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ABSTRACT

Markov processes are widely used mathematical models for describing dynamic
systems in various fields. However, accurately simulating large-scale systems at
long time scales is computationally expensive due to the short time steps required
for accurate integration. In this paper, we introduce an inference process that maps
complex systems into a simplified representational space and models large jumps
in time. To achieve this, we propose Time-lagged Information Bottleneck (T-IB), a
principled objective rooted in information theory, which aims to capture relevant
temporal features while discarding high-frequency information to simplify the
simulation task and minimize the inference error. Our experiments demonstrate
that T-IB learns information-optimal representations for accurately modeling the
statistical properties and dynamics of the original process at a selected time lag,
outperforming existing time-lagged dimensionality reduction methods.

1 INTRODUCTION

Markov processes have long been studied in the literature (Norris, 1997; Ethier & Kurtz, 2009),
as they describe relevant processes in nature such as weather, particle physics, and molecular
dynamics. Despite being well-understood, simulating large systems over extensive timescales remains
a challenging task. In molecular systems, analyzing meta-stable molecular configurations requires
unfolding simulations over several milliseconds (τ ≈ 10−3s), while accurate simulation necessitates
integration steps on the order of femtoseconds (τ0 ≈ 10−15s). The time required to simulate
1012 steps is determined by the time of a single matrix multiplication, which takes on the order of
milliseconds on modern hardware, resulting in a simulation time of multiple years.

Deep learning-based approximations have shown promising results in the context of time series
forecasting (Staudemeyer & Morris, 2019; Lim & Zohren, 2021), including applications in weather
forecasting (Veillette et al., 2020), sea surface temperature prediction (Ham et al., 2019; Gao et al.,
2022), and molecular dynamics (Sidky et al., 2020; Klein et al., 2023; Schreiner et al., 2023).
Mapping observations into lower-dimensional spaces has proven to be an effective method for
reducing computational costs. Successful examples in molecular dynamics include learning system
dynamics through coarse-grained molecular representations (Wang et al., 2019a; Köhler et al., 2023;
Arts et al., 2023), or linear (Koopman, 1931; Molgedey & Schuster, 1994) and non-linear (Wehmeyer
& Noé, 2018; Mardt et al., 2018; Sidky et al., 2020) projections of molecular features.

Modern deep representation learning methods have proven effective in creating representations for
high-dimensional structured data, including images (Hjelm et al., 2019; Chen et al., 2020), audio
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Figure 1: The Time-lagged Information Bottleneck objective aims to maximize the mutual information
between sampled representations zt−τ , zt at temporal distance τ while minimizing mismatch between
the encoding distribution pθ(zt|xt) and the learned variational transitional distribution qϕ(zt|zt−τ ).
This results in minimal representations capturing dynamics at timescale τ or larger, which can be
used to predict properties of interest yt, such as inter-atomic distances, over time.

(van den Oord et al., 2018; Saeed et al., 2021), text (Devlin et al., 2018; Radford et al., 2018), and
graphs (Veličković et al., 2018; Wang et al., 2022). These methods often aim to capture relevant
information while reducing the complexity of the data. In this context, information theory provides
a compelling direction for further analysis (Wennekers & Ay, 2003; Gao et al., 2022; Lozano-
Durán & Arranz, 2022). In particular, the information bottleneck principle (Tishby et al., 2000;
Tishby & Zaslavsky, 2015) suggests that an optimal representation should retain relevant information
while discarding unnecessary features. Applying this principle to the context of Markov process
simulations has the potential to simplify the modeling task, reduce computational complexity, and aid
in identifying the salient characteristics that define the relevant dynamics.

In this paper, we make the following contributions: (i) we introduce a probabilistic inference scheme
for Markov processes, Latent Simulation (LS), and characterize the inference error by defining Time-
lagged InfoMax (T-InfoMax) as a general family of principled training objectives. (ii) We propose
Time-lagged Information Bottleneck (T-IB, Figure 1), a novel objective that follows the T-InfoMax
principle to preserve system dynamics while discarding superfluous information to simplify modeling
tasks. (iii) We empirically compare the performance of models trained using the T-InfoMax and T-IB
objectives on synthetic trajectories and molecular simulations, showcasing the importance of the T-
InfoMax principle and the advantages of the proposed T-IB method for both representation learning
and latent simulation inference compared to other models in the literature.

