
Exact Representation of Sparse Networks with
Symmetric Nonnegative Embeddings

Sudhanshu Chanpuriya1, Ryan A. Rossi2, Anup Rao2, Tung Mai2,
Nedim Lipka2, Zhao Song2, and Cameron Musco3

1University of Illinois Urbana-Champaign, schariya@illinois.edu
2Adobe Research, {ryrossi,anuprao,tumai,lipka,zsong}@adobe.com

3University of Massachusetts Amherst, cmusco@cs.umass.edu

Abstract

Graph models based on factorization of the adjacency matrix often fail to capture
network structures related to links between dissimilar nodes (heterophily). We
introduce a novel graph factorization model that leverages two nonnegative vectors
per node to interpretably account for links between both similar and dissimilar
nodes. We prove that our model can exactly represent any graph with low arboric-
ity, a property that many real-world networks satisfy; our proof also applies to
related models but has much greater scope than the closest prior bound, which
is based on low max degree. Our factorization also has compelling properties
besides expressiveness: due to its symmetric structure and nonnegativity, fitting the
model inherently finds node communities, and the model’s link predictions can be
interpreted in terms of these communities. In experiments on real-world networks,
we demonstrate our factorization’s effectiveness on a variety of tasks, including
community detection and link prediction.

1 Introduction

Graphs data naturally arises in a variety of fields including sociology (Mason & Verwoerd, 2007),
biology (Scott, 1988), and computer networking (Bonato, 2004). A key task in machine learning
for graph data is forming models of graphs that can predict edges between nodes, form useful
representations of nodes, and reveal interpretable structure in the graph, such as detecting clusters of
nodes. Many graph models fall under the framework of edge-independent graph generative models,
which output the probabilities of edges existing between any pair of nodes. The parameters of such
models can be trained iteratively on the network, or some fraction of the network which is known, in
the link prediction task, i.e., by minimizing a predictive loss. To choose among these models, one
must consider two criteria: 1) whether the model can express structures of interest in the graph, 2)
whether the model expresses these structures in an interpretable way.

Expressiveness of low-dimensional embeddings As real-world graphs are high-dimensional
objects, graph models generally compress information about the graph. For example, dot product
models associate each node with a real-valued “embedding” vector; the predicted probability of a link
between two nodes increases with the similarity of their embeddings. These models can alternatively
be seen as factorizing the graph’s adjacency matrix to approximate it with a low-rank matrix. Recent
work of Seshadhri et al. (2020) has shown that dot product models are limited in their ability to
model common structures in real-world graphs, such as triangles incident only on low-degree nodes.
In response, Chanpuriya et al. (2020) showed that with the logistic principal components analysis
(LPCA) model, which has two embeddings per node (i.e., using the dot product of the ‘left’ embedding
of one node and the ‘right’ embedding of another), not only can such structures be represented, but
further, any graph can be exactly represented with embedding vectors whose lengths are linear in the

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

max degree of the graph. There are two keys to this result. First is the presence of a nonlinear linking
function in LPCA; since adjacency matrices are generally not low-rank, exact low-rank factorization
is impossible without a linking function. Second is that having two embeddings rather than one allows
for expression of non-positive semidefinite (PSD) matrices. As discussed in Peysakhovich & Bottou
(2021), that the single-embedding models can only represent PSD matrices precludes representation
of ‘heterophilous’ structures in graphs; heterophilous structures are those wherein dissimilar nodes
are linked, in contrast to more intuitive ‘homophilous’ linking between similar nodes.

Interpretability and node clustering Beyond being able to capture a given network accurately, it is
often desirable for a graph model to form interpretable representations of nodes and to produce edge
probabilities in an interpretable fashion. Dot product models can achieve this by restricting the node
embeddings to be nonnegative. Nonnegative factorization has long been used to decompose data into
parts (Donoho & Stodden, 2003). In the context of graphs, this entails decomposing the set of nodes
of the network into clusters or communities. In particular, each entry of the nonnegative embedding
vector of a node represents the intensity with which the node participates in a community. This allows
the edge probabilities output by dot product models to be interpretable in terms of coparticipation in
communities. Depending on the model, these vectors may have restrictions such as a sum-to-one
requirement, meaning the node is assigned a categorical distribution over communities. The least
restrictive and most expressive case is that of soft assignments to overlapping communities, where the
entries can vary totally independently. In such models, which include the BIGCLAM model of Yang
& Leskovec (2013), the output of the dot product may be mapped through a nonlinear link function
(as in LPCA) to produce a probability for each edge, i.e., to ensure the values lie in [0, 1].

Summary of contributions The key contributions of this work are as follows:

• We prove that LPCA admits exact low-rank factorizations of graphs with bounded arboricity,
which is the minimum number of forests into which a graph’s edges can be partitioned. By
the Nash-Williams theorem, arboricity is a measure of a graph’s density in that, letting S
denote an induced subgraph and nS and mS denote the number of nodes and edges in S,
arboricity is the maximum over all S of ⌈ mS

nS−1⌉. Our result is more applicable to real-world
graphs than the prior result of Chanpuriya et al. (2020) for graphs with bounded max degree,
since sparsity is a common feature of real networks, whereas low max degree is not.

• We introduce a graph model that extends LPCA and is both highly expressive and inter-
pretable. Our model incorporates two embeddings per node and a nonlinear linking function,
and hence is able to express both heterophily and overlapping communities. At the same
time, our model is based on symmetric nonnegative matrix factorization, so it outputs link
probabilities that are interpretable in terms of the communities it detects. While prior graph
factorizations incorporate some aspects of nonnegativity, heterophily, and/or nonlinearity,
our proposed model lies at the intersection of all three.

• We show how any graph with a low-rank factorization in the LPCA model also admits a
low-rank factorization in our community-based model. This means that the guarantees on
low-rank representation for bounded max degree and arboricity also apply to our model.

• In experiments, we show that our method is competitive with and often outperforms other
comparable models on real-world graphs in terms of representing the network, doing
interpretable link prediction, and detecting communities that align with ground-truth.

