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Abstract

We present Ambient Protein Diffusion, a framework for training protein diffusion
models that generates structures with unprecedented diversity and quality. State-
of-the-art generative models are trained on computationally derived structures
from AlphaFold2 (AF), as experimentally determined structures are relatively
scarce. The resulting models are therefore limited by the quality of synthetic
datasets. Since the accuracy of AF predictions degrades with increasing protein
length and complexity, de novo generation of long, complex proteins remains
challenging. Ambient Protein Diffusion overcomes this problem by treating low-
confidence AF structures as corrupted data. Rather than simply filtering out
low-quality AF structures, our method adjusts the diffusion objective for each
structure based on its corruption level, allowing the model to learn from both high
and low quality structures. Empirically, Ambient Protein Diffusion yields major
improvements: on proteins with 700 residues, diversity increases from 45% to 86%
from the previous state-of-the-art, and designability improves from 68% to 86%.
All of our code, models and datasets are available under the following repository:
https://github.com/jozhang97/ambient-proteins.

1 Introduction

Proteins are the fundamental building blocks of life. They accelerate chemical reactions by many
orders of magnitude, convert sunlight into food, and underpin the myriads of processes within cells
and organisms with the level of accuracy and precision required to sustain life [6, 32]. Unlike
computational protein engineering—which focuses on improving the developability or function of
existing proteins through computationally guided mutations for practical biotechnological applica-
tions 214140, 24, 1411 18136, 120, [52]|—de novo protein design aims to create entirely new proteins with
specified structures and functions, ultimately seeking to discover folds and activities not found in na-
ture [[12]. Since protein function is largely determined by tertiary and quaternary structure, generative
machine learning frameworks for protein design focus on learning the sparse, evolutionarily sampled
landscape of protein structures, with the goal of generating novel, functional backbone scaffolds
beyond those observed in nature [50, 133} 134} 28} 23} 153} 122} [7}, 155} 147]].

Recent breakthroughs in machine learning—based structure prediction—most notably Al-
phaFold2 [29]—have made it possible to infer accurate protein structures directly from se-
quence [29, 11} 135]]. This progress has enabled the creation of large-scale structural resources
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such as the AlphaFold Database (AFDB), which contains over 214M predicted structures from
UniProtKB sequences [13],46]. In parallel, high-throughput tools for sequence and structure compar-
ison, such as MMSeqs2 and FoldSeek, have facilitated the curation of large, diverse training datasets
from AFDB [5]. Among them, the 2.3M AFDB cluster dataset, has already been shown to improve
the capabilities of generative models for protein structure design [34} 23]

The quality of a generative model depends on the size and fidelity of its training data. While
AlphaFold2 (AF) has enabled large-scale protein structure prediction, its outputs often contain
biological or computational inaccuracies [51]]. To estimate the reliability of a predicted structure,
AlphaFold provides a per-residue confidence score, the predicted Local Distance Difference Test
(pLDDT), which is a proxy of local structural accuracy. In practice, researchers frequently filter
predicted structures based on average pLDDT scores, training only on high-confidence subsets
(typically using a cutoff of pLDDT > 80). However, lower pLDDT scores are disproportionately
associated with longer and more structurally complex proteins. As a result, filtering based on pLDDT
introduces a bias toward smaller, simpler folds, reducing structural diversity in the training set and
impairing the model’s ability to generalize to more complex regions of structure space—including
longer proteins. Notably, many low-pLDDT structures still contain well-folded domains that are
misoriented with respect to each other, as reflected by low predicted alignment error (pAE). These
structures can still offer valuable domain-level and coarse-grained information about the structure
distribution, which is discarded by overly aggressive filtering.
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Figure 1: Long protein generation performance. We train Ambient Protein Diffusion on proteins up
to 768 residues and sample sequences ranging from 300 to 800 residues. Our 17M parameters model
significantly outperforms the previous state-of-the-art Proteina [23]], which is a 200M parameters
model. Ambient Protein Diffusion generates both diverse and designable structures across all lengths.

To mitigate these issues, we depart from the standard paradigm of aggressive filtering of low-
confidence structures. Instead, we introduce Ambient Protein Diffusion —a framework for training
diffusion models that incorporates proteins with noisy or incomplete structures directly into the
training process. Ambient Protein Diffusion builds on recent advances in learning generative models
from corrupted data [[14, [16} [1} [15} 2} 42| |4} 149} [17, [37) 43} 27], which have explored controlled
corruption settings such as additive Gaussian noise [[14} 16} [1}[17] and masking [[15[2]. Our framework
generalizes these techniques to arbitrary, unknown corruption processes, enabling the training of
generative models in scientific domains where the corruption mechanism is complex and non-
parametric. In our setting, the AlphaFold prediction errors represent such a corruption: they are
structured, not explicitly modeled, and vary across protein size and topology. Yet, our method
effectively leverages these imperfect samples to significantly advance the capabilities of generative
protein models. For example, on proteins with 700 residues, our 16.7M parameter model improves
diversity from 45% to 86% and increases designability from 68% to 86% compared to the previous
state-of-the-art, Proteina [23]], a 200M parameter model. Below, we summarize our key contributions:

* We generalize recent approaches for training generative models on corrupted data to handle
arbitrary, non-parametric, and unknown corruption processes, enabling their application to
scientific domains.

* We demonstrate that our framework, Ambient Protein Diffusion, effectively leverages low-
pLDDT AlphaFold predictions, allowing the model to learn from all available samples
without distorting the underlying structure distribution.
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Figure 2: Overview of Ambient Protein Diffusion on AlphaFold structures. Rows 1-3 show
the noising process (from left to the right) of three different AlphaFold proteins based on their
average pLDDT (top: high, middle: medium, and bottom: low). These proteins are only used during
training at the green diffusion times. At these noise levels, any initial AlphaFold prediction errors in
low-pLDDT proteins have effectively been “erased” by the added noise, and the distributions of low-
and high-pLDDT proteins have merged.

* We further construct a new training set from the AFDB cluster dataset optimized for
geometric diversity irrespective of their evolutionary relationship, yielding a broader and
more representative sampling of structural space for generative modeling.

* We achieve state-of-the-art results in both diversity and designability for protein generation,
improve diversity by 45% and designability by 24% on long proteins (800 residues), and
establish the Pareto frontier between these objectives on short proteins (< 256 residues). Our
models also achieve state-of-the-art novelty scores in both short and long protein generation,
indicating much lower memorization of the training set.

2 Background and Related Work

De novo Protein Generation. Most de novo protein generation frameworks that operate in structure
space follow a three-step pipeline: (1) a generative model samples a three-dimensional backbone
structure; (2) an inverse folding model (e.g., ProteinMPNN [19]) proposes amino acid sequences
likely to fold into the generated backbone; and (3) these sequences are evaluated by a structure
prediction model (e.g., ESMFold [35]) to identify the ones that best recapitulate the target fold.

Pioneering methods such as RFDiffusion [S0] and Chroma [28]] have established strong baselines
for backbone generation. More recent advances include Genie [33]], which introduces a denoising
diffusion model with an SE(3)-equivariant network that generates proteins as point clouds of reference
frames; Genie2 [34], which scales Genie using synthetic AlphaFold structures to improve training
data diversity; and Proteina [23]], which replaces diffusion with flow matching and scales both model
size and dataset scale by orders of magnitude to improve performance on longer and more complex
monomeric proteins.

Ambient Protein Diffusion is built using the Genie architecture and makes use of ambient protein
diffusion to achieve state-of-the-art results with substantially shorter training times, much fewer
parameters (16.7M vs 200M), and significantly reduced computational requirements.

