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ABSTRACT

In the research of 3D head alignment, few prior works focus on information ex-
change among different vertices or 3DMM parameters in regression. On the other
hand, there is a drawback that using high-resolution feature maps makes algo-
rithms memory-consuming and not efficient. To solve these issues, we first pro-
pose a multi-task model equipped with two transformer-based branches which fur-
ther enhances the information communication among different elements through
self-attention and cross-attention mechanisms. To solve the problem of low effi-
ciency of high-resolution feature maps and improve the accuracy of facial land-
mark detection, a lightweight module named query-aware memory (QAMem) is
designed to enhance the discriminative ability of queries on low-resolution fea-
ture maps by assigning separate memory values to each query rather than a shared
one. With the help of QAMem, our model is efficient because of removing the
dependence on high-resolution feature maps and is still able to obtain superior
accuracy. To further improve the robustness of the predicted landmarks, we intro-
duce a multi-layer additive residual regression (MARR) module that can provide a
more stable and reliable reference based on the average face model. Furthermore,
the multi-information loss function with Euler Angles Loss is proposed to super-
vise the network with more effective information, making the model more robust
to handle the case of atypical head poses. Extensive experiments on two public
benchmarks show that our approach can achieve state-of-the-art performance. Be-
sides, visualization results and ablation experiments verify the effectiveness of the
proposed model.

1 INTRODUCTION

3D face alignment is an essential task for face-related computer vision problems, such as facial
landmark detection Chandran et al. (2020), 3D head pose estimation (Murphy-Chutorian & Trivedi,
2009), face tracking (Deng et al., 2019), 3D face reconstruction (Dou et al., 2017; Feng et al.,
2018), and face editing (Thies et al., 2016). These applications require the model to be accurate and
robust to varied facial appearance, different age groups, atypical head poses, and even in-the-wild
deployment conditions, which remains a significant challenge for existing methods.

According to the ways of generating vertices, previous works can be mainly classified into two
categories: landmark coordinates regression (Feng et al., 2018; Jackson et al., 2017) and 3D Mor-
phable Model (3DMM) parameters regression (Blanz & Vetter, 1999; Zhu et al., 2019). Landmark
coordinates regression directly transforms feature maps into vertices coordinates. Since the high
dimensionality of the network, these algorithms are memory-consuming in inference. With regard
to another strategy, numerous works (Zhu et al., 2019; Guo et al., 2020; Wu et al., 2021; Bulat
& Tzimiropoulos, 2017a) focus on regressing a set of 3DMM parameters to predict facial geom-
etry, which is more efficient than directly regressing the coordinates of all the dense 3D vertices.
The above models rely on datasets with 2D-to-3D pairing information, while the current 3D fa-
cial datasets are limited in scale and captured not-quite-in-the-wild (Sanyal et al., 2019). Recently,
DAD-3DHeads (Martyniuk et al., 2022) presents a dense and diverse large-scale dataset for 3D face
alignment, which is an in-the-wild dataset and covers abundant annotations of diverse attribute in-
formation. To achieve end-to-end training on the DAD-3DHeads dataset, the DAD-3DNet with a
differential FLAME (Li et al., 2017) decoder is also proposed to recover the 3D head geometry by
regressing the 3DMM parameters.
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Despite achieving excellent performance, existing methods face three main drawbacks: (1) Due to
the lack of information communication among different vertices or 3DMM parameters, the tradi-
tional convolutional neural network (CNN) limits the discriminability of predictions. (2) Using the
high-resolution feature maps makes these algorithms memory-consuming and not efficient. (3) The
rich annotation information of 3D coordinates is not fully exploited, which decreases the robustness
of the model to atypical scenes.

In this work, a multi-task 3D head alignment framework based on the transformer is proposed to
overcome the first drawback, where the 2D facial landmark detection task and the 3DMM parame-
ters prediction task are paralleled in the form of two transformer branches. With an auxiliary task
of 2D facial landmark detection, the performance of 3D face alignment is effectively improved. Be-
sides, our model is also the first work to regress 3DMM parameters through Transformers, where
the cross-attention mechanism effectively enhances the information communication among task-
oriented queries and extracted feature maps in the designed decoder. To deal with the second
drawback and further improve the accuracy with minimum computational burden, we propose a
lightweight module named query-aware memory (QAMem), which makes up the accuracy loss from
lower feature map resolutions. To enhance the robustness of the predicted landmarks, we calculate
the average vertices coordinates of the training set, then a multi-layer additive residual regression
(MARR) module is designed in the decoder to guide the detection under the reference of an average
face model. To tackle the third drawback, the multi-information loss function is used to optimize
the network. The loss function of baseline consists of three components including Landmark Re-
gression Loss, 3D Head Shape Loss, and Reprojection Loss. To enhance the predictive ability in
the case of atypical head poses, we introduce the Euler Angles Loss to provide further information
supervision for network optimization.

