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Abstract
Sequence parallel serves as a prevalent strategy to handle long sequences that exceed the memory
limit of a single GPU. However, existing methods do not take advantage of linear attention features,
resulting in sub-optimal parallelism efficiency and usability for linear-complexity language models.
In this paper, we introduce Linear Attention Sequence Parallel (LASP), an efficient sequence
parallel method designed for linear attention-based language models. Specifically, we design an
efficient point-to-point communication mechanism to leverage the right-product kernel trick of linear
attention, which sharply decreases the communication overhead. We enhance the practical efficiency
of LASP by performing kernel fusion and intermediate state caching, making the implementation of
LASP hardware-friendly on GPU clusters. Furthermore, we meticulously ensure the compatibility of
sequence-level LASP with all types of batch-level data parallel methods, which is vital for distributed
training on large clusters with long sequences and large batches. We also discuss the versatility of
LASP on other linear-complexity models. Extensive experiments on linear attention-based models
are conducted with varying sequence lengths and GPU cluster sizes. LASP scales sequence length
up to 4096K using 128x A100 80G GPUs on 1B models, which is 8× longer than existing methods
while being significantly faster.

1. Introduction
Recently, linear-complexity sequence modeling methods [1, 12, 13] are becoming increasingly
popular due to their faster processing speed and comparable modeling performance to vanilla Softmax
transformers [18–21]. As the size of large language models (LLMs) increases and sequence lengths
extend, the capacity limitations of single GPU’s memory become a significant challenge, constraining
the maximum sequence length manageable by a language model. To address this, Sequence Parallel
(SP) techniques [8, 11] are employed, which partition a long sequence into multiple sub-sequences
to be processed on separate GPUs. However, current implementations of SP methods do not fully
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Figure 1: Visualization of LASP. This figure illustrates the P2P communication mechanism em-
ployed by LASP. The complete input sequence X is divided into multiple sub-sequence chunks
{· · · ,Xi,Xi+1, · · · }, each processed by different model instances across distinct devices. For each
device i, Qi, Ki, and Vi are computed from its respective input chunk Xi. This setup facilitates the
execution of linear attention calculations. Notably, the communication operations between devices
are designed to be complementary in the forward and backward passes. Specifically, in the forward
pass, KV matrices are sent from device i to device (i+1), and in the backward pass, dKV matrices
are sent back from device (i+ 1) to device i.

exploit the advantages of linear-complexity attention mechanisms. This results in less than optimal
parallelism efficiency and reduced usability.

In this paper, we present the Linear Attention Sequence Parallel (LASP) technique for efficient
sequence parallelism on models with linear-complexity "Attention". Our approach takes linear
attention as an instance to design a sophisticated communication mechanism based on point-to-
point (P2P) communication for exchanging intermediate states during forward and backward passes
among GPUs within a node or across multiple nodes. This design maximizes the utilization of
right-product kernel tricks [5] in linear attention. Notably, our technique is independent of attention
heads partitioning, which allows it to be applied to models with varying numbers or styles of attention
heads, such as multi-head, multi-query, and grouped-query attentions. This flexibility exceeds the
capabilities of existing SP methods in Megatron-LM [8, 15] or DeepSpeed [4].

Our implementation of LASP incorporates system engineering optimizations such as kernel fusion
and KV State caching, resulting in significantly enhanced execution efficiency. Furthermore, we have
taken great care in ensuring compatibility of LASP with various (sharded) distributed data-parallel
(DDP) [10] training methods during the implementation, which we refer to as the data-sequence
hybrid parallelism. Through extensive experiments with linear transformer models of different
parameter numbers, cluster sizes, and sequence lengths, we demonstrate LASP’s performance and
efficiency when used with these DDP instances. Specifically, LASP is significantly faster than
existing SP methods and can extend sequence length 8× longer under the same hardware constraints.

Our primary contributions can be summarized as follows:
• A new SP strategy called LASP that is designed for linear-complexity sequence modeling

methods. LASP is able to perform sequence-level distributed training on 8× longer sequence
than existing SP methods while being significantly faster.

