
Incremental Low-Rank Learning

Jiawei Zhao * 1 Yifei Zhang * 2 Beidi Chen 3 Florian Schäfer 4 Anima Anandkumar 1 5

Abstract

The theory of greedy low-rank learning (GLRL)
aims to explain the impressive generalization
capabilities of deep learning. It proves that
stochastic gradient-based training implicitly reg-
ularizes neural networks towards low-rank solu-
tions through a gradual increase of the rank during
training. However, there is a gap between theory
and practice since GLRL requires an infinitesimal
initialization of the weights, which is not practical
due to the fact that it is a saddle point. In this work,
we remove the assumption of infinitesimal initial-
ization by focusing on cumulative weight updates.
We prove the cumulative weight updates follow an
incremental low-rank trajectory for arbitrary or-
thogonal initialization of weights in a three-layer
linear network. Empirically, we demonstrate that
our theory holds on a broad range of neural net-
works (e.g., transformers) and standard training
algorithms (e.g., SGD, Adam). However, existing
training algorithms do not exploit the low-rank
property to improve computational efficiency as
the networks are not parameterized in low-rank.
To remedy this, we design a new training algo-
rithm Incremental Low-Rank Learning (InRank),
which explicitly expresses cumulative weight up-
dates as low-rank matrices while incrementally
augmenting their ranks during training. We evalu-
ate InRank on GPT-2, and our results indicate that
InRank achieves comparable prediction perfor-
mance as the full-rank counterpart while requiring
at most 33% of the total ranks throughout training.
We also propose an efficient version of InRank
that achieves a reduction of 20% in total training
time and 37% in memory usage when training
GPT-medium on WikiText-103 from scratch.

*Equal contribution 1California Institute of Technology
2University of Wisconsin-Madison 3Carnegie Mellon University
4Georgia Institute of Technology 5NVIDIA. Correspondence to:
Jiawei Zhao <jiawei@caltech.edu>.

Work presented at the ES-FoMo Workshop at ICML 2023.

1. Introduction
The generalization ability of deep neural networks continues
to intrigue researchers since the classical theory is not ap-
plicable in the over-parameterized regime, where there are
more learnable parameters than training samples. Instead,
efforts to understand this puzzle are based on the belief
that first-order learning algorithms (e.g., stochastic gradient
descent) implicitly bias the neural networks toward simple
solutions.

For instance, it has been shown that stochastic gradient
descent implicitly minimizes the rank of solutions during
training (Arora et al., 2019). Recent theoretical studies have
further demonstrated one of its training characterizations -
Greedy Low-Rank Learning (GLRL) (Li et al., 2021; Jacot
et al., 2022). GLRL characterizes the trajectory of stochastic
gradient descent, which performs a rank-constrained opti-
mization and greedily increases the rank whenever it fails
to reach a global minimizer.

However, one major drawback is that the GLRL theory re-
quires the assumption of infinitesimal initialization, which
is impractical as gradient descent cannot effortlessly es-
cape from the saddle point at zero, unless the noise is large
enough. Therefore, a generalized notion of GLRL under
practical initialization is needed to bridge the gap between
theory and practice.

In this work, we generalize the theory of GLRL by remov-
ing the requirement of infinitesimal initialization. To do
this, we focus on characterizing the trajectories of a new set
of quantities, cumulative weight updates, instead of weight
matrices. Cumulative weight updates do not include the
initialization values, and only incorporate the rest of the
updates of the weight matrices during training. This allows
us to remove the requirement of infinitesimal initialization
in GLRL.

We establish incremental rank augmentation of cumulative
weight updates during training under arbitrary orthogonal
initialization of the weights. This new formulation proves
that low-rank learning can be extended to non-zero initial-
ization, where the singular vector with a larger value in
the associated target matrix is learned exponentially faster.
We prove this relationship by following the work of Saxe
et al. (2014) to analyze the evolution of each mode (singular

1



vector) independently, which can be achieved by ensuring
orthogonality over the weights matrices and inputs in a
three-layer linear network.

Empirically, we further demonstrate that standard networks
(e.g., transformers) and training algorithms (e.g., SGD,
Adam) follow low-rank learning trajectories on the cumu-
lative weight updates, under standard weight initialization.
However, current algorithms can not exploit the low-rank
property to improve computational efficiency as the net-
works are not parameterized in low-rank.