Our contributions can be summarized as follows:

• A Transformer-based multi-task framework is proposed for 3D head alignment, where the
performance of 3D face alignment is effectively improved with the help of multi-task struc-
ture. This is the first work to regress 3DMM parameters through Transformers, where the
cross-attention mechanism is effective to achieve the information communication among
different elements.

• A novel QAMem module is proposed to improve the accuracy so that high-resolution fea-
ture maps are no longer necessary for obtaining superior accuracy.

• A module named MARR is designed in the decoder to improve the robustness of the pre-
dicted landmarks by providing reference based on the average face model.

• We further introduce the Euler Angles Loss to the multi-information loss function for net-
work optimization, which enhances the predictive ability in the case of atypical head poses.

Finally, a multi-task model with multi-information supervision is proposed and named Trans3DHead
that is efficient for 3D head alignment.

2 RELATED WORK

2.1 2D FACIAL LANDMARK DETECTION

For 2D facial landmark detection task, previous works are mainly divided into two categories in-
cluding coordinate regression-based and heatmap-based methods.

Coordinate regression-based methods focus on directly regressing the landmark coordinates and
usually apply the cascaded structures for accurate locations. A drawback of them is that the land-
mark coordinates are regressed by a fully connected output layer, so these methods usually ignore
the spatial correlations of the locations. Recently, some methods based on visual transformers have
shown remarkable success. To handle complex scenarios, RePFormer (Li et al., 2022b) proposes a
pyramid transformer head (PTH) and decomposes the regression of landmark coordinates into mul-
tiple steps by using multi-level information in pyramid memories to predict the residual coordinates.
DTLD (Li et al., 2022a) proposes a cascaded deformable transformer based on the deformable at-
tention in Deformable DETR (Carion et al., 2020), which improves the detection performance with
a few parameters increasing.
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Figure 1: The overview of the proposed Trans3DHead, which is an efficient multi-task transformer
for the full 3D head alignment task and can reconstruct the shape of entire face, the full 3D head and
neck. Our model mainly consists of a facial landmark detection branch and a 3DMM parameters
regression branch, where query-aware memory (QAMem) and multi-layer additive residual regres-
sion (MARR) modules in red color are designed only for the facial landmark detection branch. The
queries, memory, and positional encodings input to the decoder are represented by blue, red, and
green lines, respectively.

Heatmap-based methods (Kumar et al., 2020; Wang et al., 2019; Sun et al., 2019) rely on high-
resolution feature maps to achieve precise localization which can effectively maintain the original
spatial relation among pixels. LUVLi (Kumar et al., 2020) proposes an end-to-end trainable model
based on U-Net (Ronneberger et al., 2015), which not only estimates landmark location but also
corresponding uncertainty and visibility likelihood. Using the stacked Hourglass (HG) architec-
ture (Newell et al., 2016) as the backbone, Awing (Wang et al., 2019) analyses the loss function
for heatmap and proposes the Adaptive Wing loss to adaptively penalize loss. Despite the supe-
rior performance, these methods have high computational costs because of the calculation on high-
resolution feature maps. To address this issue, PIP (Jin et al., 2021) uses low-resolution feature maps
to predict heatmap and offset simultaneously, which largely reduces inference time.

Different from the existing works relying on labels of 2D facial landmarks, we aim to further explore
a comprehensive model that not only meets the demand of 2D facial landmark detection but also
effectively achieves 3D face alignment tasks by making full of the 3D ground truth.

2.2 3D FACE ALIGNMENT

3D face alignment is concerned about fitting a face model to an image. Instead of regressing 2D
landmarks from the facial image, 3DDFA (Zhu et al., 2019) directly considers face alignment as
a 3DMM fitting task, utilizing a cascaded CNN as the regressor. 3DDFA-V2 (Guo et al., 2020)
improves 3DDFA to balance accuracy and speed. It exploits a more lightweight backbone like Mo-
bileNet (Howard et al., 2017) and further proposes meta-joint optimization to dynamically optimize
3DMM parameters. RingNet (Sanyal et al., 2019) uses FLAME as a decoder to generate 3D faces
without any 2D-to-3D supervision, which is an end-to-end trainable network making full use of the
shape constancy. SynergyNet (Wu et al., 2021) studies the collaborative relation between 3DMM
parameters and 3D landmarks, which further enhances the information flow by reversely predicting
3DMM parameters from sparse 3D landmarks. FAN (Bulat & Tzimiropoulos, 2017a) adopts a stack
of four HG networks for landmark localization and uses the hierarchical, multi-scale, and parallel
binary residual blocks (Bulat & Tzimiropoulos, 2017b) to replace all bottleneck blocks used in HG,
achieving remarkable accuracy on both 2D and 3D face alignment. DAD-3DNet (Martyniuk et al.,
2022) is a recent approach designed to regress 3DMM parameters and reconstruct the 3D head
geometry using a differential FLAME decoder. It is end-to-end trainable on the provided dataset
named DAD-3DHeads with rich annotations. Based on DAD-3DNet, DAD-3DNet+ (Zeng et al.,
2023) leverages EG3D (Chan et al., 2022) and Neural Radiance Field (NeRF) (Mildenhall et al.,
2021) to generate multi-view images to handle the lack of multi-view in-the-wild training data.
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Figure 2: Different memory mechanisms. (a) A shared memory with low-resolution feature maps.
(b) A shared memory with high-resolution feature maps. (c) Separate memories with low-resolution
feature maps.

