
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ODE-GS: LATENT ODES FOR DYNAMIC SCENE
EXTRAPOLATION WITH 3D GAUSSIAN SPLATTING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce ODE-GS, a novel approach that integrates 3D Gaussian Splatting with
latent neural ordinary differential equations (ODEs) to enable future extrapolation
of dynamic 3D scenes. Unlike existing dynamic scene reconstruction methods,
which rely on time-conditioned deformation networks and are limited to interpola-
tion within a fixed time window, ODE-GS eliminates timestamp dependency by
modeling Gaussian parameter trajectories as continuous-time latent dynamics. Our
approach first learns an interpolation model to generate accurate Gaussian trajecto-
ries within the observed window, then trains a Transformer encoder to aggregate
past trajectories into a latent state evolved via a neural ODE. Finally, numerical
integration produces smooth, physically plausible future Gaussian trajectories,
enabling rendering at arbitrary future timestamps. On the D-NeRF, NVFi, and
HyperNeRF benchmarks, ODE-GS achieves state-of-the-art extrapolation perfor-
mance, improving metrics by 19.8% compared to leading baselines, demonstrating
its ability to accurately represent and predict 3D scene dynamics.

1 INTRODUCTION

Recently, 3D Gaussian Splatting (3DGS) methods have emerged as an effective approach for dynamic
scene reconstruction. By training on images taken from a time-dependent 3-dimensional (3D)
scene, such methods enable photorealistic novel view synthesis (NVS) for any time within the
observed window. However, the task of prediction—extrapolating future scene dynamics from past
observations—remains largely underexplored. Performing such a task is a well-studied capability
that humans possess (Rao & Ballard, 1999; Mrotek & Soechting, 2007; Battaglia et al., 2013; Khoei
et al., 2017), while mirroring this capability in intelligent systems is of great interest for applications
such as self-driving, robotics, and augmented reality. Our focus is then to bridge this gap and enable
the ability to forecast future 3D states in the context of dynamic scene reconstruction, which we will
refer to as dynamic scene extrapolation.

Performing dynamic scene extrapolation is fundamentally more challenging than reconstruction.
Existing methods are primarily designed for temporal interpolation within the observed window,
where arbitrary view points at given time can be reconstructed by conditioning models on timestamps.
In contrast, temporal extrapolation is inherently under-constrained, as there exist infinitely many pos-
sible future dynamics given our past observations. Therefore, popular dynamic scene reconstruction
methods, such as TiNeuVox (Fang et al., 2022), Deformable 3D Gaussians (Yang et al., 2024), and
4D Gaussian Splatting (Wu et al., 2024), excel at “filling the gaps” between observed timestamps,
but degrade when extended beyond them. In such cases, future timestamps fall outside the training
distribution, leading to out-of-distribution (OOD) failures.

As with many under-constrained problems, our task then becomes estimating the most likely future
dynamics given existing observations. Incorporating physical assumptions can substantially narrow
this solution space. An example of such an assumption is the spatio-temporal smoothness of motion,
which provides strong constraints on the evolution of scene dynamics. Differential equations have
long served as principled tools for describing the evolution of physical systems (Chen et al., 2018),
and ordinary differential equations (ODEs) in particular offer a natural formalism for representing
continuous and physically plausible motion trajectories.

In light of these considerations, we propose to represent the temporal evolution of a dynamic scene in
a continuous-time latent space, where the evolution is governed by an ODE. In this way, we impose a

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Unlike existing methods that focus on interpolation, i.e., reconstructing novel scene views at
unseen timestamps within the observed time window, we focus on extrapolation, i.e., extending scene
dynamics beyond the observed times, by first training a representation of the observed scene and then
using a sequence-to-sequence model to reconstruct future novel views via latent ODE dynamics.

physical assumption of smooth motion into the predictive model (Chen et al., 2018; Rubanova et al.,
2019), while retaining 3DGS’s capability of high-fidelity rendering. Unlike prior approaches that
condition directly on explicit timestamps—leading to OOD failures—we reformulate dynamic scene
extrapolation as a sequence-to-sequence forecasting problem, which naturally aligns with 3DGS’s
explicit representation of the 3D scene. Specifically, we first encode a temporal sequence of Gaussian
parameters using a Transformer (Vaswani et al., 2017) into a latent state that embeds past motion.
We then model the temporal evolution of this latent state via a neural ODE, where a neural network
parameterizes its velocity field. Extrapolation is thus realized by numerically integrating the latent
dynamics beyond the observed window, yielding future latent states. These states are subsequently
decoded back into Gaussian parameters, which can be rendered into novel future views. To further
constrain extrapolation, we incorporate additional physical priors as lightweight regularizers during
training. These include penalties that encourage smoothness in both the latent trajectories and the
decoded Gaussian parameters, reinforcing the assumption of continuous motion.

The resulting method, ODE-GS (Ordinary Differential Equation-based Gaussian Splatting), decou-
ples scene reconstruction from temporal forecasting. We first optimize a Gaussian interpolation
model within the observed window, by training a set of canonical Gaussian parameters and a defor-
mation network. This interpolation model is then frozen and used as a data generator, producing
temporal trajectories of 3D Gaussian parameters. We train the Transformer-Latent ODE on these
trajectories, but crucially, the model is conditioned only on a partial prefix of each sequence and
learns to extrapolate the remainder. This training setup equips ODE-GS to extrapolate beyond the
observed time horizon at inference, by integrating forward in time via our latent ODE and decoding
back into future Gaussian parameters.

Our contributions are:

• We propose ODE-GS, which integrates 3D Gaussian Splatting with a Transformer-based
latent ODE. We model scene dynamics as continuous trajectories in latent space to enforce
smoothness priors, enabling stable extrapolation beyond the observed window.

• We validate our modeling strategy that decouples dynamic scene reconstruction from tem-
poral forecasting. By first optimizing an interpolation model for reconstruction and then
training the latent ODE forecaster on generated trajectories, ODE-GS avoids direct reliance
on timestamp conditioning and mitigates out-of-distribution failures.

• We incorporate inductive biases as regularizers that encourage smoothness in both latent and
decoded trajectories, improving stability and rendering quality at extrapolated timestamps.

• ODE-GS achieves state-of-the-art performance in dynamic scene extrapolation, improving
over the best existing extrapolation method by an average of 21.4% PSNR, 7.4% SSIM, and
30.5% LPIPS across synthetic (D-NeRF, NVFi) and real-world (HyperNeRF) datasets.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Novel View Synthesis (NVS). Recent advances in NVS have explored a diverse range of approaches,
including explicit mesh-based representations (Broxton et al., 2020; Dou et al., 2016; Newcombe
et al., 2015; Orts-Escolano et al., 2016), and implicit neural volume representations (Lombardi et al.,
2019). Among these, Neural Radiance Fields (NeRF) (Mildenhall et al., 2021) have emerged as a
dominant paradigm due to their leading performance in NVS. The foundational success of NeRF
has led to numerous extensions for dynamic scene reconstruction (Attal et al., 2023; Du et al., 2021;
Ost et al., 2021; Park et al., 2021a; Pumarola et al., 2021), enabling applications such as monocular
video-based scene reconstruction (Gao et al., 2021; Li et al., 2021; Tretschk et al., 2021), editable
scene representations (Kania et al., 2022; Park et al., 2021a), and human-centered reconstructions
(Peng et al., 2021b;a). Notably, NVFi (Li et al., 2023) investigates the problem of dynamic scene
extrapolation by adding geometric priors. However, its dependence on explicit timestamps during
training induces out-of-distribution errors when extrapolating.