To address this, we propose Incremental Low-Rank Learn-
ing (InRank), which parameterizes the cumulative weight
updates in low-rank while incrementally augmenting its
rank during training, as illustrated in Figure 1. InRank adds
a new batch of modes whenever a certain quantity, known
as the explained ratio, exceeds a certain threshold. The ex-
plained ratio represents the amount of information in the
underlying spectrum that the current rank can explain. A
low explained ratio indicates that the current rank is inade-
quate to represent the spectrum, necessitating the addition
of more modes.

InRank is capable of identifying intrinsic rank of networks
during training. The intrinsic rank of a neural network is
defined as the minimum sufficient rank that trains the net-
work from scratch without sacrificing performance. The
capability of finding the intrinsic rank addresses the chal-
lenge of pre-defining the fixed ranks in training low-rank
neural networks, which requires expensive hyperparame-
ter tuning. An inappropriate selection of rank may either
limit model capacity, hinder the learning process, or re-
sult in excessive memory usage and computation, thereby
negating the benefits of low-rank factorization. We further
improve computational efficiency by applying InRank only
in the initial phase of training. This approach mitigates the
computational cost induced by expensive SVD operations
in InRank, while maintaining comparable accuracy as the
full-rank models.

Our contributions are summarized as follows:

1. We generalize the theory of GLRL to arbitrary orthogo-
nal initialization by establishing incremental rank aug-
mentation of cumulative weight updates.

2. We propose InRank, which can find the intrinsic rank of
networks during training. It maintains prediction perfor-
mance equivalent to full-rank counterparts but requires
a maximum of 33% total ranks when evaluating InRank
on WikiText-103 using GPT-2 models.

3. We further enhance the training efficiency of InRank.
This efficient variant decreases the training time by 20%
and reduces memory usage by 37% when training GPT-
medium from scratch.

2. Cumulative Weight Updates follow
Low-Rank Learning Trajectory

In order to generalize GLRL beyond infinitesimal initializa-
tion, we focus on cumulative weight updates that character-
ize GLRL for any regular initializations (details of GLRL
can be found in the appendix).

We wish to train the functionF(x) to learn a particular input-
output map given a set of P training samples (xµ, yµ) ∈
RNx×Ny , where µ = 1, ..., P . Training is accomplished by
minimizing the squared errorL = 1

2

∑P
µ=1 ∥yµ −F(xµ)∥22

using gradient descent with a step size η. We first model
F(x) to be a deep linear network: F(x) = WL ...W 1 x,
where W l ∈ RNh×Nh for l ∈ 1, ..., L. wt denotes the
whole parameter vector at iteration t.

We let Aθ = WL ...W 1 denote the product matrix of the
network, and θ denote the whole parameter vector. Thus, we
also denote the training error as C(Aθ) where C is a convex
error (e.g., the squared error). We define the cumulative
weight updates as follows:

Definition 1 (Cumulative Weight Updates). The cumulative
weight updates dt at iteration t is defined as the difference
between the current parameterization wt and initialization
w0 in the parameter space, such that

dt = wt − w0 =

t∑
i=1

∆wi. (1)

The cumulative weight updates dt have been widely studied
in the literature, especially in the field of distributed training
(Vogels et al., 2019), as it is known to exhibit low-rank
properties during training.

This is attributed to the fact that dt is a summation of updates
to the weights ∆wi, with each update being determined by
the learning algorithm and current gradient gt. Gradient gt
has been shown to possess low-rank properties, which has
been exploited to reduce communication costs in distributed
training through low-rank compression (Vogels et al., 2019;
Wang et al.).

We theoretically prove that the cumulative weight updates
dt follow a low-rank learning trajectory, even when the ini-
tialization is not infinitesimal. We continue to focus on a
linear network and analyze the difference of the product
matrix Dt = At −A0 (which can be viewed as the cumula-
tive weight updates of the product matrix). Our goal is to
demonstrate that Dt exhibits an exponential rank increase
even when the initial weights are not close to zero. Our
analysis builds upon the work of Saxe et al. (2014), which
studies training dynamics under orthogonal inputs.

Assumption 1 (Orthogonal Inputs). We assume the inputs
are orthogonal, i.e., xT

i xj = 0 for i ̸= j.

2



b

U V

r2

b

r1 b r2 b

1 1 U V2 2

r1

Order of singular values

D
en

si
ty

Order of singular values

Figure 1. Incremental Low-Rank Learning from iteration t1 to t2. U and V represent any factorized layer. Density plots indicate
the strength of each singular vector (normalized by the total strengths). Solid areas represent how much information in the spectrum is
explained by the current rank rt at iteration t. From iteration t1 to t2, InRank adds r2 − r1 additional ranks to ensure the ratio of the
explained information is greater than a certain threshold α.