However, few of these approaches explore the internal relation of the 3D head geometry, such as the
discriminability among predictions. In contrast, our model focuses on the information communica-
tion among different vertices or 3DMM parameters.

3 METHODS

3.1 MULTI-TASK 3D ALIGNMENT NETWORK

The overall architecture of the proposed method is illustrated in Figure 1 and the two red colored
parts are newly designed modules introduced in the following sections. Our architecture consists
of (i) a CNN as the backbone to extract feature maps, (ii) a auxiliary facial landmark detection
branch to predict 2D landmarks, and (iii) a main 3DMM parameters regression branch to regress
3DMM parameters and reconstruct the 3D head shape, followed by a differential FLAME Layer as
in DAD-3DNet(Martyniuk et al., 2022). Note that both branches have the same number of decoders.

Similar to the transformer in DETR (Carion et al., 2020) requiring N zero-initialized object queries
as the inputs of the decoder, the proposed method sets a corresponding number of input queries for
each prediction task. For the main 3DMM parameters regression branch, we set N to 413 indicating
the number of 3DMM parameters. For the auxiliary 2D facial landmark detection branch, the value
of N is set to 68 to achieve the predictions of 68 landmark coordinates. Besides, the memory
contains rich information related to the location of landmarks, while the landmark queries are data-
dependent because their values need to be extracted from the memory during inference. Different
from DETR where the queries are zero-initialized, we use a global average pooling layer and a
fully connected layer to initialize the landmark queries with more meaningful values. Suppose the
memory is denoted as M with size d×h×w and each query embedding is of size d, the initialization
of queries can be computed as follows:

Qinit = FC(GlobalAvgPool(M)), (1)
where Qinit is of size N × d.

The multi-task model is end-to-end trainable and the major goal is to predict the 3DMM parameters
to reconstruct 3D head shape, while landmark detection is only an auxiliary task. Different from
DAD-3DNet, which requires upsampling process and heatmap prediction using high-resolution fea-
ture maps, our model can achieve superior accuracy by using low-resolution feature maps. Besides,
the structure of Transformers provides the information communication among the inputs, enhancing
the robustness of the predictions through the relation among the more discriminative queries.

3.2 QUERY-AWARE MEMORY

Since using low-resolution feature maps and removing the encoder module, the framework is ef-
ficient but the accuracy is degraded. To address this trade-off problem, we propose a novel and
lightweight module named QAMem based on an observation that the discriminative ability of the
queries is limited within a specific grid of the memory.

Specifically, suppose there are three queries Q1, Q2, and Q3, and the embedding value of the grid
is denoted as Vg . In Figure 2(a), the resolution of the memory is 8× 8 and the attention weights of
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the three queries are 0.9, 0.1, and 0.3 respectively. Then the extracted values from the grid for each
query are 0.9Vg , 0.1Vg , and 0.3Vg respectively, which means that the only difference of the three
values is the scale. But the queries will act differently if the memory is of higher resolutions. As
shown in Figure 2(b), the previous grid becomes a 4×4 sub-map when the memory is 32×32. Due
to the increased resolutions, each query now is able to extract a different value from the grid. Can
we also obtain such discriminative abilities on low-resolution feature maps? Yes, if the memory act
differently to different queries. To achieve this, we compute N new memories for N queries from the
original memory through N corresponding convolutional layers. Figure 2(c) shows the mechanism
that each query has a separate memory, which enables different queries to extract different values
from the same grid on low-resolution feature maps. Note that the separate memories are only for
value extractions, while the key of the queries is still shared.

Nevertheless, simply implementing the above method can be computationally heavy since there
are usually tens of landmarks that require generating as many new memories. To address this, we
propose an equivalent implementation that is much more efficient. Specifically, suppose A is the
attention weights with size N × S, M is the memory with size S × d, Ti with size d × d is the
corresponding convolutional layer of Qi, where S denotes the number of feature map grids (i.e.,
hw). Then the extracted query Qi from the above method can be computed as follows:

Qi = Ai
1×S ·M i

S×d = Ai
1×S · (MS×d × T i

d×d). (2)

With our implementation, query Qi can be computed as:

Qi = Ai
1×S · (MS×d · T i

d×d) = (Ai
1×S ·MS×d) · T i

d×d. (3)

Then the transform is only computed over the extracted query embedding rather than memory, which
significantly reduces redundant computations and memories. In practice, the QAMem layer can be
simply implemented as a convolutional layer with 1× 1 kernel, 1 stride, and N groups.