2 Motivating Example

To demonstrate how heterophily can manifest in networks, as well as how models which assume
homophily can fail to represent such networks, we provide a simple synthetic example involving a
graph of matches between users of a dating app. Suppose that users of this app are generally seeking
partners of a different gender (to simplify this example, we assume that each user of the app is either
a man or a woman), and suppose that each user comes from one of ten cities. Members from the
same city are likely to match with each other; this typifies homophily, wherein links occur between
similar nodes. Furthermore, users having the same gender are unlikely to match with each other;
this typifies heterophily. Figure 1 shows an instantiation of such an adjacency matrix with 1000
nodes, which are randomly assigned to man or woman and to one of the ten cities. We recreate
this network with our proposed embedding model and with BIGCLAM, which explicitly assumes

2

homophily. We also compare with the SVD of the adjacency matrix, which outputs the best (lowest
Frobenius error) low-rank approximation that is possible without a nonlinear linking function. Since
SVD lacks nonnegativity constraints on the factors, we do not expect intepretability. In Figure 2, we
show how BIGCLAM captures only the ten communities based on city, i.e., only the homophilous
structure, and fails to capture the heterophilous distinction between men and women. We also plot the
error of the reconstructions as the embedding length increases. There are 10 · 2 = 20 different kinds
of nodes, meaning the expected adjacency matrix is rank-20, and our model maintains the lowest
error up to this embedding length; by contrast, BIGCLAM is unable to decrease error after capturing
city information with length-10 embeddings. In Figure 3, we visualize the features generated by
the three methods, i.e., the factors returned by each factorization. Our model’s factors capture the
relevant latent structure in an interpretable way. By contrast, SVD’s factors are harder to interpret,
and BIGCLAM does not represent the heterophilous structure.

0 200 400 600 800
0

200

400

600

800

Expected Adjacency
0 200 400 600 800

0

200

400

600

800

Sampled Adjacency

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: The motivating synthetic graph. The expected adjacency matrix (left) and the sampled
matrix (right); the latter, which is passed to the training algorithms, is produced by treating the entries
of the former as parameters of Bernoulli distributions and sampling. The network is approximately a
union of ten bipartite graphs, each of which correspond to men and women in one of the ten cities.

0 200 400 600 800
0

200

400

600

800

SVD
0 200 400 600 800

0

200

400

600

800

BigClam
0 200 400 600 800

0

200

400

600

800

Ours

5 10 15 20
Embedding Length

0.7

0.8

0.9

Frobenius Error
SVD
BigClam
Ours

Figure 2: Left: Reconstructions of the motivating synthetic graph of Figure 1 with SVD, BIGCLAM,
and our model, using 12 communities or singular vectors. Note the lack of the small diagonal
structure in BIGCLAM’s reconstruction; this corresponds to its inability to capture the heterophilous
interaction between men and women. Right: Frobenius error when reconstructing the motivating
synthetic graph of Figure 1 with SVD, BIGCLAM, and our model, as the embedding length is varied.
The error is normalized by the sum of the true adjacency matrix (i.e., twice the number of edges).

0 200 400 600 800
0
2
4
6
8

SVD
0 200 400 600 800

0
2
4
6
8

10

BigClam
0 200 400 600 800

0
2
4
6
8

Ours

0 200 400 600 800

0

1

2

0 200 400 600 800

0

1

0.5

0.0

0.5

0.5

0.0

0.5

0.0

0.5

1.0

0

2

0

2

4

Figure 3: Factors resulting from decomposition of the motivating synthetic graph of Figure 1 with
the three models, using 12 communities or singular vectors. The top/bottom rows represent the
positive/negative eigenvalues corresponding to homophilous/heterophilous communities (note that
BIGCLAM does not include the latter). The homophilous factors from BIGCLAM and our model
reflect the 10 cities, and the heterophilous factor from our model reflect men and women. The factors
from SVD are harder to interpret. Note that the order of the communities in the factors is arbitrary.

3

3 Community-Based Graph Factorization

Consider the set of undirected, unweighted graphs on n nodes, i.e., the set of graphs with symmetric
adjacency matrices in {0, 1}n×n. We propose an edge-independent generative model for such graphs.
Given nonnegative parameter matrices B ∈ Rn×kB

+ and C ∈ Rn×kC
+ , we set the probability of an

edge existing between nodes i and j to be the (i, j)-th entry of matrix Ã:

Ã := σ(BB⊤ −CC⊤), (1)

where σ is the logistic function. Here kB , kC are the number of homophilous/heterophilous clusters.
Intuitively, if bi ∈ RkB

+ is the i-th row of matrix B, then bi is the affinity of node i to each of the
kB homophilous communities. Similarly, ci ∈ RkC

+ is the affinity of node i to the kC heterophilous
communities. As an equivalent statement, for each pair of nodes i and j, Ãi,j := σ(bibj − cic

⊤
j).

We will soon discuss the precise interpretation of this model, but the idea is roughly similar to
the attract-repel framework of Peysakhovich & Bottou (2021). When nodes i and j have similar
‘attractive’ b embeddings, i.e., when bib

⊤
j is high, the likelihood of an edge between them increases,

hence why the B factor is homophilous. By contrast, the C factor is ‘repulsive’/heterophilous since,
when cic

⊤
j is high, the likelihood of an edge between i and j decreases.

Alternate expression We note that the model above can also be expressed in a form that normalizes
cluster assignments and is more compact, in that it combines the homophilous and heterophilous
cluster assignments. Instead of B and C, this form uses a matrix V ∈ [0, 1]n×k and a diagonal
matrix W ∈ Rk×k, where k = kB + kC is the total number of clusters. In particular, let mB and
mC be the vectors containing the maximums of each column of B and C. By setting

V =
(
B · diag

(
m−1

B

)
; C · diag

(
m−1

C

))
W = diag

((
+m2

B ; −m2
C

))
,

(2)

the constraint on V is satisfied. Further, V WV ⊤ = BB⊤ −CC⊤, so

Ã := σ(BB⊤ −CC⊤) = σ(V WV ⊤). (3)

Here, if vi ∈ [0, 1]k is the i-th row of matrix V , then vi is the soft (normalized) assignment of node i
to the k communities. The diagonal entries of W represent the strength of the homophily (if positive)
or heterophily (if negative) of the communities. For each entry, Ãi,j = σ(viWv⊤

j). We use these
two forms interchangeably throughout this work.

Interpretation The edge probabilities output by this model have an intuitive interpretation. Recall
that there are bijections between probability p ∈ [0, 1], odds o = p

1−p ∈ [0,∞), and logit ℓ =

log(o) ∈ (−∞,+∞). The logit of the link probability between nodes i and j is v⊤
i Wvj , which is a

summation of terms vicvjcWcc over all communities c ∈ [k]. If the nodes both fully participate in
community c, that is, vic = vjc = 1, then the edge logit is changed by Wcc starting from a baseline
of 0, or equivalently, the odds of an edge is multiplied by exp(Wcc) starting from a baseline odds of
1; if either of the nodes participates only partially in community c, then the change in logit and odds
is accordingly prorated. Homophily and heterophily also have a clear interpretation in this model:
homophilous communities, which are expressed in B, are those with Wcc > 0, where two nodes
both participating in the community increases the odds of a link, whereas communities with Wcc < 0,
which are expressed in C, are heterophilous, and coparticipation decreases the odds of a link.

