,
2021) and music genre transfer (Brunner et al., 2018). Cı́fka et al. (2020) proposed a system for
music accompaniment style transfer, generating accompaniment with the content from content input
and the style from style input. Wu & Yang (2021) changed the style of a musical piece by given
song-level musical attributes (e.g. rhythmic intensity and polyphony). Brunner et al. (2018) applied
GAN-based methods from the field of computer vision to transfer a musical piece from source genre
to target genre. However, these works can only edit the music at the song level with pre-defined at-
tributes or labels, limiting the ways of interaction. This work aims to implement fine-grained music
editing and achieve flexible collaboration between humans and models during music composition.

2.3 STOCHASTIC DIFFERENTIAL EQUATIONS (SDE) FOR EDITING

To recover the data from noise, Song et al. (2020) proposed a stochastic differential equation (SDE)
to smoothly transform a complex data distribution to a known prior distribution by slowly injecting
noise. Similar to diffusion probabilistic models (Ho et al., 2020; Liu et al., 2021; Mittal et al., 2021),
SDE-based generative models can be used to convert an initial Gaussian noise vector to a data point
in real-world data distribution. As described in Song et al. (2020), we denote x(t) ∈ Rd, where
t ∈ [0, T] represents time. Suppose that x(0) ∼ pdata is a sample from data distribution, and
x(T) ∼ pT is from prior distribution. The forward SDE process can be formulated as:

dx(t) = f(x, t)dt+ g(t)dw, (1)

where w is a standard Brownian motion, and f(·, t), g(·) are the drift coefficient and the diffusion
coefficient of x(t) respectively. And the reverse SDE (Anderson, 1982) is:

dx(t) = [f(x, t)− g(t)2∇xlogpt(x)]dt+ g(t)dw, (2)

where w is a standard Wiener process and ∇xlogpt(x) is the noise-perturbed score function. There
are two different SDEs according to different noise perturbations: Variance Exploding SDE (VE-
SDE) and Variance Preserving SDE (VP-SDE). In this paper, we use VP-SDE for conducting exper-
iments to verify our framework. The forward process of VP-SDE is:

dx(t) = −1

2
β(t)x(t)dt+

√
β(t)dw(t), (3)

where β(t) is a positive noise function. Denote the learned score model as sθ(x(t), t)). The reverse
VP-SDE process can be solved by following the iteration rule:

xn−1 =
1√

1− β(tn)∆t
(xn + β(tn)∆tsθ(x(tn), tn)) +

√
β(tn)∆t zn, (4)

where xN , zn ∼ N (0, I), n = N,N − 1, · · · , 1, and ∆t is time interval between xn and xn−1.

3

Under review as a conference paper at ICLR 2023

Score Encoder

sn, sp, sc snull

Diffusion

Auto-regressive
Decoder

score condition

unconditionalconditional

pianoroll

expand by bar

MIDI-event

Pianoroll G
eneration Stage

M
ID

I-event G
eneration Stage

puncond

(a) SDMuse pipeline.

Perturb with SDE Reverse SDE

stroke-based
generation

stroke-based
editing

inpainting

outpainting

combination

style transfer

t0=0.4

...

+

(b) The illustrations of various fine-grained music editing tasks.

t0=0.4

t0=0.4

t0=1

t0=1

t0=1

x

(b) The illustrations of various fine-grained music editing tasks.

Figure 2: Left part is the SDMuse pipeline containing two generation stages. Right part shows the
process of various fine-grained music editing tasks. Best viewed in color mode with zoom-in.

In order to synthesize and edit images, Meng et al. (2021) “hijacked” the generative process of
SDE-based generative models. Specifically, they added noise to smooth the given stroke paintings
or images with stroke-edit to smooth out distortions but preserving the overall image structure. Then
they used the noisy input to initialize the SDE and progressively remove the noise. Inspired by Meng
et al. (2021), we build our SDMuse to edit and generate musical pieces through VP-SDE.

3 METHODS

In this section, we first give a pipeline overview of SDMuse and then describe the design details of
the pianoroll and MIDI-event generation stages respectively. Finally, we introduce the formulation
and process of various fine-grained music editing tasks.

3.1 PIPELINE OVERVIEW

The overall pipeline of SDMuse is shown in Figure 2a, which consists of two consecutive stages:
1) pianoroll generation stage, which is based on a conditioned diffusion model generative prior
and synthesizes pianorolls from scratch or edits existing pianorolls by iteratively denoising through
SDE (Song et al., 2020); 2) MIDI-event generation stage, which generates MIDI-event sequences
from the output pianorolls of the first stage by refining them with precise music performance details
auto-regressively. These two stages can be trained separately and all condition signals in the first
stage are at fine granularity, which can be extracted from the musical piece itself without extra
data annotation process. The diffusion probabilistic model in the pianoroll generation stage enables
SDMuse not only to compose the whole musical pieces from scratch unconditionally or conditioned
on given control signals (e.g. note density), but also to modify existing musical pieces in different
ways. The details of these two stages are introduced in the following subsections and some details
of the model architectures are described in Appendix B.1.