Training Datasets. Recent advances in structure prediction—most notably AlphaFold2 [29] and
ESMFold [35]—have dramatically expanded the available structural data, enabling the prediction
of ~214M and ~617M monomeric protein structures from UniProtKB (via the AlphaFold Protein
Structure Database) [46]] and metagenomic libraries (via the ESM Atlas) [35]], respectively. While this
explosion of computational structures presents unprecedented opportunities, it also poses significant



challenges for downstream bioinformatic analysis and model training, particularly due to the scale,
redundancy, and uneven quality of the predicted structures. To address this, prior work applied
MMSeqs?2 [26] and FoldSeek [45] to cluster the AlphaFold Database (AFDB), yielding ~2.3M
clusters shown to capture evolutionary relationships between predicted structures [S)]. This AFDB
cluster dataset has since served as the foundational dataset to train several generative protein structure
models [23}[34]].

In this work, we apply a reparameterized FoldSeek to the AFDB cluster dataset to maximize geometric
diversity rather than evolutionary insights. Our goal is to construct a dataset better suited for learning
a generative model of protein structure space—one that emphasizes structural rather than evolutionary
variation. Starting from the 2.3 million AFDB clusters, we use the cluster representatives with
average pLDDT > 70 (~1.29M structures) and apply our geometric clustering procedure. The
resulting dataset comprises roughly ~292K structurally diverse clusters.

Diffusion Models. The goal in diffusion modeling is to sample from an unknown density pq that
we have samples available. Formally, let D = {z}}, a dataset of N independent samples, where
X} ~ po. The unknown distribution py is potentially complex, high-dimensional and multimodal. To
make the sampling problem more tractable, in diffusion modeling we target smoothened densities p;
defined as the convolution with a Gaussian: p; = po * N (0, 02(t)Id)EL where o(t) is an increasing
function of ¢, with ¢(0) = 0. In particular, the object of interest in diffusion modeling is the score-
function of the smoothened densities, defined as V, log p; (). The latter is connected to the optimal
denoiser (in the 5 sense) through Tweedie’s Formula: V log py(z;) = %@M_“.

Given access to E[X(|X; = z:] one can sample from the distribution py of interest by running
a discretized version of a reverse diffusion process [3 144, 9, [10]. Hence, the sampling problem
becomes equivalent to the problem of approximating the set of functions {E[X|X; = ]}Z_,. Given
a sufficiently rich family of functions {hy : 6 € ©}, the conditional expectation at a particular time ¢
can be learned by minimizing the objective:

J(0) = Eteu[o,T]]ExO,mt |[he(xt) — x0||2 . (H

In the context of protein diffusion models for backbones, X captures the 3-D co-ordinates for each
residues of the protein.

Learning from noisy data. Recent work has explored the problem of learning diffusion models
from corrupted data. Typically, the corruption process is simple, e.g. it can be additive Gaussian
noise as in [14} 16} [1]], or masking as in [1} 2]. Even in works where the corruption process is more
general, the degradation needs to be known and multiple diffusion trainings are required until an
Expectation-Maximization algorithm converges [42] 4]]. In this work, we deviate from this setting
as the corruption process is unknown and complex, which may include AlphaFold learning and
hallucination errors, and noise inherent to the structural biology technique used to solve the structure,
etc. We also target a single diffusion training instead of performing multiple EM iterations. The
method is detailed in Section[3

Our work generalizes the techniques developed in [14} [16] for the additive Gaussian noise case.
Particularly, in [16], the authors consider learning from a dataset D = {(z} , ¢;)}7_; of samples noised
with additive Gaussian noise of different variances {c?(¢;)}¥ ;. Formally, let X, = Xo + o(t;)Z,
where X ~ po, Z ~ N (0, I). Each point X, contributes to the learning only for ¢ > ¢;, using
the objective:

JO) =Fucupr Y Eafer [l tdho(ent) + (1= altt)e - aul], @
Tt; €D: t>t;
a(t, t;) = ”2(2;7(‘;2('5) As the number of samples grows to infinity, Equation [2| also recovers the

conditional expectation E[Xo|X; = ], but it does so while being able to utilize noisy samples.
This objective recovers the true minimizer because one can prove that the conditional expectation

2 Alternative formulations of diffusion modeling, such as the Variance Preserving case, are equivalent to this
case up to a simple reparametrization. For the ease of analysis, we focus our presentation on corruptions of the
form Xy = Xo + 01 Z, Z ~ N(0,14).



E[X},|X: = 2], lies in the line that connects the current noisy point z; and the prediction of the
clean image, E[Xo| X; = x¢].

Distribution merging under noise. A key idea in our method will be that distribution distances
contract as we increase the noise level added. In the context of diffusion models, this property has
been leveraged in the SDEdit [39] paper to allow diffusion models to perform stroke-based editing
at inference time without any finetuning. Most relevant to our work, Ambient Omni [18]] uses the
distribution contraction property (together with other innovations) to use blurry and out-of-distribution
data during training. In this work, we focus on synthetic data from AlphaFold that arise from various
corruption sources: biological ones (errors in the crystallography process), computational ones (errors
in the solution of the inverse problem from the crystallography data to the modeled structure), and
learning ones (AlphaFold mistakes due to the limited size of the training dataset and hallucinations).

3 Method

3.1 Building Intuition

We are given access to samples from the AlphaFold distribution py and aim to learn how to sample
from the true distribution of experimentally solved structures, pg, without an explicit degradation
model mapping py — po. Our key insight is that, regardless of how pg deviates from pg, adding noise
to both distributions causes them to contract toward one another. As the noise level increases, the
distributions p; and p; become progressively more aligned. This is because it is known that Gaussian
noise contracts distribution distances (KL divergence) in the following sense:

Dkr(pe]|pe) < Diu(pe || D), VE >t 3)

In fact, as t — oo, we have that: Dy, (p: || p+) — 0, as both distributions converge to the same
Gaussian. We now define the concept of merging of two distributions towards the same measure.

Definition 3.1 (e-merged) We say that two distributions, p and p are e-merged, if the KL distance
between the two is upper-bounded, by ¢, i.e., if Dxr,(p || p) < e

Similarly, we define the merging time of two distributions as the minimal amount of noise we need to
add such that the two distributions become e-merged. Formally,

Definition 3.2 (e-merging time) Let two distributions p, p. We define their e-merging time as follows:
tn(p, P, €) = inf{t : Dxr.(p x N(0,0(t)%I) || p x N(0,0(t)I)) < €}.

Assuming we can estimate the e-merging time between two distributions p and p, our key idea is to
treat samples from p; as approximate samples from p; for all timesteps ¢ > ¢,,(p, p, €). This idea is
illustrated in Figure[2] The intuition is that once the distributions have sufficiently merged under
noise, the residual shift becomes negligible and samples from p; can be used for learning p;. This
holds because: (i) the learning algorithm may not be sensitive to small distributional discrepancies at
high noise levels, and (ii) even if some bias is introduced, the remaining diffusion trajectory for times
t < t,(p, P, €) is robust to small initial distributional mismatch due to its inherent stochasticity. For a
more in depth analysis of the mathematics behind this intuitive idea we refer the reader to the work
of Daras et al. [[18]].

Sample dependent noise levels. At a high level, our objective is to determine the e-merging time
between the distribution of AlphaFold-predicted structures and that of experimentally resolved
proteins. A key challenge arises from the fact that the AlphaFold distribution is highly heterogeneous
in structural fidelity—that is, the accuracy with which AlphaFold predicts the true protein structure
varies widely across samples. It is well established that short, structurally simple proteins are predicted
with higher confidence, while longer and more complex proteins tend to yield lower-confidence
predictions. This trend is illustrated in Figure[3]B (Left). If we were to assign a single noise level across
the entire AlphaFold dataset, we would need to select a relatively high noise level to accommodate the
lowest-confidence predictions, particularly from long proteins. This would unnecessarily degrade the
training signal for high-confidence structures—regardless of protein length—and limit the model’s
ability to learn from clean supervision. To address this, we treat the AlphaFold dataset as a mixture



of K sub-distributions, q1, g2, .- ., gk, €ach representing a distinct confidence regime. We then
assign each sub-distribution an appropriate noise level, sufficient to bring it e-close to the distribution
of high-confidence structures under the same noise schedule. This formulation allows the model
to effectively learn from high-confidence AlphaFold predictions and incorporate low-confidence
structures in a controlled manner, mitigating the degradation typically caused by noisy training data.