4 Related Work

Community detection via interpretable factorizations There is extensive prior work on com-
munity detection and node clustering (Schaeffer, 2007; Aggarwal & Wang, 2010; Nascimento &
De Carvalho, 2011), perhaps the most well-known being the normalized cuts algorithm of Shi &
Malik (2000), which produces a clustering based on the entrywise signs of an eigenvector of the graph
Laplacian matrix. However, the clustering algorithms which are most relevant to our work are those
based on non-negative matrix factorization (NMF) (Lee & Seung, 1999; Berry et al., 2007; Wang &
Zhang, 2012; Gillis, 2020), many of which can be seen as integrating nonnegativity constraints into

4

the broader, well-studied random dot product graph (RDPG) model (Young & Scheinerman, 2007;
Scheinerman & Tucker, 2010; Athreya et al., 2017). One such algorithm is that of Yu et al. (2005),
which approximately factors a graph’s adjacency matrix A ∈ {0, 1}n×n into two positive matrices
H and Λ, where H ∈ Rn×k

+ is left-stochastic and Λ ∈ Rk×k
+ is diagonal, such that HΛH⊤ ≈ A.

Here H represents a soft clustering of the n nodes into k clusters, while the diagonal entries of Λ
represent the prevalence of edges within clusters. Note the similarity of the factorization to our model,
save for the lack of a nonlinearity. Other NMF approaches include those of Ding et al. (2008), Yang
et al. (2012), Kuang et al. (2012), and Kuang et al. (2015) (SYMNMF).

Modeling heterophily Much of the existing work on graph models has an underlying assumption of
network homophily (Johnson et al., 2010; Noldus & Van Mieghem, 2015). There has been significant
recent interest in the limitations of graph neural network (GNN) models (Duvenaud et al., 2015;
Kipf & Welling, 2017; Hamilton et al., 2017) at addressing network heterophily (NT & Maehara,
2019; Zhu et al., 2020; Zheng et al., 2022), as well as proposed solutions (Pei et al., 2020; Yan et al.,
2021), but relatively less work for models applicable to clustering. Some existing NMF approaches
to clustering do naturally model heterophilous structure in networks. The model of Nourbakhsh et al.
(2014), for example, is similar to that of Yu et al. (2005), but allows the cluster affinity matrix Λ to
be non-diagonal; this allows for inter-cluster edge affinity to exceed intra-cluster edge affinity, so
heterophily can arise in this model, though it is not a focus of their work. Another example is the
model in Miller et al. (2009), which is similar to ours, though it restricts the cluster assignment matrix
V to be binary; additionally, their training algorithm is not based on gradient descent as ours is, and
it does not scale to larger networks. More recently, Rubin-Delanchy et al. (2017) and Peysakhovich &
Bottou (2021) propose simple decompositions which allow for representation of non-PSD adjacency
matrices. The model in the latter work is a factorization of the form A ≈ D + BB⊤ − CC⊤,
where D ∈ Rn×n is diagonal and B,C ∈ Rn×k are low-rank; excluding the diagonal D term, the
model in the former work is algebraically identical. The authors discuss how, interestingly, this
model separates the homophilous and heterophilous structure into different factors, namely B and C,
corresponding to positive and negative eigenvalues, respectively. Note that these decompositions do
not include a nonlinear linking function, which is crucial to our exact factorization results, and the
respective works do not investigate constraining the factors to be nonnegative.

Overlapping communities and exact embeddings Many models discussed above focus on the
single-label clustering task and thus involve highly-constrained factorizations (e.g., sum-to-one
conditions). We are interested in the closely related but distinct task of multi-label clustering, also
known as overlapping community detection (Xie et al., 2013; Javed et al., 2018), which involves
less constrained, more expressive factorizations. The BIGCLAM algorithm of Yang & Leskovec
(2013) uses the following generative model for this task: the probability of a link between two
nodes i and j is given by 1 − exp(−fi · fj), where fi,fj ∈ Rk

+ represent the intensities with
which the nodes participate in each of the k communities. Note that BIGCLAM assumes strict
homophily of the communities: two nodes participating in the same community always increases
the probability of a link. However, this model allows for expression of very dense intersections of
communities, which the authors observe is generally a characteristic of real-world networks. To
ensure that output entries are probabilities, BIGCLAM’s factorization includes a nonlinear linking
function (namely, f(x) = 1− ex), like our model and LPCA. Recent work outside clustering and
community detection on graph generative models (Rendsburg et al., 2020; Chanpuriya et al., 2020)
suggests that incorporating a nonlinear linking function can greatly increase the expressiveness of
factorization-based graph models, to the point of being able to exactly represent a graph. This adds to
a growing body of literature on expressiveness guarantees for embeddings on relational data (Sala
et al., 2018; Bhattacharjee & Dasgupta, 2020; Boratko et al., 2021). Most relevant to our work, as
previously discussed, Chanpuriya et al. (2020) provide a guarantee for exact low-rank representation
of graphs with bounded max degree when using the LPCA factorization model. In this work, we
provide a new such guarantee, except for bounded arboricity, which is more applicable to real-world
networks, and extend these guarantees to our community-based factorization.

5 Theoretical Results

We first restate the main result from Chanpuriya et al. (2020) on exact representation of graphs
with bounded max degree using the logistic principal components analysis (LPCA) model, which

5

reconstructs a graph A ∈ {0, 1}n×n using logit factors X,Y ∈ Rn×k via

A ≈ σ(XY ⊤). (4)

Note that unlike our community-based factorization, the factors of the LPCA model are not nonnega-
tive, and the factorization does not reflect the symmetry of the undirected graph’s adjacency matrix.
Regardless of the model’s interpretability, the following theorem provides a significant guarantee on
its expressiveness. We use the following notation: given a matrix M , let H(M) denote the matrix
resulting from entrywise application of the Heaviside step function to M , that is, setting all positive
entries to 1, negative entries to 0, and zero entries to 1/2.

Theorem 5.1 (Exact LPCA Factorization for Bounded-Degree Graphs). Let A ∈ {0, 1}n×n be the
adjacency matrix of a graph G with maximum degree c. Then there exist matrices X,Y ∈ Rn×(2c+1)

such that A = H(XY ⊤).

This corresponds to arbitrarily small approximation error in the LPCA model (Equation 4) because,
provided such factors X,Y for some graph A, we have that lims→∞ σ

(
sXY ⊤) = H(XY ⊤) = A.

That is, we can scale the factors larger to reduce the error to an arbitrary extent.