2 METHOD

We delve into the problem of efficiently representing and simulating Markov processes starting by
defining Latent Simulation as an inference procedure and characterizing the corresponding error
(section 2.1). Next, in section 2.2, we analyze the problem of capturing system dynamics from
an information-theoretic perspective, defining and motivating Time-Lagged InfoMax: a family of
objectives that minimizes the latent simulation error. Finally, we introduce Time-lagged Information
Bottleneck (section 2.3) as an extension of T-InfoMax that aims to simplify the representation space.
A schematic representation of our proposed model is visualized in Figure 1.

2.1 LATENT SIMULATION

Consider a sequence of T random variables, denoted as [xt]
T
t=0, which form a homogeneous Markov

Chain. This chain models a dynamical process of interest, such as molecular dynamics, global climate
systems, or particle interactions. Let yt represent a specific (noisy) property of xt that we aim to
model over time. Formally, we define yt = f(xt, ϵt), where f : X× E → Y is some function and ϵt
is temporally uncorrelated noise. Examples of such properties could include the energy or momentum
of a particle, the meta-stable state of a molecular structure, and the amount of rainfall. Each of these
properties yt can be derived from a more comprehensive high-dimensional state description xt.
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Figure 2: Graphical models for the joint distribution of a sequence, targets, and representations. 2a
shows the data-generating process in which red arrows denote computationally expensive simulation
steps. 2b represents the corresponding Variational Latent Simulation, in which the transitions are
modeled in the latent space. Gray dashed lines indicate distributions that are not used for inference.

Given an initial observation xs, the joint distribution of the sequence of K future targets [ys+kτ ]
K
k=1

at some lag time τ > 0 can be expressed as:

p([ys+kτ ]
K
k=1 |xs)=

∫
. . .

∫ K∏
k=1

p(xs+kτ |xs+(k−1)τ )︸ ︷︷ ︸
Transition

p(ys+kτ |xs+kτ )︸ ︷︷ ︸
Prediction

dxs+τ . . . dxs+Kτ . (1)

Each transition distribution p(xt+τ |xt) may necessitate J integration steps at a finer timescale
τ0 < τ . Given the sequential nature of simulation, generating trajectories over extended time horizons
may require substantial computational resources. To mitigate the challenges of simulating large-
scale system dynamics, we adopt two modeling strategies: (i) rather than modeling the transition
distribution in the original space X, we learn a time-independent encoder pθ(zt|xt) that maps into a
simpler representation space Z; and (ii) we directly model the dynamics for larger jumps τ > τ0. We
refer to the process of unfolding simulations in the latent representation space as Latent Simulation
(LS). The joint distribution for trajectories of targets unfolded using LS starting from xs is defined as:

pLS([ys+kτ ]
K
k=1 |xs) :=

∫
. . .

∫
pθ(zs|xs)︸ ︷︷ ︸

Encoding

K∏
k=1

p(zs+kτ |zs+(k−1)τ )︸ ︷︷ ︸
Latent transition

p(ys+kτ |zs+kτ )︸ ︷︷ ︸
Latent prediction

dzs . . . zs+Kτ .
(2)

Unfolding LS requires access to the latent transition p(zt+τ |zt) and predictive p(yt|zt) distribu-
tions, which are generally intractable for an arbitrary choice of encoding distribution pθ(zt|xt). To
circumvent this intractability, we introduce variational transition and variational target predictive
distributions, denoted as qϕ(zt|zt−τ ) and qψ(yt|zt), respectively. The resulting joint inference distri-
bution for the future targets [ys+kτ ]

K
k=1, unfolding from the initial observation xs, is referred to as

the Variational Latent Simulation distribution qLS([ys+kτ ]
K
k=1 |xs) and visualized together with the

graphical model for the data-generating process in Figure 2.