• Sequence length-independent communication overhead. Our proposed P2P communication
mechanism leverages right-product kernel trick of linear attention to ensure that the exchanging
of linear attention intermediate states is sequence length-independent.
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• GPU friendly implementation. We optimize LASP’s execution on GPU hardware through
meticulous system engineering, including kernel fusion and KV State caching.

• Data-parallel compatibility. LASP is compatible with all batch-level DDP methods, including
PyTorch/Legacy DDP, FSDP, and ZeRO-series optimizers.

2. Method

Algorithm 1: LASP (Forward Pass)
Input: input sequence in embedding space X ∈ RN×d with

sequence length N and hidden dimension d, distributed
world size W , sequence parallel size T = W , decay rate
λ ∈ R+;

Distribute input sequence X according to Algorithm 2;
Obtain sub-sequence length (or chunk size) C = N/T ;
Initialize mask M ∈ RC×C , where Mij = λi−j , if i ≥ j,

else Mij = 0;
Initialize Λ = diag{λ, λ2, · · · , λC} ∈ RC×C ;
Initialize activation state KV = 0 ∈ Rd×d;
for chunk t ∈ {1, · · · , T} at rank i ∈ {1, · · · ,W} in parallel

do
Calculate Qt = XtWQ, Kt = XtWK , Vt = XtWV

according to its own data chunk, of size C × d for each;
Compute Ot,intra = [(QtK

⊤
t )⊙M]Vt;

end
for chunk t ∈ {1, · · · , T} at rank i ∈ {1, · · · ,W} do

Recv activation KVt−1 from rank (i− 1);
Save KVt−1 as KVi on rank i for backward

computation;
Compute Ot,inter = ΛQtKVt−1;
Compute Ot = Ot,intra +Ot,inter as O of t-th chunk;
Update KVt = λCKVt−1 + (λCΛ−1Kt)

⊤Vt;
Send activation KVt to rank (i+ 1);

end
Return: O = [Ot], with t ∈ {1, · · · , T}.

LASP tiles sequence over the cluster.
Follow the thought-of-tiling, LASP
partitions the input sequences into
multiple sub-sequence chunks, dis-
tributing these chunks individually
across different GPUs. For linear
attention in a casual setting, in or-
der to fully exploit the advantage of
right-product in linear attention, we
categorize the attention computation
for chunks into two distinct types:
intra-chunks and inter-chunks. Intra-
chunks involve conventional attention
computation, while inter-chunks lever-
age the kernel tricks associated with
linear attention’s right-product. Fur-
ther details regarding the intricate
mechanisms of LASP in data distri-
bution, forward pass, and backward
pass are expounded upon below. A
visualization of LASP is presented in
Fig. 1.

To streamline derivations, the
Norm(·) operator in Eq. (10) is tem-
porarily omitted. Additionally, we
consider a normal case where W = T ,
indicating G = W/T = 1. In this scenario, GPU with rank 0 consolidates all split sub-sequences in a
batch, subsequently distributing them to all GPUs across the entire distributed world. It is noteworthy
that the scenario where the sequence parallel size is not equal to world size is discussed in Sec.A.4.

Without loss of generality, we add λ as the decay rate in linear attention with casual mask,
choosing λ = 1 yields the ordinary linear attention [13, 16]. In the forward pass of linear attention
computation with casual mask, the s-th output can be formulated as

o⊤s = q⊤
s

∑
i≤s

λs−ikiv
⊤
i . (1)

Rewrite in a recurrence form [6], we have

kv0 =0 ∈ Rd×d, kvs = λkvs−1 + ksv
⊤
s , o⊤s = q⊤

s (kvs), (2)
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where
kvs =

∑
i≤s λ

s−ikiv
⊤
i (3)

is the activation state in the forward computation of linear attention with s-th input.
In the sequence parallelism scenario, given data chunk Xt on rank i, the query, key and value

corresponding to Xt is Qt = XtWQ, Kt = XtWK , Vt = XtWV . Note that we assume T = W
here, their indices are thus equivalent, i.e., t = i. The output within the t-th chunk can be calculated
as

Ot,intra = [(QtK
⊤
t )⊙M]Vt. (4)