Additionally, QAMem module is applied to the facial landmark detection branch aiming to refine
the location of landmarks through the position information in the feature map. Since the 3DMM
parameters are not directly related to the spatial position in the feature map, QAMem module is not
applicable in the 3DMM parameter regression branch.

3.3 MULTI-LAYER ADDITIVE RESIDUAL REGRESSION

Intuitively, predicting the residual coordinates based on the average coordinates is more reliable
than randomly regressing the landmark coordinates. To improve the robustness of the predicted
landmarks, the MARR is introduced in the decoder to guide the detection based on an average face
model. As illustrated in Figure 3, the prediction of landmarks starts with the average model, and then
each decoder predicts the residual coordinates from shallow to deep layer. Therefore, the MARR
can aggregate multi-layer residual coordinates into a reliable initial reference to make the prediction
easier. Specifically, the average face model Fa is the initial reference which is obtained on the train
set as follows:

Fa =
1

m

m∑
i=1

lmki, (4)

where, m indicates the number of training samples and lmki represents the ground-truth landmarks
of ith image extracted from the ground-truth 3D vertices. Then, the predicted residual coordinates
of each decoder will be added to the average face model and the final landmark coordinates PL can
be computed as:

PL = Fa +

n∑
i=1

resi, (5)

where, n represents the number of decoder and resi indicates predicted residual coordinates of ith
decoder.

3.4 MULTI-INFORMATION LOSS FUNCTION

We use the model excepting the QAMem and MARR modules as our baseline, where the loss func-
tion of baseline consists of three parts, including Landmark Regression Loss (Llmk), 3D Head
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Shape Loss (L3D), and Reprojection Loss (Lreproj). The Landmark Regression Loss calculates
the SmoothL1 loss between the predicted and true 2D landmarks. For 3D Head Shape Loss, the 3D
vertices can be computed by passing the predicted 3DMM parameters to a differentiable FLAME
layer and only the set of “head” vertices is used in our task. Then 3D Head Shape Loss measures
L2 loss between normalized subsampled vertices of ground truth and predictions. For Reprojection
Loss, the 2D vertices are obtained by reprojecting the 3D vertices onto the image and then subsam-
pling the set of “head” vertices. We use the SmoothL1 loss to measure the discrepancy between the
reprojected subsampled vertices of ground truth and predictions.

In summary, the loss function of the baseline can be formulated as:

Lbase = λ1Llmk + λ2L3D + λ3Lrep, (6)

where λ1, λ2, and λ3 are hyper parameters to balance each terms.

We observe that the predictive ability of the model is limited in the case of atypical head poses. To
solve this issue, we introduce the Euler Angles Loss (Leuler) to train the model by providing more
information supervision for the network.

3.4.1 EULER ANGLES LOSS

As illustrated in Figure 4, the predicted Euler angles can be obtained from the predicted 3DMM
parameters. To make full use of the annotations of the DAD-3DHeads dataset, the true Euler angles
can be calculated by model-view matrices in the ground truth. Then, the Euler Angles Loss is
introduced to calculate the SmoothL1 loss between the predicted and true Euler angles as follows:

Leuler =smoothL1(Ep − Et), (7)

where Ep and Et indicate predicted and true Euler angles, respectively.

Finally, the overall optimal object for the proposed model can be formulated as follows:

L = λ1Llmk + λ2L3D + λ3Lreproj + λ4Leuler, (8)

where λ4 is hyper parameter, and we set λ1, λ2, λ3, and λ4 to 300.0, 50.0, 0.05, and 0.05.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

4.1.1 IMPLEMENTATION DETAILS

The proposed method is implemented in PyTorch and all of the experiments are conducted on a
server with 1 NVIDIA V100 GPU. We use ResNet-50 (He et al., 2016) as the backbone which is
initialized using the weights pre-trained on ImageNet (Deng et al., 2009). Adam (Kingma & Ba,
2015) is used as the optimizer and our model is trained for 360 epochs in total with a batch size of
32, where the differentiable FLAME layer is kept fixed. The learning rate is initialized to 0.0001
and then decayed by 10 at 240th epoch, while the learning rate of the backbone is multiplied by 0.1.
The hidden dimension d in the decoder is set to 256.
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Table 1: 3D dense head alignment on DAD-3DHeads benchmark.

Method Publication NME ↓ Z5 Acc. ↑ Cham. Dis.↓ Pose Err.↓ FPS
RingNet CVPR 2019 8.757 0.880 5.166 0.438 -

3DDFA-V2 ECCV 2020 3.580 - 6.170 0.527 -
DAD-3DNet CVPR 2022 2.431 0.949 3.183 0.168 112

Trans3DHead - 2.248 0.950 3.257 0.153 115

4.1.2 DATASETS

We use two public datasets to conduct the experiments, namely DAD-3DHeads and AFLW2000-
3D dataset (Zhu et al., 2016). DAD-3DHeads is the state-of-the-art dataset for 3D dense head
alignment, which contains rich annotations including extreme poses, facial expressions, challenging
illuminations, and severe occlusion cases. It is an in-the-wild facial landmark dataset containing
37,840 training images, 4,312 validation images, and 2,746 test images. AFLW2000-3D dataset
includes the first 2,000 samples from the in-the-wild AFLW dataset (Köstinger et al., 2011) and each
of these samples is labeled with the ground truth of 3D face and the corresponding 68 landmarks.