3DGS and Dynamic Scene Modeling. 3DGS (Kerbl et al., 2023), first used for static NVS,
has become a popular choice for representing dynamic scenes due to its speed and explicit nature
(Huang et al., 2024; Li et al., 2024). Deformable 3D Gaussians (Yang et al., 2024) learn Gaussians
in a canonical space with a deformation network. By training both the canonical Gaussians and
the deformation network simultaneously, they enable continuous-time rendering by transforming
canonical Gaussians into arbitrary time within the training window. Concurrently, 4D Gaussian
Splatting (Wu et al., 2024) took the same canonical-deform strategy and additionally integrated 4D
neural voxels inspired by HexPlane (Cao & Johnson, 2023). Additional efforts, such as explicit
time-variant Gaussian features (Luiten et al., 2024), achieved interactive frame rates and enabled
flexible editing. GaussianVideo (Bond et al., 2025) uses neural ODEs, but for learning smooth
camera trajectories rather than scene motion. However, most 3DGS-based approaches rely on a
time-conditioned deformation field, making these models excel in interpolation tasks but unable
to extrapolate into unseen time in the future. GaussianPrediction (Zhao et al., 2024) has recently
explored this issue by combining a superpoint strategy with Graph Convolution Networks (GCN)
that directly conditions on past motion instead of time, but is only capable of sampling at discrete
steps when extrapolating.

Neural Ordinary Differential Equations. Neural Ordinary Differential Equations (Neural ODEs)
(Chen et al., 2018) introduced a novel approach for continuous-depth neural networks. Instead
of defining discrete layers, a Neural ODE specifies the continuous dynamics of a hidden state
using a neural network that parameterizes its derivative. The network’s output is then determined
by a numerical ODE solver that integrates these learned dynamics over a specified interval. Key
advantages include memory-efficient training via the adjoint sensitivity method, inherent handling of
irregularly-sampled data, and adaptive computation.

Relevant to dynamic modeling, Latent ODEs (Rubanova et al., 2019) typically encode an input
sequence into an initial latent representation whose continuous-time evolution is then governed by a
Neural ODE. A decoder can subsequently map these evolving latent states back to the observation
space at arbitrary times. This is effective for modeling continuous trajectories and is often combined
with Variational Autoencoders (VAEs), as in ODE2VAE (Yildiz et al., 2019), to learn distributions
over latent paths and capture uncertainty.

The synergy between recurrent methods and Neural ODEs has also been explored. For instance,
GRU-ODE (De Brouwer et al., 2019) adapts GRU-like gating mechanisms to continuously evolving
states, while ODE-RNN (Rubanova et al., 2019) interleaves discrete RNN updates at observation
points with continuous ODE-based evolution.

3 METHODOLOGY

In the following sections, we formalize our problem setting and detail each component of ODE-GS:
first, the interpolation model that generates dense Gaussian trajectories within the observed window
(Sec. 3.1); second, the Transformer-based latent ODE architecture for extrapolation (Sec. 3.2);
third, a dynamic sampling strategy to train the extrapolation model on different forecasting horizons
(Sec. 3.3); and finally, the training and regularization objectives that ensure physically plausible and
stable extrapolated dynamics (Sec. 3.4). Implementation details are discussed in Sec. B.1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: 1: We initialize temporal trajectories of 3D Gaussian parameters using the frozen interpo-
lation model, which consists of the canonical 3D Gaussian set and a time-conditioned deformation
MLP. These trajectories lie entirely within the observed temporal window. 2: Through our dynamic
sampling strategy, each Gaussian trajectory is sampled into multiple observed prefix (input) and
a held-out suffix (target) trajectories, providing training pairs for the Transformer latent ODE. 3:
Latent-ODE training encodes the observed prefix with a Transformer, infers a latent initial state, and
evolves it forward with a neural ODE. 4: A decoder maps the latent path back to Gaussian parameters,
which are supervised against the ground-truth suffixes via an L1 loss and smoothness regularizers.

Notation and Formalization. Let {Ii} be a set of calibrated RGB images, with corresponding
camera poses {Vi} capturing a dynamic 3D scene at timestamps {ti},

D = {(Ii, Vi, ti)}Ni=1, Ii : R3×H×W , Vi ∈ SE(3), ti ∈ R, (1)

we aim to learn a continuous-time rendering operator F : R× SE(3) → R3×H×W that generates
RGB images for any time t and camera pose V . The operator decomposes as:

F(t, V ) = R(G(t), V ), G(t) =
{
G +Dω(t,G) if tmin ≤ t ≤ tmax,

Eϕ(γ, t) if t > tmax,
(2)

where G = {Gk}Mk=1 is a learnable canonical set of 3D Gaussians, Dω is an interpolation defor-
mation function, Eϕ is a sequence-to-sequence extrapolation model with Transformer Latent ODE
architecture, and R is the differentiable rasterizer from (Kerbl et al., 2023). γ is a sequence of past
Gaussian parameters that serve as input, which is detailed in Sec. B.

Each canonical Gaussian Gk = (µk, qk, sk, ck, αk) comprises position µk ∈ R3, quaternion qk ∈ R4

, scales sk ∈ R3, opacity αk ∈ R, and spherical harmonics (SH) coefficients ck ∈ Rd, where d is the
number of SH functions used, usually set to 3. For each k, we keep αk and ck consistent across time,
so that only µk, qk, and sk are time-dependent. For simplicity, from now on, G(t) refers to only these
three parameters. We may then derive the rotation matrix Rk ∈ R3×3 from qk, the scaling diagonal
matrix Sk ∈ R3×3 from sk, and the covariance matrix for each Gaussian by Σk = RkSkS

⊤
k R

⊤
k .

The differentiable rasterizer (Kerbl et al., 2023) R renders images by projecting each 3D Gaussian
onto the image plane, computing per-pixel alpha compositing with front-to-back blending:

C(p) =
∑

k∈G(p)

ckαk

k−1∏
j=1

(1− αj), (3)

where G(p) are Gaussians affecting pixel p, ck is the color, and αk is the opacity after 2D projection.
We first learn the interpolation model G and Dω , then freeze them and train Eϕ for extrapolation.

3.1 INTERPOLATION MODEL FOR TRAJECTORY GENERATION

To obtain trajectories of Gaussian parameters within the observed window, we adopt a canonical-plus-
deformation strategy (Yang et al., 2024; Wu et al., 2024) that has become standard in dynamic scene

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

modeling. A canonical set of 3D Gaussians, G, represents the static reference configuration of the
scene, while a lightweight, time-conditioned deformation Multi-Layer-Perceptron (MLP) Dω predicts
offsets for position, rotation, and scale at each timestamp t. This enables continuous interpolation of
Gaussian states across time. The interpolation model is trained using a photometric reconstruction
objective:

Lrender=(1− λ)·∥Îi − Ii∥1 + λ ·(1− SSIM(Îi, Ii)), (4)

Where Îi is rendered using the differentiable rasterizer: Îi = R(G +Dω(t,G), Vi). After training,
we freeze both the canonical Gaussians G and the deformation network Dω , so that given any time t
within the observed time window, Gk(t) may be generated for all k. SSIM refers to the Structural
Similarity Index Measure.

3.2 LATENT ODE MODEL FOR EXTRAPOLATION

Viewing temporal prediction as a mapping between an observed sequence and a future sequence,
we model scene dynamics as a sequence-to-sequence problem. Our extrapolation module Eϕ is a
Transformer Latent ODE that predicts future dynamics from past Gaussian trajectories.

Given an input sequence
γk = {Gk(tj)}Tc

j=1,

uniformly sampled from a context window of length Tc for Gaussian k, we embed each step and add
sinusoidal positional encodings to preserve temporal order. The resulting sequence is processed by a
Transformer encoder

Fϕ : RTc×10 → Rd,

yielding a latent representation z(t0) ∈ Rd that summarizes past dynamics. This latent state initializes
a neural ODE, parameterized by an MLP:

ż = dz
dt = fθ(z(t)).

Numerical integration produces a continuous latent trajectory z(t) for any t > tmax. A decoder then
maps the evolved latent states back to Gaussian parameters:

δψ : Rd → R10, Ĝk(t) = δψ(z(t)).

This combination of sequence encoding and continuous latent evolution allows Eϕ to generate smooth
Gaussian trajectories without explicit timestamp embeddings, enabling extrapolation to arbitrary
future horizons where unseen timestamps are no longer out-of-distribution.

