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Abstract
Gaussian Process (GP) Variational Autoencoders
(VAEs) extend standard VAEs by replacing the
fully factorised Gaussian prior with a GP prior,
thereby capturing richer correlations among la-
tent variables. However, performing exact GP
inference in large-scale GPVAEs is computation-
ally prohibitive, often forcing existing approaches
to rely on restrictive kernel assumptions or large
sets of inducing points. In this work, we pro-
pose a neighbour-driven approximation strategy
that exploits local adjacencies in the latent space
to achieve scalable GPVAE inference. By con-
fining computations to the nearest neighbours of
each data point, our method preserves essential
latent dependencies, allowing more flexible ker-
nel choices and mitigating the need for numer-
ous inducing points. Through extensive experi-
ments on tasks including representation learning,
data imputation, and conditional generation, we
demonstrate that our approach outperforms other
GPVAE variants in both predictive performance
and computational efficiency.

1. Introduction
Variational Autoencoders (VAEs) (Kingma & Welling,
2014) have achieved remarkable success in a variety of tasks
ranging from representation learning (Higgins et al., 2017;
Kim & Mnih, 2018) to generative modelling (Sønderby
et al., 2016; Razavi et al., 2019). While a conventional VAE
assumes a fully factorised Gaussian prior over the latent
variables to enable amortised inference, this assumption can
be overly restrictive in many real-world scenarios involving
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Figure 1: GPVAE places GP prior over the latent variables
Z to model correlations in the structured data (xi,yi). Our
approach is to approximate the dense GP prior by leveraging
the associated neighbourhood

(
xn(i),yn(i)

)
.

sequential, spatial, or other structured data. In these cases,
it is crucial to model correlations among latent variables.

A natural way to introduce such correlations is to adopt a
Gaussian Process (GP) prior over the latent representations,
resulting in Gaussian Process Variational Autoencoders (GP-
VAEs) (Casale et al., 2018). By encoding the latent vari-
ables as realisations from a GP, GPVAEs enforce structured
dependencies through kernels (as shown in Fig. 1). Unfor-
tunately, the direct application of GPs leads to an O(N3)
computational overhead (N is the number of training sam-
ples), making naive approaches prohibitively expensive in
large-scale settings.

To address this limitation, one line of research explores
specific kernel structures, such as certain Matérn families
(Zhu et al., 2023) and low-rank kernels (Casale et al., 2018).
While effective in addressing scalability challenges, these
approaches are constrained by their narrow kernel choices.
Other scalable GPVAE variants have been proposed, notably
using inducing points (Ashman et al., 2020; Jazbec et al.,
2021), a small set of pseudo-points that approximates the GP
posterior. These methods, however, may require numerous
inducing points in rapidly varying data or encounter diffi-
culties in optimising the inducing points (Wu et al., 2022).
Moreover, fully Bayesian extensions using sampling-based
methods offer good uncertainty calibration but often require
longer runtime for sufficient samples (Tran et al., 2023).
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In this work, we propose an efficient neighbour-driven ap-
proach to GPVAE training and prediction (as illustrated
in Fig. 1). Our key insight is that in many structured
datasets—such as video frames with temporal adjacency
or spatial regions with local patterns—focusing on a small
set of nearest neighbours captures most of the essential cor-
relation structures. This intuition aligns with the “first law
of geography,” which underlies various Nearest Neighbour
GP (NNGP) methods (Vecchia, 1988; Stein et al., 2004).
Inspired by recent evidence that NNGPs can outperform
sparse GPs with inducing points (Hensman et al., 2013) in
large-scale geostatistics and machine learning tasks (Datta
et al., 2016b; Tran et al., 2021b; Wu et al., 2022; Cao et al.,
2023; Allison et al., 2024), we introduce two latent GP
prior approximations to neighbour-driven latent modelling
in GPVAEs: (1) Hierarchical Prior Approximation (HPA):
enforces sparsity in dense GP covariance matrices via a hi-
erarchical mechanism that selects local neighbourhoods in
each mini-batch; (2) Sparse Precision Approximation (SPA):
chain-factorises the GP prior into conditional distributions
involving only the nearest neighbours. Both methods sup-
port structured latent modelling with flexible kernels while
avoiding large sets of inducing points or rigid kernel assump-
tions. By integrating these approximations into mini-batch
amortised inference, our approach leverages local correla-
tion principles for scalable GPVAE inference, preserving
essential latent structures with minimal overhead.

Contributions This paper makes the following contri-
butions: (1) We introduce two neighbour-driven GP prior
approximations into GPVAE inference that capture essential
latent structure while remaining scalable. (2) We present an
amortised training procedure that jointly learns the encoder,
decoder, and kernel parameters in a mini-batch fashion, ac-
commodating a wide range of kernels without restrictive
assumptions or a large number of inducing points. (3) Our
framework delivers competitive performance on multiple
tasks for latent representation learning, data imputation, and
conditional generation. Empirical experiments demonstrate
that our approach improves both predictive accuracy and
training speed compared to existing GPVAE baselines.

2. Background
Section 2.1 revisits GPVAEs and the scalability bottleneck
from the full GP prior. Section 2.2 summarises the widely
used inducing-point formulation for scalable GPVAE infer-
ence, while Section 2.3 reviews NNGP approximations that
motivate our approach.

2.1. Gaussian Process Variational Autoencoder

A GP f(x) ∼ GP(m(x), k(x,x′)) is a stochastic process
for which any finite subset of random variables follows a

joint Gaussian distribution (Rasmussen & Williams, 2006).
The covariance matrix of that joint distribution is determined
by the kernel function k : RD × RD → R, which encodes
how sample points of the input space x ∈ RD correlate with
each other.

Consider N pairs of data points

Y = [yn]
N
n=1 ∈ RN×K , X = [xn]

N
n=1 ∈ RN×D,

where yn ∈ RK is the n-th observation and xn ∈ RD corre-
sponds to the auxiliary information (e.g., video timestamps
or spatial coordinates). We define associated latent vari-
ables Z = [zn]

N
n=1 ∈ RN×L, with L latent channels. By

the construction of GPVAE, each latent channel zl ∈ RN
follows zl ∼ N (0, klψ(X,X)), where klψ is the kernel with
parameters ψ. The generative process is given by

pψ(Z | X) =

L∏
l=1

N (zl | 0, klψ(X,X)), (1)

pθ(Y | Z) =
N∏
n=1

pθ(yn | zn), (2)

where the latent prior factorises over channels and pθ(yn |
zn) is modelled by a decoder network with parameters θ. In
the subsequent sections, we will use the notation KXX :=
k(X,X) to represent the covariance matrix evaluated at all
pairs of inputs X.

Variational inference for GPVAEs To approximate the
intractable posterior p(Z | Y,X), consider the following
variational distribution as in a standard VAE (Kingma &
Welling, 2014; Casale et al., 2018):

qϕ(Z | Y) =

N∏
n=1

N (zn | µϕ(yn), σ2
ϕ(yn)IL), (3)

where the mean µϕ and variance σ2
ϕ are given by an en-

coder network with parameters ϕ. The GPVAE parameters
{ψ, θ, ϕ} can be learned by maximising the following Evi-
dence Lower BOund (ELBO):

L = Eqϕ(Z|Y) [log pθ(Y | Z)]
−KL [qϕ(Z | Y) || pψ(Z | X)] ,

(4)

where the KL stands for Kullback–Leibler divergence. If
KXX = IN , the GP prior collapses to a fully factorised
VAE prior and (4) recovers the standard VAE objective. In
general, however, the KL term does not factorise across
samples due to dense KXX. As a result, (4) cannot be com-
puted in mini-batches and incurs O(N3) time complexity,
making large-scale inference computationally infeasible.
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2.2. GPVAEs Based on Inducing Points

A line of research addresses the O(N3) bottleneck in GP-
VAEs by adopting approximations based on inducing points
(Titsias, 2009; Hensman et al., 2013; Jazbec et al., 2021). It
uses an alternative variational distribution to eliminate the
troublesome pψ(Z | X) in the KL term:

q(Z | Y,X) =

L∏
l=1

pψ(z
l | X)

∏N
n=1 q̃ϕ(z

l
n | yn)

Zlψ,ϕ(Y,X)
, (5)

where q̃ϕ is modelled by an encoder, and Zlψ,ϕ is the nor-
malising constant. Equation (5) is further approximated by
following the inducing-point framework through

q(Z | Y,X) ≈
∫
p(Z | ZU)q(ZU | Y,X) dZU,

where U ∈ RM×D representsM(≪ N) inducing locations,
ZU is the corresponding inducing variables, and p(Z | ZU)
is a conditional Gaussian. In practice, the aforementioned
variational distribution q(ZU | Y,X) over inducing points
takes a stochastic heuristic form determined by mini-batches.
Additionally, the normalising constant Zlψ,ϕ is subject to
a lower bound associated with U. The resulting training
objective allows learning the locations of inducing points.
We abbreviate the model described above to SVGPVAE,
and more details are provided in Appendix D.1.

2.3. Nearest Neighbour Gaussian Process

NNGPs scale classical GPs by assuming that each data point
depends only on a small set of nearby neighbours, typically
determined by spatial or temporal distance. This locality
naturally reduces computational costs: rather than dealing
with a denseN ×N covariance or precision matrix, NNGPs
construct block-sparse or banded structures where each row
or column involves only the nearest neighbours.

NNGPs have been widely used in geostatistics (Datta et al.,
2016a;b; Katzfuss & Guinness, 2021; Datta, 2022). Recent
works extend NNGPs to general regression tasks, employ-
ing variational approaches from inducing points (Tran et al.,
2021b; Wu et al., 2022). For example, Tran et al. (2021b)
present an NNGP that implements a hierarchical prior with
an auxiliary random indicator to determine the selection of
inducing variables. In addition, Wu et al. (2022) propose a
variational GP that applies a sparse precision approximation
for the inducing variable distribution. These approaches
have shown advantages over the standard inducing point
method, particularly on large datasets characterised by in-
trinsically low lengthscales, where many inducing points
are required to capture local correlations effectively.