3.2 PIANOROLL GENERATION STAGE

3.2.1 TRAINING OF DIFFUSION PROBABILISTIC MODEL

As shown in Figure 2, we involve several fine-grained control signals: note density cn, pitch dis-
tribution cp, and chord progression sequence cc during the training process of the diffusion model

4

Under review as a conference paper at ICLR 2023

to enable unconditional and conditional music generation/editing at the same time. These control
signals can be extracted from the musical piece itself, and the way of extraction is listed in Ap-
pendix B.2. Given these control signals cn, cp, and cc, we can train a conditional diffusion model
with the pairs of pianorolls and the corresponding control signals. In order to integrate uncondi-
tional and conditional music generation into the same model without an extra training process, we
introduce a combined training strategy which can switch freely between two generation settings
inspired by Nichol et al. (2021). Specifically, as illustrated in Figure 2a, we use the conditional
training paradigm, but assign all control signals to a specific out-domain value (cnull) with a certain
probability puncond to train the model for unconditional music generation scenario. As mentioned
in Section 2.1, one of the drawbacks of pianoroll representation is indiscriminate treatment of note
onsets and other positions, which does not match realistic scenarios and affects the robustness of
generation. To tackle this problem, we convert the pianoroll to onsetroll by only keeping onset
information as described in Appendix B.3 for the training process of the diffusion model.

3.2.2 GENERATION FROM SCRATCH

Starting from samples of x(T) ∼ pT , where pT is the prior distribution, we can generate musical
pieces of x(0) ∼ pdata unconditionally or conditioned by given control signals. That is to say, we
are interested in the p(x|c), where

c =

{
cnull, unconditional generation,
{cn, cp, cc}, conditional generation.

(5)

Derived from the reverse-time SDE in Equation 2, the conditional reverse-time SDE can be de-
scribed:

dx(t) = [f(x, t)− g(t)2∇xlogpt(x|c)]dt+ g(t)dw, (6)
where w is a standard Wiener process, ∇xlogpt(x|c) is the conditioned noise-perturbed score func-
tion, f(·, t) and g(·) are the drift coefficient and diffusion coefficient of x(t) respectively. Thus, by
given different c for the reverse SDE process, the pianoroll generation stage in SDMuse can achieve
unconditional music generation and conditional music generation respectively.

3.2.3 FINE-GRAINED EDITING

Similar to Meng et al. (2021), the diffusion probabilistic model can serve various fine-grained music
editing tasks. We formulate and introduce the following fine-grained music editing tasks, which are
illustrated in Figure 2b from top to bottom respectively. All of the following tasks can be imple-
mented with the same algorithm framework (see Algorithm 1) with different process operations to
obtain the input pianoroll x and mask Ω and different reverse steps t0. The mask Ω demonstrates
the regions that need to be reserved all the time by setting the value to 0 and the regions that need to
be replaced by setting the value to 1. Besides the style transfer which requires control signals, other
fine-grained music editing tasks can be conducted both in unconditional and conditional settings.

Stroke-based generation. Like stroke-based image generation mentioned in Meng et al. (2021),
stroke-based generation aims to generate the realistic pianoroll with the given stroke pianoroll x.
The generated pianorolls are expected to balance between faithfulness and realism, which means
that they should not only be similar to the given stroke pianoroll but also be authentic and reasonable.
One can draw a stroke pianoroll with a specific structure, thus enabling structure-conditioned music
generation. The mask Ω is set to 1 for all regions and the reverse steps t0 is set to 0.4.

Stroke-based editing. When someone is not satisfied with an existing pianoroll and wants to edit
a certain part of it, the stroke-based editing can help. Given a pianoroll with stroke edits x, we can
generate a realistic pianoroll that follows the editing information, keeping the other parts from being
changed. Stroke-based editing allows users to polish a given pianoroll to their liking, which is useful
for eliminating bad cases and personalized music generation. The mask Ω is set to 1 only for the
edited regions and the reverse steps t0 is set to 0.4.

Inpainting/outpainting. Similar to image inpainting (Yeh et al., 2017) and outpainting (Wang et al.,
2014), we would like to reconstruct missing regions or extend the border of existing pianoroll x.
Inpainting can be used for music detail filling and outpainting can be used for music continuation,
which is important to generate music pieces with flexible lengths. For inpainting, the mask Ω is set
to 1 for the missing regions and the reverse steps t0 is set to 1. And for outpainting, we concatenate

5

Under review as a conference paper at ICLR 2023

the pianoroll and a random initialized part as input x and set the mask Ω to 1 only for the randomly
initialized regions and the reverse steps t0 to 1.