Consider the input-output correlation matrix:

Σyx =

P∑
µ=1

yµx
T
µ = UyySyxV xx =

Nx∑
α=1

sαuαv
T
α , (2)

where Uyy and V xx represent the left and right singular
vectors of Σyx, and Syx denotes its singular value matrix.
The singular values are ordered such that s1 ≥ s2 ≥ · · · ≥
sNx

.

We analyze a 3-layer linear network where y = W 2W 1x,
W 1 ∈ RNh×Nx and W 2 ∈ RNy×Nh are the weight
matrices of the first and second layers, respectively, and
Nh < Nx, Ny. After training, the converged network
should satisfy:

W 2W 1 =

Nh∑
α=1

sαuαv
T
α , (3)

which is the closest rank-Nh approximation to Σyx. To
further analyze its trajectory, we assume that the weights
are initialized as W 2

0 = UyyM2OT ,W 1
0 = OM1V xxT

,
where M2,M1 are diagonal matrices, and O is an arbitrary
orthogonal matrix. We have the following theorem for the
training evolution of Dt:

Theorem 1. For any orthogonal matrix O and scaled di-
agonal matrices M2 and M1, each singular value uf (t) in
Dt at iteration t follows the trajectory:

uf (t) =
se2st/τ

e2st/τ − 1 + s/u0
− u0, (4)

where s is the target singular value in Σyx, u0 is the initial
value determined by M2 and M1, and τ is a constant.

W 2
0W

1
0 ensures that each mode α is learned independently

right from the beginning of training, enabling us to analyze
the learning trajectory of each mode separately. The diag-
onal matrices M2 and M1 control the scale of the initial

weights, i.e., the initial value u0 of each mode α. Conse-
quently, a larger u0 that is closer to s accelerates the learning
speed. We provide comprehensive proof of the theorem in
the appendix for further clarity.

The sigmoid function in Theorem 1 exhibits a sharp tran-
sition from a state of no learning to full learning, with the
transition point determined by the initial value u0 and s.
This indicates that if the target singular values s are distinct
enough (given s >> u0), each uf (t) will follow an inde-
pendent sigmoid trajectory, permitting ranks to be learned
sequentially and independently.

Shifting our focus to practical non-linear networks, we an-
alyze the difference of layer-wise weight matrix Dt =
W l

t − W l
0 for l = 1, ..., L instead of the product matrix

Dt = WL
t ...W 1

t −WL
0 ...W 1

0 . We also extend our evalua-
tion to more practical cases with modern weight initializa-
tion methods.

As shown in the appendix, cumulative weight updates Dt

follow the greedy low-rank learning trajectory even un-
der regular initializations, including Orthogonal, ZerO, and
Kaiming methods (Saxe et al., 2014; He et al., 2015; Zhao
et al., 2021). We further verify our theory on a broad range
of neural networks (e.g., transformers) and standard training
algorithms (e.g., SGD, Adam). This observation motivates
us to design an efficient incremental learning algorithm that
leverages the properties of cumulative weight updates.

3. Incremental Learning
Motivated by the previous findings, we propose an incremen-
tal low-rank learning algorithm that leverages the implicit
low-rank learning trajectory in practice. To explicitly rep-
resent the cumulative weight updates, we parametrize the
weight matrix W l at any layer l as follows:

W l = W l
0 +Dl, (5)

where W l
0 is the initial matrix and Dl is the summation of

3



Algorithm 1 Incremental Low-Rank Learning (InRank)
Require: L(Wt) is the cost of total weights W = (W 1, ...,WL) at iteration t, W l

t = W l
0 + U l

tV
l
t for each layer l (W l

0 is
not trainable) and let r, b, α, ϵ, η, T > 0

1: Initialize W l
0 using standard initialization, and set U l

0, V
l
0 to 0

2: Compute the top (1 + b) singular vectors: ul, sl, vl ← SVD(1+b)(
∂L(W0)

∂W l
0

)

3: Initialize factorized weights with small ϵ : U l
0 ← −ϵvl, V l

0 ← ϵul, and rl0 ← 1
4: for t = 1, 2, 3, ..., T do
5: Train low-rank network and update U l

tV
l
t using SGD with learning rate η

6: Compute the top (rl + b) singular vectors: ul, sl, vl ← SVD(rl+b)(U
l
tV

l
t )