The intra-chunk computation has no dependencies with other chunks on other GPUs, so it can be
calculated parallelized on all ranks in the distributed world. However, this result does not consider
the impact of the previous 1 ∼ (t− 1) chunks on the t-th chunk, which is called an inter-chunk. To
calculate inter-chunk, let us rearrange Eq. (1) as

o⊤s+C = q⊤
s+C

∑
i≤s+C

λs+C−ikiv
⊤
i = q⊤

s+C

C+s∑
i=C+1

λs+C−ikiv
⊤
i + λsq⊤

s+C

∑
i≤C

λC−ikiv
⊤
i . (5)

The first part (before the plus sign) in Eq. (5) corresponds to the computation on intra-chunk, and
the second part (after the plus sign) corresponds to the computation on inter-chunk. In sequence
parallelism scenario, Eq. (5) can be rewritten in the chunk form as follows:

Ot,inter = ΛQtKVt−1, (6)

where KVt = kvtC . It is worth noting that the calculation of the inter part for the t-th chunk
depends on the activation state of previous (t− 1) chunk, i.e., KVt−1, which is calculated on rank
(i − 1). Thus a P2P communication operation Recv should be performed to pull KVt−1 from
rank (i− 1) to rank i. Then the activation state KVt should be updated for subsequent inter-chunk
attention computation at (t+ 1)-th chunk. The update rule of KVt at t-th chunk is

KVt =
∑
s≤tC

λtC−sksv
⊤
s = λC

∑
s≤(t−1)C

λ(t−1)C−sksv
⊤
s +

tC∑
s=(t−1)C+1

λtC−sksv
⊤
s

= λCKVt−1 +
(
diag{λC−1, . . . , 1}Kt

)⊤
Vt = λCKVt−1 +

(
λCΛ−1Kt

)⊤
Vt.

(7)

In correspondence to the preceding Recv operation, another P2P communication operation Send is
executed to transmit the acquired KVt in Eq. (7) to the subsequent rank (i+ 1) for its inter-chunk
computation.

It is noteworthy that in the backward pass, the t-th chunk necessitates KVt−1 as activation to
calculate gradients. To minimize communication operations, we cache KVt−1 on High-Bandwidth
Memory (HBM) to accelerate computation. Integrating both the intra and inter parts, the final forward
output is as follows:

Ot = Ot,intra +Ot,inter (8)

We present the complete expression of forward pass for LASP with W = T in Algorithm 1.
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Figure 2: Scalability Evaluation of LASP on Throughput (tokens/sec) and Memory Usage. Left:
Integration of LASP with FSDP backend; Right: Integration of LASP with DDP backend. The
TNL-1B model is used, with a batch size of 1 across up to 128x A100 80GB GPUs. The sign "×"
with a dotted line represents occurring an Out of Memory (OOM).
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Figure 3: Speed Comparison (tokens/sec) of LASP Against DeepSpeed-Ulysses and Megatron-
SP. The sign "×" with a dotted line represents occurring an Out of Memory (OOM). The evaluation
utilizes the TNL-1B and 7B models with a batch size of 1 on 64x A100 80GB GPUs. The parallelism
size for these three methods is configured to 64.

3. Experiments
We evaluate LASP on two representative linear attention-based models: TransNormerLLM (TNL) [13]
and Linear Transformer [5]. Our assessment focuses on three key areas: 1) the ability of LASP
to scale up sequence length on scaling-out GPUs, 2) speed evaluation when using LASP and its
comparison with other SP methods, and 3) the convergence when using LASP. All experiments are
conducted on a GPU cluster equipped with 128x A100 80G GPUs. Our implementation is built on
Metaseq [22], a PyTorch-based sequence modeling framework with FairScale [2] integrated.

3.1. Scalability and Speed Comparison
The scalability results regarding throughput and memory usage with varying sequence lengths and
number of GPUs are illustrated in Fig. 2. By using LASP, we successfully scale the sequence length
up to 4096K using the FSDP backend and 2048K with the DDP backend on a TNL model with 1B
parameters, on 128 GPUs. We keep using a fixed batch size of 1 to thoroughly assess the performance
of LASP across a range of sequence lengths, from a typical 2K to an exceptionally long 4096K. By
keeping the batch size constant at 1, we ensure that the experiment results are directly comparable,
with only the sequence length varying.