3. Neighbour-Driven GPVAE
Our approach adopts a similar local-neighbour perspective
to NNGPs but applies it inside the latent space of GPVAEs.
Rather than sparsifying GPs in the observation domain, we
build scalable, neighbour-based GP priors within the la-
tent dimensions. This adaptation brings the computational
benefits of NNGPs to structured latent modelling for high-
dimensional and correlated data.

In this section, we introduce two neighbour-driven GP-
VAE variants that can exhibit high scalability for large-scale
datasets.

3.1. Model Setup

We adopt the standard construction of GPVAE mentioned
earlier: a multi-output GP prior on the latent variables
Z =

[
zl
]L
l=1

∈ RN×L as in (1) and a decoder network
mapping each latent variable zn ∈ RL to its observation yn
as in (2). Separate kernels {klψ}Ll=1 are used across L latent
dimensions to fully exploit GP’s expressivity. Since the
latent GPs are independent, we omit the superscript for la-
tent dimensions l. We also suppress the subscript for model
parameters to make the notations uncluttered.

We choose to employ the standard encoder from (3) to keep
the model design straightforward. Employing this conven-
tional architecture facilitates direct comparisons with stan-
dard VAEs in our paper. As we will show in subsequent
experiments, this encoder delivers competitive performance.
If needed, practitioners can incorporate X by designing an
encoder that accepts both X and Y as inputs.

3.2. Neighbour-Driven Inference

Our idea is to impose sparsity on the full GP prior, allowing
the KL term of (4) to decompose into manageable terms
while preserving essential latent correlations. To achieve
this, we develop inference methods using two distinct GP
prior approximations inspired by recent NNGPs.

Hierarchical Prior Approximation (HPA) To formulate
the inference, we introduce an additional binary random
vector w ∈ {0, 1}N ∼ p(w) to indicate the inclusion of N
latent variables Z. We then establish a hierarchical structure
for the prior based on the selection process

p(Z | w) = N (Z | 0,DwKXXDw) , (6)
p(Z,w) = p(Z | w)p(w), (7)

where Dw = diag(w). From (6), the correlations of the
unselected variables Z\I among Z are eliminated, where
\I = {i : wi = 0}. Then, we set up an amortised varia-
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tional distribution that uses a similar form to (6) as follows1

q(Z | w) = N (Z | Dwµ(Y),Dwσ
2(Y)Dw), (8)

q(Z,w) = q(Z | w)p(w), (9)

where µ(·) and σ2(·) are the outputs of the encoder. By
the construction of (6)-(9), the ELBO for our GPVAE is
updated as

LHPA = Ep(w)

{
Eq(Z|w) log p(Y | Z)
−KL [q(Z | w) || p(Z | w)]} ,

where the first term is the expected log-likelihood. p(w)
specifies how the variables are selected and can be any im-
plicit distribution that we can draw samples from. In this
work, sampling from p(w) is materialised by the following
neighbour-driven strategy: for each training point (xi,yi) in
a random mini-batch {(xi,yi)}i∈I , we pick up the top-H
nearest locations to the auxiliary point xi in X, whose in-
dices are denoted as n(i). For stochastic mini-batch training,
we estimate the ELBO under the hierarchical prior by

LHPA ≈ N

|I|
∑
i∈I

{
Eq(zi|yi) [log p(yi | zi)]

− 1

N
KL

[
q(Zn(i)) || p(Zn(i))

]}
,

(10)

where the KL divergence breaks down into several terms
that involve lower-dimensional covariance matrices (i.e.,
H×H). The original full-batch EBLO (4) can be recovered
when all elements of w are set to one or equivalently, H
are set to include all N training points. We refer to our
model trained through (10) as GPVAE-HPA. For a detailed
derivation, please see Appendix B.1.

Sparse Precision Approximation (SPA) The inference
in this section employs a sparse precision matrix approxima-
tion (Vecchia, 1988; Datta, 2022) to latent GPs. Consider
factorising the joint distribution p(Z) of a GP by the proba-
bility chain rule subject to some ordering

p(Z) = p(z1)

N∏
j=2

p(zj | z1:j−1), (11)

where z1:j−1 stands for the collection {zh}j−1
h=1. The SPA is

built by imposing conditional independence on (11) by only
considering nearest neighbours, leading to

p(Z) ≈ p(z1)

N∏
j=2

p(zj | zn(j)), (12)

where we abuse the notation n(j) to represent the indices of
H nearest neighbours of xj in {xh}j−1

h=1 (rather than among

1We have omitted the conditioning variable Y.

all points of X). Proceeding with the variational distribution
q(Z | Y) defined by (3), we obtain the ELBO based on SPA
as follows

LSPA =

N∑
i=1

Eq(zi|yi) [log p(yi | zi)]

−
N∑
j=1

Eq(Zn(j))KL
[
q(zj) || p(zj | Zn(j))

]
.

Therefore, the two terms of the ELBO above can be esti-
mated by mini-batches from the data

LSPA ≈ N

|I|
∑
i∈I

Eq(zi|yi) [log p(yi | zi)]

− N

|J |
∑
j∈J

Eq(Zn(j))KL
[
q(zj) || p(zj | Zn(j))

]
,

(13)
where I and J are sets of mini-batch indices. We call the
proposed model GPVAE-SPA since (12) essentially offers
an approximation with sparse Cholesky factor for the prior
precision matrix K−1

XX (Datta, 2022). A detailed derivation
of (13) is provided in Appendix B.2. By setting H = N ,
we retain all dependencies in the probability chain in (12),
thus recovering the full-batch ELBO (4) again. In contrast,
setting H = 0 will cause the model to degenerate into
conventional VAEs.

Sparsity mechanisms and NNGP links HPA and SPA
impose neighbour-driven sparsity in complementary ways.
HPA produces a sparse covariance structure by “switching
off” interactions between non-neighbouring latent variables
through a hierarchical selection variable. In contrast, SPA
factorises the GP distribution into chained conditional terms,
effectively resulting in a sparse precision matrix. Both
schemes are valid neighbour-driven approaches suitable for
scalable GPVAE inference.

Conceptually, our approach closely aligns with the NNGPs
by Tran et al. (2021b) and Wu et al. (2022), which enforce
local sparsity on inducing variables. To draw a parallel, the
proposed GPVAEs can be seen as applying such a principle
to latent NNGPs with each “inducing variable” placed at
each data point. We then incorporate a decoder network
to model the “likelihood” p(Z | Y) and an encoder net-
work for amortised inference, thereby forming our GPVAE
architecture.

3.3. Predictive Posterior

Predictive posterior distributions p(y∗ | x∗,Y) are often
used in tasks of conditional generation, where an unseen
auxiliary x∗ ∈ RD is given. Here, we derive an approximate
predictive posterior for the proposed GPVAEs based on
neighbouring latent representations. Specifically, computing
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VIDEO VAE SVGPVAE GPVAE-Casale GPVAE-HPA GPVAE-SPA

RMSE=20.98 RMSE=7.10 RMSE=1.19 RMSE=2.41 RMSE=0.62

ground truth reconstruction

(a) Latent trajectory reconstruction of moving ball videos.
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(b) Reconstruction RMSEs using different numbers of nearest
neighbours/inducing points.

Figure 2: Latent representation learning for the moving ball dataset. (a) The leftmost column shows frames overlaid and
shaded by time. The orange reconstructed paths are obtained using M/H = 10. (b) The results of the standard VAE and
two full-batch baselines are shown with the shaded bands. The error bars and the shades indicate ±1 standard deviation.

p(y∗ | x∗,Y) at a new location x∗ only needs to consider
its H nearest neighbours in X (denoted by the index set
n(∗)):

q(z∗ | Y) =

∫
p(z∗ | Zn(∗))q(Zn(∗) | Yn(∗)) dZn(∗),

p(y∗ | x∗,Y) ≈
∫
p(y∗ | z∗)q(z∗ | Y) dz∗,

where q(z∗ | Y) is Gaussian and can be sampled efficiently
in practice to give Monte Carlo estimation of p(y∗ | x∗,Y).

3.4. Computational Complexity

The computational complexity of our models is twofold: (1)
determining the nearest neighbour structure for auxiliary
data; (2) Cholesky decomposition of H × H covariance
matrices in the KL term. Locating the H nearest neighbours
of each point takes O(HN) in the worst case. Our imple-
mentation leverages the Faiss package (Johnson et al., 2019)
to efficiently accelerate the nearest neighbour search on
GPUs. After pre-computing the nearest neighbour structure,
Cholesky decomposition in (10) and (13) has complexity
O(LNbH

3), where Nb is the mini-batch size and L is the
latent dimensions. Table 15 in Appendix D provides an
overview of the GP complexity associated with other rele-
vant models.

4. Related Work
The GPVAE was first proposed by Casale et al. (2018) to
remove the i.i.d. assumption of the Gaussian prior in VAEs.
The proposed GPVAE uses an encoder and a decoder as in a
standard VAE, which we also adopt in our work. The work
has to use a low-rank GP kernel and resort to first-order
Taylor series expansion to achieve mini-batch inference,
which is overly complicated and computationally inefficient.

Unlike Casale et al. (2018), Pearce (2020) and Fortuin et al.
(2020) adopted alternative formulations of the variational
distribution and applied GPVAE to applications of inter-
pretable latent dynamics and time-series imputation, respec-
tively, but their models are limited to short sequences.

As aforementioned, SVGPVAE (Jazbec et al., 2021) uses
inducing points but may suffer from optimisation issues as
the number of inducing points increases. LVAE (Ramchan-
dran et al., 2021) is another inducing-point-based model re-
stricted to additive kernels for longitudinal data with discrete
instance covariates. MGPVAE (Zhu et al., 2023) exploits
state-space representations of one-dimensional Matérn ker-
nels to enable Kalman-filter-like inference. Since the in-
ference involves both forward and backward processes,
utilising parallel computation to speed up can be chal-
lenging. SGPBAE (Tran et al., 2023) treats latent vari-
ables, decoder parameters, and kernel parameters in a fully
Bayesian fashion and leverages Stochastic Gradient Hamil-
tonian Monte Carlo (SGHMC) (Chen et al., 2014). Com-
pared to our method, sampling from that model is usually
time-consuming. We summarise some recent scalable GP-
VAE models in Appendix D.