Algorithm 1 Fine-grained Music Editing (VP-SDE)
Require: x (the input pianoroll), Ω (mask for edited regions), t0

(reverse steps, SDE hyper-parameter), N (diffusion steps), K
(total repeats)
∆t← t0

N
x0 ← x
α(t0)←

∏N
i=1(1− β(it0

N
)∆t)

for k ← 1 to K do
z ∼ N (0, I)

x ←
[
(1 − Ω) ⊙

√
α(t0) x0 + Ω ⊙

√
α(t0) x +√

1− α(t0) z
]

for n← N to 1 do
t← t0

n
N

z ∼ N (0, I)
α(t)←

∏n
i=1(1− β(it0

N
)∆t)

x ←
{
(1 −Ω) ⊙

(√
α(t) x0 +

√
1− α(t) z

)
+ Ω ⊙[

1√
1−β(t)∆t

(
x+ β(t)∆tsθ(x, t) +

√
β(t)∆t z

)]}
end for

end for
return x

Combination. Another important
scenario is combining several mu-
sic segments together harmoniously,
which can be applied when some-
one likes several segments and wants
them to appear in the same musi-
cal piece. We concatenate the pieces
with some parts which are sampled
from the prior distribution pT , and
use this as input x. Similar to out-
painting, the mask Ω is set to 1 only
for the randomly initialized regions
and the number of reverse steps t0 is
set to 1.

Style transfer. As described in Wu
& Yang (2021), given an existing mu-
sical piece x, we can change it to
another style by adjusting some con-
trol signals such as rhythmic inten-
sity, note density, pitch distribution,
etc. For example, if the note density
of a certain music piece increases, the
music piece will sound more intense
or upbeat. We can achieve precise local control cause control signals in SDMuse are fine-grained.
The mask Ω is set to 1 for all regions and t0 is set to 0.4.

3.3 MIDI-EVENT GENERATION STAGE

The MIDI-event generation stage is designed for refining the generated pianorolls from the prior
stage with more precise music performance details by generating the final MIDI-event sequence
auto-regressively, thus being able to benefit from the advantages of MIDI-event representation for
music generation. This stage contains a score encoder to encode music scores (pianoroll) into score
condition and an auto-regressive decoder to generate MIDI-event tokens step by step. The score en-
coder (see Figure 5a in Appendix B.1) is a 12-layer convolution network with group normalization,
which takes the synthesized pianorolls as input to generate the corresponding score condition. The
score condition is then concatenated with barpos embedding, which is used to indicate the position
and introduced in Ren et al. (2020), and tiled to the same length with decoder input (MIDI-event
token sequence) according to the bar information from decoder input. We call the set of these oper-
ations as “expand by bar” and illustrate it in Figure 5b in Appendix B.1. Finally, the score condition
can be added to the decoder input and forwarded to the auto-regressive decoder. The auto-regressive
decoder is a transformer decoder (Vaswani et al., 2017; Dai et al., 2019), which can also be regarded
as a conditional language model, helping with eliminating outliers predicted in pianorolls and adding
more precise music performance details.

4 EXPERIMENTS

In this section, we first introduce the experimental setup including dataset, evaluation metrics, base-
lines, etc. Then we report the results of unconditioned and conditioned generation with SDMuse.
And finally, we show the performance of SDMuse in various fine-grained music editing tasks with
evaluation results and cases. The audio samples can be found in our demo page 1.

1https://SDMuse.github.io/posts/sdmuse/

6

Under review as a conference paper at ICLR 2023

Table 2: The evaluation metrics of SDMuse in terms of both quality and controllability.

Quality Controllability

Objective pitch distribution similarity (PD) control signal distance (CSD)
duration distribution similarity (DD) overlap ratio (OR)

Subjective overall perceptive score overall consistency score

4.1 EXPERIMENTAL SETTINGS

Datasets. In our experiments, we use the ailabs1k7 dataset introduced by Hsiao et al. (2021), which
contains 1,748 pieces of pop piano performance. We process all the pieces in training set into 32-
bar segments by sliding window, with window size of 32 bar and hopping size of 4 bar, thus obtain
around 15,000 segments for the training of conditioned diffusion model in pianoroll generation stage
and encoder-decoder in MIDI-event generation stage. For pianoroll, we set the granularity to 1 beat,
which means the length of pianoroll n is the beat number of the corresponding musical piece. And
for MIDI-event sequence, we follow the representation in Ren et al. (2020), ignoring the track and
instrument information because the music of ailabs1k7 dataset is single-track polyphonic music.