The Kullback-Leibler (KL) divergence, which quantifies the discrepancy between the ground truth
and the variational latent simulation distributions, can be upper-bounded as follows:

KL(p([ys+kτ ]
K
k=1 |xs)||q

LS([ys+kτ ]
K
k=1 |xs))︸ ︷︷ ︸

Variational Latent Simulation error

≤ KL(p([ys+kτ ]
K
k=1 |xs)||p

LS([ys+kτ ]
K
k=1 |xs))︸ ︷︷ ︸

Latent Simulation error

+

K∑
k=1

KL(p(zs+kτ |zs+(k−1)τ )||qϕ(zs+kτ |zs+(k−1)τ ))︸ ︷︷ ︸
Variational latent transition gap

+KL(p(ys+kτ |zs+kτ )||qψ(ys+kτ |zs+kτ ))︸ ︷︷ ︸
Variational latent prediction gap

.

(3)

The upper bound consists of the latent simulation error and the sum of the variational gaps for
both the latent transition and target predictive distributions. Unfortunately, terms on the right
side of equation 3 are intractable. To address this, we propose a two-step optimization procedure:
(i) we first learn an encoding distribution pθ(zt|xt) that minimizes the latent simulation error,
effectively capturing the dynamical properties of the system in the representation; then (ii), assuming
a fixed (optimal) encoding distribution, we optimize the variational latent transition qϕ(zt+τ |zt) and
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predictive qψ(yt|zt) distributions using maximum likelihood to minimize their respective variational
gaps. In the following sections, we will focus on step (i), analyzing the problem of learning
representations that preserve dynamical properties from an information theoretical perspective.
Additional details about this two-step procedure are available in Appendix C.1.

2.2 TEMPORAL INFORMATION ON MARKOV CHAINS

A crucial prerequisite for ensuring that the latent simulation process does not introduce any error is
to guarantee that each representation zt is as informative as the original data xt for the prediction
of any future target of interest yt+τ . If zt is less predictive than xt for yt+τ , the statistics for the
corresponding predictive distribution p(yt+τ |zt) would deviate from those based on the original data
p(yt+τ |xt). This first requirement can be expressed by equating mutual information1 that xt and zt
share with yt+τ : I(xt;yt+τ ) = I(zt;yt+τ ). We will refer to this requirement as sufficiency of zt
for yt+τ . Sufficiency is achieved only when xt and zt yield identical predictive distributions for the
future target, i.e., p(yt+τ |xt) = p(yt+τ |zt).
Secondly, we introduce the concept of autoinformation. Autoinformation at a given lag time τ
is defined as the mutual information between the current observation xt and its corresponding
future xt+τ . Formally, AI(xt; τ) := I(xt;xt+τ ). This concept extends the statistical notion of
autocorrelation, which measures the linear relationship between values of a variable at different times
(Brockwell & Davis, 2002), to include nonlinear relationships (Chapeau-Blondeau, 2007; von Wegner
et al., 2017).

Since zt is derived from xt, the autoinformation for xt sets an upper-bound for the autoinformation
for zt: AI(xt; τ) ≥ AI(zt; τ) (proof in Appendix B.3). We refer to the difference between the
two values as the autoinformation gap AIG(zt; τ) := AI(xt; τ) − AI(zt; τ) and we say that zt
preserves autoinformation whenever autoinformation gap is zero.
Lemma 1. Autoinformation and Sufficiency (proof in Appendix B.5)
A representation zt preserves autoinformation at lag time τ if and only if it is sufficient for any target
yt+τ . Conversely, whenever zt does not preserve autoinformation for a lag time τ is always possible
to find a target yt+τ for which zt is not sufficient:

AIG(zt; τ) = 0 ⇐⇒ I(xt;yt+τ ) = I(zt;yt+τ ) ∀yt+τ := f(xt+τ , ϵ).

In simpler terms, a representation that preserves autoinformation encapsulates all dynamic properties
of the original data for the temporal scale τ . As a result, the representation zt can replace xt in
predicting any future properties at time t+ τ .