A natural way to decompose the AlphaFold distribution into a mixture of quality-specific sub-
distributions is to leverage AlphaFold’s self-reported confidence metric—the average predicted
Local Distance Difference Test (pLDDT) score—as a proxy for predicted structural fidelity. In

particular, given a dataset D = {(aséi), pLDDT®)}Y | we consider K distributions (where K is

a hyperparameter to be chosen) with empirical observations for the j-th distribution being all the
samples {(xg), pLDDT(’)) : Cfrjn)n < pLDDT(Z) < cgﬂix}, for some hyperparameters cgi)n, cfﬁ%x.
Choice of sub-distribution boundaries. In this work, we adopt a deliberately simple and conservative
strategy by partitioning the AlphaFold dataset into three discrete quality regimes based on the average
pLDDT score: high-quality proteins (pLDDT > 90), medium-quality proteins (pLDDT in [80, 90])
and low-quality proteins (pLDDT in [70, 80]). We acknowledge that this discretization is coarse and
that more principled alternatives may yield further improvements—for instance, by optimizing the bin
boundaries or learning a continuous mapping from pLDDT to diffusion time. Despite the simplicity
of our choices, our experimental results demonstrate that even a naive quality-aware decomposition
can lead to important gains in performance across both short and long proteins. It is important to
emphasize that there are two sources of benefit over filtering methods: 1) low-quality data (previously
discarded) increases diversity, and 2) the distinction we do between medium-quality and high-quality
data boosts designability. The population of proteins that have pLDDT lower than 70 has a very
high merging time, and we did not see significant benefits from including them. To improve training
efficiency and save computational resources, we decided to discard this subpopulation. We underline
that training algorithms that are adaptive to local corruption (rather than global, i.e. average pLDDT)
might be able to benefit from such proteins — we leave this direction for future work.

3.2 Ambient Protein Diffusion Algorithm

Our algorithm takes as input a dataset of protein structures together with their average pLDDT score,

D= {(x(()i), pLDDT®)}N | | a diffusion schedule, o (t), and a mapping function f : [0, 100] — R+
that translates the average pLDDT value of a protein to its estimated e-merging time.

Annotation stage. The first step of the algorithm replaces each protein in the dataset with a noisy
version of itself, where the noise level is determined by the mapping function f. This function is
a hyperparameter for our algorithm — in our experiments, we opt for a rather simple choice (see
Appendix Table[T6|for a full description of our training configuration), but in principle this can be
an arbitrary function defined by the user based on their specific domain knowledge or experimental
findings. After this transformation, each protein can be treated as a sample from the target distribution
convolved with a Gaussian at its assigned noise level. This transformation step is only performed
once during dataset preprocessing, i.e., we replace the low-quality protein with a noisy version of
itself before we start the training. This is important because adding different noise realizations across
epochs can lead to recovery of the original low-quality protein if the noise is averaged out.

Loss function. After the annotation stage, we need to solve a training problem where we have data
corrupted at different noise levels with additive Gaussian noise, as in [[14}|16]. Hence, we can use
the objective of Equation 2] Instead of directly applying the loss, we first need to rescale each time ¢
to account for the vanishing gradient effect that is due to the multiplicative factor a(t). Specifically,

a.%(t) = M}% such that we balance the
different timesteps. This weighting is derived following the methodology of the EDM [30] paper
(Appendix, p. 26, Section B6). We underline that this rescaling was not mentioned in the original
paper of Daras et al. [16] [14], for training with noisy data. Yet, we find this rescaling critical for
the success of our method. We hypothesize that the authors of [14}[16]] did not encounter this issue
because there were at most two noise levels considered, while in AF predicted protein structures there
is a whole spectrum of assigned noise levels based on the predicted quality (measured by average
pLDDT) of a protein structure. We provide further details about the loss implementation in the
Appendix (Section [E) and pseudocode in Algorithm [I]

we need to rescale the loss at time ¢ with: w(t) =
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Figure 3: Reclustering the AFDB cluster dataset to improve generative protein modeling.
(A) Starting from the 2.3M AFDB clustered dataset, we cluster the representatives with FoldSeek
optimized for geometric similarity: alignment-type set to TM-Align, TM threshold set to 0.5, and
coverage set to 0.75. This results in a 300K clusters (pLDDT > 70) from which we keep the
representatives for training. (B) pLDDT and protein length statistics for our new training set. (C)
Overlay of two Ambient clusters: Top row: Representative (beige; UniProt AOA2W 1EPG1) overlaid
with members AOA820X4G2 (left, red) and AOA446YZW1 (right, red). Bottom row: Representative
(cyan; UniProt AOA395XDB6) overlaid with members AOA3BOYRI6 (left, blue) and L0OS475
(right, blue). In the original AFDB cluster dataset, each of these six proteins was designated as the
representative of its own cluster despite their similarities in structural features.

Uniform Protein Sampling in terms of diffusion times. To perform a training update for a diffusion
model, we typically sample a point from the training distribution and then we uniformly sample the
noise level £. However, since in our case we are dealing with noisy data, not all times ¢ are allowed

for a given protein, i.e. a protein with pLDDT(i) is only used for times ¢ > f(pLDDT(i)). To
avoid spending most of the training updates on very noisy proteins, we opt for sampling first the
diffusion time and then select from the eligible proteins that can be used in that diffusion time. This
strategy ensures balanced coverage across the diffusion trajectory—from low to high noise—while
still leveraging the diversity of low-confidence structures (pLDDT < 80) in our training dataset.

Summarizing: Our algorithm requires three simple changes to the regular diffusion training: 1) an
annotation stage (before training) where each low-quality protein is replaced with a noisy version
of itself, 2) a change in the way we fetch samples from the dataset so that we do not overallocate
training updates to highly noisy proteins and 3) a change in the loss function to account for the fact
that for some proteins we do not have access to an uncorrupted structures.

3.3 Reclustering AFDB clusters for generative modeling applications

On top of our algorithmic contributions, we also reconsider the choices made for the training dataset.
The AFDB clustered dataset [S]] has been used to train several generative protein models [34, 23]].
However, the original intent behind the clustering was to study structure evolution. Thus, the
hyperparameters were chosen to obtain clusters of homologous structures, and the authors report
that 97.4% of pairwise comparisons within clusters are conserved at the H-group (Homology) level
of the ECOD hierarchical domain classification (median TM-score 0.71). While these FoldSeek
hyperparameters are well-suited for evolutionary analysis, we found that the AFDB cluster dataset
has a significant degree of structural duplication and near-duplication between clusters that are more
distantly evolutionarily related (see Figure [3[C). This structural redundancy leads to an imbalanced
training set, where structural motifs from the larger protein superfamilies are overrepresented.

Given this finding, we hypothesize that the datasets for generative modeling of protein struc-
tures—particularly for backbone-based models— benefit more from clusters defined purely by
geometric similarity. To that end, we construct a new clustering dataset derived from the AFDB



cluster representatives, with an exclusive focus on structural topology. Specifically, these are the
changes we made to the FoldSeek hyperparameters: we switch the alignment-type from 3Di+AA
to TM-Align to improve fidelity, we use a TM-score threshold of 0.5, and we relax the alignment
coverage from 0.9 to 0.75. We did the latter to improve clustering of AlphaFolded proteins with
extended, unfolded N- or C-terminal regions (i.e., noodle tails) (Figure 3IC). This approach produced a
more balanced dataset that samples structural folds more uniformly, independent of their evolutionary
relationships. Ablations that disentangle the contribution of this reclustering from our ambient
training approach are given in Figure 4]

4 Experimental Results

We build on the Genie2 codebase [34]. Our model architecture follows the Genie2 architecture except
that it is scaled larger, using 8 triangle layers as opposed to 5. We train Ambient Protein Diffusion in
3 stages with increasingly longer proteins, eventually reaching proteins up to length 768. For details
on the training process, see Appendix Section[E.3] and for details on metric,s see Appendix Section
[Dl We underline that the computational cost of training our model is relatively low compared to the
prior state of the art Proteina model. This is due to the decreased size of our model (< 17M vs 200M)
and training set (~ 290K vs ~ 780K). We further note that our goal is to develop models that perform
well across a range of tasks, including long-protein generation, motif scaffolding, and more. To this
end, we train only two models for the purposes of this paper: one model optimized for long-protein
generation (Figure[I)) and another optimized for short-protein generation (Figure[5).