5. Experiments
In this section, we evaluate our models on various tasks
involving both synthetic and real-world datasets. We begin
by examining their ability to learn latent representations in a
moving ball dataset. Next, we apply them to rotated MNIST
to impute corrupted frames and generate any missing ones.
We further conduct a long-sequence conditional generation
experiment using MuJoCo action data, along with imputa-
tion tasks on geostatistical datasets, one of which is substan-
tially larger (N ∼ 105) than those typically seen in previous
GPVAEs (N ∼ 10).
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Input

VAE

HI-VAE

GPVAE-Diag
(full batch)

GPVAE-Band
(full batch)

MGPVAE

GPVAE-HPA
(ours)

GPVAE-SPA
(ours)

(a) Imputation on series with missing pixels.

Input

SVGPVAE
(M = 10)

SVGPVAE
(M = 30)

LVAE
(M = 10)

LVAE
(M = 30)

MGPVAE

GPVAE-HPA
(H = 10, ours)

GPVAE-SPA
(H = 10, ours)

(b) Generation on an unseen rotated MNIST sequence with missing frames.
Figure 3: (a) Corrupted frame imputation with around 60% missing pixels. (b) Missing frames generation on Rotated
MNIST with around 60% missing frames. The red boxes indicate the missing frames in that sequence.

We benchmark our models against diverse GPVAEs, mainly
focusing on scalable models such as SVGPVAE (Jazbec
et al., 2021), LVAE (Ramchandran et al., 2021), MGPVAE
(Zhu et al., 2023), and SGPBAE (Tran et al., 2023). Some
other baselines, like VAE (Kingma & Welling, 2014), HI-
VAE (Nazabal et al., 2020), and NNGP (Wu et al., 2022)
are also considered. The performance is assessed using test
negative log-likelihood (NLL) and root mean squared error
(RMSE). We report the wall-clock training time to estimate
computational efficiency. We strive to follow the original
baseline settings to ensure the fairest comparisons possible.
All experimental results report the mean and standard devia-
tion from 10 random trials. Further experimental setups can
be found in Appendix C.

5.1. Moving Ball

Our experiments start with latent representation learning on
the synthetic moving ball data from Pearce (2020). This
dataset consists of black-and-white videos of 30 frames cap-
turing the motion of a pixel ball. Video samples are shown
in the leftmost column of Fig. 2a. The two-dimensional
trajectory of the ball in each video is simulated from a GP
with a radial basis function (RBF) kernel. We aim to in-
fer the ball’s trajectory based on the pixel-level frames. In
particular, the trajectory is represented by the mean of the
latent variable from the encoder.

As each video is relatively short in this dataset and can be
grouped into a single batch, conducting full GP inference is
feasible. This allows for a direct comparison of our approach
with the full-batch baselines, i.e., GPVAE-Casale (Casale
et al., 2018) and GPVAE-Pearce (Pearce, 2020).

Trajectory reconstruction Fig. 2a shows the recon-
structed latent trajectories of three test videos using 10 near-
est neighbours or inducing points. The RMSE appended
to each column directly reflects the reconstruction quality.
We can see that the VAE fails to learn the latent dynamics
behind the videos, as the fully factorised Gaussian prior over

the latent variables cannot account for correlations between
samples. The SVGPVAE begins to learn the trend, but the
performance is unsatisfactory due to an insufficient num-
ber of inducing points. Our two models are quite close to
the full-batch baseline, i.e., GPVAE-Casale, with the same
number of nearest neighbours.

Scaling behaviour We further show in Fig. 2b the perfor-
mance of our models compared to two full-GP approaches
and SVGPVAE across varying numbers of nearest neigh-
bours and inducing points. While both GPVAE-Pearce and
GPVAE-Casale use fully correlated GP priors, they differ in
how they construct their variational distributions—GPVAE-
Pearce’s setup (5) is more closely aligned with SVGPVAE,
while GPVAE-Casale adopts a diagonal-encoder approach
(3) that matches ours. From Fig. 2b, the SVGPVAE requires
nearly half the total number of data points in the trajectory
to attain performance levels comparable to the full-batch
baseline, whereas our models achieve this with even fewer
points. The GPVAE-SPA attains good reconstruction quality
using only 1

6 of the total trajectory points. Table 6 shows
additional results using different values of H .

5.2. Rotated MNIST

Rotated MNIST consists of sequences of handwritten digit
images from the MNIST dataset (LeCun et al., 1998), in
which each image frame is consecutively rotated at different
angles. This classic dataset is designed to assess how well
the model can learn latent dynamics and is commonly used
in GPVAE literature. Here, we use two versions of the
dataset to showcase our models in two distinct scenarios:
imputing corrupted frames and generating missing frames.

Imputing corrupted frames This task uses the sequences
created by Krishnan et al. (2015). The dataset has
50,000/10,000 training/test sequences, each containing 10
frames. The rotations between two consecutive frames are
normally distributed, with around 60% pixels absent ran-
domly. Fig. 3a shows a sequence from the dataset.
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Table 1: Performance of different models for tasks of the corrupted and missing frames imputation on Rotated MNIST.

Models NLL RMSE Training Time (s/epoch)

Corrupted
Frames

VAE (Kingma & Welling, 2014) 0.193 ± 0.038 0.333 ± 0.011 75.741 ± 0.660
HI-VAE (Nazabal et al., 2020) 0.114 ± 0.002 0.222 ± 0.002 76.969 ± 0.594
GPVAE-Diag (Fortuin et al., 2020) 0.094 ± 0.000 0.199 ± 0.000 127.614 ± 2.758
GPVAE-Banded (Fortuin et al., 2020) 0.146 ± 0.001 0.189 ± 0.001 768.347 ± 24.297
MGPVAE (Zhu et al., 2023) 0.090 ± 0.001 0.197 ± 0.001 110.772 ± 0.651

GPVAE-HPA-H5 (ours) 0.095 ± 0.000 0.199 ± 0.000 137.860 ± 0.326
GPVAE-SPA-H5 (ours) 0.096 ± 0.000 0.202 ± 0.000 121.185 ± 0.817

Missing
Frames

SVGPVAE-M10 (Jazbec et al., 2021) 87.711 ± 0.484 6.122 ± 0.015 8.280 ± 0.111
SVGPVAE-M30 (Jazbec et al., 2021) 77.792 ± 0.592 5.572 ± 0.030 9.180 ± 0.188
LVAE-M10 (Ramchandran et al., 2021) 73.887 ± 0.748 5.578 ± 0.022 28.919 ± 0.253
LVAE-M30 (Ramchandran et al., 2021) 73.545 ± 1.035 5.558 ± 0.024 29.063 ± 0.122
MGPVAE (Zhu et al., 2023) 72.217 ± 0.192 5.496 ± 0.005 25.103 ± 0.103

GPVAE-HPA-H10 (ours) 71.264 ± 1.263 5.521 ± 0.046 9.819 ± 0.064
GPVAE-SPA-H10 (ours) 69.538 ± 0.664 5.412 ± 0.026 9.358 ± 0.083

We follow the settings from Fortuin et al. (2020), where
missing pixels are filled with zeros during inference, and
the ELBOs are calculated only on the observed pixels in
the data. A trade-off parameter is added to the ELBO to
rebalance the influence of the likelihood and KL terms (Hig-
gins et al., 2017). For baselines, we additionally consider
GPVAE-Diag and GPVAE-Band proposed in Fortuin et al.
(2020), both of which are not amenable to mini-batching.
GPVAE-Diag uses an encoder with a diagonal covariance
matrix, while GPVAE-Band features a tridiagonal covari-
ance. Given that GPVAE-Diag shares the identical structure
as our model and employs full batches of sequences, it
serves as the gold standard for our models. As suggested by
Fortuin et al. (2020), all GP-related models employ Cauchy
kernels, except MGPVAE using a Matérn- 32 kernel. We set
H = 5, which is half the length of a sequence.

Imputation results on the test set are presented in Fig. 3a and
Table 1. While VAE and HI-VAE achieve shorter training
times, they fail to reconstruct the images faithfully due to
a factorised Gaussian prior. In contrast, our models closely
match the performance of GPVAE-Diag, demonstrating a
strong approximation to the full-batch benchmark. GPVAE-
Band achieves the lowest RMSE but incurs the longest
training time due to its more complex structure. Although
MGPVAE outperforms our model in terms of quantitative
metrics, Fig. 3a indicates the generated images do not differ
significantly in visual quality, suggesting that the overall
performance of our models is comparable to MGPVAE.

Generating missing frames Following the setup in Zhu
et al. (2023), we produce sequences of MNIST frames,
where each digit rotates through two full revolutions. This
experiment involves 4,000 training and 1,000 test sequences,
each with 100 frames. Each frame is dropped with probabil-

ity 0.6, leaving the remaining sequence with varying lengths.
This task aims to generate the missing frames at a given
timestamp in unobserved sequences. SVGPVAE/LVAE-
M10/30 utilise M = 10/30 inducing points, and our mod-
els use H = 10 nearest neighbours for comparison. We
adapt LVAE by manually assigning unique IDs to each new
sequence during testing.

Fig. 3b and Table 1 provide the experimental results. As
shown in Table 1, both our models surpass the baselines
regarding NLL, with GPVAE-SPA achieving the lowest
RMSE. This is further validated by Fig. 3b. SVGPVAE-
M10 exhibits the fastest training time but the poorest per-
formance. Our models take a slightly longer training time
than SVGPVAE-M10, with extra computational overhead
caused by additional neighbouring data in a single mini-
batch. Although we triple the number of inducing points,
which incurs a similar training time to ours, it still cannot
outperform ours. LVAEs, which rely on additive kernels
over sequence IDs, narrow the performance gap but still
produce higher NLLs than our models. MGPVAE experi-
ences longer training times on the long sequences due to its
requirement for a sequential forward and backward process,
which cannot perform time-step mini-batching in parallel.