We expand on this result in two ways. First, give a new bound for exact embedding in terms of
arboricity, rather than max degree. This increases the applicability to real-world networks, which often
are sparse (i.e., low arboricity) and have right-skewed degree distributions (i.e., high max degree).
Second, we show that any rank-k LPCA factorization can be converted to our model’s symmetric
nonnegative factorization with O(k) communities. This extends the guarantees on the LPCA model’s
power for exact representation of graphs, both the prior guarantee in terms of max degree and our
new one in terms of arboricity, to our community-based model as well. In Appendix A.1, we also
introduce a natural family of graphs - Community Overlap Threshold (COT) graphs - for which our
model’s community-based factorization not only exactly represents the graph, but also must capture
some latent structure to do so with sufficiently low embedding dimensionality.

Arboricity bound for exact representation We will use the following well-known fact: the rank
of the entrywise product of two matrices is at most the product of their individual ranks, that is,

rank(X ◦ Y) ≤ rank(X) · rank(Y).

Theorem 5.2 (Exact LPCA Factorization for Bounded-Arboricity Graphs). Let A ∈ {0, 1}n×n

be the adjacency matrix of an undirected graph G with arboricity α. Then there exist embeddings
X,Y ∈ Rn×(4α2+1) such that A = H(XY ⊤).

Proof. Let the undirected graph A have arboricity α, i.e., the edges can be partitioned into α forests.
We produce a directed graph B from A by orienting the edges in these forests so that each node’s
edges point towards its children. Now A = B +B⊤, and every node in B has in-degree at most α.

Let V ∈ Rn×2α be the Vandermonde matrix with Vt,j = tj−1. For any c ∈ R2α, [V c](t) =∑2α
j=1 c(j) · tj−1, that is, V c ∈ Rn is a degree-(2α) polynomial with coefficients c evaluated at the

integers t ∈ [n] = {1, . . . , n}. Let bi be the ith column of B. We seek to construct a polynomial
such that for t with bi(t) = 1, [V ci](t) = 0, and [V ci](t) < 0 elsewhere; that is, when inputting
an index t ∈ [n] such that the tth node is an in-neighbor of the ith node, we want the polynomial to
output 0, and for all other indices in [n], we want it to have a negative output. Letting N(i) denote the
in-neighbors of the ith node, a simple instantiation of such a polynomial in t is −1 ·

∏
j∈N(i)(t− j)2.

Note that since all nodes have in-degree at most α, this polynomial’s degree is at most 2α, and hence
there exists a coefficient vector ci ∈ R2α encoding this polynomial.

Let C ∈ Rn×2α be the matrix resulting from stacking such coefficient vectors for each of the n
nodes. Consider P = V C ∈ Rn×n: Pi,j is 0 if Bi,j = 1 and negative otherwise. Then (P ◦P⊤)i,j
is 0 when either Bi,j = 1 or (B⊤)i,j = 1 and positive otherwise; equivalently, since A = B +B⊤,
(P ◦ P⊤)i,j = 0 iff Ai,j = 1. Take any positive ϵ less than the smallest positive entry of P ◦ P⊤.
Letting J be an all-ones matrix, define M = ϵJ − (P ◦ P⊤). Note that Mi,j > 0 if A = 1 and
Mi,j < 0 if A = 0, that is, M = H(A) as desired. Since rank(J) = 1 and rank(P) ≤ 2α, by the
bound on the rank of entrywise products of matrices, the rank of M is at most (2α)2 + 1. ■

6

Exact representation with community factorization LPCA factors X,Y ∈ Rn×k can be pro-
cessed into nonnegative factors B ∈ Rn×kB

+ and C ∈ Rn×kC
+ such that kB + kC = 6k and

BB⊤ −CC⊤ = 1
2

(
XY ⊤ + Y X⊤) . (5)

As a rough outline of the argument that follows, we will need 6k columns in the new factors B,C, up
from the k columns in X,Y , because accounting for the possible asymmetry in XY ⊤ will double
the required columns, and accounting for the nonnegativity of B,C will triple the required columns.
Observe that the left-hand side can only represent symmetric matrices, but XY ⊤ is not necessarily
symmetric even if H(XY ⊤) = A for a symmetric A. For this reason, we use a symmetrization:
let L = 1

2

(
XY ⊤ + Y X⊤). Note that H(L) = H(XY ⊤), so if XY ⊤ constitutes an exact

representation of A in that H(XY ⊤) = A, so too do both expressions for L in Equation 5.
Pseudocode for the procedure of constructing B,C given X,Y is given in Algorithm 1. The concept
of this algorithm is to first separate the logit matrix L into a sum and difference of rank-1 components
via eigendecomposition. Each of these components can be written as +vv⊤ or −vv⊤ with v ∈ Rn,
where the sign depends on the sign of the eigenvalue. Each component is then separated into a sum
and difference of three outer products of nonnegative vectors, via the following Lemma 5.3.
Lemma 5.3. Let ϕ : R→ R denote the ReLU function, i.e., ϕ(z) = max{z, 0}. For any vector v,

vv⊤ = 2ϕ(v)ϕ(v)⊤ + 2ϕ(−v)ϕ(−v)⊤ − |v||v|⊤.

Proof. Take any v ∈ Rk. Then

vv⊤ = (ϕ(v)− ϕ(−v)) · (ϕ(v)⊤ − ϕ(−v)⊤)
= + ϕ(v)ϕ(v)⊤ + ϕ(−v)ϕ(−v)⊤ − ϕ(v)ϕ(−v)⊤ − ϕ(−v)ϕ(v)⊤

=+ 2ϕ(v)ϕ(v)⊤ + 2ϕ(−v)ϕ(−v)⊤ − (ϕ(v) + ϕ(−v)) · (ϕ(v) + ϕ(−v))⊤

=+ 2ϕ(v)ϕ(v)⊤ + 2ϕ(−v)ϕ(−v)⊤ − |v||v|⊤,
where the first step follows from v = ϕ(v)−ϕ(−v), and the last step from |v| = ϕ(v)+ϕ(−v). ■

Algorithm 1 follows from Lemma 5.3 and constitutes a constructive proof of the following theorem:
Theorem 5.4 (Exact Community Factorization from Exact LPCA Factorization). Given a symmetric
matrix A ∈ {0, 1} and X,Y ∈ Rn×k such that A = H(XY ⊤), there exist nonnegative matrices
B ∈ Rn×kB

+ and C ∈ Rn×kC
+ such that kB + kC = 6k and A = H(BB⊤ −CC⊤).