4.1 Comparisons on unconditional generation of longer proteins

In Figure[I} we compare Ambient Protein Diffusion performance on generating backbone for proteins
with length ranging from 300 to 800 residues. To directly compare with Proteina on long-protein
generation, we adopt its three-stage training and evaluation protocol. During training, the maximum
sequence length is capped at 768 residues. For evaluation, we sample 100 protein backbones at each
target length and evaluate them using the designability and diversity metrics. Since Ambient Protein
Diffusion builds on Genie2, we use the same sampling procedure—running 1000 diffusion steps with
a noise scale of v = 0.6. This noise scale parameter controls the trade-off between the designability
and diversity by reducing the amount of stochasticity added in the reverse process, as it is typically
done in the protein generative modeling literature (see Appendix [E.4.1]for details).

Ambient Protein Diffusion achieves designability and diversity scores exceeding 90% for proteins
between 300 and 500 residues, and maintains scores above 85% for lengths up to 700 residues. For
800-residue proteins, both metrics decline to 68%. Compared to Proteina, Ambient Protein Diffusion
outperforms by 26% in designability and 91% in diversity at length 700, and by 24% and 45%,
respectively, at length 800. At every protein length, Ambient Protein Diffusion’s diversity is equal to
its designability, indicating that every designable protein is unique. This is not the case for Proteina,
where diversity scores consistently fall below designability, regardless of protein length.

Taken together, these results demonstrate the impact of ambient diffusion on backbone-based genera-
tive models and highlight the strength of Genie2’s equivariant architecture. Our 17M parameter model
trained on approximately 290K AlphaFold structures significantly outperforms a 200M-parameter
transformer model trained on roughly 780K proteins. Our results show that smaller, more efficient
models can surpass larger transformer baselines in both structural diversity and designability.

4.2 Ablating the significance of Ambient Diffusion

In comparison to Genie2, the starting point of our implementation, we made the following changes:
1) made the model bigger, 2) trained on longer proteins, 3) reclustered the dataset to optimize
for geometric similarity rather than evolutionary similarity, and 4) used low pLDDT AlphaFold
proteins as noisy data using our Ambient Protein Diffusion framework. To quantify how much of
the improvement comes from the latter step, we train an Improved Genie2 without the Ambient
Framework for training with corrupted data and we report results in Figure ] We find that while
our two models perform similarly on proteins of 300 residues, the designability and diversity of the
baseline diminish on longer proteins. For proteins with 800 residues, the number of designable clusters
drops from 68% to 25%. Ambient Protein Diffusion shows a marked improvement, maintaining a
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Figure 4: Ablation to quantify the effect of the Ambient Protein Diffusion framework. We
improve upon Genie2 by making the architecture bigger, reclustering the dataset as in Section [3.3] and by
finetuning on longer proteins (up to 768 aminoacids). The resulting improved Genie2, shown in Orange,
outperforms Genie2 but still lags behind our Ambient Protein Diffusion Model, shown in blue. The only
difference between the two models is that Ambient Protein Diffusion uses low pLDDT AlphaFold structures as
noisy data, as explained in Section[3.2] Ambient Protein Diffusion consistently outperforms both the improved
Genie?2 baseline and Genie2, with increasingly significant improvements as sequence length grows.
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stable number of designable clusters. We underline that the difference comes solely from the training
algorithm since the architecture, model size, hyperparameters, and inference algorithm remain the
same. We note that this experiment only ablates the impact of treating AlphaFold data as noisy, and
fixes the reclustered dataset (Section [3.3) for both models. We examine the impact of reclustering
separately in Section[B-3]and find that reclustering increases diversity; however, without Ambient
training, the designability remains low. Both innovations are needed to achieve optimal results.

4.3 Comparisons on unconditional generation of shorter proteins

In this experiment, we evaluate the model on the unconditional generation of shorter proteins
in Figure[5] We provide training details for the model optimized for short protein generation in the

Appendix Section[E3.2]
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4.4 Novelty scores

The next step is to show that our method does not just memorize proteins, but instead it can generate
novel designable structures that are distinct from the training set. Here, we compute the TM-novelty
metric following the protocol of Geffner et al. [23]]. However, we found two key issues when
reproducing the literature TM-novelty scores, which we discuss in detail in Appendix Section[D.3]
First, since Spring 2025 FoldSeek resolved a bug in computing the alntmscore (Github issue 312),
which makes all previous reported values incorrect. Second, we found that Geffner et al. [23]
inadvertently used the alnTM-Score from the row with the highest qTM-Score, rather than from
the row with the highest alnTM-Score. To ensure accurate benchmarking with the literature, we
recalculated TM-Novelty with the patched FoldSeek v10 for several baselines, explicitly selecting the


https://github.com/steineggerlab/foldseek/issues/312

Table 1: PDB and AFDB TM-Novelty for short protein generation. For each model, we sample 5
structures for each sequence length from 50 to 256 residues, yielding a total of 1,035 structures. A
lower TM-Novelty score is better.

Model PDB Novelty (l) AFDB Novelty (])
Ambient Proteins

v =0.35 0.774 0.848

v =0.55 0.773 0.851

v =0.65 0.774 0.858
Baselines
Genie2 0.789 0.862
RFDiffusion 0.853 0.923
Proteus 0.842 0.884
Chroma 0.824 0.885
Proteina (FS v = 0.35) 0.853 0.910
Proteina (FS v = 0.45) 0.837 0.898
Proteina (FS v = 0.5) 0.831 0.893
Proteina (FS_no-tri v = 0.45) 0.832 0.891
Proteina 21M v = 0.3) 0.889 0.932
Proteina (21M v = 0.6) 0.854 0.905

max alnTM-Score for each query. We report results in Table[I] For backward compatibility, we also
reproduced literature results using the unpatched FoldSeek v9 and the default gTM-Score sorting
(Table[T3]). Moving forward, we strongly recommend that adopting FoldSeek v10 and always using
the max aln'TM-Score value to determine the novelty per query when computing TM-Novelty.

Using both versions of FoldSeek, Ambient Protein Diffusion sets new state-of-the-art TM-novelty
scores on both the PDB and AFDB (588K) benchmarks. In the short-evaluation regime (< 256
AAs) using FoldSeek v10, we exceed the next-best model (Genie2) by 2.0% on PDB and 1.6% on
AFDB—despite Genie2’s restriction to proteins no longer than 256 AAs. Against Proteina, we further
boost TM-novelty by 7.0% on PDB and 4.8% on AFDB. In the long-evaluation regime (300-800
AAs), we focus on comparison with Proteina. Here, we achieve TM-novelty scores of 0.682 on PDB
and 0.740 on AFDB, representing improvements of 18.4% and 16.2%, respectively. Together, these
results demonstrate that Ambient Protein Diffusion, driven by the Ambient loss and cluster dataset,
produces the most novel proteins across both short and long-sequence settings.

4.5 Motif Scaffolding

As a final evaluation, we compare our method to prior work in motif scaffolding. The full results
are shown in Appendix Figure[7]and in Appendix Tables [T1] and [I2] With v = 0.45, Ambient
Protein Diffusion generates 1,923 unique successful scaffolds for single-motif tasks, a significant
improvement over Genie2’s 1,445 [34] and performs comparably to a Proteina model (2,094 [23])),
which is much larger (200M parameters vs 17M parameters) and is optimized specifically for motif
scaffolding. For multi-motif scaffolding, Ambient Protein Diffusion generates 89 unique successful
structures across 5 of the 6 problems, outperforming Genie2, which produces 40 and solves 4.