7: Increment rlt to rlt+1 until the explained ratio g(U l
tV

l
t , r

l
t+1, b) ≥ α

8: Initialize additional parameters: U l
t+1 ← [U l

t , U
∗], V l

t+1 ← [V l
t , V

∗], where U∗ ∈ Rpl×(rlt+1−rlt) and V ∗ ∈
R(rlt+1−rlt)×ql are randomly initialized with small values

9: end for

weight updates. Since Dl exhibits low-rank properties, we
can factorize it as Dl = U lV l, resulting in:

W l = W l
0 + U lV l, (6)

where U l ∈ Rpl×rl and V l ∈ Rrl×ql are the factorized
matrices, and rl is the rank of Dl.

To emulate the implicit low-rank learning, we train factor-
ized matrices U lV l with an initially small rank rl, subse-
quently increasing the rank (i.e., the matrix size) throughout
the training process.

A crucial challenge lies in determining how to increase the
rank rl during training. An inappropriate choice of rank
may either lead to insufficient model capacity, hinder the
learning process, or result in excessive memory usage and
computation, negating the benefits of low-rank factorization.

To address this, we propose a novel method for dynamically
identifying when a rank increase is necessary, based on mea-
suring the representability of the current rank rl. Inspired
by Zhao et al. (2022), we define explained ratio:

g(M, rl, b) =

∑rl

i=1 s
l
i∑rl+b

i=1 sli
, (7)

where sli is the i-th singular value of a matrix M , and b
is a buffer size used to encompass a broader spectrum for
determination. The explained ratio g quantifies the repre-
sentability of the current rank rl in the truncated spectrum
(of size (rl + b)) of M . A low explained ratio g indicates
that the existing rank rl cannot sufficiently represent the
truncated spectrum, necessitating an increase in rl to incor-
porate more useful modes.

We let M = U lV l for each layer l and compute the ex-
plained ratio g(U lV l, rl, b) at each iteration (can be relaxed
each k iterations in practice). By predefining an appropriate
threshold α and ensuring that g(U lV l, rl, b) remains larger

than α during training, the rank rl can automatically in-
crease when needed. This process is illustrated in Figure 1.

It is worth noting that b buffer ranks serve to provide a wider
spectrum range, but their corresponding singular vectors
may be less useful. These buffer ranks can be discarded by
fine-tuning in the post-training stage. The full algorithm is
detailed in Algorithm 1.

4. Evaluation
In this section, we conduct a comprehensive evaluation of
our proposed InRank algorithm on GPT-2 1. Our method
particularly focuses on the fully-connected layers in the
models, where we substitute the conventional weight param-
eterization with our relative parameterization as described
in Equation 6. This operation involves applying InRank
to the resulting low-rank factorized matrices. Notably, our
approach is not exclusively limited to fully-connected lay-
ers. It bears the flexibility to be extended to various types
of layers, including convolution and self-attention layers.
However, to maintain the focus on our current research, we
leave this promising exploration for future work. We further
improve the efficiency of InRank by proposing an efficient
variant, InRank-Efficient, which only applies InRank during
the initial training stage. Details of InRank-Efficient and
hyperparameters configuration are provided in the appendix
for further reference.

We compare InRank and InRank-Efficient with a full-
rank baseline using different sizes of GPT models on the
WikiText-103 dataset. All methods are trained with the same
hyperparameters, including the learning rate, weight decay,
and the number of epochs. We use the Adam optimizer to
train for 100 epochs with an initial learning rate of 0.001.
All experiments are run using the same computational set-
ting with 8 NVIDIA® Tesla® V100 GPUs.

1The code for our algorithm is available at this link

4

https://github.com/jiaweizzhao/InRank


Table 1. Performance comparison of different methods.

Model Method PPL Rank Runtime Memory Params FLOPs

GPT-small Baseline 18.5 768 24.5h 248Mb 124M 292G
InRank 18.6 254 23.4h 295Mb 147.7M 348G
InRank-Efficient 18.9 254 22.2h 182Mb 91.2M 178G

GPT-medium Baseline 19.5 1024 60.5h 709Mb 355M 828G
InRank 19.6 286 57.4h 850Mb 424M 993G
InRank-Efficient 19.9 286 48.6h 447Mb 223M 428G

As shown in Table 1, both InRank and InRank-Efficient
achieve validation perplexity comparable to the full-rank
baseline while requiring at most 33% of the total rank. The
rank is calculated as the average rank across all weight ma-
trices in the model. We observed that InRank outperforms
InRank-Efficient, even though they find the same rank. This
can be attributed to the fact that InRank-Efficient discards
the parameterization of W0 during the training process.