3.3 DYNAMIC TRAJECTORY SAMPLING

To effectively train the extrapolation module, it is essential to expose the model to prediction tasks
spanning a wide range of forecasting horizons. Therefore, unlike common approaches where sampled
trajectories always occupy the same time span uniformly (Li et al., 2023), we design a dynamic
trajectory sampling strategy. The pre-trained interpolation model provides continuous trajectories
of Gaussian parameters, from which we extract an observed prefix and a future suffix. The prefix
is sampled at fixed intervals to ensure consistent input dimensionality, while the suffix varies in
temporal span depending on the selected starting time.

Our training dataset is constructed as the union over all possible prefix–suffix splits of Gaussian
trajectories across all Gaussians and starting times. This design compels the extrapolation model to
learn from both short-term and long-term forecasting instances within a unified training procedure,
thereby encouraging robust generalization beyond the observed window, as described in Sec. B. At
inference, the model conditions on the final observed prefix and extrapolates Gaussian trajectories
forward in time, which are subsequently rendered into novel frames. At test time, we take the final
context segment of length Tc from the observed window, generated by the interpolation model Dω.
This sequence is encoded and evolved forward by the Latent ODE to produce extrapolated Gaussians
Ĝk(t) for t > tmax. The full scene Ĝ(t) = {Ĝk(t)}Mk=1 is then rendered with the differentiable
rasterizer:

Î(t, V ) = R(Ĝ(t), V ).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 TRAINING OBJECTIVE

Extrapolation Loss. Given a training pair consisting of a context trajectory γc and its corre-
sponding target trajectory γe = {Gk(tj)}Ne

j=1, the extrapolation module Eϕ produces predictions
γ̂e = {Ĝk(tj)}Ne

j=1. The extrapolation loss supervises these predictions by minimizing the mean
absolute error (L1) between target Gaussian parameters generated by the interpolation model and the
predicted parameters by the extrapolation model across the target temporal window:

Le =
1

Ne

Ne∑
j=1

∥∥Ĝk(tj)−Gk(tj)
∥∥
1
. (5)

This objective ensures that the predicted Gaussian trajectories align closely with true future dynamics
before additional regularization terms are applied.

To ensure physical plausibility and prevent overfitting to the observed trajectory, we also introduce
two complementary regularizations that promote smoothness in latent dynamics and 3D trajectories.

The latent regularization penalizes high-frequency oscillations in the learned ODE function. Given
the latent trajectory z(t) evolved by the neural ODE with velocity field ż(t) = fθ(z(t)), we approxi-
mate the latent acceleration through finite differencing:

Rlatent =
1

Ne − 1

Ne−1∑
j=1

∥∥∥∥fθ(z(tj+1))− fθ(z(tj))

∆tj

∥∥∥∥2
2

(6)

where {tj}Ne
j=1 are the extrapolation timestamps, ∆tj = tj+1 − tj the step size, fθ the neural ODE.

The trajectory regularization enforces smoothness directly in 3D space by penalizing accelerations
of the Gaussian positions. For each Gaussian Gk(t), µk(t) ∈ R3 is its position at time t. We compute:

Rtraj =
1

MNe

M∑
k=1

Ne−2∑
j=1

∥∥∥∥vk(tj+1)− vk(tj)

∆tj

∥∥∥∥2
2

(7)

where M is the number of Gaussians, and the velocity is approximated as:

vk(tj) =
µk(tj+1)− µk(tj)

∆tj
(8)

Adaptive weighting for regularization. In early stages, strong regularization may inhibit the model
from learning the meaningful dynamics. To address this, we introduce an adaptive regularization
weighting mechanism that dynamically adjusts the contribution of regularization throughout training.
At each iteration, we estimate the model’s convergence state using the Exponential Moving Average
(EMA) of the trajectory prediction loss, which provides a stable signal compared to the raw loss
that may fluctuate due to oscillations. As training progresses and the extrapolation loss decreases,
the regularization weight is increased. This gradually biases the model toward selecting smoother
trajectories among the many plausible solutions, thereby guiding fine-grained trajectory predictions
toward stable convergence.

The final training loss then becomes:

L = Le + st(λlatentRlatent + λtrajRtraj) (9)

where λlatent and λtraj are hyperparameters controlling the regularization strength, and st is an adaptive
weighting term. For more details, refer to Sec. A.0.1.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of ODE-GS for extrapolating dynamic 3D scenes.
We begin by presenting quantitative results in Section 4.1 to assess rendering quality on unseen
future timestamps across D-NeRF (Pumarola et al., 2021), NVFi (Li et al., 2023), and HyperNeRF
(Park et al., 2021b) followed by qualitative evaluations in Section 4.2 to demonstrate quality of the
extrapolated dynamics through visual coherence.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Quantitative extrapolation results on the D-NeRF dataset. Metrics reported include PSNR,
SSIM, and LPIPS-vgg. The best metric is highlighted in red, and second best is highlighted in orange.

Lego Mutant Standup Trex
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

TiNeuVox-B 23.34 .9102 .0942 24.40 .9282 .0700 21.77 .9169 .0927 20.72 .9284 .0751
4D-GS 24.25 .9150 .0810 22.48 .9300 .0520 18.61 .9180 .0840 23.83 .9460 .0510
Deformable-GS 23.25 .9349 .0579 24.45 .9310 .0461 21.37 .9124 .0844 20.74 .9421 .0465
GaussianPredict 12.25 .7594 .2325 27.12 .9514 .0285 26.91 .9456 .0465 21.52 .9443 .0437
Ours 25.74 .9378 .0547 34.53 .9804 .0126 28.91 .9557 .0360 22.04 .9475 .0485

Jumpingjacks Bouncingballs Hellwarrior Hook
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

TiNeuVox-B 19.87 .9115 .0954 25.92 .9677 .0853 29.36 .9097 .1138 21.05 .8817 .1033
4D-GS 19.95 .9270 .0770 29.55 .9790 .0340 16.84 .8790 .1250 22.03 .9090 .0670
Deformable-GS 20.32 .9162 .0790 29.49 .9804 .0237 30.15 .9172 .0799 21.60 .8876 .0820
GaussianPredict 20.12 .9150 .0811 28.09 .9759 .0322 30.75 .9264 .0767 23.75 .9112 .0553
Ours 22.18 .9243 .0715 24.91 .9660 .0472 31.80 .9365 .0686 28.33 .9493 .0343

Table 2: Quantitative extrapolation results on NVFi dataset scenes. Metrics reported include PSNR,
SSIM, and LPIPS. The best metric is highlighted in red, second-best is highlighted in orange.

fan whale shark bat telescope
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

TiNeuVox 26.91 .9315 .0643 27.20 .9430 .0579 30.95 .9656 .0367 28.65 .9434 .0663 27.04 .9297 .0507
Deformable-GS 23.75 .9274 .0519 26.58 .9605 .0386 29.11 .9672 .0273 27.07 .9456 .0482 22.92 .9346 .0459
4D-GS 24.78 .9565 .0417 22.31 .9638 .0370 22.56 .9648 .0333 19.83 .9565 .0496 22.77 .9414 .0432
GaussianPredict 30.21 .9682 .0324 25.11 .9610 .0442 29.91 .9695 .0295 22.96 .9587 .0761 21.94 .9381 .0453
NVFi 27.17 .9630 .0370 26.03 .9780 .0290 28.87 .9820 .0210 25.02 .9680 .0420 27.10 .9630 .0460
4D-Rotor-GS 30.16 .9594 .0346 33.45 .9850 .0211 35.08 .9760 .0287 31.76 .9688 .0375 30.00 .9714 .0237
Ours 33.49 .9711 .0303 33.86 .9859 .0135 38.73 .9892 .0082 36.68 .9825 .0176 36.57 .9884 .0057

fallingball chessboard darkroom dining factory
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