Evaluation metrics. We evaluate our results based on quality and controllability, for which we
performed both objective and subjective assessments. As listed in Table 2, to evaluate quality, we
use PD and DD scores introduced in Sheng et al. (2021) and conduct subjective evaluation to obtain
the overall perceptive scores. On the other hand, for quantifying controllability of conditioned music
generation and editing, we calculate the L2 distance of control signals (CSD) between the given one
and those of generated output. Also, when conducting fine-grained music editing like stroke-based
generation, we compute the overlap ratio (OR) between the generated pianorolls and the input stroke
pianorolls. And we evaluate the consistency of the edited samples in fine-grained music editing
subjectively. Similar to Zhang et al. (2022); Guo et al. (2022), we invite 10 participants with music
knowledge to give their scores (five-point scales, 1 for bad and 5 for excellent) of randomly selected
samples. The detailed instruction given to annotators are posted in Appendix C.

Baselines. For comparison, we choose different types of symbolic music generation and style trans-
fer models as our baselines: 1) REMI (Huang & Yang, 2020); 2) CPW (Hsiao et al., 2021) and 3)
MuseMorphose (Wu & Yang, 2021). We use the official implementation of each model and train
these three models with the same training set. Considering that we are the first one to conduct fine-
grained music editing tasks, we only compare the quality of generated outputs with these baselines.

Model configuration. For the pianoroll generation stage, we use Gaussian diffusion model 2 and
adjust the UNet architecture (Çiçek et al., 2016) to make sure it can take control signals as condition.
And for the MIDI-event generation stage, we use a 4-layer transformer decoder and 12-layer convo-
lution 1D encoder. Other details about the model hyper-parameters are listed in the Appendix B.4.

Training setup. The training data of both modules is cut into 32-bar segments. We train the diffu-
sion model with diffusion step of 100 and use the linear noise schedule with max beta of 0.02. The
training process of the pianoroll generation stage takes about 2 days on 1 A100 GPU with batch size
of 32 pianorolls. And the MIDI-event generation stage are trained around 12 hours on 1 A100 GPU
with batch size of 2000 MIDI-event tokens.

4.2 GENERATION FROM SCRATCH

4.2.1 UNCONDITIONED GENERATION

We first evaluate the performance of SDMuse on the unconditioned music generation task by just
setting the control signals c as cnull in the pianoroll generation stage. As shown in Table 3, de-
noted as SDMuse (unconditioned), while unconditioned generation is not our primary goal, we find
that SDMuse achieves comparable results to the state-of-the-art music generation models, which
indicates the effectiveness of our training strategy of diffusion probabilistic model that switches be-
tween unconditioned and conditioned generation settings. We present qualitative comparison results
in Figure 3 by just showing the pianorolls extracted from the final outputs of SDMuse and baselines.

2https://github.com/openai/guided-diffusion

7

Under review as a conference paper at ICLR 2023

Table 3: Objective and subjective results of baseline systems in music generation, and SDMuse in
generation from scratch tasks (both unconditioned and conditioned on given control signals) and
fine-grained music editing tasks in terms of quality. Settings with * notation have high PD, DD
and subjective perceptive scores because they are based on existing musical pieces with only minor
edits. The overall perceptive scores are calculated with 95% confidence intervals.

Task Model / Setting Objective Subjective

PD ↑ DD ↑ overall perceptive score ↑
GT – – 4.07 (±0.09)

Generation

REMI (Huang & Yang, 2020) 0.82 0.76 3.52 (±0.07)
CPW (Hsiao et al., 2021) 0.74 0.80 3.71 (±0.06)

SDMuse (unconditioned) 0.84 0.81 3.69 (±0.06)
SDMuse (conditioned) 0.88 0.79 3.72 (±0.06)

Editing

MuseMorphose (Wu & Yang, 2021)* 0.68 0.81 3.80 (±0.06)

SDMuse (stroke-based generation) 0.84 0.80 3.47 (±0.07)
SDMuse (stroke-based editing)* 0.96 0.88 3.81 (±0.07)
SDMuse (inpainting)* 0.96 0.87 3.70 (±0.06)
SDMuse (outpainting) 0.79 0.75 3.63 (±0.07)
SDMuse (combination) 0.86 0.83 3.59 (±0.09)
SDMuse (style transfer)* 0.92 0.80 3.77 (±0.07)

(a) REMI (b) CPW (c) MuseMorphose (d) SDMuse (Ours)

Figure 3: The pianorolls extracted from the music generated by SDMuse and baseline systems.