4.1.3 EVALUATION METRIC

On DAD-3DHeads dataset, the NME, Z5 Accuracy, Chamfer Distance, and Pose Error proposed
in (Martyniuk et al., 2022) are calculated to measure the goodness-of-fit for the 3D dense head
alignment task. Specifically, the NME is computed on 68 landmarks which measures the normalized
mean error of the predictions. Z5 Accuracy evaluates the ordinal distance of the Z-coordinate and
is calculated only on the vertices of the “head” subset. Chamfer distance is a one-sided metric
calculated from ground truth mesh to the predicted one, in which the vertices are first aligned by
seven key points correspondences (Sanyal et al., 2019), and then only vertices of the “face” subset
are used to compute the distances. Pose Error measures the accuracy of pose predictions. On
AFLW2000-3D dataset, we calculate the mean absolute error (MAE) of predicted Euler angles.

4.2 QUANTITATIVE EVALUATION

To fully illustrate the effectiveness of the proposed method, we present the quantitative comparison
with the advanced methods on 3D dense head alignment task and 3D head pose estimation task.

4.2.1 3D DENSE HEAD ALIGNMENT

The proposed model is compared with 3 advanced 3DMM-based methods (Guo et al., 2020; Sanyal
et al., 2019; Martyniuk et al., 2022), and the quantitative results on the full test dataset of DAD-
3DHeads (Martyniuk et al., 2022) are shown in Table 1. The DAD-3DNet is evaulated with author’s
code and released model, and our method is also based on the same code base for training and
evaluation. The proposed method achieves the best scores in terms of NME, Z5 Accuracy, and Pose
Error, outperforming 3DDFA-V2 and RingNet on all four metrics. This improvement indicates that
our model is more robust in facial landmark detection.

4.2.2 3D HEAD POSE ESTIMATION

As presented in Table 2, the proposed model is compared with 10 advanced methods (Bulat &
Tzimiropoulos, 2017a; King, 2009; Doosti et al., 2020; Deng et al., 2020; Albiero et al., 2021)
including 5 3DMM-based methods (Zhu et al., 2019; Guo et al., 2020; Sanyal et al., 2019; Wu
et al., 2021; Martyniuk et al., 2022). In overall MAE, our model achieves leading performance
among all models except SynergyNet. However, our model achieves the best MAE in the estimation
of Yaw, outperforming all other state-of-the-art methods by a significant margin. It is also worth
noting that our model surpasses DAD-3DNet on all four metrics, which indicates the superiority of
our algorithm. Besides, our model obtains more balanced performance across all angles compared
to other methods, demonstrating the effectiveness of the multi-information supervision with Euler
Angles Loss.
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Table 2: 3D head pose estimation results on AFLW2000-3D dataset.

Method Publication MAE↓ Pitch↓ Roll↓ Yaw↓
Dlib JMLR 2009 13.29 12.60 9.00 18.27
FAN ICCV 2017 9.12 12.28 8.71 6.36

3DDFA TPAMI 2017 7.39 8.53 7.39 5.40
RingNet CVPR 2019 8.27 4.39 13.51 6.92
HopeNet CVPR 2020 6.16 6.56 5.44 6.47

RetinaFace CVPR 2020 6.22 9.64 3.92 5.10
3DDFA-V2 ECCV 2020 7.56 8.48 9.89 4.30
Img2Pose CVPR 2021 3.91 5.03 3.28 3.43

SynergyNet 3DV 2021 3.35 4.09 2.55 3.42
DAD-3DNet CVPR 2022 3.66 4.76 3.15 3.08

Trans3DHead - 3.38 4.39 2.84 2.91
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Figure 5: Qualitative comparison on challenging cases from DAD-3DHeads benchmark.

4.3 QUALITATIVE EVALUATION

To visually display the facial detection results, we select some challenging cases from the DAD-
3DHeads test set for comparison. Figure 5 shows the visualizations of 68 landmarks predicted by
DAD-3DNet and the proposed Trans3DHead. It can be seen that our Trans3DHead performs better
in the mouth, face contour regions, and atypical head poses. It further indicates that the multi-
information supervision with Euler Angles Loss is effective to atypical poses and the information
exchange among different vertices is helpful to accurate localization.

Additionally, some failure cases are presented in Figure 6. It can be seen that both DAD-3DNet
and our Trans3DHead are limited to severe occlusions, near horizontal or vertical flips, and the back
side of the head with unseen facial features. However, the estimations of the head poses by our
Trans3DHead are more reliable than DAD-3DNet.