5.3. MuJoCo Hopper Physics

The MuJoCo dataset collects physical simulation data from
the DeepMind Control Suite (Rubanova et al., 2019). In this
experiment, 500 series of 14-dimensional Hopper data are
generated, each with 1000 timestamps. The series set is then
split into training, validation, and test subsets by 320/80/100.
At each timestamp, there is a 60% chance that the relevant
data features will be completely missing. The task objective
is to make posterior predictions at unobserved time steps.
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Table 2: Results of conditional generation at missing timestamps on MuJoCo dataset.

Models NLL RMSE Training Time (s/epoch)

SVGPVAE-M10 (Jazbec et al., 2021) -1.512 ± 0.032 0.0583 ± 0.003 44.000 ± 5.477
SVGPVAE-M30 (Jazbec et al., 2021) -1.071 ± 0.175 0.0391 ± 0.001 47.893 ± 3.170
MGPVAE (Zhu et al., 2023) -1.708 ± 0.057 0.0398 ± 0.002 57.291 ± 1.141

GPVAE-HPA-H10 (ours) -2.335 ± 0.032 0.0222 ± 0.001 37.000 ± 3.793
GPVAE-SPA-H10 (ours) -1.715 ± 0.159 0.0378 ± 0.007 39.403 ± 2.755

0.67

0.88

1.09

SVGPVAE
(M = 10)

SVGPVAE
(M = 30)

MGPVAE GPVAE-HPA
(H = 10, ours)

GPVAE-SPA
(H = 10, ours)

0.59

0.85

1.12

0.38

0.70

1.01
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2.00

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
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Predictive Mean 95% Predictive Confidence Interval Ground Truth

Figure 4: Conditional generation at missing timestamps of a
MuJoCo sequence in its 6th, 8th, 10th, and 12th dimensions
with 95% credible intervals.

Results The results in Table 2 demonstrate that our models
consistently outperform both SVGPVAE and MGPVAE in
terms of NLL, RMSE, and training time. These results are
further supported by the visual comparison presented in
Fig. 4. Additional numerical results and illustrative plots
can be found in Appendix C.3.

SVGPVAE-M10 shows suboptimal RMSE as an insufficient
number of inducing points significantly limits the model
capacity. Although increasing inducing points enhances the
RMSE performance, SVGPVAE-M30 remains inferior to
our models using 10 nearest neighbours. Moreover, increas-
ing inducing points in SVGPVAE causes a deterioration in
the NLL metric, indicating a reduced capacity to capture
predictive uncertainty in this experiment. In contrast, we
show in Table 11 in Appendix C.3 that GPVAE-HPA and
GPVAE-SPA consistently achieve better NLL and RMSE
as the number of nearest neighbours increases. These re-
sults highlight the advantage of employing neighbour-based
approximation in the latent space over a strategy relying
on inducing points. MGPVAE also demonstrates a poorer
performance compared to our proposed models and, notably,
requires significantly more computational time than ours.

5.4. Geostatistical datasets

We further consider imputation tasks on two multi-
dimensional geostatistical datasets of different scales, where

Input True Layer

RMSE=1.207

SVGPVAE-M100

RMSE=0.949

SGPBAE-M20

RMSE=0.617

GPVAE-HPA-H20(ours)

RMSE=0.611

GPVAE-SPA-H20(ours)

−2

−1

0

1

2

3

Figure 5: Porosity imputation (i.e., the 1st channel) at the
intermediate layer of SPE10 dataset using GPVAE models.

the nearest neighbour principle should be particularly ef-
fective. The first dataset, Jura (Goovaerts, 1997), contains
hundreds of data points, while the second dataset, SPE10
(Christie & Blunt, 2001), consists of over 105 observations.
Additionally, we compare several GP baselines such as ex-
act GP (Rasmussen & Williams, 2006), SVGP (Hensman
et al., 2013), and VNNGP (Wu et al., 2022). Appendix C.4
provides more experimental settings and additional results.

Jura The Jura dataset provides measurements of three
metal concentrations (Nickel, Zinc, and Cadmium) collected
in a region of Swiss Jura (xn ∈ R2,yn ∈ R3). The train-
ing set includes Nickel and Zinc measurements at all 359
locations, whereas Cadmium measurements are available
for only 259 of these sites. We aim to predict Cadmium
measurements at the remaining 100 locations.

Table 12 in Appendix C.4.1 compares the performance of
our proposed models to competing methods. Our models
again surpass the baselines in terms of both RMSE and NLL.
The performance of Exact GP and VNNGP is suboptimal
due to their inability to capture correlations between output
variables. VAE and HI-VAE perform poorly as they do
not leverage spatial information. SVGPVAE and SGPBAE
exhibit improved performance with an increased number of
inducing points; however, they remain inferior to GPVAE-
SPA, even using three times the number of inducing points
compared to the nearest neighbour count in our models.
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Table 3: Imputation results of various models on SPE10 dataset.

Models NLL RMSE Training Time (s/epoch)

MOGP-M1000 (Hensman et al., 2013) 6.034 ± 0.003 1.230 ± 0.000 3.820 ± 0.021
VNNGP-H20 (Wu et al., 2022) 1.052 ± 0.000 0.683 ± 0.000 2.490 ± 0.084
VAE (Kingma & Welling, 2014) 3.436 ± 0.015 1.298 ± 0.002 1.416 ± 0.020
HI-VAE (Nazabal et al., 2020) 0.752 ± 0.034 0.647 ± 0.008 1.448 ± 0.011
SVGPVAE-M100 (Jazbec et al., 2021) 2.025 ± 0.020 0.979 ± 0.006 4.755 ± 0.097
SGPBAE-M20 (Tran et al., 2023) 1.335 ± 0.106 0.898 ± 0.125 1585.6 ± 21.3

GPVAE-HPA-H20 0.735 ± 0.007 0.638 ± 0.007 4.019 ± 0.036
GPVAE-SPA-H20 0.736 ± 0.004 0.638 ± 0.004 3.365 ± 0.117

SPE10 SPE10 is a large dataset widely used in petroleum
engineering, featuring reservoir properties like porosity and
permeability with high spatial heterogeneity. We downsam-
ple it to 141,900 data points, with xn ∈ R3 and yn ∈ R4,
masking about 50% of the values for imputation. This data
size poses a challenge for GP-based models.

Imputation results are summarised in Table 3. We present
plots that illustrate the imputation of porosity at the interme-
diate layer. In this highly heterogeneous dataset, methods
that rely on inducing points, such as Multi-Output GPs
(MOGP), SVGPVAE, and SGPBAE, all perform poorly,
even using a large number of inducing points (e.g., MOGP-
M1000). This is because inducing point methods struggle to
effectively manage data which exhibit rapid local changes.
In contrast, models employing nearest neighbour approxima-
tion (including our models and VNNGP) generally perform
better on this dataset, indicating that the nearest neighbour
approach helps capture local structure. Importantly, our
models outperform VNNGP with 15× fewer trainable pa-
rameters, demonstrating that the VAE structure effectively
models the latent correlations in the data.

6. Conclusion
In this work, we present an efficient neighbour-driven
approximation strategy for modelling latent variables in
GPVAEs, yielding two new variants: GPVAE-HPA and
GPVAE-SPA. By focusing GP interactions on nearest neigh-
bours in the latent space, both models capture essential corre-
lations and facilitate scalable mini-batch training. Empirical
results on various tasks ranging from time-series imputation
to geostatistical modelling demonstrate consistent accuracy
and speed-ups over existing GPVAE baselines.

Limitations and Future work While our method does
not require a specific distance metric, we primarily used Eu-
clidean distance. Exploring alternatives, such as correlation-
based distances (Kang & Katzfuss, 2023), and leveraging
advanced manifold-aware metrics in high-dimensional data
are promising directions for future work.
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A. Acronyms
We list all acronyms appearing in the paper in the following Table 4 for reference.

Table 4: Acronym summary

Acronym Meaning

GP Gaussian Process
VAE Variational AutoEncoder
GPVAE Gaussian Process Variational AutoEncoder
NNGP Nearest Neighbour Gaussian Process
SVGP Sparse (Stochastic) Variational Gaussian Process
SVGPVAE Sparse Variational Gaussian Process Variational AutoEncoder
LVAE Longitudinal Variational AutoEncoder
MGPVAE Markovian Gaussian Process Variational AutoEncoder
SGPBAE Sparse Gaussian Process Bayesian AutoEncoder

HPA Hierarchical Prior Approximation
SPA Sparse Precision Approximation

NLL Negative Log-Likelihood
RMSE Root Mean Squared Error

B. ELBO Derivation
This section details the ELBO derivation of (10) and (13) in Section 3.2. Throughout, we use subscripts to denote the
learnable parameters of the distributions: ϕ represents the encoder parameters, θ denotes the decoder parameters, and ψ is
associated with the latent GP parameters.

B.1. GPVAE-HPA ELBO

We begin by outlining the derivation for GPVAE-HPA. In each training iteration, randomly sample a mini-batch B =
{(xi,yi)}i∈I with the index set I. For each training point (xi,yi) ∈ B, look for the H locations Xn(i) ∈ RH×D in
X = [xn]

N
n=1 such that n(i) are indices of top H nearest points to xi. This neighbour-driven strategy materialises the

sampling of a binary indicative vector w for latent variables. Then, the ELBO is given by

log p(Y) ≥
∫
q(Z,w) log

p(Y | Z)p(Z | w)p(w)

q(Z,w)
dZdw

=

∫
p(w)

{∫
q(Z | w) log p(Y | Z) dZ+

∫
q(Z | w) log

p(Z | w)

q(Z | w)
dZ

}
dw

= Ep(w)

{
Eq(Z|w) log p(Y | Z)−KL [q(Z | w) || p(Z | w)]

}
=

N∑
i=1

Ep(w)

{
Eq(zi|w) log p(yi | zi)−

1

N
KL [q(Z | w) || p(Z | w)]

}
≈ N

|I|
∑
i∈I

{
Eq(zi) [log p(yi | zi)]−

1

N
KL

[
q(Zn(i)) || p(Zn(i))

]}
:= LHPA.