4.2.2 CONDITIONED GENERATION

In order to assess the performance of SDMuse when generating musical pieces from scratch con-
ditioned on given control signals, we use the control signals extracted from the test set during the
pianoroll generation stage. The quality results are also listed in Table 3, denoted as SDMuse (con-
ditioned), demonstrating that with the guidance of explicit music information from control signals,
SDMuse can obtain better generation quality with reasonable listening experience compared to un-
conditioned generation. And the controllability results are presented in Table 4, indicating that
SDMuse has the ability to generate musical pieces based on the control signals faithfully. Also, as
a complement, we compare the note density cn and the pitch distribution cp extracted from output
music with the given ones, illustrated in Figure 8c, for a visual demonstration of the faithfulness in
terms of control signals during conditioned generation.

4.3 FINE-GRAINED EDITING

For aforementioned fine-grained editing tasks (see Section 3.2.3 for details), we edit existing musi-
cal pieces in corresponding ways and evaluate these tasks respectively. The quality results are shown

8

Under review as a conference paper at ICLR 2023

Table 4: Objective and subjective results of style transfer baseline and SDMuse in conditioned
music generation task and various fine-grained music editing tasks in terms of controllability. The
subjective scores are calculated with 95% confidence intervals.

Model / Setting Objective Subjective

CSD (nn) ↓ CSD (np) ↓ OR ↑ overall consistency score ↑
MuseMorphose (Wu & Yang, 2021) – – – 3.87 (±0.07)

SDMuse (conditioned) 0.06 0.15 – 3.77 (±0.06)

SDMuse (stroke-based generation) – – 0.85 3.43 (±0.10)
SDMuse (stroke-based editing) – – 0.81 3.89 (±0.08)
SDMuse (style transfer) 0.12 0.38 – 4.02 (±0.06)

(a) Input. (b) Generated pianorolls. (c) Extracted pianorolls of final outputs.

Figure 4: The pianorolls generated by the pianoroll generation stage and extracted from the final
output music generated by MIDI-event generation stage in stroke-based generation task.

in Table 3 and the controllability results are shown in Table 4. It is obvious that the tasks with only
minor edits, such as stroke-based editing, inpainting and style transfer, perform well in both qual-
ity and controllability. For the stroke-based generation which highly depends on the given stroke
pianorolls, there is a trade-off between the PD/DD scores and OR score. Figure 4 illustrates the pro-
cess of stroke-based generation task, including the input stroke pianoroll x, the output of pianoroll
generation stage, and the pianorolls extracted from the final MIDI-event sequence. Illustrations of
other fine-grained editing tasks and the final musical pieces can be found in our demo page 3.

4.4 METHOD ANALYSES

We conduct more explorations on SDMuse and put the results in Appendix D due to the limited
space, including: 1) the refinement performance of MIDI-event generation stage to verify the ability
of eliminating outliers and adding music performance details; 2) the comparison among different
embedding ways of control signals. In summary, it is observed that MIDI-event generation stage
is good at refining pianorolls with outliers. And when involving control signals in conditioned
diffusion model, word embedding and direct embedding outperform positional embedding.

5 CONCLUSION

In this paper, we propose SDMuse, a unified Stochastic Differential Music editing and genera-
tion framework via hybrid representations. SDMuse can not only compose whole musical pieces
from scratch (both unconditionally and conditioned on given control signals), but also edit existing
musical pieces in different ways according to various demands. As two different symbolic mu-
sic representations, pianoroll is more appropriate for extracting and controlling perceptive music
information, such as structure, while MIDI-event is more ideal for generating and modeling music
performance details. Thus, SDMuse contains pianoroll and MIDI-event generation stages to take ad-
vantage of hybrid representations. The first stage is based on a diffusion model generative prior and
synthesizes or edits pianorolls by iteratively denoising through SDE. And the second stage refines
pianorolls with music performance details by generating MIDI-event sequences auto-regressively.
Objective and subjective results on ailabs1k7 dataset demonstrate the effectiveness of our proposed
stochastic differential music editing/generation process and hybrid representations. In the future,
we plan to deploy SDMuse as an interactive website to make it accessible to more people who are
interested in it, as well as extend it to other music genres.

3https://SDMuse.github.io/posts/sdmuse/

9

Under review as a conference paper at ICLR 2023

REFERENCES

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Ap-
plications, 12(3):313–326, 1982.

Gino Brunner, Yuyi Wang, Roger Wattenhofer, and Sumu Zhao. Symbolic music genre transfer with
cyclegan. In 2018 ieee 30th international conference on tools with artificial intelligence (ictai),
pp. 786–793. IEEE, 2018.

Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger. 3d u-
net: learning dense volumetric segmentation from sparse annotation. In International conference
on medical image computing and computer-assisted intervention, pp. 424–432. Springer, 2016.