For a temporal sequence [xt]
T
t=s, we define the autoinformation at lag time τ as the average autoinfor-

mation between all pairs of elements in the sequence that are τ time-steps apart: AI([xt]
T
t=s ; τ) :=

Et∼U(s,T−τ) [AI(xt; τ)] , where U(s, T − τ) refers to a uniform distribution. If p(xs) is stationary,
the amount of autoinformation for a sequence [xt]

T
t=s is equivalent to autoinformation at any point

xt. Using this definition, we can show:
Lemma 2. Autoinformation and Markov Property (proof in Appendix B.6)
If a sequence of representations [zt]

T
t=s of a homogeneous Markov chain [xt]

T
t=s preserves autoinfor-

mation at lag time τ , then any of its sub-sequences of elements separated by τ time-steps must also
form a homogeneous Markov chain:

AIG([zt]
T
t=s ; τ) = 0 =⇒ [zs′+kτ ]

K
k=0 is a homogeneous Markov Chain,

for every s′ ∈ [s, T − τ ], K ∈ [0, ⌊(T − s′)/τ⌋].

Building on this, we further establish that dynamics at a predefined timescale τ also encode informa-
tion relevant to larger timescales:
Lemma 3. Slower Information Preservation (proof in Appendix B.8)
Any sequence of representations [zt]

T
t=s that preserves autoinformation at lag time τ must also

preserve autoinformation at any larger timescale τ ′:

AIG([zt]
T
t=s ; τ) = 0 =⇒ AIG([zt]

T
t=s ; τ

′) = 0 ∀τ ′ ≥ τ.

1We refer the reader to Appendix A for further details on the notation.
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By synthesizing the insights from Lemma 1, 2, and 3, we can infer that any representation preserving
autoinformation at lag time τ captures the dynamical properties of the system across timescales τ ′
that are equal or larger than τ . Specifically, we conclude that: (i) zt can replace xt in predicting
any yt+τ ′ (Lemma 1 + Lemma 3); (ii) any sequence of representations [zs+kτ ′ ]

K
k=0 will form a

homogeneous Markov Chain (Lemma 2 + Lemma 3). Furthermore, we establish an upper bound for
the expected Latent Simulation error in equation 3 using the autoinformation gap:

Et
[
KL(p([yt+kτ ]

K
k=1 |xt)||p

LS([yt+kτ ]
K
k=1 |xt))

]
︸ ︷︷ ︸

Latent Simulation error forK simulations steps with lag time τ

≤ K AIG([zt]
T
t=s ; τ)︸ ︷︷ ︸

Autoinformation gap for lag time τ

, (4)

with t ∼ U(s, s + τ − 1) and T := s + (K + 1)τ − 1. In words, the latent simulation error is
upper-bounded by the product of the number of simulation steps and the autoinformation gap. A full
derivation is reported in Appendix B.9.

Given that the autoinformation between elements of the original sequence is fixed, we can train repre-
sentations that minimize the autoinformation gap at resolution τ by maximizing the autoinformation
between the corresponding representations at the same or higher temporal resolution. We refer to this
training objective as Time-lagged InfoMax (T-InfoMax):

LT-InfoMax([xt]
T
t=s , τ ; θ) := AIG([zt]

T
t=s ; τ) = −Et∼U(s,T−τ)[I(zt; zt+τ )]. (5)

Among the various differentiable methods for maximizing mutual information in the literature (Poole
et al., 2019; Hjelm et al., 2019; Song & Ermon, 2020), we focus on noise contrastive methods
(InfoNCE) due to their flexibility and computational efficiency (van den Oord et al., 2018; Chen et al.,
2020). Therefore, we introduce an additional critic architecture Fξ : Z× Z → R with parameters ξ
to define an upper-bound on the T-InfoMax loss:

LT-InfoMax([xt]
T
t=s , τ ; θ) ≤ LT-InfoMax

InfoNCE ([xt]
T
t=s , τ ; θ, ξ) ≈ − 1

B

B∑
i=1

log
eFξ(zti

,zti−τ )

1
B

∑B
j=1 e

Fξ(ztj
,zti−τ )

.
(6)

In this equation, ti is sampled uniformly in the interval (s, T−τ), zti and zti−τ are the representations
of xti and xti−τ encoded via pθ(zt|xt), and B denotes the mini-batch size. We refer the reader to
Appendix C.2 for additional discussion regarding the proposed approximations.