The following part provides a detailed derivation of each term in the above-mentioned ELBO. Specifically, The ELBO LHPA
using a hierarchical prior is given by

LHPA =
N

|I|
∑
i∈I

Eqϕ(zi|yi) [log pθ(yi | zi)] (re-parameterization trick)

− 1

|I|
∑
i∈I

KL
[
qϕ(Zn(i) | Yn(i)) || pψ(Zn(i) | Xn(i))

]︸ ︷︷ ︸
KL[qϕ||pψ]

. (closed form)
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• Expected log-likelihood (if the decoder models Gaussian distributions with mean µθ and variance σ2
θ as in the MuJoCo

experiment in Section 5.3.)

Eqϕ(zi|yi) [log pθ(yi | zi)] = Eqϕ(zi|yi)
[
logN (yi | µθ(zi), σ2

θ(zi))
]

≈
K∑
k=1

{
−
(
yki − µkθ(zi)

)2
2σ2

θ
k
(zi)

− 1

2
log

(
2πσ2

θ
k
(zi)

)}
.

Here, we slightly abuse notation by writing zi ∼ qϕ(zi | yi) to indicate re-parameterized samples. The superscript k
represents the k-th entry of a vector.

• KL divergence

KL [qϕ || pψ] =
L∑
l=1

KL
[
N (zln(i) | µ

l
q,Σ

l
q) || N (zln(i) | µ

l
p,Σ

l
p)
]

=
1

2

L∑
l=1

{
(µlq − µlp)

(
Σl
p

)−1
(µlq − µlp)

⊤ + tr
{
(Σl

p)
−1Σl

q

}
+ log |Σl

p| − log |Σl
q| − |n(i)|

}
where l represents the latent dimension and Σl

q is diagonal,{
µlq = µlϕ(Yn(i)), Σl

q = σ2
ϕ
l
(Yn(i));

µlp = µlψ(Xn(i)), Σl
p = Kl

ψ(Xn(i),Xn(i)).

B.2. GPVAE-SPA ELBO

Next, we derive the ELBO for GPVAE-SPA. Following the same notation as in the main text, we have

log p(Y) ≥
∫
q(Z) log

p(Y | Z)
∏N
j=1 p(zj | Zn(j))
q(Z)

dZ

=

∫
q(Z) log p(Y | Z) dZ−

∫
q(Z) log

∏N
j=1 q(zj)∏N

j=1 p(zj | Zn(j))
dZ

=

∫
q(Z) log p(Y | Z) dZ−

N∑
j=1

∫
q(Zn(j))q(zj) log

q(zj)

p(zj | Zn(j))
dzj dZn(j)

=

N∑
i=1

Eq(zi) [log p(yi | zi)]−
N∑
j=1

Eq(Zn(j))KL
[
q(zj) || p(zj | Zn(j))

]
.

In every training iteration, randomly sample a mini-batch of training data indices I and a mini-batch of inducing indices J
for stochastically maximising the following ELBO

LSPA =
N

|I|
∑
i∈I

Eqϕ(zi|yi) [log pθ(yi | zi)]−
N

|J |
∑
j∈J

Eqϕ(Zn(j)|Yn(j))

{
KL[qϕ(zj | yj) || pψ(zj | Zn(j),Xn(j))]

}
.

• Expected log-likelihood is the same as in LHPA.

• KL divergence
Eqϕ(Zn(j)|Yn(j))

{
KL[qϕ(zj | yj) || pψ(zj | Zn(j),Xn(j))]

}
=

L∑
l=1

Eqϕ(Zln(j)
|Yn(j))

KL[qϕ(z
l
j | yj) || pψ(zlj | Zln(j),Xn(j))]︸ ︷︷ ︸

KL[qϕ||pψ ]


13
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First, given a data index j and the corresponding neighbour set Zn(j), we have

KL [qϕ || pψ] = KL
[
N (zj | µq,Σq) || N (zj | µp,Σp)

]
=

1

2

L∑
l=1

{
(µlq − µlp)

2

Σlp
+

Σlq
Σlp

+ log |Σlp| − log |Σlq| − 1

}

=
1

2

{
(µq − µp)Σ

−1
p (µq − µp)

⊤ + tr{Σ−1
p Σq}+ log

|Σp|
|Σq|

− L

}
,

(14)

where zj ∈ RL, Zn(j) ∈ R|n(j)|×L, and both Σp and Σq are diagonal:

µq = µϕ(yj), Σq = σ2
ϕ(yj);µlp = ml(xj) + klj,n(j)K

l−1
n(j),n(j)

[
Zln(j) −ml(Xn(j))

]
,

Σlp = klj,j − klj,n(j)K
l−1
n(j),n(j)k

l
n(j),j , Σp = diag(Σlp).

Then, calculate the expectation w.r.t.

Zn(j) ∼
L∏
l=1

qϕ(Z
l
n(j) | Yn(j)) =

L∏
l=1

N
(
Zln(j) | µ

l
n(j),S

l
n(j)

)
,

where µln(j) = µlϕ(Yn(j)) and Sln(j) = diag(sln(j)) = σ2
ϕ
l
(Yn(j)). Therefore,

Eqϕ(Zln(j)
|Yn(j))

[
(µlp − µlq)

2
]
= bl

⊤
n(j),jS

l
n(j)b

l
n(j),j +

{
ml(xj) + bl

⊤
n(j),j [µ

l
n(j) −ml(Xn(j))]− µlq

}2

,

where bln(j),j = Kl−1
n(j),n(j)k

l
n(j),j . The above expression can be plugged into (14) to derive the KL term of the ELBO

expression.

C. Experimental Details and Additional Results
Our implementation is open-sourced at https://github.com/shixinxing/NNGPVAE-official.

For fair comparisons, most scalable models (including our models, SVGPVAE, MGPVAE, SGPBAE, VAE, HI-VAE and GP
models) are implemented in PyTorch (Paszke et al., 2019) and GPyTorch (Gardner et al., 2018). We use the official code
for the baselines GPVAE-Diag and GPVAE-Band from Fortuin et al. (2020) and modify the code to make the running process
comparable with others. The experiments are run on an NVIDIA A100-SXM4 or V100-SXM2 GPU of a high-performance
cluster. We use the modern similarity search package, Faiss (Johnson et al., 2019), for nearest neighbour searches. Most
training time is estimated on an NVIDIA RTX-4090 GPU, except for the missing pixel imputation task, which is tested on
an RTX-2080-Ti due to software compatibility.

While the ELBO of GPVAE-SPA can theoretically be computed using two separate mini-batches, in practice, we follow Wu
et al. (2022) to simplify the process by using the same mini-batches of data in each iteration. The experimental details are
provided in the following sections.

C.1. Moving Ball

Experimental settings All GP-related models use RBF kernels with the lengthscale initialised to 2. In each epoch, we
generate 35 videos using distinct local seeds and train for 25,000 epochs. Our models use the same multilayer perceptron
(MLP) structures and training settings as in Jazbec et al. (2021) and Pearce (2020). Two independent GPs control the
two-dimensional variable in the latent space of the GPVAE. We summarise the experimental settings in Table 5.

In each training epoch, 35 videos with 30 frames each are simulated for parameter learning. The decoder yields independent
Bernoulli distributions for 1024 pixels of each frame. When testing, we derive the latent trajectory by least-squares projection
and compute the sums of squared errors on a testing batch of 35 videos. The MSE for one experimental trial is obtained by
averaging the squared errors over 10 video batches. The RMSE is then the square root of the MSE.
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Table 5: Experimental settings for the moving ball experiment.

Setting Value

Videos in each epoch 35
Frames in each video 30
Frame size 32× 32
Encoder (MLPs) 1024 → 500 → 4
Latent dimensionality 2
Decoder (MLPs) 2 → 500 → 1024 → Sigmoid
Activation function tanh
Optimizer Adam, lr = 0.001
Training epochs 25000

Additional results We provide RMSEs for the two proposed models in Table 6, with the number of nearest neighbours H
ranging from 3 to 15. The results confirm that the reconstruction improves with more nearest neighbours, which enables the
models to leverage more information from data in this experiment. We also present the reconstructed latent trajectories in
Fig. 6 with 5 or 15 inducing points/nearest neighbours.

Table 6: Additional experimental results in terms of RMSE with different numbers of nearest neighbours.

H 3 5 7 10 15

GPVAE-HPA 17.400 ± 3.691 8.149 ± 3.294 4.959 ± 0.250 2.978 ± 0.101 1.709 ± 0.146
GPVAE-SPA 3.507 ± 0.318 1.905 ± 0.148 1.289 ± 0.065 1.079 ± 0.097 1.245 ± 0.063

GT VIDEO VAE SVGPVAE GPVAE-Casale GPVAE-HPA GPVAE-SPA

RMSE=20.98 RMSE=21.10 RMSE=1.19 RMSE=5.73 RMSE=1.37

ground truth reconstruction

(a) Latent trajectory reconstruction with H = 5 or M = 5.

GT VIDEO VAE SVGPVAE GPVAE-Casale GPVAE-HPA GPVAE-SPA

RMSE=20.98 RMSE=2.43 RMSE=1.19 RMSE=1.18 RMSE=0.87

ground truth reconstruction

(b) Latent trajectory reconstruction with H = 15 or M = 15.
Figure 6: Additional illustration of latent representation learning for the moving ball series using different numbers
of nearest neighbours/inducing points. (a) GPVAE-SPA has already achieved good performance using only 5 nearest
neighbours. (b) When using 15 nearest neighbours/inducing points, all models except VAE achieve good reconstruction
quality, but ours still show better RMSE performance.

C.2. Rotated MNIST

The RMSEs reported in the following experiments are obtained through the encoder mean, computed at missing pixels and
averaged. The NLL is evaluated using 20 samples from the latent variables. Specifically,

NLL = − log

∫
p(Y | Z)q(Z) dZ ≈ − log

1

S

∑
s

p(Y | Zs)

= logS − logsumexps=1,··· ,S log p(Y | Zs),

where S is the number of samples.
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Table 7: Experimental settings for the Healing MNIST pixel imputation task.