Ondřej Cı́fka, Umut Şimşekli, and Gaël Richard. Groove2groove: one-shot music style transfer
with supervision from synthetic data. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 28:2638–2650, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. Musegan: Multi-track se-
quential generative adversarial networks for symbolic music generation and accompaniment. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Fenfei Guo, Chen Zhang, Zhirui Zhang, Qixin He, Kejun Zhang, Jun Xie, and Jordan Boyd-Graber.
Automatic song translation for tonal languages. In Findings of the Association for Computational
Linguistics: ACL 2022, pp. 729–743, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Wen-Yi Hsiao, Jen-Yu Liu, Yin-Cheng Yeh, and Yi-Hsuan Yang. Compound word transformer:
Learning to compose full-song music over dynamic directed hypergraphs. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 178–186, 2021. URL https:
//github.com/YatingMusic/compound-word-transformer.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis
Hawthorne, Andrew M Dai, Matthew D Hoffman, Monica Dinculescu, and Douglas Eck. Music
transformer. arXiv preprint arXiv:1809.04281, 2018.

Yu-Siang Huang and Yi-Hsuan Yang. Pop music transformer: Beat-based modeling and generation
of expressive pop piano compositions. In Proceedings of the 28th ACM International Conference
on Multimedia, pp. 1180–1188, 2020. URL https://github.com/YatingMusic/remi.

Zeqian Ju, Peiling Lu, Xu Tan, Rui Wang, Chen Zhang, Songruoyao Wu, Kejun Zhang, Xiangyang
Li, Tao Qin, and Tie-Yan Liu. Telemelody: Lyric-to-melody generation with a template-based
two-stage method. arXiv preprint arXiv:2109.09617, 2021.

Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, Peng Liu, and Zhou Zhao. Diffsinger: Diffusion
acoustic model for singing voice synthesis. 2021.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Im-
age synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073,
2021.

Gautam Mittal, Jesse Engel, Curtis Hawthorne, and Ian Simon. Symbolic music generation with
diffusion models. arXiv preprint arXiv:2103.16091, 2021.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

10

https://github.com/YatingMusic/compound-word-transformer
https://github.com/YatingMusic/compound-word-transformer
https://github.com/YatingMusic/remi

Under review as a conference paper at ICLR 2023

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2536–2544, 2016.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech:
Fast, robust and controllable text to speech. Advances in Neural Information Processing Systems,
32, 2019.

Yi Ren, Jinzheng He, Xu Tan, Tao Qin, Zhou Zhao, and Tie-Yan Liu. Popmag: Pop music accom-
paniment generation. In Proceedings of the 28th ACM International Conference on Multimedia,
pp. 1198–1206, 2020.

Zhonghao Sheng, Kaitao Song, Xu Tan, Yi Ren, Wei Ye, Shikun Zhang, and Tao Qin. Songmass:
Automatic song writing with pre-training and alignment constraint. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 13798–13805, 2021.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Miao Wang, Yu-Kun Lai, Yuan Liang, Ralph R Martin, and Shi-Min Hu. Biggerpicture: data-driven
image extrapolation using graph matching. ACM Transactions on Graphics, 33(6), 2014.

Shih-Lun Wu and Yi-Hsuan Yang. Musemorphose: Full-song and fine-grained music style transfer
with one transformer vae. arXiv preprint arXiv:2105.04090, 2021. URL https://github.
com/YatingMusic/MuseMorphose.

Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. Midinet: A convolutional generative adversarial
network for symbolic-domain music generation. In International Society for Music Information
Retrieval, 2017.

Raymond A Yeh, Chen Chen, Teck Yian Lim, Alexander G Schwing, Mark Hasegawa-Johnson, and
Minh N Do. Semantic image inpainting with deep generative models. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5485–5493, 2017.

Chen Zhang, Yi Ren, Xu Tan, Jinglin Liu, Kejun Zhang, Tao Qin, Sheng Zhao, and Tie-Yan Liu.
Denoispeech: Denoising text to speech with frame-level noise modeling. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7063–
7067. IEEE, 2021.

Chen Zhang, Luchin Chang, Songruoyao Wu, Xu Tan, Tao Qin, Tie-Yan Liu, and Kejun Zhang. Re-
lyme: Improving lyric-to-melody generation by incorporating lyric-melody relationships. arXiv
e-prints, pp. arXiv–2207, 2022.

11

https://github.com/YatingMusic/MuseMorphose
https://github.com/YatingMusic/MuseMorphose

Under review as a conference paper at ICLR 2023

Linear

Linear

Conv1D

GroupNorm
× 12

onset-roll

score condition

(a) The structure of score encoder.

...