We also measure several efficiency metrics to compare the
computational efficiency of different methods. Specifically,
we measure the total training time, memory usage, number
of parameters, and the number of floating point operations
(FLOPs) required for training.

Notably, InRank-Efficient significantly reduces both com-
putational cost and memory usage. For instance, when
compared to the baseline on GPT-medium, InRank-Efficient
reduces the total training time by 20% and memory usage by
37%. On the other hand, throughout the entire training pro-
cess, InRank-Efficient requires a maximum of 63% memory
usage, enabling the training of large language models from
scratch on memory-constrained devices.

Moreover, InRank-Efficient demonstrates even greater effi-
ciency benefits with larger models. In the case of GPT-large,
InRank-Efficient reduces 75% of the total rank, resulting
in a reduction of 30% in training time and 42% in memory
usage when measured over a single epoch. Unfortunately,
due to our limited computational resources, we were unable
to report its performance over a full training run. Additional
results and discussions are provided in the appendix for
further reference.

5. Conclusion
In this work, we generalize the Greedy Low-Rank Learning
(GLRL) to arbitrary orthogonal initialization, leading to the
development of Incremental Low-Rank Learning (InRank).
Our method is capable of discovering the intrinsic rank of
networks and has demonstrated comparable performance to
full-rank counterparts on training GPT-2, while utilizing a
maximum of 33% of total ranks throughout training. The
efficient variant of InRank also achieves a significant reduc-

tion of 20% in total training time and 37% in memory usage
when training GPT-medium on WikiText-103.

We believe our work offers a novel approach to training
low-rank networks through automatic rank determination.
In the future, we aim to expand our method to encompass
various network architectures and datasets. Additionally, we
intend to optimize our algorithm implementation to further
improve its computational efficiency.

References
Arora, S., Cohen, N., Hu, W., and Luo, Y. Implicit Regular-

ization in Deep Matrix Factorization. arXiv:1905.13655
[cs, stat], October 2019. URL http://arxiv.org/
abs/1905.13655. arXiv: 1905.13655.

Dao, T., Chen, B., Sohoni, N., Desai, A., Poli, M., Grogan,
J., Liu, A., Rao, A., Rudra, A., and Ré, C. Monarch:
Expressive Structured Matrices for Efficient and Accu-
rate Training, April 2022. URL http://arxiv.org/
abs/2204.00595. arXiv:2204.00595 [cs].

Gissin, D., Shalev-Shwartz, S., and Daniely, A. The Im-
plicit Bias of Depth: How Incremental Learning Drives
Generalization, December 2019. URL http://arxiv.
org/abs/1909.12051. arXiv:1909.12051 [cs, stat].

Gunasekar, S., Lee, J., Soudry, D., and Srebro, N. Charac-
terizing Implicit Bias in Terms of Optimization Geometry.
In Proceedings of the 35th International Conference on
Machine Learning, pp. 1832–1841. PMLR, July 2018.
URL https://proceedings.mlr.press/v80/
gunasekar18a.html. ISSN: 2640-3498.

He, K., Zhang, X., Ren, S., and Sun, J. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on Im-
ageNet Classification. In 2015 IEEE International Con-
ference on Computer Vision (ICCV), pp. 1026–1034, San-
tiago, Chile, December 2015. IEEE. ISBN 978-1-4673-
8391-2. doi: 10.1109/ICCV.2015.123. URL http://
ieeexplore.ieee.org/document/7410480/.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-

5

http://arxiv.org/abs/1905.13655
http://arxiv.org/abs/1905.13655
http://arxiv.org/abs/2204.00595
http://arxiv.org/abs/2204.00595
http://arxiv.org/abs/1909.12051
http://arxiv.org/abs/1909.12051
https://proceedings.mlr.press/v80/gunasekar18a.html
https://proceedings.mlr.press/v80/gunasekar18a.html
http://ieeexplore.ieee.org/document/7410480/
http://ieeexplore.ieee.org/document/7410480/


Rank Adaptation of Large Language Models, Octo-
ber 2021. URL http://arxiv.org/abs/2106.
09685. arXiv:2106.09685 [cs].

Huang, X. and Alkhalifah, T. PINNup: Robust neural net-
work wavefield solutions using frequency upscaling and
neuron splitting. arXiv:2109.14536 [physics], Septem-
ber 2021. URL http://arxiv.org/abs/2109.
14536. arXiv: 2109.14536.