Setting Value

Training/test sequences 50,000/10,000
Frames per sequence 10
Frame size 28 × 28
Encoder (Convs + MLPs) Conv(1, 256, ks=3) → Conv(256, 1, ks=3) → 256 → 256 → 512
Latent dimensionality 256
Decoder 256 → 256 → 256 → 256 → 784 → Sigmoid
Activation function ReLU
Optimizer Adam, lr = 0.0005
Mini-batch of sequences 50
Training epochs 40
Trade-off parameter β HPA=1.5; SPA=1.0

C.2.1. CORRUPTED FRAME IMPUTATION

The dataset, also called Healing MNIST, simulates real-world situations where medical data is often incomplete (Krishnan
et al., 2015). For this task of missing pixel imputation, we follow the settings in Fortuin et al. (2020), where Cauchy kernels
and convolutional layers (Conv) are used as components of the model structure. The MGPVAE baseline uses a Matérn- 32
kernel. The lengthscale and outputscale of all kernels are initialised to 2 and 1, respectively. The settings are listed in Table 7.
Fig. 7 illustrates additional imputation results for other digits in the dataset.

Input

VAE

HI-VAE

GPVAE-Diag
(full batch)

GPVAE-Band
(full batch)

MGPVAE

GPVAE-HPA
(ours)

GPVAE-SPA
(ours)

Input

VAE

HI-VAE

GPVAE-Diag
(full batch)

GPVAE-Band
(full batch)

MGPVAE

GPVAE-HPA
(ours)

GPVAE-SPA
(ours)

Figure 7: Additional imputation results on the Healing MNIST dataset.

C.2.2. MISSING FRAME GENERATION

Experimental settings We employ a similar architecture to Zhu et al. (2023), with convolutional layers in the encoder
and deconvolutional (Deconv) layers in the decoder. We use a Matérn- 32 kernel for MGPVAE and RBF kernels for the
others (with the exception of LVAE, which uses an additive kernel incorporating distinct sequence IDs). The lengthscale and
outputscale of all kernels are initialised to 2 and 1, respectively. In SVGPVAE, we select the initial locations of the inducing
points to be evenly distributed across the entire time range.

Additional results In addition to the H = 10 results detailed in the main text, we evaluate our models using varying
numbers of nearest neighbours. The metrics for NLL and RMSE are presented in Table 9. This experiment demonstrates
that increasing the number of nearest neighbours can enhance the visual quality of the generated images. Fig. 8 illustrates
some additional results on the task of generating missing frames based on the timestamps.
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Table 8: Experimental settings for the missing frame generation experiment on Rotated MNIST.

Setting Value

Training/test sequences 4,000/1,000
Frames per sequence 100
Frame size 28 × 28
Encoder (Convs + MLPs) Conv(1, 32, ks=3) → Conv(32, 64, ks=3) → 32
Latent dimensionality 16

Decoder
16 → 1568 → Deconv(32, 64, ks=3) →

Deconv(64, 32, ks=3) → Deconv(32, 1, ks=3) → Sigmoid
Activation function ReLU
Optimizer Adam, lr = 0.0005
Mini-batch of sequences 50
Mini-batch of frames 20
Training epochs 300
Trade-off parameter β HPA=1.5; SPA=1.0

Table 9: Our models’ performance on the task of missing frames generation with different numbers of nearest neighbours.

H 5 10 20

NLL GPVAE-HPA 101.741 ± 0.712 71.264 ± 1.263 69.637 ± 1.027
GPVAE-SPA 70.865 ± 0.656 69.538 ± 0.664 69.516 ± 0.543

RMSE GPVAE-HPA 6.669 ± 0.033 5.521 ± 0.046 5.444 ± 0.043
GPVAE-SPA 5.472 ± 0.029 5.412 ± 0.026 5.425 ±0.020

C.3. MuJoCo Hopper Physics

Experimental settings All models use a 15-dimensional latent space and Matérn- 32 kernels. We adopt the same encoder
and decoder architectures and training configurations as Zhu et al. (2023). For each latent GP, we initialise the lengthscale
and outputscale of the Matérn- 32 kernel to 50 and 1, respectively. All models are trained for 500 epochs. At test time, we
draw 20 latent samples to compute the NLL and RMSE. These metrics are computed over the entire sequence for predictive
performance on the test set. Additional setups are presented in Table 10.

Table 10: Experimental settings for the MuJoCo Hopper Physics experiment.

Setting Value

Encoder (MLPs) 14 → 32 → 30
Latent dimensionality 15
Decoder (MLPs) 15 → 16 → 14
Activation function ReLU
Optimizer Adam, lr = 0.001
Mini-batch of sequences 16
Mini-batch of frames 32
Training epochs 500

Table 11: Additional NLL and RMSE results for varying numbers of nearest neighbours on MuJoCo dataset.

H 5 10 20

NLL GPVAE-HPA -2.322 ± 0.061 -2.335 ± 0.032 -2.332 ± 0.021
GPVAE-SPA -1.700 ± 0.237 -1.715 ± 0.159 -1.835 ± 0.125

RMSE GPVAE-HPA 0.0225 ± 0.001 0.0222 ± 0.001 0.0221 ± 0.000
GPVAE-SPA 0.0392 ± 0.011 0.0378 ± 0.007 0.0339 ± 0.005
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Input

SVGPVAE
(M = 10)

SVGPVAE
(M = 30)

LVAE
(M = 10)

LVAE
(M = 30)

MGPVAE

GPVAE-HPA
(H = 10, ours)

GPVAE-SPA
(H = 10, ours)

Input

SVGPVAE
(M = 10)

SVGPVAE
(M = 30)

LVAE
(M = 10)

LVAE
(M = 30)

MGPVAE

GPVAE-HPA
(H = 10, ours)

GPVAE-SPA
(H = 10, ours)

Figure 8: Missing frames generated from two unseen MNIST sequences. The red boxes indicate the missing frames.

Additional results We provide additional NLL and RMSE results for our two proposed models in Table 11, with
H ∈ {5, 10, 20}. These results confirm that the predictive performance increases with the number of nearest neighbours,
consistent with our early findings. Fig. 11 shows additional plots for a test MuJoCo sequence across its 1st, 2nd, 3rd, 4th,
5th, 7th, 9th, 11th, 13th, and 14th dimensions.

C.4. Geostatistical Datasets

C.4.1. JURA

Table 12 presents the results on the Jura dataset discussed in the main text. We also illustrate the prediction in Fig. 9.

Experimental settings We follow the experimental setting in (Tran et al., 2023), in which RBF kernels are used, and the
lengthscale and outputscale are initialised to 0.1 and 1. More details are in Table 13. SGPBAE (Tran et al., 2023) adopts a
stochastic encoder, for which the input size is 6 instead of 3. It uses Adaptive SGHMC (Springenberg et al., 2016) with a
learning rate lr = 0.001, and the encoder is trained by Adam with a learning rate lr = 0.001. After 500 burn-in iterations,
50 samples are collected every 20 iterations. The exact GP and VNNGP are applied to the Cadmium variable only (because
they do not model multi-output data natively), while all other models utilise information from all 3 variables.

C.4.2. SPE10

The SPE10 dataset is derived from the Tenth Comparative Solution Project in petroleum engineering. It is widely used as a
benchmark for assessing how different numerical and geostatistical methods perform in heterogeneous reservoir conditions.
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Table 12: Imputation results of various models on the Jura dataset.

Models NLL RMSE

Exact GP (Rasmussen & Williams, 2006) 1.305 0.724
VNNGP-H10 (Wu et al., 2022) 1.387 ± 0.002 0.700 ± 0.000
VAE (Kingma & Welling, 2014) 2.015 ± 0.344 0.994 ± 0.121
HI-VAE (Nazabal et al., 2020) 1.082 ± 0.079 0.710 ± 0.028
SVGPVAE-M10 (Jazbec et al., 2021) 1.032 ± 0.025 0.678 ± 0.016
SVGPVAE-M20 (Jazbec et al., 2021) 1.002 ± 0.040 0.661 ± 0.026
SVGPVAE-M30 (Jazbec et al., 2021) 0.981 ± 0.062 0.650 ± 0.039
SGPBAE-M10 (Tran et al., 2023) 2.171 ± 0.826 1.089 ± 0.253
SGPBAE-M20 (Tran et al., 2023) 2.005 ± 0.781 1.061 ± 0.244
SGPBAE-M30 (Tran et al., 2023) 1.435 ± 0.316 0.913 ± 0.124

GPVAE-HPA-H10 1.230 ± 0.184 0.678 ± 0.054
GPVAE-SPA-H10 0.939 ± 0.066 0.584 ± 0.023

Table 13: Experimental settings for the Jura experiment.

Setting Value

Encoder (MLPs) 3 → 20 → 4
Latent dimensionality 2
Decoder (MLPs) 2 → 5 → 5 → 3
Activation function ReLU
Optimizer Adam, lr = 0.001
Mini-batch size 100 (except exact GP, which uses all 259 training data)
Training epochs 2000 for exact GP and VNNGP, 300 for others
Trade-off parameter β HPA=1.8, 1.0 for others

The original dataset contains 220× 60× 85 grid cells. Each grid cell represents a discrete unit (a rectangular cuboid) in the
3D reservoir model. Its typical properties are porosity, which indicates the fraction of pore space in the cell, and permeability
(often provided in x, y, and z directions). These properties collectively determine the flow behaviour of fluids (oil, water, or
gas) within the reservoir.

Experimental settings In this experiment, we downsample the cells by a factor of 2, resulting in 110× 30× 43 locations.
Each value of the dataset has a 0.5 probability of being dropped. The experimental settings are listed in Table 14.