...

...

tile by bar

bar_pos emb

score condition

MIDI event token sequence

...

concat

(b) An illustration of expand by bar operator.

Figure 5: The details of score encoder and expand by bar operator in MIDI-event generation stage.

A SYMBOLIC MUSIC REPRESENTATION

MIDI-event and pianoroll are two of the most common music representations in symbolic music
generation works. As listed in Table 1, MIDI-event and pianoroll have their own advantages and
disadvantages when representing a piece of symbolic music. An pianoroll (see Figure 1b) is like an
image, with the horizontal axis representing time and the vertical axis representing pitch. It is closer
to the way how humans perceive musical pieces and contains more prior music information. Pitch,
duration, and relative position of notes are directly shown on it, so one can easily perceive the music
structure, note density, etc. of an entire song when given a pianoroll, which makes it more suitable
to be edited by humans.

Though the MIDI-event (see Figure 1c) contains all information in pianoroll, when converting the
MIDI-event tokens into embeddings whose weights are randomly initialized, the correlations be-
tween different MIDI-events are lost and need to be relearned from the training data. Given the
circumstance that the amount of high-quality symbolic music training data is limited, it is relatively
easier for a deep learning model to extract musical information from pianoroll than MIDI-event.
However, besides MuseGAN (Dong et al., 2018) that utilizes pianorolls, most symbolic music gen-
eration works (Huang et al., 2018; Huang & Yang, 2020; Zhang et al., 2022) are trained with MIDI-
event sequences. This is due to MIDI-event sequence can carry more precise details than pianoroll,
such as velocity, which can enhance the richness and expressiveness of the generated music perfor-
mance. Furthermore, there is no difference in the way that a pianoroll treats onset and other positions
of a note, which is not consistent with real music. MIDI-event, however, regards a note as the unit
and is more robust to generate musical pieces.

B MODEL DETAILS

B.1 DETAILS OF MODEL ARCHITECTURE

As shown in Figure 5a, the score encoder of the MIDI-event generation stage in SDMuse has a
simple architecture: a 12-layer convolution network with group normalization, as well as two lin-
ear layers to process input pianoroll and output score condition. And the detailed illustration of
expand by bar operator is in Figure 5b. The score condition is then concatenated with barpos em-
bedding, which is used to indicate the position and introduced in Ren et al. (2020), and tiled to the

12

Under review as a conference paper at ICLR 2023

same length with decoder input (MIDI-event token sequence) according to the bar information from
decoder input. At last, the expanded score condition is add to decoder input.

B.2 FINE-GRAINED CONTROL SIGNALS

Denote the processed pianoroll (onsetroll) as Xo ∈ {0, 1}m×n, where m means the number of pitch
and n represents the length of pianoroll. Here we design three fine-grained control signals to provide
precise controllability over the entire piece.

• Note density: for each piece of music, we can extract the note density vector cn ∈
[0, 127]1×n, which indicates how many onsets occur concurrently at each timestep.

• Pitch distribution: the pitch distribution cp ∈ [0, 127]m×1 is a vector that represents the
distribution of note pitch over the whole musical piece. Specifically, the value in cp of
position p is the number of notes whose pitch is p.

• Chord progression: we extract the chord progression sequence cc ∈ [0, 96]1×n from the
original musical piece, where 96 is the number of chord type.

In order to involve these fine-grained control signals into diffusion, we first convert cn, cp, cc to
embeddings en, ep, ec and tile them to the same shape of m× n, which are then concatenated to xt

(the data at t step).

B.3 ONSETROLL

Denote the original pianoroll in the dataset as Xp ∈ {0, 1}m×n, where m means the number of
pitch, n means the length of pianoroll and the value is set to 1 when the corresponding position is
belong to a note otherwise set to 0. As mentioned in Section 2.1, onset and other positions of the note
are treated non-differently in pianoroll, however, in real music, onset is more important than other
positions and it directly affects the listening experience. If an extra onset is predicted, it indicates
an extra note, while if an extra other position is predicted, it just represents the corresponding note
becomes slightly longer. Thus, to grasp the factor that takes care of most, we process the original
pianoroll Xp to onsetroll Xo by only keeping the onset information and discarding duration infor-
mation of each note. Specifically, only the value of the onset position in the pianoroll will remain 1
and other positions of notes will be set to 0.