2.3 FROM TIME-LAGGED INFOMAX TO TIME-LAGGED INFORMATION BOTTLENECK

In the previous section, we emphasized the importance of maximizing autoinformation for accurate
latent simulation. However, it is also critical to design representations that discard as much irrelevant
information as possible. This principle, known as Information Bottleneck (Tishby et al., 2000), aims to
simplify the implied transition p(zt|zt−τ ) and predictive p(yt|zt) distributions to ease the variational
fitting tasks, decreasing their sample complexity. In dynamical systems, the information that zt retains
about xt can be decomposed into the autoinformation at the lag time τ and superfluous information:

I(xt; zt)︸ ︷︷ ︸
Total Information

= AI(zt−τ ; τ)︸ ︷︷ ︸
Autoinformation at lag time τ

+ I(xt; zt|zt−τ )︸ ︷︷ ︸
Superfluous information

. (7)

As shown in Appendix B.11, superfluous information consists of time-independent features and
dynamic information for temporal scales smaller than τ .

Incorporating sufficiency from equation 4 with the minimality of superfluous information we obtain a
family of objectives that we denote as Time-lagged Information Bottleneck (T-IB):

LT-IB([xt]
T
t=s , τ, β; θ) = LT-InfoMax([xt]

T
t=s , τ ; θ) + β Et [I(xt; zt|zt−τ )] . (8)

Here, β is a hyperparameter that trades off sufficiency (maximal autoinformation, β → 0) and
minimality (minimal superfluous information, β → +∞). Given that superfluous information can
not be computed directly, we provide a tractable upper bound based on the variational latent transition
distribution qϕ(zt|zt−τ ). Together with equation 6, this defines a tractable T-IB InfoNCE objective:

LT-IB
InfoNCE([xt]

T
t=s , τ, β; θ, ϕ, ξ) ≈

1

B

B∑
i=1

− log
eFξ(zti

,zti−τ )

1
B

∑B
j=1 e

Fξ(ztj
,zti−τ )

+ β log
pθ(zti |xti)
qϕ(zti |zti−τ )

,
(9)

in which the encoder pθ(zt|xt) is parametrized using a Normal distribution with learnable mean and
standard deviation as in Alemi et al. (2016); Federici et al. (2020). Details on the upper bound in
equation 9 are reported in Appendix C.3.
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3 RELATED WORK

Information-theoretic methods have gained traction in fluid mechanics, offering valuable insights into
energy transfer mechanisms (Betchov, 1964; Cerbus & Goldburg, 2013; Lozano-Durán & Arranz,
2022). Measures like Transfer Entropy (Schreiber, 2000) and Delayed Mutual Information (Materassi
et al., 2014) closely align with the concept of Autoinformation, which is central in this work. However,
previous literature predominantly focused on designing localized reduced-order models (Lozano-
Durán & Arranz, 2022) by factorizing spatial scales and independent sub-system components, rather
than learning flexible representations that capture dynamics at the desired temporal scale. Moreover,
the theory and application of these principles have largely been confined to discrete-state systems
(Kaiser & Schreiber, 2002) and model selection tasks (Akaike, 1974; Burnham & Anderson, 2004).

A widely used approach in dynamical system representation involves measuring and maximizing
linear autocorrelation (Calhoun et al., 2001; Pérez-Hernández et al., 2013; Wiskott & Sejnowski,
2002). In particular, Sidky et al. (2020) proposes a latent simulation inference that leverages linear
correlation maximization, coupled with a mixture distribution for latent transitions. As shown in
Appendix D.1, autocorrelation maximization can be also interpreted as autoinformation maximization
constrained to jointly Normal random variables (Borga, 2001). However, the linear restriction requires
high-dimensional embeddings (Kantz & Schreiber, 2003; von Wegner et al., 2017), and may introduce
training instabilities for non-linear encoders (Mardt et al., 2018; Wu & Noé, 2020; Lyu et al., 2022). In
this work, we prove that the requirement of linear transitions is not necessary to capture slow-varying
signals, demonstrating the benefits of modern non-linear mutual information maximization strategies.

The proposed T-InfoMax family also generalizes existing models based on the reconstruction of
future states (Wehmeyer & Noé, 2018; Hernández et al., 2018). On one hand, these approaches are
proven to maximize mutual information (Barber & Agakov, 2003; Poole et al., 2019), on the other
their effectiveness and training costs are contingent on the flexibility of the decoder architectures
(Chen et al., 2019). For this reason, we chose to maximize autoinformation using contrastive methods,
which rely on a more flexible critic architecture (van den Oord et al., 2018; Hjelm et al., 2019; Chen
et al., 2020) instead of a decoder2. While contrastive methods have already been applied to temporal
series (van den Oord et al., 2018; Opolka et al., 2019; Gao & Shardt, 2022; Yang et al., 2023), our
work additionally provides a formal characterization of InfoMax representations of Markov processes.