All models use Cauchy kernels with the lengthscale and outputscale initialised to 2 and 1. The likelihood noise is fixed
to 0.25 except for GP models, whose likelihood noise is initialised to 0.01. For SVGPVAE, the inducing locations are
uniformly initialised in the data space. For SGPBAE, the SGHMC step size is set to 0.0001, and the steps along the chain
are 100. After 1500 burn-in iterations, we keep 100 samples. The performance of SGPVAE is evaluated using 100 samples.
Between each sample, the stochastic encoder is updated for 50 iterations.

Table 14: Experimental settings for the SPE10 experiment.

Setting Value

Encoder (MLPs) 4 → 256 → 64 → 3
Latent dimensionality 3
Decoder (MLPs) 3 → 64 → 256 → 4
Activation function ReLU
Optimizer Adam, lr = 0.001
Mini-batch size 1000
Training epochs 500
Trade-off parameter β HPA=1500, 0.2 for others
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Additional results We plot the imputation results of the models at some layers in Fig. 10.
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Figure 9: Predictive mean for Cadmium on the Jura dataset test split (100 locations).
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Figure 10: Additional imputation results of SPE10. (top) The permeability along the y direction at the 26th layer; (middle)
The permeability along the x direction at the 41st layer; (bottom) The porosity at the 22nd layer.
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D. Scalable Gaussian Process Variational Autoencoders
We give an overview of the related models in the following Table 15.

Table 15: A summary of relevant models. N , M , and H are the number of data points, inducing points, and nearest
neighbours. Nb is the mini-batch size. P represents the feature dimensions of low-rank representations. d is the
dimensions of the state variables.

Models Mini-batching* GP complexity
Arbitrary

kernel
Standard VAE

encoder Reference

VAE ✓ / / ✓ Kingma & Welling (2014)
GPVAE-Casale ✓ O(NP 2 + P 3) ✗ ✓ Casale et al. (2018)
GPVAE-Pearce ✗ O(N3) ✓ ✗ Pearce (2020)
GPVAE-Diag ✗ O(N3) ✗ ✓ Fortuin et al. (2020)
GPVAE-Band ✗ O(N3) ✗ ✗ Fortuin et al. (2020)
SVGPVAE ✓ O(NbM

2 +M3) ✓ ✗ Jazbec et al. (2021)
MGPVAE ✗ O(d3N) ✗ ✗ Zhu et al. (2023)
SGPBAE ✓ O(NbM

2 +M3) ✓ ✗ Tran et al. (2023)

GPVAE-HPA ✓ O(NbH
3) ✓ ✓ this work

GPVAE-SPA ✓ O(NbH
3) ✓ ✓ this work

* Here means mini-batching along the “time” dimension.

In this section, we summarise recent scalable GPVAE models used in our experiments, including SVGPVAE (Jazbec
et al., 2021)(Section D.1), MGPVAE (Zhu et al., 2023)(Section D.2), and SGPBAE (Tran et al., 2023)(Section D.3). We
believe this section will be helpful for practitioners interested in trying these models. Although SGPBAE is more accurately
categorised as an extension of the Bayesian autoencoder (Tran et al., 2021a) rather than a VAE, it is included here for
completeness. For more detailed information about these models, please refer to the related papers.

D.1. SVGPVAE

Replacing exact GPs with sparse variational GP (SVGP) techniques (Titsias, 2009; Hensman et al., 2013) to enhance the
scalability of GPVAEs is a natural approach. However, such methods cannot be directly integrated into GPVAEs, as they
either require the entire dataset to be loaded into memory or are not suited for amortization. In response to this scalability
challenge, Jazbec et al. (2021) propose a novel approach that leverages a specific parametrisation of the distribution of
inducing variables based on Pearce (2020). This formulation enables the training objective to accommodate mini-batching,
amortization, and the use of arbitrary kernels.

In Pearce (2020), they use the variational distribution from (5), and the ELBO is given by:

LGPVAE-Pearce =

N∑
n=1

Eqψ,ϕ(zn|yn)

[
log pθ(yn | zn)−

L∑
l=1

log q̃ϕ(z
l
n | yn)

]
+

L∑
l=1

logZlψ,ϕ(Y,X),

where Zlψ,ϕ = N (µlϕ(Y) | 0, klψ(X,X) + σ2
ϕ
l
(Y)). The posterior qψ,ϕ(zn | yn) can be regarded as derived from a

“pseudo” GP regerssion with input-observation pairs (X, µlϕ(Y)) and noise σ2
ϕ
l
(Y). We denote the latent dataset as

{X, Ỹ = µϕ(Y), σ̃2 = σ2
ϕ
l
(Y)}. This training objective will require O(N3) time complexity due to logZlψ,ϕ(Y,X) and

qψ,ϕ(zn | yn) terms without any approximation. Jazbec et al. (2021) approximate the encoder’s output distribution qψ,ϕ(z)
using SVGP’s posterior:

qs(z) =

∫
p(z | ZU)q(ZU) dZU

= N (z | KxUK−1
UUµ,Kxx +KxUK−1

UU(A−KUU)K−1
UUKUx),

(15)

where U are M inducing locations and the variational distribution is q(ZU) = N (ZU | µ,A). Minimizing KL[qs || qψ,ϕ]
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is equivalent to maximizing the (inner) lower bounds LH proposed by Hensman et al. (2013)2

logZψ,ϕ ≥ LH =

N∑
i=1

{
logN

(
ỹi | KxiUK−1

UUµ, σ̃2
i

)
− 1

2σ̃2
i

[
k̃ii + tr(AΛi)

]}
− KL[q(ZU) || pψ(ZU)], (16)

where ỹi and σ̃i are from the latent dataset, k̃ii = Kxixi − KxiUK−1
UUKUxi and Λi = K−1

UUKUxiKxiUK−1
UU. The

practical training objective for SVGPVAE is given by replacing qψ,ϕ with qs from (15) and lowering bound logZlψ,ϕ with
LH from (16) simultaneously:

ELBO ≳
N∑
n=1

Eqs(zn)

[
log pθ(yn | zn)−

L∑
l=1

log q̃ϕ(z
l
n | yn)

]
+

L∑
l=1

LlH . (17)

Mini-batching in ELBO Take a mini-batch of size Nb, Xb ⊂ X,Yb ⊂ Y, and the encoder q̃ϕ creates a mini-batch
of the latent dataset {Xb, Ỹb, σ̃b}. SVGPVAE computes stochastic estimates for µ,A of the variational distribution
q(ZU) = N (ZU | µ,A) at each latent channel l:

Σl
b := KUU +

N

Nb
KUXb

diag(σ̃−2
b )KXbU,

µlb :=
N

Nb
KUU(Σl

b)
−1KUXb

diag(σ̃−2
b )Ỹl

b,

Al
b := KUU(Σl

b)
−1KUU.

(18)

These estimators converge to the true values for Nb → N . Σl
b is an unbiased estimator for Σl but this doesn’t hold for µlb

and Al
b. Then, the training objective of SVGPVAE for a mini-batch Xb,Yb based on the above Monte Carlo estimators is

given by

LSVGPVAE :=
N

Nb

Nb∑
n=1

Eqs(zn)

[
log pθ(yn | zn)−

L∑
l=1

log q̃ϕ(z
l
n | yn)

]
+

L∑
l=1

LlH .

Prediction After training, generating y∗ for an unseen x∗ follows the procedure:

• Encode (possibly all) training sample to get {µlϕ(Y)}Ll=1, {σ2
ϕ
l
(Y)}Ll=1.

• Compute Σl
N ∈ RM×M , µlN ∈ RM and Al

N ∈ RM×M using the estimators (18) for l ∈ {1, 2, ..., L}.

• Compute posterior predictive distribution:

q(z∗ | Y,X,x∗) =

∫
p(z∗ | ZU)N (ZU | µN ,AN ) dZU,

which is Gaussian with mean and variance

µl∗ = Kx∗U(Σl
N )−1KUX diag(σ−2

ϕ (Y))µlϕ(Y),

σ2
∗
l
= Kx∗x∗ −Kx∗UK−1

UU

(
KUU −KUU(Σl

N )−1KUU

)
K−1

UUKUx∗ .

• Compute z∗ = µ∗ + σ∗ · ϵ, with ϵ sampled from a standard normal distribution, and generate y∗ ∼ pθ(y∗ | z∗).

D.2. MGPVAE

This work is inspired by the fact that some one-dimensional GPs with Matérn kernels can be written as linear Stochastic
Differential Equations (SDEs) (Särkkä & Solin, 2019), which has an equivalent discrete linear state space representation.
For Gaussian likelihood, the linear discrete-time representation enables Kalman filtering and smoothing that computes the
posterior distributions in linear time w.r.t. series length. This work places such discrete GP representations on the latent
space of GPVAE. However, the GPVAE decoder is a non-linear function of latent variables. They further apply site-based
approximation (Chang et al., 2020) for the non-linear likelihood terms to enable analytic solutions for the filtering and
smoothing procedures.

2We suppress the channel index l here for simplicity.
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D.2.1. SDE REPRESENTATIONS FOR MARKOVIAN GPS

A GP z ∼ GP(0, k) with a Markovian kernel k (e.g., Matérn- 32 ) can be written with an Itô SDE of latent dimension d (Solin
et al., 2016; Hamelijnck et al., 2021) :

dst = Fstdt+ LdBt, zt = Hst, (19)

where F ∈ Rd×d is the feedback matrix, L ∈ Rd×e the noise effect, H ∈ R1×d the emission matrix. Bt is an e-dimensional
(correlated) Brownian motion with spectral density matrix Qc ∈ Re×e such that Bt+δ −Bt ∼ N (0, δQc).

Suppose the initial state st0 ∼ N (m0,P0) with the stationary state mean and covariance. Given all timestamps {t0, · · · , tT },
if we solve for each ti with initial time ti−1, then the the linear SDE (19) admits:

sti = e(ti−ti−1)Fsti−1 +

∫ ti

ti−1

e(ti−τ)FLdBτ .

Therefore, we can derive a corresponding discrete-time solution, allowing the recursive updates of sti+1
given sti (Särkkä

et al., 2006):
sti+1 = Ai,i+1sti + qi, st0 ∼ N (m0,P0),

Ai,i+1 = e∆iF, qi ∼ N (0,Qi,i+1),
(20)

where ∆i = ti+1 − ti. Provided that P0 exists and is known, Qi,i+1 can be easily obtained in closed form (Solin et al.,
2016):

Qi,i+1 = P0 −Ai,i+1P0A
⊤
i,i+1.