TiNeuVox 30.00 .9500 .0400 21.76 .7567 .2421 24.01 .7400 .1813 23.56 .8443 .1288 25.36 .8222 .1372
Deformable-GS 24.50 .9200 .0600 20.28 .7866 .2227 22.56 .7423 .2232 20.99 .7922 .2168 23.63 .8107 .1924
4D-GS 22.00 .9100 .0700 20.71 .8199 .3444 21.99 .7375 .4036 22.08 .8499 .2800 23.42 .8252 .3356
GaussianPredict 21.50 .9000 .0800 20.12 .7283 .3168 20.01 .6371 .3840 18.01 .6845 .3811 21.11 .8390 .2708
NVFi 31.37 .9780 .0410 27.84 .8720 .2100 30.41 .8260 .2730 29.01 .8980 .1710 31.72 .9080 .1540
Ours 22.62 .9244 .0684 33.38 .9266 .0976 34.16 .9019 .1155 30.30 .8829 .1451 34.53 .9183 .1006

4.1 QUANTITATIVE RESULTS

D-NeRF. On the D-NeRF dataset (Table 1), ODE-GS consistently surpasses both interpolation-based
baselines (Deformable-GS, 4D-GS) and extrapolation-oriented methods (GaussianPredict). Our
model averages 27.30 Peak Signal-to-Noise Ratio (PSNR), 0.9497 SSIM, and 0.0467 LPIPS-vgg
(Zhang et al., 2018), increasing metric performance against previous SOTA GaussianPrediction by
18.6%. We have especially large margins in Mutant (+10 dB) and Standup (+7 dB), where scene
motion are very smooth and follow a straightforward trajectory. These gains directly validate our
motivation: interpolation methods degrade when extrapolated beyond the training window due to
their timestamp-conditioned design, while our Latent ODE approach enables extrapolation.

NVFi. The NVFi benchmark (Table 2) emphasizes robustness under both controlled single-object
motion (fan, shark, telescope) and complex multi-object indoor dynamics (factory, darkroom, chess-
board). ODE-GS achieves new state of the art across nearly all sequences, averaging 33.43 PSNR,
0.9471 SSIM, and 0.0603 LPIPS, improving previous SOTA method NVFi by 20%, and GaussianPre-
diction by 39.6% on averaging across scenes and metrics. Notably, in cluttered or occluded settings
like factory and darkroom, our model reduces perceptual error (LPIPS) by more than 40% compared
to baselines, demonstrating the benefit of decoupling reconstruction from forecasting.

HyperNeRF. On real-world HyperNeRF scenes (Table 3), ODE-GS establishes consistent improve-
ments over baselines despite the higher noise and irregular dynamics of captured videos. Our method
delivers lower LPIPS in split-cookie, slice-banana, and cut-lemon, and outperforms in both PSNR
and SSIM in chickchicken. These results show that ODE-GS avoids overfitting to noisy timestamp
signals and remains stable under real-world non-idealities.

4.2 QUALITATIVE RESULTS

To provide a more intuitive understanding of our model’s performance, we present a qualitative
analysis of the extrapolated renderings, shown by Figure 3, which offers a compelling side-by-side

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Quantitative extrapolation results on HyperNeRF. Metrics reported include PSNR, SSIM,
and LPIPS. The best metric is highlighted in bold, second-best is underlined.

split-cookie slice-banana cut-lemon
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

TiNeuVox 16.67 .6135 .4778 18.44 .6242 .6119 18.84 .6228 .5743
Deformable-GS 17.84 .5698 .2945 21.73 .6530 .3241 21.36 .6950 .3207
GaussianPredict 16.93 .5604 .3336 21.97 .6110 .3749 20.91 .6137 .3220
Ours 20.72 .6593 .2406 21.29 .6437 .3230 21.69 .6964 .3098

keyboard 3dprinter chickchicken
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

TiNeuVox 19.03 .6823 .4665 18.16 .5878 .4949 15.23 .6438 .5888
Deformable-GS 19.98 .6957 .2497 19.89 .6775 .2378 19.03 .6996 .3167
GaussianPredict 20.13 .6999 .2511 19.96 .6468 .2209 21.94 .6903 .3284
Ours 21.06 .7399 .2327 20.22 .6946 .2242 20.29 .7254 .3023

Figure 3: Qualitative visualization on 5 scenes from DNeRF dataset, from left to right are the ground
truth image, rendered result from Deformable GS(Yang et al., 2024), residual of Deformable GS
against GT, GaussianPrediction(Zhao et al., 2024), residual of GaussianPrediction against GT, and
finally Our as well as Ours residual against GT.

comparison on five scenes from the D-NeRF dataset. While all models are tasked with predicting the
scene at a future, unseen timestamp, the results vary dramatically. We show the difference in predicted
motion via residual error maps, which visualize the pixel-wise error between the rendered images
and the ground truth, where brighter regions indicate high error and dark regions indicate low error.
The error maps for both baselines show bright, structured residuals concentrated around the central
object or character, revealing substantial inaccuracies in both shape and position. Conversely, the
residual map for ODE-GS is significantly darker and less structured, providing clear visual evidence
of a much lower prediction error. This demonstrates that by learning the underlying dynamics in a
continuous latent space, ODE-GS not only preserves the high-frequency details but also forecasts
motion more accurately for photorealistic novel-view synthesis in future frames. In particular, the
scene Lego is recognized to have inaccurate poses by previous studies (Zhao et al., 2024; Yang et al.,
2024), but our method can still extrapolate the scene that matches the ground truth image with low

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

error, while methods like Gaussian Prediction (Zhao et al., 2024) can be less robust to such noises
and fail completely at extrapolating the scene. For additional qualitative on NVFi see Figure 6.

4.2.1 ABLATION STUDY

Table 4: Ablation study average results over
the NVFi dataset.

Method PSNR(↑) SSIM(↑) LPIPS(↓)
w/o ODE 23.71 .879 .113
w/o Regularization 32.90 .943 .066
w/o Adaptive reg. 32.19 .938 .068
w/o Dynamic sampling 31.35 .935 .069
Ours 33.43 .947 .060

Figure 4: Qualitative comparison on ODE-GS
trained using latent and trajectory regulariza-
tion vs. using only extrapolation loss on two
selected scenes. We highlight the areas within
each scene with highest visual disparity.

We compare ODE-GS against four different abla-
tion settings: Without ODE formulation (pure au-
toregressive Transformer baseline trained under the
same input–output supervision), without regulariza-
tions, without adaptive regularization scaling, and
without dynamic sampling. The results are summa-
rized through average metrics in Table 4. In gen-
eral, our full method outperforms all ablation settings.
For our ablation setting without ODE, we use the
Transformer encoder and decoder in a pure autore-
gressive style. Specifically, this model variation has
the same architecture only without the neural ODE.
However, the autoregressive Transformer directly pre-
dicts the next Gaussian parameters in discrete fixed
steps, as each predicted output is then fed back as
input for subsequent predictions. As shown in Ta-
ble 4, the autoregressive baseline significantly under-
performs, almost doubling the LPIPS metric. This
highlights a limitation of discrete autoregressive mod-
els also discussed in previous works (Chen et al.,
2018; Rubanova et al., 2019): they lack the inherent
smoothness prior naturally expressed by the ODE
formulation. Therefore, abrupt jumps or oscillations
in the predicted dynamics can occur. For the setting
without regularization, we used only the extrapola-
tion loss Le for training objective. As shown on Table
4, the additional regularization narrows down solu-
tion space further, which results in higher average
metrics. In Figure 4, we observe these additional
constraints helps the model improve on scenes with
more complex and diverse motion such as the dining
and hell-warrior scene. For per-scene results, refer to
Table 8 in the Appendix.