Algorithm 1 Converting LPCA Factors to Community Factors
Input logit factors X,Y ∈ Rn×k

Output B ∈ Rn×kB
+ , C ∈ Rn×kC

+ such that kB + kC = 6k

and BB⊤ −CC⊤ = 1
2

(
XY ⊤ + Y X⊤)

1: Set Q ∈ Rn×2k and λ ∈ R2k by truncated eigendecomposition such that
Q× diag(λ)×Q⊤ = 1

2 (XY ⊤ + Y X⊤)

2: B∗ ← Q+ × diag(
√
+λ+), where λ+, Q+ are the positive eigenvalues/vectors

3: C∗ ← Q− × diag(
√
−λ−), where λ−, Q− are the negative eigenvalues/vectors

4: B ←
(√

2ϕ(B∗);
√
2ϕ(−B∗); |C∗|

)
▷ ϕ and | · | are entrywise ReLU and absolute value

5: C ←
(√

2ϕ(C∗);
√
2ϕ(−C∗); |B∗|

)
6: return B,C

As stated in the introduction to this section, Theorem 5.4 extends any upper bound on the exact
factorization dimensionality from the LPCA model to our community-based model. That is, up to
a constant factor, the bound in terms of max degree from Theorem 5.1 and the bound in terms of
arboricity from Theorem 5.2 also apply to our model; for brevity, we state just the latter here.
Corollary 5.5 (Exact Community Factorization for Bounded-Arboricity Graphs). Let A ∈ {0, 1}n×n

be the adjacency matrix of an undirected graph G with arboricity α. Then there exist non-
negative embeddings B ∈ Rn×kB

+ and C ∈ Rn×kC
+ such that kB + kC = 6(4α2 + 1) and

A = H(BB⊤ −CC⊤).

7

Note that Corollary 5.5 is purely a statement about the capacity of our model; Theorem 5.2 stems from
a constructive proof based on polynomial interpolation, and therefore so too does this corollary. We
do not expect this factorization to be informative about the graph’s latent structure. In the following
Section 6, we will fit the model with an entirely different algorithm for downstream applications.

6 Experiments

We now present a training algorithm to fit our model, then evaluate our method on a benchmark of
five real-world networks.

6.1 Training Algorithm

Given an input graph A ∈ {0, 1}n×n, we find low-rank nonnegative matrices B and C such that the
model produces Ã = σ(BB⊤ −CC⊤) ∈ (0, 1)n×n as in Equation 1 which approximately matches
A. In particular, we train the model to minimize the sum of binary cross-entropies of the link
predictions over all pairs of nodes:

R = −
∑

ij

(
Aij log(Ãij) + (1−Aij) log(1− Ãij)

)
. (6)

We fit the parameters by gradient descent over this loss, as well as L2 regularization of the factors B
and C, subject to the nonnegativity of B and C. This algorithm is fairly straightforward; pseudocode
is given in Algorithm 2. This is quite similar to the training algorithm of Chanpuriya et al. (2020), but
in contrast to that work, which only targets an exact fit, we explore the expression of graph structure
in the factors and their utility in downstream tasks. Regularization of the factors is implemented
to this end to avoid overfitting. Though in the main paper we outline and evaluate a non-stochastic
version of the training algorithm, it can generalize straightforwardly to a more scalable stochastic
version, e.g., by sampling links and non-links for the loss function and using projected SGD. In
Appendix A.2, we discuss an industry application of our model to tabular dataset completion, for
which we employ such stochastic training. Here, we use the simpler non-stochastic training to isolate
the impact of model capacity, which is the focus of this work, as opposed to optimization.

Algorithm 2 Fitting the Constrained Model
Input adjacency matrix A ∈ {0, 1}n×n, regularization weight λ ≥ 0, # of iterations I ,

of homo/heterophilous communities kB/kC
Output fitted factors B ∈ Rn×kB

+ , C ∈ Rn×kC
+ such that σ(BB⊤ −CC⊤) ≈ A

1: Initialize B,C by setting entries to independent samples of Unif(0, 1/√kB),Unif(0, 1/√kC)
2: for i← 1 to I do
3: Ã← σ(BB⊤ −CC⊤)

4: R← −
∑

ij

(
Aij log(Ãij) + (1−Aij) log(1− Ãij)

)
5: R← R+ λ

(
∥B∥2F + ∥C∥2F

)
6: Calculate ∂B,CR, the gradient of R w.r.t. B,C, via differentiation through Steps 2 to 4
7: Update B,C to minimize R using ∂B,CR, subject to B,C ≥ 0
8: end for
9: return B,C

Implementation details Our implementation uses PyTorch (Paszke et al., 2019) for automatic
differentiation and minimizes loss using the SciPy (Jones et al., 2001) implementation of the L-
BFGS (Liu & Nocedal, 1989; Zhu et al., 1997) algorithm with default hyperparameters and up to a
max of 200 iterations of optimization. We set regularization weight λ = 10 as in Yang & Leskovec
(2013). We include code in the form of a Jupyter notebook (Pérez & Granger, 2007) demo.

6.2 Datasets

We use five fairly common mid-size datasets ranging from around 1K to 10K nodes. The selection
of these five datasets is partly based on the presence of ground-truth multi-labels, which allows for
evaluating the overlapping clustering methods. Statistics for these datasets, including the degeneracy

8

Table 1: Statistics of datasets used in our experiments. As in Sun et al. (2019), for YOUTUBE
and AMAZON, we take only nodes that participate in at least one of the largest 5 ground-truth
communities.

Name Reference Nodes Edges Labels Max Degree Degeneracy

BLOG Tang & Liu (2009) 10,312 333,983 39 3,992 114
YOUTUBE Yang & Leskovec (2015) 5,346 24,121 5 628 19
POS Qiu et al. (2018) 4,777 92,406 40 3,644 49
PPI Breitkreutz et al. (2007) 3,852 76,546 50 593 29
AMAZON Yang & Leskovec (2015) 794 2,109 5 29 6

of each network, are given in Table 1. Note that degeneracy is an upper bound on arboricity. We note
that the mid-sized networks used in our empirical work actually underemphasize the significance
of our theoretical arboricity bound: see, e.g., the real-world networks in Pashanasangi & Seshadhri
(2021), which have up to tens of millions of nodes but still have degeneracies at most in the hundreds.

BLOG is a social network of relationships between online bloggers; the node labels represent interests
of the bloggers. Similarly, YOUTUBE is a social network of YouTube users, and the labels represent
groups that the users joined.

POS is a word co-occurrence network: nodes represent words, and there are edges between words
which are frequently adjacent in a section of the Wikipedia corpus. Each node label represents the
part-of-speech of the word. PPI is a subgraph of the protein-protein interaction network for Homo
Sapiens. Labels represent biological states. Finally, AMAZON is a co-purchasing network: nodes
represent products, and there are edges between products which are frequently purchased together.
Labels represent categories of products.