5 Conclusion

We introduced Ambient Protein Diffusion, a framework for protein structure generation that leverages
low-confidence AlphaFold structures as a source of noisy training data. Ambient Protein Diffusion
enables the generation of long protein structures with unprecedented levels of designability, diversity
and novelty. Diversity increases as it can use low-confidence Alphafold structures that are typically
discarded and designability increases as we separate the pristine quality proteins structures from the
medium quality AlphaFold predictions. Ambient Protein Diffusion represents a foundational step
toward robust de novo protein design at more natural, biologically relevant lengths.
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A Limitations and Future Work

This work represents a first step toward protein generative models that make better use of the synthetic
structures from the AlphaFold Database. Nevertheless, there are several clear avenues for improve-
ment. (i) Structure-quality metric. We rely on AlphaFold’s self-reported pLDDT score—a coarse,
residue-averaged confidence measure that can itself be noisy or misleading, (ii) Data coverage. We
only use one representative per AFDB cluster rather than incorporating all available cluster members,
and we build on the existing AFDB clustering rather than reclustering the full 214M-structure dataset,
(iii)) pLDDT—-merging-time mapping. Our choice of how to translate pLDDT values into merging
thresholds was driven by empirical tuning rather than by a systematic ablation study or principled
selection criterion, (iv) Experimental validation. Ultimately, the real test of any generative model is
whether its predictions hold up in the laboratory. We have yet to confirm our structures experimentally.

B Ablations

B.1 Mapping function ablations

The algorithm described in Section[3.2]assumes a mapping function that maps a protein’s pLDDT to
a diffusion time after which the protein can be used for learning. For all the experiments of the paper,
we used a discrete map (detailed in Table[I6)); in particular proteins that have pLDDT > 90 are used
everywhere, proteins with pLDDT in [80, 90) are used for only the last 400 diffusion steps (out of the
1000 total) and proteins that have pLDDT in [70, 80] are only used for the last 100 diffusion steps.
This mapping was chosen to represent three coarse categories; clean samples, semi-clean proteins and
very noisy AlphaFold predictions. In this section, we ablate the choice of the mapping function to 1)
show the robustness of our method to reasonable choices, and 2) show that it is possible to achieve
improved results by optimizing this mapping.

We show results in Table 2] for small changes to the default choice used in the paper. Specifically, we
change what happens when we inflate or deflate all the pLDDT boundaries in the discrete chosen
mapping by 5 pLDDT points and we observe the differences in designability and diversity. For
all these results, we use noise scale v = 0.6 during sampling. As shown, our method is relatively
robust, as small perturbations to the mapping don’t lead to a very substantial change. In fact, the
inflated thresholds lead to a model that belongs to the Pareto frontier of Figure 4 in the paper.
Running the same model with v = 0.65 leads to another Pareto point, achieving an (86.6, 0.882)
designability-diversity pair.

plddt_to_timestep Designability Diversity Notes

(80,0) 95.2 0.590 Genie2 baseline
(90,0),(80,300),(70,900) 98.6 0.781 Paper choice
(85,0),(75,300),(70,900) 96.4 0.780 Deflated thresholds by 5
(95,0),(85,300),(75,900) 96.8 0.783 Inflated thresholds by 5

Table 2: Effect of changing the pLDDT-to-timestep function. Slight adjustments to the thresholds
lead to reasonable results, indicating that the method is robust.

Now that we established the robustness of our approach, we present further results that can be
obtained by optimizing the pLDDT to timestep mapping. Towards that goal, we try using more
discrete bins and we also explore two continuous generalizations to interpolate between the pPLDDT
boundaries used in the paper. In particular, we try a piecewise continuous function and a sigmoid
function. To explain with an example, before all proteins with pLDDT in (80, 90] were used for times
300-1000. Under the piecewise continuous generalization, a protein with pLDDT z in (80, 90] will
be used for times ¢t >= 300 - (90 — z:)/(90 — 80), e.g. a protein with pLDDT 82 is used for times
t >= 240. The results are given in Table 3]

As shown, by optimizing the mapping function, we can even outperform the results we obtained in
the paper. That said, even a simplistic choice, as the ones we opted for in the paper, can already yield
significant boosts over the Genie2 baseline.
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pLDDT to timestep mapping Designability Diversity Pareto

(90,0),(80,300),(70,900) 98.6 0.781 v" Pareto optimal ~ Paper choice
Piecewise linear 96.2 0.827 v’ Pareto optimal

Sigmoid 98.2 0.752
(90,0),(85,300),(80,600),(75,900),(70,950) 95.9 0.742 Extra bins 1
(90,0),(85,200),(80,300),(75,850),(70,900) 94.2 0.858 v' Pareto optimal  Extra bins 2

Table 3: Effect of different pLDDT-to-timestep mappings. Several mappings achieve Pareto
optimality, balancing designability and diversity.

B.2 Weighting function ablation

In the paper, we used the weighting term w(t) = 0 iy? in the Ambient loss to

1

aZ(t) — (o2(t)—o2(

balance the contribution of different diffusion times and avoid vanishing gradients. We ablate this
choice in Table As shown, removing that weighting leads to significant deterioration of the
obtained performance, both in designability and diversity. The calculations for this weighting follow

the EDM [30]] methodology, Appendix p. 26, Section B6.

Weighting Designability Diversity Pareto
Paper choice 98.6 0.781 v' Pareto optimal
Constant (w=1) 97.4 0.733

_ N

Table 4: Effect of weighting term w(t) > in the loss.

(o2(t)—o?(t:))

B.3 Dataset reclustering ablation

In Figure [ of the main paper, we fix the dataset to the geometric reclustered version we created
in this work, and we ablate the effect of Ambient training. In this section, we perform additional
experiments to understand the standalone value of geometric reclustering. We report results with all
combinations of Ambient vs. no Ambient and reclustering vs. no recluresting in Table[5] As shown
in the Table, reclustering leads to improved diversity, but without Ambient designability is low. Both
innovations are needed to achieve the optimal performance.

Setting Dataset Designability T Diversity 1
No Ambient Genie2 95.2 0.590
No Ambient Re-clustered 814 0.902
Ambient Genie2 96.4 0.501
Ambient Re-clustered 98.6 0.781

Table 5: Effect of dataset reclustering. Re-clustering increases diversity, but without Ambient
training, the designability is low. The combination of the two innovations yields the optimal results.

B.4 Loss ablation

For low pLDDT structures, zo cannot be trusted. Instead, our loss involves predicting a noisy version
of the low pLDDT protein, which can be trusted more than the original protein because, intuitively,
the noise has erased some of the AlphaFold prediction mistakes. For completeness and to support
our argument, we provide one further ablation where we train a model with the same setup as the
short-protein generation in the paper, but using x( prediction loss instead of the proposed loss. Results
are shown in Table[6]

For a more detailed discussion on the benefits of the Ambient loss over the original diffusion loss, we
refer the reader to the work of Shah et al. [43]].
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Figure 6: Additional qualitative visualizations of unconditional generations.
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Loss Type Designability Diversity

Ambient loss 98.6 0.781

x( prediction loss 98.5 0.753
Table 6: Effect of Ambient loss. Ambient loss achieves slightly higher designability and diversity
compared to xg prediction loss.

Figure 7: Performance on Motif Scaffolding Tasks. We compare Ambient Protein Diffusion to
state-of-the-art models for motif scaffolding. The graphs show the number of unique successful
scaffolds generated for each single- and multi-motif task. No model produced successful scaffolds
for 4JHW and 3NTN. Only Ambient Protein Diffusion produced a valid solution for multi-motif
scaffolding of 2B51.