We furthermore conducted a comparison of sequence parallelism on TNL 1B and 7B models
against two existing SP methods: DeepSpeed-Ulysses [4] and Megatron-SP [8]. All results presented
in Fig. 3 are obtained on 64 GPUs. LASP demonstrates a notable enhancement in throughput for
linear attention, primarily due to its efficient communication design that facilitates the exchange of
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linear attention intermediate states. Specifically, LASP outperforms DeepSpeed-Ulysses by 38%
and Megatron by 136% in terms of throughput at 256K sequence length on 1B model, with the
performance gap widening as the sequence length increases. Additionally, system optimizations like
kernel fusion and KV State caching enable LASP to support the longest sequence lengths within the
same cluster, achieving 2048K for the 1B model and 512K for the 7B model.

4. Conclusion
We presented LASP, effectively addressing the limitations of existing SP methods on linear-complexity
models by leveraging the right-product features of linear attention, which significantly enhanced
parallelism efficiency and usability. Through the design of an efficient P2P communication mecha-
nism and engineering optimizations including kernel fusion and KV state caching, LASP achieved
a notable reduction in communication traffic and improved hardware utilization on GPU clusters.
Compatibility with all types of batch-level DDP methods ensured the practicability of LASP for
large-scale distributed training. Our experiments highlighted the advantages of LASP on scalability,
speed, memory usage and convergence performance. In specific experimental setup, LASP achieves
38% and 136% faster sequence-level distributed training speed on a maximum 8× longer sequence
length than the out-of-box DeepSpeed-Ulysses and Megatron-SP.
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Appendix A. Appendix

A.1. Preliminary

Softmax Attention. Consider the standard attention [20] computation with causal masking in the
transformer architecture, formulated as:

O = Softmax(QK⊤/
√
d⊙M)V, (9)

where d denotes the hidden dimension. The matrices Q,K,V ∈ RN×d represent query, key, and
value matrices, respectively. These matrices are linear projections of the input X ∈ RN×d, i.e.,
Q = XWQ, K = XWK, V = XWV. The output matrix is denoted as O ∈ RN×d, and
M ∈ RN×N represents the causal mask matrix. The Softmax(·) operation introduces quadratic time
complexity relative to the input sequence length N , limiting the scalability of vanilla transformers to
extended input sequences.

Linear Attention. Linear attention is originally proposed in [5], with the elimination of Softmax
operation [20]. Qin et al. [12, 13] propose to replace the Softmax operation with a normalization
operation Norm(·), which turns to a concise formulation as:

O = Norm((QK⊤ ⊙M)V). (10)

When considering bidirectional tasks, the formulation can be simplified as O = Norm((QK⊤)V).
Then by performing the associativity property of matrix products, it can be mathematically equiva-
lently transformed into a right-product version:

O = Norm(Q(K⊤V)). (11)

This linear attention formulation facilitates recurrent prediction with a computational complexity of
O(Nd2). And the recurrent update of K⊤V without needing to compute the entire attention matrix
makes its inference efficient.

While linear complexity offers significant advantages in terms of computational efficiency and
memory optimization for linear attention, it still incurs a proportional increase in computation and
memory utilization on a single GPU as the sequence length N grows. This can lead to memory
constraints on a single GPU, such as the 80GB limit in NVIDIA A100, for exceptionally long
sequences. The challenge of achieving zero-redundancy (on sequence level) training for such
long sequences using linear attention-based LLMs across GPU clusters remains an open problem.
Furthermore, the complexity of addressing this issue in a casual setting further intensifies the
challenge. To address this, we propose LASP as a solution for parallelizing linear attention training
at the sequence level, even in a casual setting.

A.2. Communication Analysis

When examining the LASP algorithm, it is important to note that the forward pass requires communi-
cation for the KV activation in each linear attention module layer. The communication volume is
determined by Bd2/h, where B is the batch size and h is the number of heads. In comparison, se-
quence parallelism in Megatron-LM utilizes all-gather operations twice after two layer normalization
layers within each transformer layer, and a reduce-scatter operation after the attention and Feedfor-
ward Neural Network (FFN) layers. This results in a communication volume of 2BNd+ 4BNd/T .
DeepSpeed uses all-to-all collective communication [17] for input Q,K,V, and output O of each
attention module layer, resulting in a communication volume of 4BNd/T .
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Table 1: Communication Volume Comparison. Sim-
plified Formulation: we eliminate the common factors
Bd for ease of comparison.