5 LIMITATIONS AND CONCLUSION

Our model inherits the quality of the underlying interpolation model used to generate Gaussian
trajectories. If the interpolation stage fails to accurately reconstruct the scene within the observed
window (for instance, in cases of fast-moving small objects like the fallingball scene) then the
subsequent extrapolation will propagate these errors forward. In scenarios like bouncingballs and
trex where the evolution of the scene undergoes abrupt changes, discontinuities, or fundamentally
novel behaviors not foreshadowed by the past, the model’s predictions degrade. One possible way
to address this limitation is to utilize data-driven priors for extrapolation that can generalize across
scenes instead of overfitting to the observed dynamics of specific scenes. We have conducted a
preliminary experiment on our model’s generalization capability across scenes B.2.

In summary, this work introduces ODE-GS, a method that integrates 3D Gaussian Splatting with
Transformer-based latent neural ODEs to achieve dynamic scene extrapolation. By decoupling scene
reconstruction from temporal forecasting, enforcing smoothness through continuous-time latent
dynamics, and incorporating adaptive regularization and dynamic sampling, ODE-GS establishes
state-of-the-art performance on synthetic (D-NeRF, NVFi) and real-world (HyperNeRF) benchmarks.
Our results demonstrate that modeling scene evolution as latent flows mitigates out-of-distribution
failures common in timestamp-conditioned methods and enables accurate extrapolation of scene
dynamics beyond the observed time window.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Quantitative extrapolation results on the D-NeRF dataset also comparing with 4D-Rotor-
Gaussians (Duan et al., 2024) as well as using additional projection loss during training. Metrics
reported include PSNR, SSIM, and LPIPS-vgg. The best metric is highlighted in red, and second
best is highlighted in orange.

Lego Mutant Standup Trex
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

TiNeuVox-B 23.34 .9102 .0942 24.40 .9282 .0700 21.77 .9169 .0927 20.72 .9284 .0751
4D-GS 24.25 .9150 .0810 22.48 .9300 .0520 18.61 .9180 .0840 23.83 .9460 .0510
Deformable-GS 23.25 .9349 .0579 24.45 .9310 .0461 21.37 .9124 .0844 20.74 .9421 .0465
GaussianPredict 12.25 .7594 .2325 27.12 .9514 .0285 26.91 .9456 .0465 21.52 .9443 .0437
4D-Rotor-Gaussians 22.32 .9178 .0705 30.62 .9686 .0252 25.79 .9305 .0632 20.21 .9425 .0692
Ours 25.74 .9378 .0547 34.53 .9804 .0126 28.91 .9557 .0360 22.04 .9475 .0485
Ours_with_projection 25.63 .9368 .0549 29.72 .9671 .0219 29.27 .9546 .0380 22.02 .9469 .0496

Jumpingjacks Bouncingballs Hellwarrior Hook
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

TiNeuVox-B 19.87 .9115 .0954 25.92 .9677 .0853 29.36 .9097 .1138 21.05 .8817 .1033
4D-GS 19.95 .9270 .0770 29.55 .9790 .0340 16.84 .8790 .1250 22.03 .9090 .0670
Deformable-GS 20.32 .9162 .0790 29.49 .9804 .0237 30.15 .9172 .0799 21.60 .8876 .0820
GaussianPredict 20.12 .9150 .0811 28.09 .9759 .0322 30.75 .9264 .0767 23.75 .9112 .0553
4D-Rotor-Gaussians 20.93 .9063 .1007 24.05 .9401 .0731 28.97 .9006 .1252 23.56 .9156 .0729
Ours 22.18 .9243 .0715 24.91 .9660 .0472 31.80 .9365 .0686 28.33 .9493 .0343
Ours_with_projection 21.32 .9205 .0758 25.96 .9684 .0436 31.48 .9331 .0704 27.80 .9454 .0368

6 ADDITIONAL EXPERIMENTS

Figure 5: Visualization of the degrade in metrics through time for extrapolation. Y axis is the
corresponding metric and X axis is the time or frame where the metric was evaluated. This graph is
the average over all scenes in NVFi dataset.

Projection loss joint training To verify the effectiveness of training solely on the generated tra-
jectories of the interpolation model, we have also experimented with adding the image projection
loss to the training of the extrapolation model. Specifically, for every iteration, we sample a random
camera with ground truth image, and project the gaussians onto the image via the rendering pipeline
mentioned in 3. We follow the original 3DGS (Kerbl et al., 2023) and apply L1 loss to the rendered
image against the Ground Truth. As shown in table 10, the projection loss does not increase the
performance of the extrapolation model trained on pure generated data. This is likely due to the
interpolation model were trained using the projection loss and has already accurately represented the
training data, thus being able to fit the trajectory for extrapolation is already sufficient as training
supervision.

Performance degrade analysis Shown in figure 5 as well as per-scene figure 8,7,11,12,14,10,15,13,
we analyzed the performance degrade of the rendered results during extrapolation period. On the
NVFi dataset, our model not only shows an overall high metric performance, but also a slower degrade
rate in time. Especially the SSIM and LPIPS measures degrade much slower than the baseline Yang
et al. (2024), showing our method’s capability of maintaining plausible motion and object appearance
as extrapolation length becomes longer.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work advances methods for forecasting dynamics in 3D scenes using Gaussian splatting and
latent ODEs. Given the scope of the work, we do not identify immediate ethical risks associated
with the approach itself. However, as with any machine learning system, outcomes depend on the
quality and diversity of the training data. If deployed in downstream applications such as robotics
or autonomous navigation, inaccurate forecasts of scene dynamics may pose safety risks, and care
should be taken to validate performance in those contexts.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our approach in Sec. 3, including architecture design, sampling
strategies, and training objectives. Experimental settings, dataset usage, and evaluation metrics are
reported in Sec. B.1, with additional implementation details included in Appendix B. To ensure
reproducibility, we plan to release our source code, pretrained checkpoints, and configuration files.

REFERENCES

Benjamin Attal, Jia-Bin Huang, Christian Richardt, Michael Zollhoefer, Johannes Kopf, Matthew
O’Toole, and Changil Kim. Hyperreel: High-fidelity 6-dof video with ray-conditioned sampling.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16610–16620, 2023.

Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine of physical
scene understanding. Proceedings of the national academy of sciences, 110(45):18327–18332,
2013.

Andrew Bond, Jui-Hsien Wang, Long Mai, Erkut Erdem, and Aykut Erdem. Gaussianvideo: Efficient
video representation via hierarchical gaussian splatting. arXiv preprint arXiv:2501.04782, 2025.

Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erickson, Peter Hedman, Matthew Duvall,
Jason Dourgarian, Jay Busch, Matt Whalen, and Paul Debevec. Immersive light field video with a
layered mesh representation. ACM Transactions on Graphics (TOG), 39(4):86–1, 2020.

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130–141, 2023.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K. Duvenaud. Neural ordinary dif-
ferential equations. In Advances in Neural Information Processing Systems (NeurIPS), volume 31,
pp. 6571–6583, 2018.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. GRU-ODE-Bayes: Continuous
modeling of sporadically-observed time series. In Advances in Neural Information Processing
Systems (NeurIPS), volume 32, pp. 7366–7376, 2019.

Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan Fanello, Adarsh
Kowdle, Sergio Orts Escolano, Christoph Rhemann, David Kim, Jonathan Taylor, et al. Fusion4d:
Real-time performance capture of challenging scenes. ACM Transactions on Graphics (ToG), 35
(4):1–13, 2016.

Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenenbaum, and Jiajun Wu. Neural radiance
flow for 4d view synthesis and video processing. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 14304–14314. IEEE Computer Society, 2021.

Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, and Baoquan Chen. 4d-rotor
gaussian splatting: towards efficient novel view synthesis for dynamic scenes. In ACM SIGGRAPH
2024 Conference Papers, pp. 1–11, 2024.

Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias Nießner,
and Qi Tian. Fast dynamic radiance fields with time-aware neural voxels. In SIGGRAPH Asia
2022 Conference Papers, pp. 1–9, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis from dynamic
monocular video. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 5712–5721, 2021.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-gs:
Sparse-controlled gaussian splatting for editable dynamic scenes. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 4220–4230, 2024.