C Additional Results

C.1 Motif Scaffolding Results

We additionally compare our method to prior work on motif scaffolding in Figure|/} with full results
provided in the supplement. Our evaluation follows the Genie2 benchmark, which comprises 24
single-motif and 6 multi-motif design tasks [34, 50]]. For each task, we generate 1,000 scaffold
samples using a noise scale of v = 0.45. A design is considered successful if it (1) satisfies Genie2’s
motif designability criteria and (2) preserves the motif with an RMSD below 1A. Among successful
designs, a scaffold is counts as unique if its TM-score is at most 0.6 when compared to any other
successful scaffold. A task is considered solved if at least one successful scaffold is generated.

With v = 0.45, Ambient Protein Diffusion generates 1,923 unique successful scaffolds for single-
motif tasks, a significant improvement over Genie2’s 1,445 [34] and performs comparably to a
Proteina model (2,094 [23]) that is much larger (200M parameters vs 17M parameters) and is
optimized specifically for motif scaffolding. Notably, all methods solve a similar number of motifs —
RFDiffusion solves 22 of the 24 tasks, while Ambient Protein Diffusion, Genie2, and Proteina each
solve the same 23 tasks. For multi-motif scaffolding, Ambient Protein Diffusion generates 89 unique
successful structures across 5 of the 6 benchmark problems, outperforming Genie2, which produces
40 and solves 4. Ambient Protein Diffusion performs particularly well on the 1PRW_four motif
(38 vs. 11 successful structures) in which a scaffold is generated surrounding a calcium binding
motif [48]]. Overall, Ambient Protein Diffusion outperforms existing methods such as Genie2 and
RFDiffusion on single-motif tasks and matches the performance of a Proteina model optimized
specifically for motif-scaffolding.

We want to underline that when counting successes in motif scaffolding it is important to fix the
scaffold length for a given motif for all the baselines. In particular, we noticed that increasing the
protein length leads to consistent improvements. For fair comparison between models, we provide
results for Ambient Protein Diffusion, Genie, and RFDiffusion, where increasing the scaffold lengths
by 1.5 increased the total number of successes. Assuming we use the midpoint of the mininum and
maximum scaffold lengths as provided in the Genie 2 benchmark (structures are provided by the
RFDiffusion benchmark, but the lengths are from Genie), Genie generates 1327 successes, Ambient
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Protein Diffusion generates 1849, and RFDiffusion generates 694. If we increase the length by
1.5, Genie, Ambient Protein Diffusion and RFDiffusion generate 2486, 3776 and 1033 successful
scaffolds respectively.

C.2 Secondary Structure Evaluations

In this section, we systematically evaluate the Secondary Structure Proportions of our generated
proteins. Specifically, we first use biotite to assign secondary structure labels to all the generated
proteins. Then, we look at the designable PDB files, we calculate the percentages of alpha/beta/loops,
and then we average those over all designable PDBs. The results are shown in Table

Method a-Helix (%) | [3-Sheet (%) T
Genie2 72.7 4.8
Proteina MFS 0.35 71.6 5.8
Proteina MFS 0.45 68.1 6.9
Proteina MFS 0.50 67.0 7.2
Ambient Protein Diffusion (scale 0.5) 69.9 7.9
Ambient Protein Diffusion (scale 0.4) 66.6 9.5

Table 7: Secondary structure composition across methods. Lower a-Helix and higher 5-Sheet
percentages indicate more natural outputs.

As shown, Ambient Protein Diffusion generates proteins with more beta sheets and loops compared
to Proteina and Genie2, illustrating progress towards designing more natural proteins. That said,
all the models, including ours, show a bias towards alpha helices. One way to mitigate this bias
is through secondary structure conditioning. In our code, we further release a model that can be
conditioned on a per-residue SS label. As we increase the Classifier Free Guidance strength towards
beta sheets, this model generates proteins with more interesting SS structure, as summarized in Table
[8] Preliminary designability/diversity evaluations show weaker performance of this model compared
to the unconditional models of our main paper. Optimally balancing structural diversity and strong
designability/diversity metrics remains a challenging open problem.

Guidance strength «a-Helix (%) | (3-Sheet (%) 1

0.2 82.1 1.5
0.4 61.8 11.4
0.6 30.3 33.6
0.7 21.7 36.1

Table 8: Effect of guidance strength on secondary structure composition. Increasing the strength
reduces a-Helix content and increases -Sheet content, indicating a shift towards more natural
outputs.

C.3 Complete Tabular Results

This section presents the full numerical tables corresponding to result figures shown in the text.
Specifically,

* Table[9|enumerates the results in Figure[T]and Figure {

* Table[I0]enumerate the results in Figure[5]

* Table[IT]enumerates partial results in Figure[7]

* Table[I2]enumerates partial results in Figure[7]

21



Table 9: Long protein generation performance. Best values per residue length are highlighted in
bold. Ambient Proteins results are shown for = 0.6. Found in main text in Figure[I]

Residue Length Model Designability (%) Diversity (Clusters)
Ambient 90 89
Proteina 93 55
300 Proteus 93 23
Improved Genie2 93 93
Genie2 81 80
Ambient 92 92
Proteina 85 60
400 Proteus 83 35
Improved Genie2 79 79
Genie2 60 60
Ambient 91 91
Proteina 82 65
>00 Proteus 69 30
Improved Genie2 71 71
Genie2 20 20
Ambient 87 87
Proteina 81 55
600 Proteus 67 20
Improved Genie2 51 51
Genie2 2 3
Ambient 86 86
Proteina 68 45
700 Proteus 47 10
Improved Genie2 30 30
Genie2 1 0
Ambient 68 68
Proteina 55 47
800 Proteus 17 5
Improved Genie2 25 25
Genie2 0 0

Table 10: Designability-diversity trade-off for short protein generation. Designability and
diversity for short protein generation. Found in main text in Figure[5]

Model Designability (%1) Diversity (1)
Ambient Proteins

v=0.35 99.2 0.615

v = 0.55 98.6 0.781

v =0.65 93.0 0.867
Baselines
Genie2 95.2 0.59
FoldFlow (base) 96.6 0.20
FoldFlow (stoc.) 97.0 0.25
FoldFlow (OT) 97.2 0.37
FrameFlow 88.6 0.53
RFEDiffusion 94 4 0.46
Proteus 94.2 0.22
Proteina (FS v = 0.35) 98.2 0.49
Proteina (FS v = 0.45) 96.4 0.63
Proteina (FS v = 0.5) 91.4 0.71
Proteina (FS_no-tri v = 0.45) 93.8 0.62
Proteina (21M v = 0.3) 99.0 0.30
Proteina (21M v = 0.6) 84.6 0.59
Proteina (LoRA ~ = 0.5) 96.6 0.43
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Table 11: Performance on Single Motif Scaffolding Tasks Ambient Protein Diffusion achieves
superior results to Genie 2 and RFDiffusion and performs on par with Proteina. Crucially, our model
achieves these results zero-shot, i.e., unlike Proteina, it is not optimized for motif scaffolding and
still achieves comparable performance while being an order of magnitude smaller. Found in text

in Figure

Motif Name Genie 2 RFDiffusion Proteina Ambient Protein Diffusion

6E6R _long 415 381 713 601
6EXZ_long 326 167 290 432
6E6R_med 272 151 417 406
1YCR 134 7 249 146
S5TRV_long 97 23 179 119
6EXZ_med 54 25 43 69
7MRX_128 27 66 51 44
6E6R_short 26 23 56 27
5TRV_med 23 10 22 23
7MRX_85 23 13 31 17
3IXT 14 3 8 4
STPN 8 5 4 11
7MRX_60 5 1 2 1
1QJG 5 1 3 5
5TRV_short 3 1 1 3
5YUI 3 1 5 4
4ZYP 3 6 11 3
6EXZ_short 2 1 3 3
1PRW 1 1 1 1
5IUS 1 1 1 1
1BCF 1 1 1 1
SWN9 1 0 2 1
2KL8 1 1 1 1
4JHW 0 0 0 0
Total 1445 889 2094 1923