Note that d,F,L,H,m0,P0,Qc in (19) and (20) depends on the kernel’s type and parameters.

D.2.2. MARKOVIAN GPVAES

MGPVAEs utilize the linear SDE form of Markovian GPs in the latent space and transform it into a discrete State-space
model (SSM) with non-conjugate measurements (i.e., non-linear likelihood modelled by a decoder). Specifically, given N
(possibly unevenly spaced) time steps {t1, t2, ..., tN}, for the l-th latent dimension,

sli+1 = Al
i,i+1s

l
i + qli,

sl0 ∼ N (ml
0,P

l
0), qli ∼ N (0,Ql

i,i+1),

zli = Hlsli, yi | zi ∼ pθ(yi | zi),

where we abuse the timestamp subscripts, using si ∈ RdL to denote the state variable at time ti. zi ∈ RL is the latent
variable of the GPVAE, and θ represents the parameters of the decoder. The L latent Markovian GPs are independent, and
we will suppress the channel l in subsequent expressions to keep the notation uncluttered.

Model Provided a SSM with system states {si}Ni=1 and observations {Yi}Ni=1, the forward process is described by the
joint distribution

p({si}Ni=1, {Yi}Ni=1) =

N∏
i=1

p(si | si−1)

N∏
i=1

pθ(Yi | si).

For i = 0, . . . , N − 1, the factors of the above distribution are defined by

p(si+1 | si) = N (si+1 | Ai,i+1si,Qi,i+1),

p(yi | si) = pθ(Yi | Hsi).

Again, the transition matrices {Ai,i+1,Qi,i+1} and the emission matrix H are determined by the Markovian kernel . The
measurement p(yi | si) is modeled by a non-linear decoder network, so the smoothing distribution p(si | y1:N ) is no longer
analytical. Like Pearce (2020), this work utilises pseudo observations ỹ1:N and pseudo noise variances ṽ1:N from the output
of the encoder to substitute the measurement model p(yi | si) with

p(ỹi | si) = N (ỹi | Hsi, ṽi)
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such that the linear Gaussian relationship is maintained and the standard Kalman filter and the RTS smoother can be applied.
The smoothing distribution conditioned on the pseudo-observations

p(s1:N | ỹ1:N ) =
p(s1:N )

∏N
i=1 N (ỹi | Hsi, ṽi)∫

p(s1:N )
∏N
i=1 N (ỹi | Hsi, ṽi)ds1:N

= q(s1:N ),

will be used as a variational approximation q(s1:T ) to the true posterior p(s1:N | y1:N ) later.

Variational Inference This work employs variational inference to approximate the intractable posteriors. The variational
distribution q(s1:N ) is proposed to approximate the posterior p(s1:N | y1:N ) over s1:N ∈ RN×dL. Note that zi is a
deterministic linear transformation of si so the stochasticity arises from s1:N . The variational q(s1:N ) is learned by
maximizing the following ELBO:

LMGPVAE =

N∑
i=1

Eq(si) log pθ(yi | si)− KL [q(s1:N ) || p(s1:N )]

=

N∑
i=1

Eq(si) log pθ(yi | si)− Eq(s1:N )

[
log

N∏
i=1

N (ỹi | Hsi, ṽi)− log

∫
p(s1:N )

N∏
i=1

N (ỹi | Hsi, ṽi)ds1:N

]

=

N∑
i=1

Eq(si) log pθ(yi | si)−
N∑
i=1

Eq(si) logN (ỹi | Hsi, ṽi) + log

∫
p(s1:N )

N∏
i=1

N (ỹi | Hsi, ṽi) ds1:N

=

N∑
i=1

Eq(si) [log pθ(yi | si)− logN (ỹi | Hsi, ṽi)] + log p(ỹ1:N ).

Prediction Computing the state-space posterior distribution at a newly introduced time point t∗ relies on the smoothed dis-
tributions obtained at the adjacent time points. More concretely, let t− and t+ denote the immediate predecessor and successor
time points, respectively, and the predictive q(st∗) can be obtained as q(st∗) =

∫
p(st∗ | st− , st+)q(st− , st+)dst−dst+ .

More details can be found in Appendix A.1 of Adam et al. (2020). Using the relationship zt∗ = Hst∗ , we can obtain the
predictive posterior q(zt∗) and q(y∗).

D.3. SGPBAE

This work presents a fully Bayesian autoencoder (BAE) that treats the GP parameters, the latent variables, and the decoder
parameters in a Bayesian fashion (i.e., SGPBAE). To carry out scalable inference, the authors (1) use the fully independent
training conditionals (FITC) (Quinonero-Candela & Rasmussen, 2005), (2) adopt stochastic Hamiltonian Monte Carlo
(SGHMC) (Chen et al., 2014), and (3) employ an amortized stochastic network as the encoder to learn to draw samples
from the posterior of the latent variable. Additionally, this encoder avoids making strong assumptions about the form of the
posterior by producing samples from the (approximate) implicit posterior. However, MCMC usually requires a sufficient
number of iterations to reach the stationary distribution (convergence), and determining whether it has converged can be
challenging. Besides, manual tuning of many parameters adds complexity to the process.

GP Prior The prior over the latent variables Z =
[
zl
]L
l=1

∈ RN×L in this paper is from L independent GPs F =[
f l
]L
l=1

∈ RN×L equipped with M inducing points and additive Gaussian noise. Specifically, the variables at the l-th
channel have the following joint distribution:

pψ(z
l, f l,ul | S, ψ) = pψ(z

l | f l, ψ)pψ(f l,ul | S, ψ),

pψ(f
l,ul | S, ψ) = N

([
f l

ul

]
| 0,

[
KXX|ψ KXS|ψ
KSX|ψ KSS|ψ

])
, pψ(z

l | f l, ψ) = N (zl | f l, σ2
ψI),

where U =
[
ul
]L
l=1

∈ RM×L and S ∈ RM×D are inducing variables and locations. ψ contains the kernel parameters (e.g.,
lengthscale, variance) and the noise variance σ2

ψ . A fully Bayesian treatment in this work leads to a lognormal prior pγ(ψ)
over ψ and a uniform prior pξ(S) over S.
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Independent Conditionals The overall joint distribution should be decomposed over observations to sample from the
posterior over all the latent variables using SGHMC. The authors further impose independence in the conditional distribution
(Quinonero-Candela & Rasmussen, 2005):

pψ(f
l | ul,S, ψ) ≈ N

(
f l | KXS|ψK

−1
SS|ψu

l,diag
[
KXX|ψ −KXS|ψK

−1
SS|ψKSX|ψ

])
.

Decoder is a neural network p(Y | Z,θ) with weights/biases θ regarded as random variables 3. Therefore, defining
Ψ = {ψ,S,U,θ}, the potential energy function is given by

U(Ψ,Z) = − log p(ψ,S,U,θ)−
L∑
l=1

log

∫
p(zl | f l, σ2

ψ)p(f
l | ul,S, ψ) df l − log p(Y | Z,θ)

= − [log pγ(ψ) + log pξ(S) + log pψ(U | ψ,S) + log p(θ)]

−
N∑
n=1

{
L∑
l=1

logN
(
zln | KxnSK

−1
SSu

l, kxn −KxnSK
−1
SSKSxn + σ2

ψ

)
+ log p(yn | zn,θ)

}

= − log p(Ψ)− N

|B|
∑
n∈B

{ L∑
l=1

logN
(
zln | KxnSK

−1
SSu

l, kxn −KxnSK
−1
SSKSxn + σ2

ψ

)
+ log p(yn | zn,θ)

}
≈ Ũ(Ψ,Z),

where Ũ(Ψ,Z) is a stochastic estimate from a mini-batch. In practice, ul is sampled by whitening the prior, i.e., ul =
Lv,LL⊤ = KSS,v ∼ N (0, I) (Hensman et al., 2015).

Encoder is an implicit stochastic network concatenating random noise and Y. If the encoder is a multilayer perceptron
(MLP), the authors concatenate the random seeds and the input into a long vector. The dimension of the random seeds is the
same as that of the input. If the encoder is a CNN, they spatially stack the random seeds and the input.

Sampling by SGHMC SGHMC (Chen et al., 2014) uses a noisy but unbiased estimation of the gradient ∇Ũ(Θ) computed
from a mini-batch of the data, where we group the sampled variables into Θ = {Ψ,Z}. Introducing auxiliary momentum
variables r, the discretized Hamiltonian dynamics are then updated as follows:{

∆Θ = ηM−1r,

∆r = −η∇Ũ(Θ)− ηCM−1r+N (0, 2η(C− B̃)),

where η is the step size, M an arbitrary mass matrix that serves as a precondition, C a user-defined friction ma-
trix, and B̃ the estimate for the noise of the gradient evaluation. This work adopts an adaptive version of SGHMC
(Springenberg et al., 2016), where these hyperparameters are automatically adjusted during a burn-in phase. After this
period, these hyperparameters are fixed. Specifically, the updates of the hyperparameters are:

M−1 = diag
(
V̂

− 1
2

Θ

)
,

∆V̂Θ = −τ−1V̂Θ + τ−1
[
∇Ũ(Θ)

]2
,

∆τ = −g2ΘV̂
−1
Θ τ + 1,

∆gΘ = −τ−1gΘ + τ−1∇Ũ(Θ);

B̃ = 1
2ηV̂Θ;

ηCV̂
− 1

2

Θ = αI.

Here, α is a momentum coefficient. By substituting v := ηV̂
− 1

2

Θ r, the discretized Hamiltonian dynamics becomes{
∆Θ = v,

∆v = −η2V̂ − 1
2

Θ ∇Ũ(Θ)− αv +N (0, 2η2αV̂
− 1

2

Θ − η4I).

3To remain notation consistency. The paper uses φ to represent the decoder’s parameters and θ for kernel parameters instead.
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