Kacper Kania, Kwang Moo Yi, Marek Kowalski, Tomasz Trzciński, and Andrea Tagliasacchi. Conerf:
Controllable neural radiance fields. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 18623–18632, 2022.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Mina A Khoei, Guillaume S Masson, and Laurent U Perrinet. The flash-lag effect as a motion-based
predictive shift. PLoS computational biology, 13(1):e1005068, 2017.

Patrick Kidger, Ricky T. Q. Chen, and Miles Cranmer. torchode: A parallel ode solver for pytorch.
https://github.com/patrick-kidger/torchode, 2021.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.
URL https://api.semanticscholar.org/CorpusID:216078090.

Jinxi Li, Ziyang Song, and Bo Yang. Nvfi: Neural velocity fields for 3d physics learning from
dynamic videos. Advances in Neural Information Processing Systems, 36:34723–34751, 2023.

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
dynamic view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8508–8520, 2024.

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time
view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6498–6508, 2021.

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann, and Yaser
Sheikh. Neural volumes: Learning dynamic renderable volumes from images. arXiv preprint
arXiv:1906.07751, 2019.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. In 2024 International Conference on 3D Vision
(3DV), pp. 800–809. IEEE, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Leigh A Mrotek and John F Soechting. Predicting curvilinear target motion through an occlusion.
Experimental Brain Research, 178(1):99–114, 2007.

Richard A Newcombe, Dieter Fox, and Steven M Seitz. Dynamicfusion: Reconstruction and tracking
of non-rigid scenes in real-time. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 343–352, 2015.

Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne Chang, Adarsh Kowdle, Yury
Degtyarev, David Kim, Philip L Davidson, Sameh Khamis, Mingsong Dou, et al. Holoportation:
Virtual 3d teleportation in real-time. In Proceedings of the 29th annual symposium on user interface
software and technology, pp. 741–754, 2016.

Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. Neural scene graphs for
dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2856–2865, 2021.

12

https://github.com/patrick-kidger/torchode
https://api.semanticscholar.org/CorpusID:216078090


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M Seitz,
and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 5865–5874, 2021a.

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf: A higher-dimensional representation for
topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228, 2021b.

Sida Peng, Junting Dong, Qianqian Wang, Shangzhan Zhang, Qing Shuai, Xiaowei Zhou, and Hujun
Bao. Animatable neural radiance fields for modeling dynamic human bodies. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 14314–14323, 2021a.

Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, and Xiaowei
Zhou. Neural body: Implicit neural representations with structured latent codes for novel view
synthesis of dynamic humans. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 9054–9063, 2021b.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10318–10327, 2021.

Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects. Nature neuroscience, 2(1):79–87, 1999.

Yulia Rubanova, Ricky T. Q. Chen, and David K. Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. In Advances in Neural Information Processing Systems (NeurIPS),
volume 32, pp. 5321–5331, 2019.

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lassner, and
Christian Theobalt. Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a
dynamic scene from monocular video. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 12959–12970, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 20310–20320, 2024.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable
3d gaussians for high-fidelity monocular dynamic scene reconstruction. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 20331–20341, 2024.

Caglar Yildiz, Markus Heinonen, and Harri Lähdesmäki. ODE2VAE: Deep generative second order
ODEs with bayesian neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), volume 32, pp. 10280–10290, 2019.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Boming Zhao, Yuan Li, Ziyu Sun, Lin Zeng, Yujun Shen, Rui Ma, Yinda Zhang, Hujun Bao, and
Zhaopeng Cui. Gaussianprediction: Dynamic 3d gaussian prediction for motion extrapolation and
free view synthesis. In ACM SIGGRAPH 2024 Conference Papers, pp. 1–12, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.0.1 DETAILS ON ADAPTIVE WEIGHTING FOR REGULARIZATION

This mechanism operates at each training iteration by using the Exponential Moving Average (EMA)
of the trajectory prediction loss as a proxy for the model’s convergence state. The regularization
weight increased as the extrapolation loss decreases, allowing the regularizers to more strongly guide
the final, fine-grained trajectory predictions.

The scaling factor st at iteration t is computed as:

st = exp

(
−1

τ
· clip

(
LEMA(t)− Lend

Linit − Lend
, 0, 1

))
(10)

where:

• LEMA(t) is the EMA of the trajectory prediction loss at iteration t.

• Linit and Lend are hyperparameters representing the expected initial and final extrapolation
loss values.

• τ is a temperature hyperparameter that controls the decay rate of the scaling. A lower τ
leads to a faster decay and a more aggressive increase in regularization.

• The ‘clip‘ function normalizes the loss into the range [0, 1], ensuring the scaling factor
remains between (0, 1].

The EMA of the trajectory prediction loss, LEMA(t), is calculated as:

LEMA(t) = α · LEMA(t− 1) + (1− α) · Le(t) (11)

where Le(t) is the extrapolation loss at the current iteration and α is the EMA decay rate. The final
regularization weights for the latent and trajectory regularizers are then scaled by st at each iteration
before being added to the total loss.

A.0.2 PROBABILISTIC FORECASTING WITH A VARIATIONAL LATENT ODE

Many past Latent ODE works that focus on extrapolation and forecasting has been using a variational
formulation for the model (Rubanova et al., 2019). Specifically, they follow the Variational Autoen-
coder (Kingma & Welling, 2013) approach. We provide details on our model variant which uses this
approach instead of deterministic modeling, as well as quantitative results compare the two methods
on the NVFi dataset, as shown in table 6

Variational Variant for the Transformer ODE architecture. Instead of mapping the observed
history to a single initial state for the ODE, prior works often formulate trajectory forecasting
as a probabilistic problem (Chen et al., 2018). Given a historical trajectory γk = {Gk(tj)}Tc

j=1

for a Gaussian k, the Transformer encoder produces a latent vector hk. A projection head then
parameterizes a Gaussian posterior distribution over the initial latent state,

qϕ
(
zk(t0) | γk

)
= N

(
µzk ,diag(σ

2
zk
)
)
, (12)

where zk(t0) is the latent state at the start of extrapolation. During training, we sample from this
distribution via the reparameterization trick:

zk(t0) = µzk + σzk ⊙ ϵ, ϵ ∼ N (0, I). (13)

The sampled latent state zk(t0) is then evolved forward in time by numerically solving the latent
ODE,

zk(t) = ODESolve
(
fθ, zk(t0), t

)
, (14)

and subsequently decoded to predicted Gaussian parameters

Ĝk(t) = δψ(zk(t)). (15)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Comparison between our deterministic and variational formulations on NVFi dataset scenes.
Metrics reported include PSNR, SSIM, and LPIPS.

Scene Ours (Deterministic) Ours (Variational)
PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

factory 34.53 .9183 .1006 22.57 .7851 .218
dining 30.30 .8829 .1451 16.19 .3981 .595
darkroom 34.16 .9019 .1155 22.83 .7098 .233
whale 33.86 .9859 .0135 26.49 .9601 .038
shark 38.73 .9892 .0082 29.43 .9652 .030
chessboard 33.38 .9266 .0976 19.69 .7667 .244
bat 36.68 .9825 .0176 28.01 .9554 .043
fan 33.49 .9711 .0303 21.67 .8589 .114
telescope 36.57 .9884 .0057 22.66 .9283 .053
fallingball 22.62 .9244 .0684 9.45 .7559 .206

Objective. The variational model is trained by maximizing the Evidence Lower Bound (ELBO),
which corresponds to minimizing

Lvar-e =
∑
t∈Te

[
− log pσ

(
Gk(t) | Ĝk(t)

)]︸ ︷︷ ︸
prediction NLL

+ KL
[
qϕ
(
zk(t0) | γk

)
∥ p

(
zk(t0)

)]
(16)

where Te denotes the extrapolation timestamps. The first term encourages predicted Gaussian
trajectories Ĝk(t) to align with ground truth Gk(t), the second regularizes the latent space toward a
unit Gaussian prior p(zk(t0)). The final objective is then to compose this loss with regularization as
discussed in 3.4.