Table 12: Performance on Multi Motif Scaffolding Tasks Ambient Protein Diffusion achieves
consistently superior results to the predecessor Genie-2 model, despite using the same architecture,
i.e. the benefit comes from better use of the data. The motif 2B5I is only solved by Ambient Protein
Diffusion. Found in text in Figure

Motif Name Genie 2 Ambient Protein Diffusion

3BIK+3BP5 17 23
1PRW_four 11 38
1PRW_two 8 15
4JHW+5WN9 4 12
2B5I 0 1
3NTN 0 0
Total 40 89
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Table 13: Performance Comparison on Single Motif Scaffolding Tasks with Constant Midpoint
Length

Motif Name Genie2 Ambient RFDiffusion Lengths

6E6R _long 406 601 208 108
6EXZ_long 296 432 158 110
6E6R_med 286 406 70 78
1YCR 78 95 3 70
5TRV_long 85 119 40 116
6EXZ_med 46 69 17 80
7MRX_128 28 44 52 128
6E6R_short 25 27 5 48
5TRV_med 33 23 9 86
TMRX_85 24 17 12 85
3IXT 5 1 1 62
5TPN 2 1 1 62
TMRX_60 1 1 1 60
1QJG 2 2 103 78
5TRYV_short 2 1 4 56
5YUI 1 2 1 75
47YP 1 2 2 40
6EXZ_short 1 1 2 50
1PRW 1 1 1 82
5IUS 1 1 1 99
1BCF 1 1 1 124
S5WN9 1 1 1 42
2KLS8 1 1 1 79
4JHW 0 0 0 75
Total 1327 1849 694

D Evaluation Metrics

Evaluation of a protein generative model is challenging and there have been a few metrics that have
been proposed. In what follows, we explain standard metrics in the protein-generative modeling
literature that we will use in our Experimental Results section. Our experiments report using Proteina’s
definitions of the metrics when possible.

D.1 Designability

Designability (also referred to as refoldability) assesses the structural plausibility of generated
proteins. Given a generated backbone, ProteinMPNN [19] generates eight plausible amino acid
sequences for that backbone. ESMFold then folds each sequence and the resulting eight structures
are compared to the original backbone. The self-consistency RMSD (scRMSD) is defined as the
smallest root mean squared deviation between the generated backbone and each of the eight refolded
structures. A backbone is considered designable if scRMSD < 2 A and designability is defined as
the percentage of generated backbones that meet this criterion.

D.2 Diversity

Diversity quantifies the structural variability among the generated proteins. Designable backbones
are clustered using Foldseek with a TM-score threshold of 0.5. Diversity is then defined as:

Number of Designable Clusters

Diversity = '
Wersity = Simber of Designable Samples

This metric reflects the proportion of structurally distinct (i.e., non-redundant) designable backbones
among all designable samples.
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Table 14: Performance Comparison on Single Motif Scaffolding Tasks with 1.5x Length

Motif Name Genie2 Ambient RFDiffusion Lengths
6E6R_long 439 720 243 162
6EXZ_long 526 848 193 165
6E6R_med 393 633 74 117
1YCR 321 459 25 105
5TRV_long 64 102 14 174
6EXZ_med 349 490 19 120
TMRX_128 14 23 84 192
6E6R_short 145 215 6 72
5TRV_med 82 109 5 129
TMRX_85 23 42 15 127
3IXT 48 27 1 93
5TPN 16 40 13 93
TMRX_60 9 10 2 90
1QJG 0 2 323 117
5TRV_short 11 10 2 84
5YUI 4 9 1 112
47ZYP 6 13 6 60
6EXZ_short 31 17 2 75
1PRW 1 1 1 123
51US 1 1 1 149
1BCF 1 2 1 186
5WN9 1 2 0 63
2KL38 1 1 1 118
4JHW 0 0 1 112
Total 2486 3776 1033

Table 15: PDB and AFDB TM-Novelty for short protein generation using FoldSeek-v9 and max
qTM-score row. We recompute all values using Geffner et al. [23]] method. Numbers reported by
Geftner et al. [23]] are shown in parenthesis. These numbers are reported for backwards comparisons
only and we strongly encourage the community to use the corrected TM-Novelty scores reported in
the main text (see Appendix [D.3).

Model PDB Novelty (|l) AFDB Novelty ()
Ambient Proteins

v=0.35 0.604 0.663

v =10.55 0.606 0.671

v =10.65 0.608 0.673
Baselines
Genie2 0.621 (0.63) 0.685 (0.69)
RFDiffusion 0.711 (0.71) 0.779 (0.77)
Proteus 0.741 (0.74) 0.766 (0.76)
Chroma 0.686 (0.69) 0.732 (0.74)
Proteina (FS v = 0.35) 0.727 (0.71) 0.783 (0.77)
Proteina (FS v = 0.45) 0.709 (0.69) 0.769 (0.75)
Proteina (FS v = 0.5) 0.698 (0.69) 0.760 (0.75)
Proteina (FS_no-tri v = 0.45) 0.702 (0.69) 0.759 (0.76)
Proteina (21M v = 0.3) 0.811 (0.81) 0.841 (0.84)
Proteina (21M v = 0.6) 0.761 (0.72) 0.797 (0.77)
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D.3 Novelty

Metric definition. Novelty is a metric that assesses the uniqueness of the generated backbones in
comparison to existing structures in a database. We compute the novelty score with respect to both
AFDB and PDB datasets following Geffner et al. [23]. To compute novelty, we measure the structural
similarity of each designable protein to those in the dataset using FoldSeek’s easy-search command
used by Proteina:

foldseek easy-search <path_sample> <database_path> <out_file> <tmp_path>
-alignment-type 1 -exhaustive-search -tmscore-threshold 0.0 -max-segs
10000000000 -format-output query,target,alntmscore,lddt

For each designable backbone, we keep the max alntmscore value rather than the alntmscore value
of the first row, which is the max qtmscore value. The novelty of the dataset is the average of these
maximum alntmscore values, representing how distinct our generated structures are from the proteins
in the reference database (i.e., we do df . groupby ("query") ["alntmscore"] .max () .mean()).
Perhaps counterintuitively, high novelty is not desired since it implies high similarity to the existing
database.

Bug in novelty computation. Several of our evaluation metrics —TM-Diversity and TM-Novelty—
depend on FoldSeek’s TM-score implementation. In Fall 2024, however, FoldSeek developers
identified a bug in the alntmscore output (see Github issue 312 titled "alntmscore output is wrong"
for details), which means that all previously reported TM-based metrics in the literature that did
not use FoldSeek v10 (release 10-941cd33) are incorrect. Additionally, we found that Geffner
et al. [23] mistakenly computed TM-novelty by taking the alnTM-Score from the row with the
highest qTM-Score, rather than from the row with the highest alnTM-Score. This oversight arises
because Foldseek’s easy-search command, by default, sorts its output in descending order by qTM-
Score—irrespective of the requested output format.

To ensure accurate and comparable benchmarking with the literature, we recalculated TM-Novelty
with the patched FoldSeek v10 (release 10-941cd33), explicitly selecting the maximum alnTM-Score
for each query. For backward compatibility, we also reproduced literature results using the unpatched
FoldSeek v9 (release 9-427df8a) and the default max qTM-Score row. Moving forward, we strongly
recommend that the community adopt FoldSeek v10 and always sort using the alnTM-Score output
to determine the maximum TM-Score per query and correctly compute TM-Novelty. Using both
versions of FoldSeek, Ambient Protein Diffusion sets new state-of-the-art TM-novelty scores on both
the PDB and AFDB (588K) benchmarks.

E Full Training Algorithm and Implementation Details

E.1 Additional Implentation Details

Loss buffer. The loss rescaling introduced in the main paper ensures balanced weighting across
noise levels. At the same time, it also introduces a potential instability: the loss explodes as o(t)
approaches o (¢;). To mitigate this instability, we define a buffer zone around each protein’s assigned
noise level. Specifically, given a protein’s assigned noise level ¢;, it is only used during training at
timesteps ¢ + 7, where 7 is a buffer hyperparameter that controls the exclusion margin. This constraint
prevents the model from encountering degenerate gradient behavior near the rescaling boundaries
and is only applied to medium and low confidence structures (pLDDT < 90). We underline that is
similar to how in normal diffusion there is a buffer time zone around ¢ = 0 that is never sampled.