Another key contribution of our work lies in the introduction of an explicit bottleneck term to remove
superfluous fast features. The proposed T-IB approach builds upon Wang et al. (2019b), which first
proposes a reconstruction-based information bottleneck objective for molecular time series, utilizing
a dimensionality-reducing linear encoder instead of a flexible deep neural architecture to implicitly
reduce information. Wang & Tiwary (2021) later developed a related bottleneck objective, focusing
on future target reconstruction instead of autoinformation maximization and using a marginal prior
for compression. Although less reliant on the decoder architecture, this objective is not guaranteed to
produce accurate simulation for arbitrary targets, as demonstrated in Appendix D.3.

4 EXPERIMENTAL RESULTS

We perform experiments on (i) a controlled dynamical system consisting of non-linear mixing of
slow and fast processes, and (ii) molecular simulations of peptides. Our goal is, primarily, to examine
the effect of the information maximization strategy (linear vs. contrastive) and the impact of the
bottleneck regularization on the trajectories unfolded using LS. We further aim to validate our theory
by estimating autoinformation and superfluous information for the models considered in this analysis.

Models We analyze representations obtained using correlation maximization methods based either
on linear projections (TICA) (Molgedey & Schuster, 1994) or non-linear encoders (VAMPNet) (Mardt
et al., 2018) against and non-linear autoinformation maximization (T-InfoMax) and corresponding
bottleneck (T-IB) based on InfoNCE. The regularization strength β is selected based on the validation
scores3. We use a conditional Flow++ architecture (Ho et al., 2019) to model the variational transition
distribution qϕ(zt|zt−τ ). This is because of the modeling flexibility, the tractability of the likelihood,
and the possibility of directly sampling to unfold latent simulations. Multi-layer perceptrons (MLPs)

2We refer the reader to Appendix D.2 for further details.
3Ablation studies on the effect of β and the effect of a stochastic encoder can be found in Appendix F.1.
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T-InfoMax 0.03 ± 0.00 1.29 ± 0.02 0.30 ± 0.07 13.0 ± 7.0 6.5 ± 2.5
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Figure 3: Visualization of the results on the Prinz 2D dataset. 3a: free energy and short sample
trajectory (left), samples colored by the slow and fast mode index (center), and autoinformation for
the full process and its components at several lag times (right). 3b: measures of autoinformation
gap, mutual information between the representation and the discrete fast and slow modes in nats, and
value of marginal and transition JS divergence for unfolded sequences in milli-nats. 3c: trajectories
encoded in the latent space zt through various trained models. Quantitative and qualitative results
confirm that T-IB uniquely captures relevant (slow) information while discarding irrelevant (fast)
components. This results in more accurate LS as measured by the marginal and transition JS.

are used to model qψ(yt|zt), mapping the representations zt into the logits of a categorical distribution
over the target yt. For all objectives, we use the same encoder, transition, and predictive architectures.

Training We first train the parameters θ of the encoder pθ(zt|xt) using each objective until
convergence. Note that T-IB also optimizes the parameters of the transition model qϕ(zt|zt−τ ) during
this step (as shown in equation 9). Secondly, we fix the parameters θ and fit the variational transition
qϕ(zt|zt−τ ) and predictive qψ(yt|zt) distributions. This second phase is identical across all the
models, which are trained until convergence within a maximum computational budget (50 epochs)
with the AdamW optimizer (Loshchilov & Hutter, 2019) and early stopping based on the validation
score. Standard deviations are obtained by running 3 experiments for each tested configuration with
different seeds. Additional details on architectures and optimization can be found in Appendix E.2.