B.4 MODEL CONFIGURATION

B.4.1 DIFFUSION PROBABILISTIC MODEL

Our diffusion probabilistic model is implemented based on the Gaussian diffusion model 4. The size
of the input pianoroll is 128 × 128 (contains 32 bars and 128 beats). We set the learning rate as
1e − 4, the diffusion step as 100. For the positive noise function β(t) in VP-SDE, we follow Song
et al. (2020); Ho et al. (2020); Dhariwal & Nichol (2021) and set:

β(t) = βstart + t(βend − βstart), (7)

where βstart = 0.1 and βend = 20 in our implementation. And we found that if only using the
conditioned diffusion model, βend should be smaller, such as 5 to achieve better performance. The
embedding dim of control signal embeddings en, ep, ec is set to 32 and puncond is set to 0.5.

B.4.2 AUTO-REGRESSIVE DECODER

In our implementation, the auto-regressive decoder is based on a Transformer decoder with 4 layers.
The output of the auto-regressive decoder is split into three parts: pitch, velocity, and duration, and
the total loss is calculated by adding the cross entropy losses of these three parts together. The
dropout of the auto-regressive decoder is 0.1, the hidden size is 256, and the number of heads is 4.

13

Under review as a conference paper at ICLR 2023

Figure 6: The instructions we give to participants of subjective evaluation part.

C SUBJECTIVE EVALUATION

We invite 10 people with musical knowledge to give their scores as our subjective evaluation. Here
are the instructions we provide to them (Figure 6). The five-point scale of subjective evaluation is
similar to MOS, which has been widely used in different speech synthesis work (Ren et al., 2019;
Zhang et al., 2021).

D METHOD ANALYSES

D.1 REFINEMENT PERFORMANCE

Here we illustrate the refinement performance of the MIDI-event generation stage. We compare the
pianorolls input of this stage and the pianorolls extracted from the output MIDI-event sequences as
in Figure 7. We manually added outliers to the input pianoroll to explore the ability of SDMuse
in eliminating outliers. As shown in Figure 7, these added outliers are removed after the MIDI-
event generation stage. Also, the positions of some notes are refined in the MIDI-event sequence
generation stage auto-regressively. For a more intuitive listening experience, please refer to our
demo page, where we post the audio synthesized from the output of two stages respectively for
comparison.

D.2 EMBEDDING WAYS OF CONTROL SIGNALS

When involving control signals cn and cp in the diffusion probabilistic model of the pianoroll gener-
ation stage, there are several embedding ways: 1) positional embedding: convert the control signals
into sinusoidal positional embeddings; 2) direct embedding: regard control signals as vectors and
use them as embeddings directly; 3) word embedding: convert the control signals to randomly ini-
tialized word embeddings. As shown in Figure 8, the ways of direct embedding and word embedding
show good performance in terms of the control signals’ faithfulness.

4https://github.com/openai/guided-diffusion

14

Under review as a conference paper at ICLR 2023

(a) Input of MIDI-event generation stage. (b) Output of MIDI-event generation stage.

Figure 7: The input pianorolls of MIDI-event generation stage and the pianorolls extracted from
the output MIDI-event sequences. We highlight some of the eliminated outliers with red boxes for
better identify.

0 20 40 60 80 100 120

Time

0

1

2

3

4

5

6

7

8

N
ot

e
N

um
be

r

Note Density
ground-truth
predicted

0 20 40 60 80 100 120

Pitch

0

10

20

30

40

50

N
ot

e
N

um
be

r

Pitch Distribution
ground-truth
predicted

(a) Positional embedding.

0 20 40 60 80 100 120

Time

0

2

4

6

8

N
ot

e
N

um
be

r

Note Density
ground-truth
predicted

0 20 40 60 80 100 120

Pitch

0

5

10

15

20

25

30

N
ot

e
N

um
be

r

Pitch Distribution
ground-truth
predicted

(b) Direct Embedding.

0 20 40 60 80 100 120

Time

0

2

4

6

8

10

N
ot

e
N

um
be

r

Note Density
ground-truth
predicted

0 20 40 60 80 100 120

Pitch

0

10

20

30

40

N
ot

e
N

um
be

r

Pitch Distribution
ground-truth
predicted

(c) Word Embedding.

Figure 8: The visualization of the difference in cn and cp between input and output with different
control signal’s embedding ways.

15

	Introduction
	Background
	Symbolic music representation
	Symbolic music editing
	Stochastic differential equations (SDE) for editing

	Methods
	Pipeline overview
	Pianoroll generation stage
	Training of diffusion probabilistic model
	Generation from scratch
	Fine-grained editing

	MIDI-event generation stage

	Experiments
	Experimental settings
	Generation from scratch
	Unconditioned generation
	Conditioned generation

	Fine-grained editing
	Method analyses

	Conclusion
	Symbolic music representation
	Model details
	Details of model architecture
	Fine-grained control signals
	Onsetroll
	Model configuration
	Diffusion probabilistic model
	Auto-regressive decoder

	Subjective evaluation
	Method analyses
	Refinement performance
	Embedding ways of control signals