Ambient in high-noise regime. As explained in the main paper, each protein is only used for a subset
of diffusion times according to its average pLDDT value. The proteins that have super high PLDDT
(> 90) are considered clean data and can be used with the normal training objective. However, as
found in [43]], using the Ambient training objective for high-noise might be useful even if clean data
is available. Intuitively, this objective prevents memorization and promotes diversity in the outputs.
We ablated this design choice, and we found a slight increase in diversity for the same designability
by using this. Hence, we used this tool from [43] for all our Ambient Protein Diffusion trainings.
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E.2 Algorithm

We provide the full algorithm in Algorithm[I] We commit to open-sourcing our code and models to
facilitate the broader adoption of our method from the community.

Algorithm 1 Ambient Protein Diffusion: Training Algorithm.

Require: untrained network hy, dataset D = { (xg), pLDDT®) N ., pLDDT to diffusion time
mapping function f : [0,100] — R™T, noise scheduling o(t), batch size B, diffusion time 7',
buffer 7. A

D« {(xff) + f(pLDDT®)el®, f(pLDDT@)) (2, pLDDT®) € D, ) ~ (0, Id)} >

Noise each point in the training set according to its pLDDT and get (noisy, noise level) pairs.

2: while not converged do
3: t§1)7 e th) + Sample uniformly B times in [0, 7] > Sample diffusion times for this batch.
4: D,, + shuffle(D) > Shuffle dataset.
5 loss +— 0 > Initialize loss.
6: pos < 0 > Initialize index at shuffled dataset.
7: fori e [1,B] do
8: while True do > find the first eligible point
9: Yy, ty < Dy[pos]
10: if t, > t' + 7 then
11: break
12: else
13: pos < pos + 1 > Move to the next point in the dataset.
14: end if
15: end while
16: e ~N(0,I) > Sample noise.
17: t <+ tf:) > Time to be used in this training update.
18: 1 1y > Assigned time based on the PLDDT value
19: Ty, <Y > Noised point to the assigned time.
20: Xy < 2y, +1/02(t) — 2(t;)e > Add additional noise.
21: aft,t;) + TWze ),
22: w(t, t;) + W(t)”j% > Loss reweighting.
23: loss < loss + w(t, t;) ||au(t, t;) ho (e, ) + (1 — ault, ;)2 — x4, || > Ambient loss
24: end for
25: loss < k’% > Compute average loss.
26: 0 < 0 —nVyloss > Update network parameters via backpropagation.

27: end while

E.3 Model and Training Hyperparameters

E.3.1 Hyperparameters for model optimized for long generation.

We train Ambient Protein Diffusion in 3 stages with increasingly longer proteins. In the first stage,
we train on proteins from 50 to 256 residues for 200 epochs on our ambient clusters dataset using the
representatives (~ 196,000 proteins). Since we increased the batch size to 384 items, we adopted
a learning rate schedule to improve convergence [25]. We train with the AdamW optimizer with a
maximal learning rate of 1.0 x 10~%. During the second and third stage, we include additional cluster
representatives of at most 512 and 712 residues, which scales our dataset to ~269,000 and ~291,000
proteins respectively. Training is performed on 48 GH200 GPUs and runs in 18, 48, and 48 hours
for each stage respectively. We underline that the computational cost of training our model, while
significant, is still relatively low compared to the Proteina’s estimated 14 days training on 128 A100
GPUs. This is due to the decreased size of our model (< 17M vs 200M) and training set (~ 290K vs
~ T80K).

Table|16|includes a more thorough list of the hyperparameters used for our experiments.
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Table 16: Hyperparameters of the diffusion protein model. Dashes (-) indicate that the value
is the same as the previous column. The Ambient walls correspond to the assigned diffusion times
based on the protein’s pLDDT (times are from 1 to 1000). Proteins with pLDDT > 90 are used
everywhere. Proteins with pLDDT > 80 are used for times in [600, 1000] and proteins with pLDDT
> 70 are used for times in [900, 1000]. We underline that these hyperparameters were not particularly
optimized, and even more benefits might be observed by properly tuning these values.

Hyperparameter Genie2 Ambient (Stage 1) Stage 2 Stage 3
Diffusion
Number of timesteps 1,000 - - -
Noise schedule Cosine - - -
[1,1000], pLDDT > 90
Allowed times: - [600,1000], 90 > pLDDT > 80 - -
[900, 1000], 80 > pLDDT > 70
Model Architecture
Single feature dimension 384 - - -
Pair feature dimension 128 - - -
Pair transform layers 5 8 8 8
Triangle dropout 0.25 - - -
Structure layers 8 - - -
Training
Optimizer AdamW - - -
Number of training proteins 586k 196k 269k 291k
Number epochs 40 200 50 20
Warmup iterations 10,000 1,000 500 100
Total batch size 384 384 96 48
Learning rate 1.0 x 1074 1.0 x 1074 1.0 x 1075 1.0 x 107°
Weight decay 0.05 - - -
Minimum protein length 20 20 50 50
Maximum protein length 256 256 512 768
Minimum mean pLDDT 80 70 70 70
Compute Resources
Number of GPUs 48 48 48 48
Training time 18 hr 18hr 48hr 48hr
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E.3.2 Hyperparameters for model optimized for short generation.

The Ambient Protein Diffusion model used in this experiment was trained on a dataset filtered with
a TM-Align threshold of 0.4 (as opposed to 0.5), resulting in a training set of approximately 90K
cluster representative proteins. While it is well known that protein pairs with TM-scores above
0.5 typically share the same fold, and those below 0.5 generally do not, we find that the trade-off
between designability and diversity is sensitive to the underlying structural heterogeneity of the
dataset. Notably, clustering with a TM-align threshold of 0.4, which corresponds to less than a 1%
chance of shared global topology, slightly outperforms the 0.5 threshold, which reflects a ~38%
probability of topological similarity [54]].

E.4 Sampling
E.4.1 Noise scale
In diffusion modeling, one designs a forward Ito corruption process:
dX; = f(Xy,t)dt + g(t)d By, 4

defined by the drift function f(-,-) and the noise coefficient g(-). This process gets initialized at a
distribution pg and diffuses over time, defining smoother densities p;. Due to a remarkable result by
Anderson [3]], sampling from py is achieved by running the reverse process:

AX7 ¢ = (= f(Xr—4,T = t) + ¢*(T — t)Viog pr (X1 4))dt + g(T — t)dBr—,  (5)
initialized at py.

However, in the context of protein generative models, it has been observed that sampling from
a discretized version of the reverse process of Equation [6] does not lead to good performance as
measured by the available metrics. Hence, it is common practice in the protein generative modeling
literature to sample from a tilted measure using the process:

AX7 ¢ = (= f(X7 -4, T = t) + g*(T — )Viog pr—+(Xr—+))dt + g(T — t)\/4dBr—¢,  (6)

where the parameter «y controls the stochasticity added to the generation. Typically, this parameter is
set to values v < 1 leading to more designable proteins at the expense of reduced diversity in the
generated samples. The goal is often to optimally control the trade-off between designability and
diversity, i.e. to be able to produce a wide range of structurally and functionally diverse proteins.
Unless stated otherwise, for the experiments in this paper, we use 7 = 0.6 (as done in Genie2 [34]]).

E.4.2 Hyperparameters and sampling methods

For sampling, we follow the exact same parameters as Genie2. In particular, we run 1000 sampling
steps using a simple first-order discretization of Equation (6). We underline that results could be
further enhanced by using more advanced sampling techniques such as autoguidance [31] (used in
Proteina [23|]), higher-order samplers [30] and test-time scaling [38] methods.
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