While social networks like the former two in this list are generally dominated by homophily (McPher-
son et al., 2001), the latter three should exhibit significant heterophily. For co-purchasing networks
like AMAZON, depending on the product, two of the same kind of product are generally not co-
purchased, e.g., Pepsi and Coke, as discussed in Peysakhovich & Bottou (2021). Though less
intuitively accessible, there is also prior discussion of disassortativity in word adjacencies (Foster
et al., 2010; Zweig, 2016), as well as in PPI networks (Newman, 2002; Hase et al., 2010).

6.3 Results

Expressiveness First, we investigate the expressiveness of our generative model, that is, the fidelity
with which it can reproduce an input network. In Section 1, we used a simple synthetic network
to show that our model is more expressive than others due to its ability to represent heterophilous
structures in addition to homophilous ones. We now evaluate the expressiveness of our model on real-
world networks. As with the synthetic graph, we fix the number of communities or singular vectors,
fit the model, then evaluate the reconstruction error. In Figure 4, we compare the results of our model
with those of SVD, BIGCLAM (which is discussed in detail in Section 4), and SYMNMF (Kuang
et al., 2015). SYMNMF simply factors the adjacency matrix as A ≈ HH⊤, where H ∈ Rn×k

+ ;
note that, like SVD, SYMNMF does not necessarily output a matrix whose entries are probabilities
(i.e., bounded in [0, 1]), and hence it is not a natural graph generative model like ours and BIGCLAM.

POS PPI Blog Amazon YouTube
2

0

2
1

2
2

Fr
ob

en
iu

s
Er

ro
r

POS PPI Blog Amazon YouTube
2

0

2
2

2
4

C
ro

ss
-E

nt
ro

py Method
SVD
SymNMF
BigClam
Ours

Figure 4: Reconstruction error on real-world networks, relative to our model’s error.

9

For each method, we fix the number of communities or singular vectors at the ground-truth number.
For this experiment only, we are not concerned with learning the latent structure of the graph; the only
goal is accurate representation of the network with limited parameters. So, for a fair comparison with
SVD, we do not regularize the training of the other methods. Our method consistently has the lowest
reconstruction error, both in terms of Frobenius error and entrywise cross-entropy (Equation 6). We
particularly highlight the improvement over BIGCLAM; the salient difference between these models,
both of which are factorization-based, include a nonlinear link function, and assign node communities
using nonnegative factors, is the presence of the heterophilous −CC⊤ term in our model. Thus, the
improvement directly reflects the value of incorporating heterophily into the model. Interestingly, we
find the most significant improvement exactly on the three datasets which have been noted to exhibit
significant heterophily: POS, PPI, and AMAZON.

Similarity to ground-truth communities To assess the interpretability of clusters generated by our
method, we evaluate the similarity of these clusters to ground-truth communities (i.e., class labels),
and we compare other methods for overlapping clustering. We additionally compare to another
recent but non-generative approach, the VGRAPH method of Sun et al. (2019), which is based on link
clustering; the authors found their method to generally achieve state-of-the-art results in this task.
For all methods, we set the number of communities to be detected as the number of ground-truth
communities. We report F1-Score as computed in Yang & Leskovec (2013). See Figure 5 (left): the
performance of our method is competitive with SYMNMF, BIGCLAM, and vGraph.

POS PPI Blog Amazon YouTube
0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1
 S

co
re

Community Detection

Method
vGraph
SymNMF
BigClam
Ours

POS PPI Blog Amazon YouTube
0.0

0.1

0.2

0.3

F1
 S

co
re

Link Prediction

Method
Random
SymNMF
BigClam
Ours

Figure 5: Left: Similarity of recovered communities to ground-truth labels of real-world datasets.
(Note: VGRAPH is omitted on BLOG due to memory limitations.) Right: Accuracy of link prediction.

Interpretable link prediction We assess the predictive power of our generative model on the link
prediction task. As discussed in Section 3, the link probabilities output by our model are interpretable
in terms of a clustering of nodes that it generates; we compare results with our method to those with
other models which permit similar interpretation, namely BIGCLAM and SYMNMF. We randomly
select 10% of node pairs to hold out, fit the models on the remaining 90%, then use the trained models
to predict links between node pairs in the held out 10%. As a baseline, we also show results for
randomly predicting link or no link with equal probability. See Figure 5 (right). The performance of
our method is competitive with or exceeds those of the other methods in terms of F1 Score.

7 Conclusion

We introduce a community-based graph generative model based on symmetric nonnegative matrix
factorization which can represent both homophily and heterophily. We add to a prior guarantee of
exact representation for bounded degree graphs with a broader guarantee for bounded arboricity
graphs, and we show that both of these guarantees apply to our more interpretable graph model. We
illustrate our model’s capabilities with experiments on a synthetic motivating example. Experiments
on real-world networks show its effectiveness on several key tasks. Broadly, our results suggest
that incorporating heterophily into methods for networks can improve both theoretical grounding
and empirical performance, while maintaining interpretability. Future directions include deeper
understanding of the expressiveness of low-rank logit models and convergence of training algorithms.

10

Acknowledgments and Disclosure of Funding

This project was partially supported by an Adobe Research grant, along with NSF Grants 2046235
and 1763618.

References
Aggarwal, C. C. and Wang, H. A survey of clustering algorithms for graph data. In Managing and

Mining Graph Data, pp. 275–301. Springer, 2010.

Athreya, A., Fishkind, D. E., Tang, M., Priebe, C. E., Park, Y., Vogelstein, J. T., Levin, K., Lyzinski,
V., and Qin, Y. Statistical inference on random dot product graphs: a survey. The Journal of
Machine Learning Research, 18(1):8393–8484, 2017.

Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P., and Plemmons, R. J. Algorithms and
applications for approximate nonnegative matrix factorization. Computational Statistics & Data
Analysis, 52(1):155–173, 2007.

Bhattacharjee, R. and Dasgupta, S. What relations are reliably embeddable in euclidean space? In
Algorithmic Learning Theory, pp. 174–195. PMLR, 2020.

Bonato, A. A survey of models of the web graph. In Workshop on Combinatorial and Algorithmic
Aspects of Networking, pp. 159–172. Springer, 2004.

Boratko, M., Zhang, D., Monath, N., Vilnis, L., Clarkson, K. L., and McCallum, A. Capacity and bias
of learned geometric embeddings for directed graphs. Advances in Neural Information Processing
Systems, 34:16423–16436, 2021.