Idelbayev, Y. and Carreira-Perpinan, M. A. Low-Rank
Compression of Neural Nets: Learning the Rank of
Each Layer. pp. 8049–8059, 2020. URL https:
//openaccess.thecvf.com/content_
CVPR_2020/html/Idelbayev_Low-Rank_
Compression_of_Neural_Nets_Learning_
the_Rank_of_Each_CVPR_2020_paper.html.

Ioannou, Y., Robertson, D., Shotton, J., Cipolla, R.,
and Criminisi, A. Training CNNs with Low-
Rank Filters for Efficient Image Classification, Febru-
ary 2016. URL http://arxiv.org/abs/1511.
06744. arXiv:1511.06744 [cs].

Jacot, A., Ged, F., Şimşek, B., Hongler, C., and Gabriel,
F. Saddle-to-Saddle Dynamics in Deep Linear Net-
works: Small Initialization Training, Symmetry, and Spar-
sity. arXiv:2106.15933 [cs, stat], January 2022. URL
http://arxiv.org/abs/2106.15933. arXiv:
2106.15933.

Li, C., Farkhoor, H., Liu, R., and Yosinski, J. Measuring
the Intrinsic Dimension of Objective Landscapes. In
International Conference on Learning Representations,
May 2023.

Li, Z., Luo, Y., and Lyu, K. Towards Resolving the Im-
plicit Bias of Gradient Descent for Matrix Factorization:
Greedy Low-Rank Learning. arXiv:2012.09839 [cs, stat],
April 2021. URL http://arxiv.org/abs/2012.
09839. arXiv: 2012.09839.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F. A., Bengio, Y., and Courville, A. On
the Spectral Bias of Neural Networks. Technical Report
arXiv:1806.08734, arXiv, May 2019. URL http://
arxiv.org/abs/1806.08734. arXiv:1806.08734
[cs, stat] type: article.

Razin, N., Maman, A., and Cohen, N. Implicit Regulariza-
tion in Tensor Factorization. arXiv:2102.09972 [cs, stat],
June 2021. URL http://arxiv.org/abs/2102.
09972. arXiv: 2102.09972.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact
solutions to the nonlinear dynamics of learning in deep

linear neural networks. arXiv:1312.6120 [cond-mat, q-
bio, stat], February 2014. URL http://arxiv.org/
abs/1312.6120. arXiv: 1312.6120.

Schotthöfer, S., Zangrando, E., Kusch, J., Ceruti, G., and
Tudisco, F. Low-rank lottery tickets: finding efficient low-
rank neural networks via matrix differential equations,
May 2022. arXiv:2205.13571 [cs, math, stat].

Vogels, T., Karimireddy, S. P., and Jaggi, M. Pow-
erSGD: Practical Low-Rank Gradient Compression
for Distributed Optimization. In Advances in Neural
Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/
d9fbed9da256e344c1fa46bb46c34c5f-Abstract.
html.

Wang, H., Agarwal, S., and Papailiopoulos, D. Pufferfish:
Communication-efficient Models At No Extra Cost. pp.
22.

Wang, H., Agarwal, S., U-chupala, P., Tanaka, Y.,
Xing, E. P., and Papailiopoulos, D. Cuttlefish:
Low-rank Model Training without All The Tuning,
May 2023. URL http://arxiv.org/abs/2305.
02538. arXiv:2305.02538 [cs].

Yang, H., Tang, M., Wen, W., Yan, F., Hu, D., Li, A., Li,
H., and Chen, Y. Learning Low-rank Deep Neural Net-
works via Singular Vector Orthogonality Regularization
and Singular Value Sparsification. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), pp. 2899–2908, Seattle, WA,
USA, June 2020. IEEE. ISBN 978-1-72819-360-1. doi:
10.1109/CVPRW50498.2020.00347. URL https://
ieeexplore.ieee.org/document/9150852/.

You, H., Li, C., Xu, P., Fu, Y., Wang, Y., Chen, X., Bara-
niuk, R. G., Wang, Z., and Lin, Y. Drawing Early-Bird
Tickets: Towards More Efficient Training of Deep Net-
works, February 2022. URL http://arxiv.org/
abs/1909.11957. arXiv:1909.11957 [cs, stat].

Zhao, J., Schäfer, F., and Anandkumar, A. ZerO Initial-
ization: Initializing Residual Networks with only Zeros
and Ones, October 2021. URL http://arxiv.org/
abs/2110.12661. arXiv:2110.12661 [cs].