4.4 ABLATION STUDY

Taking the evaluation under the validation set of DAD-3DHeads as an example, we conduct the
ablation experiments. For a fair comparison, the parameters for all experiments are set to the same
in both training and testing.

4.4.1 COMPONENT EFFECTIVENESS

As presented in Table 3, each component in the proposed method is added one by one to evaluate the
efficacy, where the models without MARR directly predict landmarks by last decoder. With the help
of QAMem, the third model achieves better NME than the baseline. It demonstrates that utilizing
separate memories is effective to improve accuracy. By adding the Euler Angles Loss to the third
model, the fourth model is superior to the third model in terms of Z5 Accuracy and Pose Error.
These results verify that the multi-information supervision with Euler Angles Loss is beneficial to
accurately estimate the head pose. Furthermore, we integrate three components together to obtain
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Table 3: Left: Component effectiveness on validation set. QA indicates QAMem, and Euler indi-
cates Euler Angles Loss. Right: The analysis of encoder and decoder layers on validation set where
the structure of encoder is adapted from DETR. E and D indicate encoder and decoder respectively.

Method NME ↓ Z5
Acc. ↑

Cham.
Dis.↓

Pose
Err.↓ E/D NME ↓ Z5

Acc. ↑
Cham.
Dis.↓

Pose
Err.↓

DAD-3DNet 1.956 0.9571 2.749 0.130 0/1 1.869 0.9578 2.819 0.128
baseline 1.847 0.9578 2.791 0.126 0/2 1.831 0.9578 2.803 0.128

+QA 1.831 0.9578 2.803 0.128 0/3 1.821 0.9580 2.816 0.126
+Euler+QA 1.837 0.9580 2.819 0.127 1/2 1.836 0.9582 2.827 0.125

+MARR+QA 1.851 0.9572 2.802 0.129 2/2 1.835 0.9574 2.840 0.127
Trans3DHead 1.822 0.9585 2.796 0.123 3/2 1.828 0.9585 2.849 0.124

D
A
D
-3
D
N
et

O
ur

 T
ra

ns
3D

H
ea

d

Figure 6: Failure cases from DAD-3DHeads benchmark.

our Trans3DHead which achieves the best results on NME, Z5 Accuracy, and Pose Error. Since the
average face may have some limitation in handling large head pose variations, the effectiveness of
MARR is more observed when the Euler Angle Loss is applied to improve the performance under
large pose variations, that is, from the fourth model to Trans3DHead.

4.4.2 ENCODER AND DECODER LAYERS

To observe the effectiveness of the encoder and decoder, the baseline model with QAMem is eval-
uated under the different numbers of encoder and decoder layers. As presented in Table 3, stacking
more decoder layers improves the performance while more encoder layers have an inconspicuous
effect or even reduce the results. We speculate that facial landmark detection primarily focuses on
the localization of single points, so the high-level semantic feature extraction of encoder layers may
introduce spatial noises, hurting the localization of points. However, more decoder layers bring
more computational costs. To balance the accuracy and efficiency, we remove the encoder layer and
use two decoder layers for our Trans3DHead.

5 CONCLUSION

In this work, we propose an efficient multi-task 3D head alignment network named Trans3DHead.
With two task-oriented regression branches based on transformers, the model enhances the infor-
mation communication among queries and is suitable for various 3D head alignment tasks. The
proposed QAMem removes the dependence on high-resolution feature maps, which is efficient and
effective to make use of low-resolution feature maps by utilizing separate memories. The MARR
module can achieve more stable and reliable location of the facial landmarks by adding the multi-
layer residual coordinates to an average reference. Besides, adding the Euler Angles Loss to the
original multi-information loss function enhances the robustness of the model to atypical head poses.
Our method achieves better performance on public benchmarks in terms of key metrics. In the future,
we hope to explore more effective manners based on different head poses to dynamically provide
the references of the average model.
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A APPENDIX

The outline of the Appendix is as follows:

• Further ablation study.

• More visual examples on DAD-3DHeads benchmark.

• More visual examples on AFLW2000-3D dataset.

A.1 FURTHER ABLATION STUDY

Taking the evaluation under the validation set of DAD-3DHeads dataset as an example, we conduct
further ablation experiments to analyze the fixed average model, the effect of multi-layer additive
residual regression (MARR), the query-aware memory (QAMem), the memory-related query ini-
tialization (MQinit) used in the facial landmark detection branch, the effectiveness of the multi-task
framework, and the effect of different 3DMM parameter settings.

A.1.1 FIXED OR LEARNABLE AVERAGE MODEL

As shown in Table 4, we conduct experiments with the average model fixed and learnable respec-
tively for the refined facial landmark detection. For the two learnable average models, the values of
average face are treated as the learnable parameters, where one model is initiated with the average
face calculated by Eq.(4), and the other is randomly initiated. It can be seen that the fixed average
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Table 4: Average model analysis on validation set.