Breitkreutz, B.-J., Stark, C., Reguly, T., Boucher, L., Breitkreutz, A., Livstone, M., Oughtred, R.,
Lackner, D. H., Bähler, J., Wood, V., et al. The biogrid interaction database: 2008 update. Nucleic
acids research, 36(suppl_1):D637–D640, 2007.

Chanpuriya, S., Musco, C., Sotiropoulos, K., and Tsourakakis, C. Node embeddings and exact low-
rank representations of complex networks. Advances in Neural Information Processing Systems,
33, 2020.

Ding, C., Li, T., and Jordan, M. I. Nonnegative matrix factorization for combinatorial optimization:
Spectral clustering, graph matching, and clique finding. In 2008 Eighth IEEE International
Conference on Data Mining, pp. 183–192. IEEE, 2008.

Donoho, D. L. and Stodden, V. When does non-negative matrix factorization give a correct decompo-
sition into parts? In Advances in Neural Information Processing Systems 16, pp. 1141–1148. MIT
Press, 2003.

Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R., Hirzel, T., Aspuru-
Guzik, A., and Adams, R. P. Convolutional networks on graphs for learning molecular fingerprints.
In Advances in Neural Information Processing Systems 28, pp. 2224–2232, 2015.

Foster, J. G., Foster, D. V., Grassberger, P., and Paczuski, M. Edge direction and the structure of
networks. Proceedings of the National Academy of Sciences, 107(24):10815–10820, 2010.

Gillis, N. Nonnegative Matrix Factorization. SIAM, 2020.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Hase, T., Niimura, Y., and Tanaka, H. Difference in gene duplicability may explain the difference in
overall structure of protein-protein interaction networks among eukaryotes. BMC Evolutionary
Biology, 10(1):1–15, 2010.

Javed, M. A., Younis, M. S., Latif, S., Qadir, J., and Baig, A. Community detection in networks: A
multidisciplinary review. Journal of Network and Computer Applications, 108:87–111, 2018.

11

Johnson, S., Torres, J. J., Marro, J., and Munoz, M. A. Entropic origin of disassortativity in complex
networks. Physical Review Letters, 104(10):108702, 2010.

Jones, E., Oliphant, T., Peterson, P., et al. SciPy: Open source scientific tools for Python, 2001. URL
http://www.scipy.org/.

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks.
International Conference on Learning Representations, 2017.

Kuang, D., Ding, C., and Park, H. Symmetric nonnegative matrix factorization for graph clustering.
In Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 106–117. SIAM,
2012.

Kuang, D., Yun, S., and Park, H. Symnmf: nonnegative low-rank approximation of a similarity
matrix for graph clustering. Journal of Global Optimization, 62(3):545–574, 2015.

Lee, D. D. and Seung, H. S. Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791, 1999.

Liu, D. C. and Nocedal, J. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45(1-3):503–528, 1989.

Mason, O. and Verwoerd, M. Graph theory and networks in biology. IET Systems Biology, 1(2):
89–119, 2007.

McPherson, M., Smith-Lovin, L., and Cook, J. M. Birds of a feather: Homophily in social networks.
Annual review of sociology, 27(1):415–444, 2001.

Miller, K. T., Griffiths, T. L., and Jordan, M. I. Nonparametric latent feature models for link prediction.
In Advances in Neural Information Processing Systems 22, pp. 1276–1284. Curran Associates,
Inc., 2009.

Nascimento, M. C. and De Carvalho, A. C. Spectral methods for graph clustering–a survey. European
Journal of Operational Research, 211(2):221–231, 2011.

Newman, M. E. Assortative mixing in networks. Physical Review Letters, 89(20):208701, 2002.

Noldus, R. and Van Mieghem, P. Assortativity in complex networks. Journal of Complex Networks,
3(4):507–542, 2015.

Nourbakhsh, F., Bulo, S. R., and Pelillo, M. A matrix factorization approach to graph compression.
In 2014 22nd International Conference on Pattern Recognition, pp. 76–81. IEEE, 2014.

NT, H. and Maehara, T. Revisiting graph neural networks: All we have is low-pass filters. arXiv
preprint arXiv:1905.09550, 2019.

Pashanasangi, N. and Seshadhri, C. Faster and generalized temporal triangle counting, via degeneracy
ordering. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pp. 1319–1328, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019.

Pei, H., Wei, B., Chang, K. C., Lei, Y., and Yang, B. Geom-gcn: Geometric graph convolutional
networks. In 8th International Conference on Learning Representations, ICLR 2020, 2020.

Pérez, F. and Granger, B. E. IPython: a system for interactive scientific computing. Computing in
Science and Engineering, 9(3):21–29, May 2007. ISSN 1521-9615. doi: 10.1109/MCSE.2007.53.
URL https://ipython.org.

Peysakhovich, A. and Bottou, L. An attract-repel decomposition of undirected networks. arXiv
preprint arXiv:2106.09671, 2021.

12

http://www.scipy.org/
https://ipython.org

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., and Tang, J. Network embedding as matrix factorization:
Unifying deepwalk, line, pte, and node2vec. In Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, pp. 459–467. ACM, 2018.

Rendsburg, L., Heidrich, H., and Von Luxburg, U. Netgan without gan: From random walks to
low-rank approximations. In International Conference on Machine Learning, pp. 8073–8082.
PMLR, 2020.

Rubin-Delanchy, P., Cape, J., Tang, M., and Priebe, C. E. A statistical interpretation of spectral
embedding: the generalised random dot product graph. arXiv preprint arXiv:1709.05506, 2017.

Sala, F., De Sa, C., Gu, A., and Ré, C. Representation tradeoffs for hyperbolic embeddings. In
International Conference on Machine Learning, pp. 4460–4469. PMLR, 2018.

Schaeffer, S. E. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

Scheinerman, E. R. and Tucker, K. Modeling graphs using dot product representations. Computational
statistics, 25(1):1–16, 2010.

Scott, J. Social network analysis. Sociology, 22(1):109–127, 1988.

Seshadhri, C., Sharma, A., Stolman, A., and Goel, A. The impossibility of low-rank representations
for triangle-rich complex networks. Proceedings of the National Academy of Sciences, 117(11):
5631–5637, 2020.

Shi, J. and Malik, J. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2000.

Sun, F., Qu, M., Hoffmann, J., Huang, C., and Tang, J. vgraph: A generative model for joint
community detection and node representation learning. In Advances in Neural Information
Processing Systems 32, pp. 512–522, 2019.

Tang, L. and Liu, H. Relational learning via latent social dimensions. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 817–826.
ACM, 2009.