Method Full
Formulation

Simplified
Formulation

LASP Bd2/h d/h
DeepSpeed-Ulysses 4BNd/T 4N/T
Megatron-SP 2BNd+ 4BNd/T 2N + 4N/T

Table 1 displays a comparison of com-
munication volumes across three frame-
works. d/h is the head dimension which
is set at 128 as usual [9]. In practical ap-
plications where N/T ≥ 32, LASP is able
to achieve the lowest theoretical communi-
cation volume. Furthermore, the commu-
nication volume of LASP is not impacted
by changes in sequence length N or sub-
sequence length C, which is a huge ad-
vantage for extremely long sequence paral-
lelism across large GPU clusters.

A.3. System Engineering Optimization

Kernel Fusion. To improve the efficiency of LASP on GPU, we perform kernel fusion in both the
intra-chunk and inter-chunk computations, and also fused the updates of KV and dKV into the
intra-chunk and inter-chunk computations.

KV State Caching. To avoid recomputing activation KV during the backward pass, we choose to
store it in the HBM of the GPU right after computing it in the forward pass. During the subsequent
backward pass, LASP directly accesses KV for use. It is important to note that the size of the KV
activation cached in HBM is d× d, which is not affected by the sequence length N . When the input
sequence length N is exceptionally large, the memory usage of KV becomes insignificant.

Algorithm 2: LASP Data Distribution
Input: An input sequence in embedding space
X ∈ RN×d with sequence length N and hidden
dimension d, distributed world size W and
sequence parallel size T ;

Obtain number of SP groups G = W/T ;
Obtain sub-seq length (or chunk size) C = N/T ;
Get global rank list R = get_global_rank();
Obtain sequence parallel source rank list
Rsrc = ⌊R/T ⌋ ∗ T ;

Along sequence dimension, split X into T chunks
{X1,X2, ...XT }, of size C × d for each;

Transfer copies of data chunks
{X1,X2, · · · ,XT } to GPUs with rank indices
in Rsrc;
Scatter {X1,X2, · · · ,XT } from Rsrc to all

ranks in respective sequence parallel groups.

Data Distribution. LASP is designed for
training long sequences on linear transformers
in a distributed environment, achieved by par-
titioning the input data along its sequence di-
mension. In this situation, each GPU within
the distributed environment undertakes the train-
ing of a subset of sub-sequences, which serves
to diminish the large memory footprint associ-
ated with activation during the training of long
sequences. Communication operations are intro-
duced between GPUs to transmit intermediate
states. The final trained model assimilates the
knowledge derived from the entirety of the long
sequences.

For an input sequence of length N , we estab-
lish its embedding space representation denoted
as X ∈ RN×d with a feature dimension of d. In
the LASP framework, X is evenly partitioned into T chunks, where T is called the sequence parallel
size, which must be divisible by the distributed world size W . These segmented data chunks are
subsequently assigned to the respective GPUs. It is essential to note that different sequence parallel
groups receive dissimilar data batches. However, within the same group, all data chunks originate
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from an identical batch of data. A comprehensive depiction of the data distribution process in LASP
is provided in Algorithm 2.

Sub-seq0 Sub-seq1 Sub-seq2 Sub-seq3

0 1 2 3 4 5 6 7

Seq0

GPU

SP-Group0 SP-Group1

Sub-seq0 Sub-seq1 Sub-seq2 Sub-seq3Seq1

Figure 4: Example of LASP Data Distribution.

Additionally, an illustrative example of data
distribution in LASP is presented in Fig. 4,
where the distributed world size is character-
ized by W = 8, the sequence parallel size by
T = 4, the number of sequence parallel groups
by G = 2, and the sequence parallel source
rank list by Rsrc = [0, 4]. For the first batch
SEQ0, the input sequence X undergoes parti-
tioning into T chunks {X1,X2, ...,XT } along
the sequence dimension, subsequently transmit-
ted to the first rank in SP-GROUP0, which corresponds to global rank 0. The data chunks on global
rank 0 are then scattered to global ranks {0, 1, 2, 3} within SP-GROUP0, where each rank only
retains a single chunk. The subsequent batch SEQ1 follows a similar manner, being assigned to
global ranks {4, 5, 6, 7} within SP-GROUP1.