Zhao, J., George, R. J., Li, Z., and Anandkumar, A. In-
cremental Spectral Learning in Fourier Neural Operator,
November 2022. URL https://arxiv.org/abs/
2211.15188v3.

6

http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2109.14536
http://arxiv.org/abs/2109.14536
https://openaccess.thecvf.com/content_CVPR_2020/html/Idelbayev_Low-Rank_Compression_of_Neural_Nets_Learning_the_Rank_of_Each_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Idelbayev_Low-Rank_Compression_of_Neural_Nets_Learning_the_Rank_of_Each_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Idelbayev_Low-Rank_Compression_of_Neural_Nets_Learning_the_Rank_of_Each_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Idelbayev_Low-Rank_Compression_of_Neural_Nets_Learning_the_Rank_of_Each_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Idelbayev_Low-Rank_Compression_of_Neural_Nets_Learning_the_Rank_of_Each_CVPR_2020_paper.html
http://arxiv.org/abs/1511.06744
http://arxiv.org/abs/1511.06744
http://arxiv.org/abs/2106.15933
http://arxiv.org/abs/2012.09839
http://arxiv.org/abs/2012.09839
http://arxiv.org/abs/1806.08734
http://arxiv.org/abs/1806.08734
http://arxiv.org/abs/2102.09972
http://arxiv.org/abs/2102.09972
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1312.6120
https://proceedings.neurips.cc/paper/2019/hash/d9fbed9da256e344c1fa46bb46c34c5f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d9fbed9da256e344c1fa46bb46c34c5f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d9fbed9da256e344c1fa46bb46c34c5f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d9fbed9da256e344c1fa46bb46c34c5f-Abstract.html
http://arxiv.org/abs/2305.02538
http://arxiv.org/abs/2305.02538
https://ieeexplore.ieee.org/document/9150852/
https://ieeexplore.ieee.org/document/9150852/
http://arxiv.org/abs/1909.11957
http://arxiv.org/abs/1909.11957
http://arxiv.org/abs/2110.12661
http://arxiv.org/abs/2110.12661
https://arxiv.org/abs/2211.15188v3
https://arxiv.org/abs/2211.15188v3


A. Related Work
Implicit regularization has been well studied to explain ex-
cellent generalization in neural networks (Gunasekar et al.,
2018; Rahaman et al., 2019). Implicit rank regularization
stands out among the diverse aspects of implicit regulariza-
tion, which demonstrates that a neural network minimizes
its rank implicitly during training (Arora et al., 2019; Gissin
et al., 2019). Further research has corroborated that neural
networks pursue a greedy low-rank learning strategy under
infinitesimal initialization (Razin et al., 2021; Jacot et al.,
2022; Li et al., 2021). However, the practical advantages of
such an approach remain unexplored, predominantly due to
the challenges of deviating from the infinitesimal initializa-
tion assumption.

Low-rank training and other structured pruning methods
aim to promote structured sparsity within neural networks
(NNs) throughout the training process, enabling substantial
computational acceleration (You et al., 2022; Dao et al.,
2022). The low-rank training technique has proven effective
for training low-rank neural networks from scratch (Ioan-
nou et al., 2016; Yang et al., 2020; Schotthöfer et al., 2022).
Nonetheless, this method often necessitates extra hyperpa-
rameters, such as the rank of the factorization, which can
be challenging to determine accurately, and thus it requires
careful tuning.

Idelbayev & Carreira-Perpinan (2020) propose the LC com-
pression method that explicitly integrates the learning of
low-rank factors into the training process, despite its com-
putational intensity. More recently, Wang et al. (2023) in-
troduce Cuttlefish, a low-rank training method capable of
automatically determining the factorization rank in the early
stages of training. However, Cuttlefish requires a pre-set
full-rank initialization and lacks a theoretical comprehen-
sion of its low-rank behavior, unlike our proposed InRank.

Moreover, low-rank training has been employed for fine-
tuning large-scale pre-trained models (Hu et al., 2021), and
for reducing communication overhead in distributed training
(Vogels et al., 2019; Wang et al.). Li et al. (2023) adopt the
low-rankness in cumulative weight updates to measure the
intrinsic dimension of objective landscapes. The concept
of incremental learning has been examined within the con-
text of learning partial differential equations using neural
networks, such as parameter expansion in the frequency do-
main (Zhao et al., 2022), and increasing the complexity of
the underlying PDE problem (Huang & Alkhalifah, 2021).