Quantitative evaluation We estimate the autoinformation of the representations AI([zt]Tt=s; τ) at
several lag time τ using SMILE (Song & Ermon, 2020) and measure the amount of information that
the representations contain about the targets of interest I(zt;yt) using difference of discrete entropies:
H(yt)−H(yt|zt) (Poole et al., 2019; McAllester & Stratos, 2020). Given an initial system state
xs of a test trajectory [xt]

T
t=s and the sequence of corresponding targets [yt]Tt=s, we use the trained

encoder, transition, and prediction models to unfold trajectories [ỹs+kτ ]Kk=1 ∼ qLS([ys+kτ ]
K
k=1|xs)

that cover the same temporal span as the test trajectory (K = ⌊(T − s)/τ⌋). Similarly to previous
work (Arts et al., 2023), for evaluation purposes, we consider only discrete targets yt so that we can
estimate the marginal and transition probabilities for the ground truth and unfolded target trajectories
by counting the frequency of each target state and the corresponding transition matrix (Figure 5a). We
evaluate the fidelity of the unfolded simulation by considering the Jensen-Shannon divergence (JS)
between the ground truth and unfolded target marginal (MJS) and target transition distribution for
several τ ′ > τ (TJS@τ ′). Further details on the evaluation procedures are reported in Appendix E.3.

2D Prinz Potential Inspired by previous work (Mardt et al., 2018; Wu et al., 2018) we design a 2D
process consisting of a fast xft and slow xst components obtained from 2 independent simulations
on the 1D Prinz potential (Prinz et al., 2011). This potential energy function consists of four
interconnected low-energy regions, which serve as the discrete targets yft and yst . The two components
are mixed through a linear projection and a tanh non-linearity to produce a 2D process consisting of a
total of 4 (fast) × 4 (slow) modes, visualized in Figure 3a. We generated separate training, validation,
and test trajectories of 100K steps each. The encoders pθ(zt|xt) consist of simple MLPs and zt is fixed
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Figure 4: Comparison of 2D representations for Alanine Dipeptide, Chignolin, and Villin simulations.
4a: visualizations are colored by molecular configuration clusters yt obtained by clustering torsion
angles (Alanine Dipeptide) and TICA projections (Chignolin, Villin). 4b: corresponding values of
autoinformation (y-axis) at multiple lag times (x-axis). An optimal representation should maximize
autoinformation at the trained lag time τ (indicated by the dashed vertical line) while minimizing
information on faster processes (to the left of the dashed line). Correlation maximization methods
struggle to capture all relevant dynamics in larger systems, while T-IB regularization can effectively
regulate the amount fast information in zt. Visually this results in simpler clustered regions.

to be 2D. As shown in the autoinformation plot in Figure 3a (on the right), at the choesen train lag time
(τ = 64, vertical dashed line), the fast components are temporally independent, and all the relevant
information is given by the slow process: AI(xt; 64) ≈ AI(xst ; 64) > AI(xft ; 64) ≈ 0. Therefore,
information regarding xft can be considered superfluous (equation 7), and should be discarded.

Figure 3c visualizes the representations obtained with several models colored by the slow (left col-
umn) and fast (right column) mode index yst and yft . We can visually observe that our proposed T-IB
model preserves information regarding the slow process while removing all information regarding the
irrelevant faster component. This is quantitatively supported by the measurements of mutual informa-
tion reported in Table 3b, which also reports the values of marginal and transition JS divergence for
the unfolded slow targets trajectories [ỹst ]

T
t=s. We observe that the latent simulations unfolded from

the T-IB representations are statistically more accurate, improving even upon trajectories unfolded by
fitting the transition distribution directly in the original space xt. We believe this improvement is due
to the substantial simplification caused by the T-IB regularization.

Molecular Simulations We analyze trajectories obtained by simulating Alanine Dipeptide and
two fast-folding mini-proteins, namely Chignolin and Villin (Lindorff-Larsen et al., 2011) in water
solvent. We define disjoint train, validation, and test splits for each molecule by splitting trajectories
into temporally distinct regions. Encoders pθ(zt|xt) employ a TorchMD Equivariant Transformer
architecture (Thölke & Fabritiis, 2022) for rotation, translation, and reflection invariance. Following
previous work (Köhler et al., 2023), TICA representations are obtained by projecting invariant
features such as inter-atomic distances and torsion angles. Following Arts et al. (2023), the targets yt
are created by clustering 32-dimensional TICA projections using K-means with 5 centroids. Further
details on the data splits, features and targets can be found in Appendix E.1.2.