A.4. Hybrid Parallelism

Data-Sequence Hybrid Parallelism. As explained in Section A.3 and illustrated in Fig. 4, LASP
allows for the specification of a smaller sequence parallel size that is divisible by the distributed
world size. This configuration results in the input data being split along both the batch and sequence
dimensions, which is a type of hybrid parallelism called data-sequence hybrid parallelism. The
ZeRO-series optimizers [14] in DeepSpeed and FSDP [23] in PyTorch propose to distribute model
states, which include optimizer states, gradients, and model parameters, across all GPUs within the
distributed environment. As variants of data parallelism, these techniques seamlessly align with
LASP. Furthermore, their focus on minimizing the memory of model states complements LASP’s
objective of reducing activation memory on each GPU. By integrating these techniques, the training
of large models handling long sequence lengths is rendered more practical.

Compatibility with Tensor Parallelism and Pipeline Parallelism. LASP supports both tensor
parallelism (TP) and pipeline parallelism (PP). In the context of PP, as exemplified by the GPipe
[7] scheduling method, the model is initially partitioned across multiple devices, with each device
holding a segment of the model. Data within a mini-batch is then divided into micro-batches,
which are sequentially fed into the device containing the first segment. Each device processes its
micro-batch and forwards the output to the next device in the sequence, simultaneously preparing to
receive and process the subsequent micro-batch from the preceding device. This method of pipelining
inputs effectively minimizes device idle times. When LASP is integrated with PP, micro-batches are
substituted with sub-sequences derived from a mini-batch. Unlike standard PP, each device retains
the intermediate states (KV in the forward pass and dKV in the backward pass) locally, rather than
transmitting them to the next device as typically done in LASP alone. For TP, the integration with
LASP is fluid. Linear attention layers utilize TP to segment matrix operations across both intra-chunk
and inter-chunk computations, whereas the handling of MLP layers under TP remains unchanged.
The experiment tests on hybrid of LASP, DP, TP and SP will be conducted in the future work.
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Table 2: Convergence Performance of LASP. All experiments use 8x A100 80G GPUs, sequence
length of 16K, and batch size of 1. The results cover various DDP backends in conjunction with
LASP. We explore the performance of two linear attention models: TransNormerLLM (TNL) and
Linear Transformer, and one transformer model (LLaMA) with Softmax attention, all with 0.4B
parameters, across 50K updates.

Model Parameters Method Loss Method Loss

Transformer 0.4B DDP 3.727 \ \

TNL
[13]

0.4B

DDP 3.719 LASP + DDP 3.715
Legacy DDP 3.709 LASP + Legacy DDP 3.705
FSDP 3.717 LASP + FSDP 3.714
ZeRO-1 3.653 LASP + ZeRO-1 3.653
ZeRO-2 3.655 LASP + ZeRO-2 3.649
ZeRO-3 3.656 LASP + ZeRO-3 3.649

Linear
Transformer

[5]
0.4B

DDP 5.419 LASP + DDP 5.408
Legacy DDP 5.425 LASP + Legacy DDP 5.413
FSDP 5.428 LASP + FSDP 5.441
ZeRO-1 5.114 LASP + ZeRO-1 5.118
ZeRO-2 5.105 LASP + ZeRO-2 5.120
ZeRO-3 5.110 LASP + ZeRO-3 5.123

A.5. Additional Experiment Results
Table 2 presents the convergence results of two linear attention based models: TNL [13] and Linear
Transformer [5], and one transformer model (LLaMA [18, 19]) with Softmax attention, evaluated
on an epoch-by-epoch basis. The experiments were conducted using the same training corpus: the
Pile [3]. Both linear models has 0.4B parameters, demonstrated consistent loss values when training
with and without LASP. All experiments undergoes 50K steps. The uniform loss convergence across
various DDP backends demonstrates that LASP does not negatively affect model convergence.
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