While variational formulations provide a principled way to capture uncertainty in trajectory fore-
casting, our results 6 show that the deterministic version of ODE-GS significantly outperforms its
variational counterpart across all NVFi scenes. This gap arises because variational training introduces
additional complexity through posterior sampling and KL regularization, which can destabilize opti-
mization when data is limited and the ground-truth dynamics are relatively deterministic. In practice,
the model tends to underfit sharp motion patterns, producing blurred or averaged predictions that
reduce both PSNR and SSIM while inflating perceptual error (LPIPS). By contrast, the deterministic
formulation directly learns smooth latent flows aligned with observed trajectories, avoiding posterior
collapse and better exploiting the strong spatio-temporal smoothness priors inherent in dynamic 3D
scenes.

B DETAILS ON DYNAMIC TRAJECTORY SAMPLING

We provide additional information on our sampling strategy introduced in Section 3.3. Training data
for the extrapolation module are derived from the pre-trained interpolation model, which can generate
Gaussian trajectories at arbitrary real-valued timestamps through the deformation function Dω .

Each training sample is indexed by a Gaussian k and a starting time t0. We fix the number of context
steps Nc, target steps Ne, and the context span Tc.

The context sequence is uniformly sampled as

∆c =
Tc

Nc−1 , γ(i)
c = {Gk(t0 + i∆c) }Nc

i=1. (17)

The target sequence begins immediately after the context window at tend
c = t0 + Tc and spans the

remaining horizon:

Te = tmax − tend
c , ∆e =

Te

Ne
, γ(i)

e = {Gk(t
end
c + i∆e) }Ne

i=1. (18)

This ensures Nc and Ne remain fixed across all samples, while Te varies with t0. The variability
in target length naturally generates prediction tasks of differing difficulty, ranging from short- to
long-term forecasts.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Per-scene ablation over NVFi of our full method against removal of ODE and removal of
dynamic trajectory sampling. Metrics reported include PSNR, SSIM, and LPIPS.

Scene w/o ODE w/o dynamic trajectory sampling Ours
PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

factory 24.06 .814 .179 33.84 .915 .102 34.53 .918 .101
dining 20.98 .784 .217 25.47 .810 .204 30.30 .883 .145
darkroom 22.08 .731 .227 33.89 .900 .117 34.16 .902 .116
chessboard 19.84 .784 .225 32.27 .920 .100 33.38 .927 .098
bat 28.42 .960 .039 35.37 .979 .023 36.68 .983 .018
telescope 23.20 .937 .040 33.09 .983 .010 36.57 .988 .006
fallingball 17.14 .904 .094 26.22 .936 .064 22.62 .924 .068
fan 23.35 .931 .052 26.97 .948 .043 33.49 .971 .030
shark 29.47 .967 .026 33.17 .980 .015 38.73 .989 .008
whale 28.51 .973 .028 33.21 .984 .015 33.86 .986 .014
Average 23.71 .879 .113 31.35 .935 .069 33.43 .947 .060

The complete dataset is defined as the union over all Gaussian indices and valid starting times:

D =

K⋃
k=1

⋃
t0∈Tk

{
(γ(i)
c , γ(i)

e )
}
. (19)

During training, the context γ(i)
c is processed by the Transformer encoder–ODE module to predict

γ̂
(i)
e = {Ĝk(t)}t∈Te . The prediction is supervised with an L1 extrapolation loss:

Le =
1

Ne

Ne∑
j=1

∥∥Ĝk(tj)−Gk(tj)
∥∥
1
. (20)

At inference, we simply take the final context segment of length Tc from the observed window and
apply the same extrapolation procedure.

B.1 IMPLEMENTATION DETAILS

Model architecture. The Transformer encoder has dmodel = 128 latent dimensions with nhead = 8
attention heads and Lenc = 5 encoder layers. For the latent ODE component, we set the latent
dimension to dlatent = 64 and use an MLP with Lode = 4 layers and dhidden = 64 hidden units per
layer. The decoder network mirrors this structure with Ldec = 5 layers and dhidden = 128 hidden units.
For the ODE function, we use Tanh activations for smooth and bounded outputs. For the interpolation
model, we follow Deformable GS (Yang et al., 2024) implementation.

Hyperparameters. Our two-stage training pipeline is implemented in PyTorch with the original 3D
Gaussian Splatting renderer (Kerbl et al., 2023). For the interpolation stage, we set the learning rate
to 8× 10−4 with a cosine annealing scheduler that decays to a minimum of 1.6× 10−6, training for
40k iterations on images with timestamps prior to our dataset-specific train/test split (Sec. B.2.1).

For the extrapolation stage, we solve latent ODEs using the torchode package (Kidger et al., 2021)
with the adaptive DOPRI5 solver configured with tolerances rtol = 10−3 and atol = 10−4. We train
on NVIDIA GPUs (RTX 3090 or A6000) with a batch size of 512 for 40 epochs, using an initial
learning rate of 1× 10−3 and cosine annealing down to 1× 10−6. The input context sequence length
is set to Tc = 30 and the extrapolation length to Te = 10 during optimization. For adaptive trajectory
sampling, the temperature parameter is set to 0.05 on D-NeRF and 0.15 on HyperNeRF and NVFi.
For adaptive regularization, we use Linit = 0.02 for D-NeRF and NVFi and 0.05 for HyperNeRF, we
set Lend = 0.0 over training on all datasets. Our EMA decay rate is set at 0.9 We use λtraj = 10−1

for the trajectory regularizer and λlatent = 10−5 for the latent regularizer.

B.2 MULTI-SCENE GENERALIZATION EXPERIMENT

We evaluate our extrapolation model’s capability to generalize across scenes in Table 9. Specifically,
we set up a mult-scene training experiment where we collect all generated trajectories from the

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Per-scene ablation over NVFi of our full method against removal of regularizers and removal
of adaptive regularizer scaling. Metrics reported include PSNR, SSIM, and LPIPS.

Scene w/o regularizers w/o adaptive regularizer scaling Ours
PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

factory 34.68 .919 .102 33.53 .912 .104 34.53 .918 .101
dining 27.26 .841 .180 25.99 .828 .187 30.30 .883 .145
darkroom 33.81 .896 .123 32.32 .880 .127 34.16 .902 .116
chessboard 33.16 .929 .096 32.16 .921 .099 33.38 .927 .098
bat 37.43 .985 .017 36.34 .983 .018 36.68 .983 .018
telescope 36.23 .988 .006 35.68 .988 .006 36.57 .988 .006
fallingball 19.35 .918 .086 19.53 .918 .085 22.62 .924 .068
fan 34.96 .976 .027 35.23 .974 .028 33.49 .971 .030
shark 38.26 .989 .009 36.63 .986 .010 38.73 .989 .008
whale 33.88 .987 .013 34.52 .987 .013 33.86 .986 .014
Average 32.90 .943 .066 32.19 .938 .068 33.43 .947 .060

respective interpolation models from each scene in the NVFi dataset, union them into the same dataset,
and train one extrapolation model (The Transformer Latent ODE) on all trajectories simultaneously.
This is equivalent to having the scenes share the same set of extrapolation model weights during
training. To assess the generalization of the model, we intentionally hold out the whale scene’s
observed trajectories to be excluded from this dataset union. The last rows (Ours Multi) of Table
9 shows our quantitative results of extrapolation for each scene using this shared-weight model
for extrapolation, conditioned on the last segment of Gaussian trajectories for each scene’s unique
interpolation model. Our quantitative numbers show that our extrapolation model can fit to multiple
scene trajectories at the same time, while being capable of generalizing to unseen scene dynamics with
simple motion patterns like whale. Although simultaneously training on multiple scene trajectories
does not make the extrapolation model exceed metric performs compared to Our default per-scene
training, it shows the potential of such and approach for future works to explore.