Method NME ↓ Z5 Acc. ↑ Cham. Dis.↓ Pose Err.↓
Trans3DHead 1.822 0.9585 2.796 0.123

+averinit 1.849 0.9584 2.816 0.125
+randinit 1.842 0.9582 2.797 0.126

Table 5: Further analysis of QAMem on validation set of DAD-3DHeads dataset.

Method NME ↓ Z5 Acc. ↑ Cham. Dis.↓ Pose Err.↓
baseline 1.847 0.9578 2.791 0.126

+QAMem-1 1.831 0.9578 2.803 0.128
+QAMem-2 1.831 0.9581 2.782 0.125

model surpasses two learnable average models on all four metrics. Our analysis suggests that the
learnable average models may introduce more parameters and more uncertainties which makes the
regression of landmark coordinates more challenging, while the fixed average model provides more
stable and reliable references.

A.1.2 MULTI-LAYER ADDITIVE RESIDUAL REGRESSION

As illustrated in Figure 7, after aggregating multi-layer residual coordinates into a reliable initial
reference, the landmarks visualization becomes more and more accurate from shallow to deep layer.
Besides, we normalize residual coordinates by the head bounding box size to reduce the effect of
the face scale. Then the distribution of absolute values of normalized residual coordinates for each
decoder layer is visualized as in Figure 8. The visual results further indicate that as the decoder layer
deepens, more residual coordinates gradually approach 0, becoming sparse, which realizes refining
the landmarks layer-by-layer and makes the prediction easier.

A.1.3 QUERY-AWARE MEMORY

As presented in Table 5, the baseline indicates the model excepting the QAMem, MARR, and Eu-
ler Angles Loss. Based on the baseline, the second model uses QAMem only in the facial land-
mark detection branch, while the third model applies QAMem to both the facial landmark detection
branch and the 3DMM parameters regression branch. It can be seen that the second model surpasses
the baseline in terms of NME, while the third model shows no significant improvement in NME.
Besides, the third model is more memory-consuming than the second one, because the QAMem
module in 3DMM regression requires about six times as many parameters as it does in landmark
regression. Therefore, the QAMem module is only used in the facial landmark detection branch in
our Trans3DHead.

A.1.4 MEMORY-RELATED QUERY INITIALIZATION

The MQinit indicates the global average pooling layer and the fully connected layer in Figure 1 of
our paper used on memory to initialize the landmark queries in the facial landmark detection branch.
As shown in Table 6, the first model represents the Trans3DHead without MQinit, the second model
is our Trans3DHead using MQinit only in the facial landmark detection branch, and the third model
uses MQinit both in the facial landmark detection branch and the 3DMM parameters regression
branch. With the help of MQinit, the second model is effective to boost the accuracy of facial
landmark detection, while using the MQinit in the 3DMM parameters regression branch shows no
significant improvement in NME. Therefore, the MQinit module is only used in the facial landmark
detection branch to make full use of the rich location information contained in the memory.

A.1.5 MULTI-TASK FRAMEWORK

In order to explore the effect of the multi-task framework, we conduct a comparative experiment
between the Trans3DHead with only 3DMM parameters regression branch and the Trans3DHead.
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Table 6: Further analysis of MQinit on validation set of DAD-3DHeads dataset.

Method NME ↓ Z5 Acc. ↑ Cham. Dis.↓ Pose Err.↓
noMQinit 1.865 0.9577 2.795 0.127
+MQinit-1 1.822 0.9585 2.796 0.123
+MQinit-2 1.821 0.9577 2.781 0.125

Figure 7: The landmarks visualization from the MARR module on validation set of DAD-3DHeads
dataset. Left to right: initial average face, the outputs from the first decoder layer, the outputs from
the second decoder layer.

As presented in Table 7, the multi-task Trans3DHead effectively improves the performance of the
single-task model on 3D head alignment.
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Table 7: Further analysis of multi-task framework on validation set of DAD-3DHeads dataset. Note
that the only-3DMM indicates the Trans3DHead with only 3DMM parameters regression branch.

Method NME ↓ Z5
Acc. ↑

Chamfer
Dis.↓

Pose
Err.↓

only-3DMM - 0.9567 2.839 0.133
Trans3DHead 1.822 0.9585 2.796 0.123

Table 8: The ablation study of different 3DMM parameter settings on validation set of DAD-
3DHeads dataset.

DAD-3DNet Trans3DHead

NME ↓ Z5
Acc. ↑

Chamfer
Dis.↓

Pose
Err.↓ NME ↓ Z5

Acc. ↑
Chamfer

Dis.↓
Pose
Err.↓

number = 60 2.354 0.9481 3.298 0.153 1.886 0.9529 3.241 0.129
number = 160 2.312 0.9518 2.946 0.145 1.901 0.9560 2.845 0.130
number = 413 1.956 0.9571 2.749 0.130 1.822 0.9585 2.796 0.123

Figure 8: Histogram of normalized residual coordinates from each decoder layer on validation set
of DAD-3DHeads dataset.