In Figure 4, we show 2D representations obtained by training the encoders on the molecular trajecto-
ries (Figure 4a), and the corresponding measure of autoinformation (Figure 4b) at several time scales
(x-axis), while Figure 5 reports transition and marginal JS for trajectories unfolded on larger latent
spaces (16D for Alanine simulations and 32D for Chignolin and Villin). While previous work demon-
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(a)

Ground Truth TICA VAMPNet T-InfoMax T-IB

(b)

Alanine Dipeptide Chignolin Villin
MJS ↓ TJS@256 ps ↓ MJS ↓ TJS@51.2 ns ↓ MJS ↓ TJS@51.2ns ↓

TICA 2.3± 1.8 14.9± 2.8 8.1± 7.8 11.2± 12.1 12.1± 10.8 14.1± 1.7
VAMPNet 220± 350 150± 21 35± 30 106± 100 96± 64 130± 110
T-InfoMax 3.9± 1.6 13.7± 2.3 11.0± 4.0 3.3± 0.2 35.2± 37.8 9.1± 0.9
T-IB 0.8± 0.2 12.9± 1.2 5.5± 1.9 3.0± 0.6 22.5± 17.9 6.8± 0.9

Figure 5: Evaluation of the statistical fidelity of unfolded molecular trajectories. 5a: visualization of
transition matrices for ground-truth and VLS target trajectories for different models on Villin at 51.2
ns. 5b: corresponding values of marginal and transition JS on Alanine Dipeptide, Chignolin and
Villin. LS based on T-IB representations consistently results in lower simulation error, improving
upon linear methods and unregularized T-InfoMax models.

strated that a linear operator can theoretically approximate expected system dynamics on large latent
spaces (Koopman, 1931; Mezić, 2005), we note that models trained to maximize linear correlation
(TICA, VAMPNet) face difficulties in extracting dynamic information in low dimensions even with
non-linear encoders. Moreover, our empirical observations indicate that higher-dimensional represen-
tations obtained with VAMPNet yield transition and prediction distributions that are more difficult to
fit (see Table 5 and Appendix F) resulting in less accurate unfolded target trajectories. Methods based
on non-linear contrastive T-InfoMax produce more expressive representations in low dimensions.
The addition of a bottleneck term aids in regulating the amount of information on faster processes
(Figure 4b, left of the dashed line). As shown in Figure 5a and Table 5b, T-IB consistently improves
the transition and marginal statistical accuracy when compared to the unregularized T-InfoMax coun-
terpart. Results for additional targets and train lag times are reported in Appendix F. We estimated
that training and unfolding Villin latent simulations of the same length of the training trajectory with
T-IB take approximately 6 hours on a single GPU. In contrast, running molecular dynamics on the
same hardware takes about 2-3 months. Further details on the run times can be found in Appendix G.

5 CONCLUSIONS

In this work, we propose an inference scheme designed to accelerate the simulation of Markov
processes by mapping observations into a representation space where larger time steps can be
modeled directly. We explore the problem of creating such a representation from an information-
theoretic perspective, defining a novel objective aimed at preserving relevant dynamics while limiting
superfluous information content through an Information Bottleneck. We demonstrate the effectiveness
of our method from both representation learning and latent inference perspectives by comparing the
information content and statistics of unfolded trajectories on synthetic data and molecular dynamics.

Limitations and Future work The primary focus of this work is characterizing and evaluating the
dynamic properties of representations. Nevertheless, modeling accurate transition in the latent space
remains a crucial aspect, and we believe that more flexible classes of transition models could result in
higher statistical fidelity at the cost of slower sampling. Another challenging aspect involves creating
representations of systems with large autoinformation content (e.g. chaotic and unstable systems).
This is because the variance of modern mutual information lower bounds increases exponentially with
the amount of information to extract (McAllester & Stratos, 2020). To mitigate this issue and validate
the applicability of our method to other practical settings, future work will consider exploiting local
similarity and studying the generalization capabilities of models trained on multiple systems and
different simulation conditions. We further aim to evaluate the accuracy of long-range unfolded
trajectories when only collections of shorter simulations are available during training time.
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