B.2.1 DATASETS DETAILS

We evaluate ODE-GS on three datasets: the D-NeRF dataset (Pumarola et al., 2021), the NVFi dataset
(Li et al., 2023), and the HyperNeRF dataset (Park et al., 2021b). The D-NeRF dataset comprises eight
synthetic dynamic scenes (Lego, Mutant, Standup, Trex, Jumpingjacks, Bouncingballs, Hellwarrior,
Hook), each containing 100-200 training images and 20 test images with timestamps normalized
from 0 to 1, rendered at 800×800 resolution with black backgrounds. The NVFi dataset is also a
synthetic dataset that provides two subcategories: the simpler Dynamic Object Dataset featuring
rotating objects (fan, whale, shark, bat, telescope) and the more challenging Dynamic Indoor Scene
Dataset (chessboard, darkroom, dining, factory) containing multi-object scenes with occlusions and
realistic lighting variations. The HyperNeRF dataset is a series of monocular videos on day-to-day
scenes with varying motion complexity. We use the split-cookie, slice-banan, cut-lemon, keyboard,
3dprinter, and chickchicken scenes, picked at random. For the D-Nerf dataset, we use 80% of the
temporal sequence for training and reserve the final 20% as ground truth for extrapolation evaluation.
For the HyperNeRF dataset, we use the first 90% of the temporal sequence. For the NVFi dataset, we
follow the original train-test split where 75% of the temporal sequence is used for training and the
other 25% is reserved for testing. Our model’s input time span Tc are set differently for each dataset,
with Tc = 0.6 for D-NeRF, Tc = 0.5 for NVFi and HyperNeRF.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Quantitative extrapolation results on NVFi dataset scenes for training the extrapolation
model on multi-scene setting. Scene whale is not included in the training data. Metrics reported
include PSNR, SSIM, and LPIPS. The best metric is highlighted in red, second-best is highlighted in
orange.

fan dining factory
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

TiNeuVox 26.91 .9315 .0643 23.56 .8443 .1288 25.36 .8222 .1372
Deformable-GS 23.75 .9274 .0519 20.99 .7922 .2168 23.63 .8107 .1924
4D-GS 24.78 .9565 .0417 22.08 .8499 .2800 23.42 .8252 .3356
GaussianPredict 30.21 .9682 .0324 18.01 .6845 .3811 21.11 .8390 .2708
NVFi 27.17 .9630 .0370 29.01 .8980 .1710 31.72 .9080 .1540
Ours Det. 33.49 .9711 .0303 30.30 .8829 .1451 34.53 .9183 .1006
Ours Multi. 27.30 .9494 .0422 27.61 .8530 .1591 31.84 .8956 .1110

shark bat telescope
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

TiNeuVox 30.95 .9656 .0367 28.65 .9434 .0663 27.04 .9297 .0507
Deformable-GS 29.11 .9672 .0273 27.07 .9456 .0482 22.92 .9346 .0459
4D-GS 22.56 .9648 .0333 19.83 .9565 .0496 22.77 .9414 .0432
GaussianPredict 29.91 .9695 .0295 22.96 .9587 .0761 21.94 .9381 .0453
NVFi 28.87 .9820 .0210 25.02 .9680 .0420 27.10 .9630 .0460
Ours 38.73 .9892 .0082 36.68 .9825 .0176 36.57 .9884 .0057
Ours Multi. 37.31 .9869 .0094 36.72 .9818 .0188 34.19 .9838 .0085

fallingball chessboard darkroom
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

TiNeuVox 30.00 .9500 .0400 21.76 .7567 .2421 24.01 .7400 .1813
Deformable-GS 24.50 .9200 .0600 20.28 .7866 .2227 22.56 .7423 .2232
4D-GS 22.00 .9100 .0700 20.71 .8199 .3444 21.99 .7375 .4036
GaussianPredict 21.50 .9000 .0800 20.12 .7283 .3168 20.01 .6371 .3840
NVFi 31.37 .9780 .0410 27.84 .8720 .2100 30.41 .8260 .2730
Ours 22.62 .9244 .0684 33.38 .9266 .0976 34.16 .9019 .1155
Ours Multi 23.54 .9219 .0779 29.51 .8949 .1116 29.92 .8489 .1364

whale average
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

TiNeuVox 27.20 .9430 .0579 26.54 .8826 .1005
Deformable-GS 26.58 .9605 .0386 24.14 .8787 .1127
4D-GS 22.31 .9638 .0370 22.25 .8926 .1638
GaussianPredict 25.11 .9610 .0442 23.09 .8584 .1660
NVFi 26.03 .9780 .0290 28.45 .9336 .1024
Ours 33.86 .9859 .0135 33.43 .9471 .0603
Ours Multi. 29.22 .9693 .0260 30.72 .9285 .0701

Table 10: Quantitative extrapolation results on the bouncingballs scene of D-NeRF dataset. Compar-
ison between Deformable-GS and Ours across different data splits. The best metric is highlighted in
red. For Ours, we set the input time span to be a shorten span of 0.1 instead of the default 0.6.

Split 65% Split 70% Split 75% Split 80%
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Deformable-GS 24.11 .9614 .0533 23.30 .9600 .0550 24.08 .9642 .0478 29.49 .9804 .0237
Ours 26.55 .9690 .0130 26.27 .9679 .0158 26.84 .9715 .0146 28.02 .9761 .0357

Split 85% Split 90% Split 95% Average
Method

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

Deformable-GS 31.44 .9842 .0197 34.50 .9886 .0148 34.31 .9889 .0131 28.89 .9772 .0325
Ours 32.97 .9860 .0054 36.23 .9913 .0039 39.18 .9944 .0035 31.00 .9796 .0138

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: Qualitative results on 5 scenes from the NVFI (Li et al., 2023) dataset, from left to right
are the ground truth image, rendered result from Deformable GS(Yang et al., 2024), residual of
Deformable GS against GT, GaussianPrediction(Zhao et al., 2024), residual of GaussianPrediction
against GT, and finally Our as well as Ours residual against GT.

Figure 7: Bat Metrics Comparison

Figure 8: Chessboard Metrics Comparison

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 9: Darkroom Metrics Comparison

Figure 10: Dining Metrics Comparison

Figure 11: Factory Metrics Comparison

Figure 12: Falling Ball Metrics Comparison

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 13: Fan Metrics Comparison

Figure 14: Shark Metrics Comparison

Figure 15: Telescope Metrics Comparison

Figure 16: Whale Metrics Comparison

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 17: Qualitative comparison of last frame from scene bat of NVFi by only using an autoregres-
sive transformer without the ODE component. From left to right is the GT image, the transformer’s
rendered image, the baseline (Yang et al., 2024)’s result, the difference between the GT and trans-
former’s rendered image, and finally the difference between the GT and the baseline’s rendered
image.

Figure 18: Qualitative comparison of last frame from scene chess of NVFi by only using an au-
toregressive transformer without the ODE component. From left to right is the GT image, the
transformer’s rendered image, the baseline (Yang et al., 2024)’s result, the difference between the
GT and transformer’s rendered image, and finally the difference between the GT and the baseline’s
rendered image.

Figure 19: Qualitative comparison of last frame from scene factory of NVFi by only using an
autoregressive transformer without the ODE component. From left to right is the GT image, the
transformer’s rendered image, the baseline (Yang et al., 2024)’s result, the difference between the
GT and transformer’s rendered image, and finally the difference between the GT and the baseline’s
rendered image.

Figure 20: Qualitative comparison of the fallingball scene in NVFi on the interpolation model and the
ground truth. As shown, the interpolation model fails to capture meaningful dynamics of the scene
while missing the fallingball object.

22


	Introduction
	Related Work
	Methodology
	Interpolation Model for Trajectory Generation
	Latent ODE Model for Extrapolation
	Dynamic Trajectory Sampling
	Training Objective

	Experiments
	Quantitative Results
	Qualitative Results
	Ablation Study


	Limitations and Conclusion
	Additional experiments
	Appendix
	Details on Adaptive weighting for regularization
	Probabilistic Forecasting with a Variational Latent ODE


	Details on Dynamic Trajectory Sampling
	Implementation Details
	Multi-Scene generalization experiment
	Datasets details