Wang, Y.-X. and Zhang, Y.-J. Nonnegative matrix factorization: A comprehensive review. IEEE
Transactions on Knowledge and Data Engineering, 25(6):1336–1353, 2012.

Xie, J., Kelley, S., and Szymanski, B. K. Overlapping community detection in networks: The
state-of-the-art and comparative study. ACM Computing Surveys, 45(4):43:1–43:35, 2013.

Yan, Y., Hashemi, M., Swersky, K., Yang, Y., and Koutra, D. Two sides of the same coin: Heterophily
and oversmoothing in graph convolutional neural networks. arXiv preprint arXiv:2102.06462,
2021.

Yang, J. and Leskovec, J. Overlapping community detection at scale: a nonnegative matrix factor-
ization approach. In Proceedings of the Sixth ACM International Conference on Web Search and
Data Mining, pp. 587–596, 2013.

Yang, J. and Leskovec, J. Defining and evaluating network communities based on ground-truth.
Knowledge and Information Systems, 42(1):181–213, 2015.

Yang, Z., Hao, T., Dikmen, O., Chen, X., and Oja, E. Clustering by nonnegative matrix factorization
using graph random walk. In Advances in Neural Information Processing Systems, pp. 1079–1087,
2012.

Young, S. J. and Scheinerman, E. R. Random dot product graph models for social networks. In
International Workshop on Algorithms and Models for the Web-Graph, pp. 138–149. Springer,
2007.

Yu, K., Yu, S., and Tresp, V. Soft clustering on graphs. In Advances in Neural Information Processing
Systems, pp. 1553–1560, 2005.

13

Zheng, X., Liu, Y., Pan, S., Zhang, M., Jin, D., and Yu, P. S. Graph neural networks for graphs with
heterophily: A survey. arXiv:2202.07082, 2022.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines
for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software
(TOMS), 23(4):550–560, 1997.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and Koutra, D. Beyond homophily in graph
neural networks: Current limitations and effective designs. Advances in Neural Information
Processing Systems, 33, 2020.

Zweig, K. A. Are word-adjacency networks networks? In Towards a theoretical framework for
analyzing complex linguistic networks, pp. 153–163. Springer, 2016.

14

A Appendix

A.1 COT Graph Exact Representation

As a theoretical demonstration of the capability of our model to learn latent structure, we additionally
show that our model can exactly represent a natural family of graphs, which exhibits both homophily
and heterophily, with small k and interpretably. The family of graphs is specified below in Definition 1;
roughly speaking, nodes in such graphs share an edge iff they coparticipate in some number of
homophilous communities and don’t coparticipate in a number of heterophilous communities. For
example, the motivating graph described in Section 2 would be an instance of such a graph if an edge
occurs between two users iff the two users are from the same city and have different genders.
Definition 1 (Community Overlap Threshold (COT) Graph). An unweighted, undirected graph whose
edges are determined by an overlapping clustering and a “thresholding” integer t ∈ Z as follows:
for each vertex i, there are two latent binary vectors bi ∈ {0, 1}kb and ci ∈ {0, 1}kc , and there is an
edge between vertices i and j iff bi · bj − ci · cj ≥ t.

Theorem A.1 (Compact Representation of COT Graphs). Suppose A is the adjacency matrix of a
COT graph on n nodes with latent vectors bi ∈ {0, 1}kb and ci ∈ {0, 1}kc for i ∈ {1, 2, . . . , n}. Let
k = kb + kc. Then, for any ϵ > 0, there exist V ∈ [0, 1]n×(k+1) and diagonal W ∈ R(k+1)×(k+1)

such that
∥∥σ(V WV ⊤)−A

∥∥
F < ϵ.

Proof. Let t be the thresholding integer of the graph, and let the rows of B ∈ {0, 1}n×kb and
C ∈ {0, 1}n×kc contain the vectors b and c of all nodes. Via Equation 2, we can find V ∗ ∈ [0, 1]n×k

and diagonal W ∗ ∈ Rk×k such that V ∗W ∗V ∗⊤ = BB⊤ −CC⊤. Now let

V = (V ∗ 1) W =

(
W ∗ 0
0 1

2 − t

)
.

Then (V WV ⊤)ij = bi · bj − ci · cj + 1
2 − t. Hence (V WV ⊤)ij > 0 iff bi · bj − ci · cj > t− 1

2 ,
which is true iff Aij = 1 by the assumption on the graph. Similarly, (V WV ⊤)ij < 0 iff Aij = 0.
It follows that

lim
s→∞

σ
(
V (sW)V ⊤) = lim

s→∞
σ
(
sV WV ⊤) = A. ■

15

A.2 Application: Tabular Data Completion

We apply our link prediction algorithm to the task of data completion for categorical tabular data.
We first transform such data to a graph as follows: We create a node for each row, as well as a node
for each unique category for each of the columns. For each entry of the table, a link occurs between
the node for the row and the node for the value in the entry, which is one of the possible categories
of the column (e.g., if Bob is American, then a link occurs between the row node for ‘Bob’ and the
category node for ‘American’). No links occur between two nodes for rows, or between two nodes for
category values. For the negative samples, we select only edges between nodes for rows and nodes
for category values; the negative samples would otherwise be dominated by pairs of nodes for rows.

We use two proprietary company datasets datasets which we call COMPANY A and COMPANY B.
We use the same experimental setup as described in Section 6.3. Unlike in Section 6.3, we have a
restriction on the possible links: each row node must be linked to exactly one of the value nodes for
each of the categories. Hence, for each combination of row node and column, we predict a link only
with the value node with the highest predicted link probability. We set the number of communities for
all methods to 20 and 50 for COMPANY A and COMPANY B, respectively. We employ the stochastic
version of our algorithm, based on projected SGD, for which code is also provided. We generally use
a batch size of 100; we find that the optimization of BIGCLAM often diverges on COMPANY B with
this batch size, so we instead use batches of size 1000 for its optimization. The results are provided in
Figure 6. Notably, our proposed approach outperforms comparable (community-based factorization)
methods in terms of accuracy. As a baseline, we also show the accuracy when completing the
tables by simply selecting the most common categorical value for each column (“PLURALITY”). All
methods outperform this baseline on both datasets.

Company A Company B
Dataset

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Method
Plurality
SymNMF
BigClam
Ours

Figure 6: Test accuracy of tabular data completion on two proprietary company datasets (COMPANY
A and COMPANY B).

16

	Introduction
	Motivating Example
	Community-Based Graph Factorization
	Related Work
	Theoretical Results
	Experiments
	Training Algorithm
	Datasets
	Results

	Conclusion
	Appendix
	COT Graph Exact Representation
	 Application: Tabular Data Completion