A.1.6 DIFFERENT 3DMM PARAMETER SETTINGS

The 3DMM parameters used in DAD-3DNet and the proposed Trans3DHead are adapted to
FLAME, which are extensions of the standard 3DMM parameters. The number of the extended
3DMM parameters used in the final Trans3DHead is 413, including 300 shape parameters, 100 ex-
pression parameters, 3 jaw parameters, 6 rotation parameters, 3 translation parameters, and 1 scale
parameter to control FLAME. We also conduct experiments with two additional 3DMM parame-
ter settings. The first one is with the same number of 3DMM parameters as in SynergyNet (40
shape parameters, 10 expression parameters without jaw parameter), while the second one is used
in RingNet (100 shape parameters, 50 expression parameters without jaw parameter). Keeping the
original setting of 6 rotation parameters, 3 translation parameters, and 1 scale parameter in FLAME,
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we use two parameter settings of 60 parameters and 160 parameters to train our Trans3DHead and
DAD-3DNet on the DAD-3DHeads dataset, respectively. As shown in Table 8, regressing more pa-
rameters is helpful for better reconstructing 3D head shape for both DAD-3DNet and the proposed
Trans3DHead. Besides, the proposed Trans3DHead is superior to DAD-3DNet in all three param-
eter settings. When only regressing 60 parameters, our model shows more significant advantages
than DAD-3DNet, which also indicates that the cross-attention mechanism is effective to achieve
the information communication among different elements.

A.2 MORE VISUAL EXAMPLES ON DAD-3DHEADS BENCHMARK

To further demonstrate the superior performance of our model, we further display the dense land-
marks visualization and mesh visualization of DAD-3DNet and our model on DAD-3DHeads bench-
mark for comparison.

A.2.1 DENSE LANDMARKS VISUALIZATION

As illustrated in Figure 9, both DAD-3DNet and the proposed Trans3DHead allow for flexibly
choosing the desired landmark subset after the entire vertices are predicted from 3DMM parameters.
Our model performs better than DAD-3DNet on 68 landmarks prediction, thanks to the multi-layer
additive residual regression module starting from average facial landmarks. Moreover, our model
also recovers more accurate 3D head geometry compared with DAD-3DNet.

A.2.2 MESH VISUALIZATION

As shown in Figure 10, the face mesh and 3D head mesh can be generated from the 3DMM param-
eters predicted by DAD-3DNet and the proposed Trans3DHead. Compared with DAD-3DNet, our
model can handle the atypical head poses better and generates more accurate meshes. These visu-
alization results further verify the effectiveness of the proposed model. Besides, It can be clearly
observed that our method not only obtains more accurate shapes than SynergyNet but also recon-
structs the shape of entire face, the full 3D head, and neck, while SynergyNet can only reconstruct
face shape, which further illustrates the difference between the SynergyNet and our Trans3DHead.

A.3 MORE VISUAL EXAMPLES ON AFLW2000-3D DATASET

A.3.1 HEAD POSE VISUALIZATION

The proposed Trans3DHead achieves comparable results with SynergyNet on AFLW2000-3D
dataset in the head pose estimation task. Figure 11 shows some examples of head pose estima-
tion predicted by the SynergyNet and the proposed Trans3DHead on the AFLW2000-3D dataset. It
can be observed that the SynergyNet performs slightly better in predicting pitch and roll, while the
proposed model has more advantages in handling side faces.

A.3.2 LANDMARKS VISUALIZATION

We further conduct qualitative comparison on AFLW2000-3D dataset to visually display the facial
landmark detection results predicted by SynergyNet, DAD-3DNet, and the proposed Trans3DHead.
As shown in Figure 12, the proposed Trans3DHead performs better in the mouth, face contour
regions, and atypical head poses.
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(a) DAD-3DNet (b) Our Trans3DHead

Figure 9: Dense landmarks visualization from DAD-3DHeads benchmark. Left to right in each
subfigure: 68 landmarks, 191 landmarks, 445 landmarks. Note that both DAD-3DNet and our model
predict the 68 landmarks from the 2D branch directly, while 191 landmarks and 445 landmarks are
generated by reprojecting the 3D vertices.
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(a) Input (b) DAD-3DNet (c) Our Trans3DHead (d) SynergyNet

Figure 10: Mesh visualization from DAD-3DHeads benchmark. (a): input image; Left to right in
(b) and (c): face mesh, 3D head mesh; (d): face mesh.
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Figure 11: Examples of head pose estimation predicted by the SynergyNet and the proposed
Trans3DHead on the AFLW2000-3D dataset.
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Figure 12: Examples of facial landmarks predicted by the SynergyNet, the DAD-3DNet, and the
proposed Trans3DHead on the AFLW2000-3D dataset.
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