B. Greedy Low-Rank Learning
In this section, we first introduce greedy low-rank learning
(GLRL) and its practical limitations.

We have the following theorem that characterizes the im-

plicit rank regularization behavior of gradient descent under
infinitesimal initialization.

Theorem 2 (Greedy Low-Rank Learning, informal). If ini-
tialize W 1, ...,WL to be infinitesimal, then the product ma-
trix Aθ follows a greedy low-rank learning trajectory, such
that the gradient descent first searches over a rank-1 sub-
space of Aθ, and then greedily increases the rank by one
whenever it fails to reach a global minimizer.

Theorem 2 characterizes the trajectory of gradient descent,
which performs a rank-constrained optimization and greed-
ily relaxes the rank restriction by one whenever it fails to
reach a global minimizer.

Inspired by this implicit low-rank trajectory, the greedy low-
rank learning (GLRL) algorithm is proposed to capture this
implicit behavior explicitly (Li et al., 2021). As shown in
Algorithm 2, GLRL incrementally increases the rank of
the weight matrices in a deep linear network and initializes
the additional rows and columns based on the top singular
vector of the current matrix derivative.

Although the GLRL algorithm provides a theoretical under-
standing of implicit rank regularization, it has some practi-
cal drawbacks. One notable limitation is the infinitesimally
small initialization, which leads to slow convergence and
makes it difficult to apply the algorithm in large-scale set-
tings. In addition, GLRL is only applicable to linear net-
works as it highly relies on the product matrix Aθ. This
makes it inapplicable to practical neural networks with non-
linear activation functions.

C. Details of Evaluation
We benchmark the effectiveness of our method mainly on
Generative Pre-trained Transformer 2 (GPT-2), a model
widely used in language tasks. In our experiment, we ap-
ply InRank to all the MLP layers in GPT-2 and assess the
training of GPT-2 from scratch on the WikiText-103 dataset.

We fix the hyperparameters of InRank across all experiments
and different models, including an initial rank of r0 = 1, a
buffer size of b = 100, and a threshold of α = 0.9. We find
both values r0 and b are insensitive to the performance of
InRank, and we will discuss the selection of the threshold α
in the following section.

C.1. Automatic Rank Determination

A key finding from our evaluation is that InRank can auto-
matically find the intrinsic rank of the model during training,
facilitated by the automatic rank determination feature in
cumulative weight updates. Figure 2 demonstrates that the
rank identified by InRank aligns with the intrinsic rank dis-
covered by costly sweeping across a wide range of ranks.
This capability could potentially eliminate the need for the

7



Algorithm 2 Greedy Low-Rank Learning (GLRL)
Require: C is a convex cost, Aθ is the product matrix: Aθ = W 1...WL, and let ϵ, η, T > 0

1: Compute the first singular vector of∇C(0): u, s, v ← SVD1(∇C(0))
2: Initialize parameters and network width: θ ← (−ϵvT , ϵ, . . . , ϵu), w ← 1
3: while C(Aθ) < Cmin + ϵ do
4: Train width-w deep linear network for T steps using SGD with learning rate η
5: Compute the first singular vectors of∇C(Aθ): u, s, v ← SVD1(∇C(Aθ))
6: Expand network width: w ← w + 1
7: Initialize additional parameters:

θ ←
((

W 1

−ϵvT
)
,

(
W 2 0
0 ϵ

)
, . . . ,

(
WL ϵu

))
8: end while

laborious and time-intensive process of tuning the rank hy-
perparameters for training low-rank networks.

C.2. InRank-Efficient

We aim to improve the efficiency of InRank. We find the
rank increment mostly occurs during the early stages of
training, remaining relatively stable thereafter. This obser-
vation suggests that the initial training phase can sufficiently
infer the intrinsic rank of the model, corroborating the find-
ings of previous work (Wang et al., 2023).

This motivates us to apply InRank only in the early stages
of training to determine an appropriate rank for low-rank
training, fixing its rank afterward. We denote this variant as
InRank-Efficient. The conventional InRank is computation-
ally expensive due to the O(n3) cost of the SVD operation
for a matrix of size n × n. On the other hand, InRank-
Efficient reduces the computational burden by only applying
InRank during the initial training stage. In the remaining
evaluation on GPT-2, InRank-Efficient is only applied for
the first epoch.

In the InRank-Efficient approach, once we determine the
optimal rank r∗ for UV using InRank, we parameterize W
as a rank-r∗ factorization of UV only, eliminating the need
for representing a separated W0. By removing W0, we can
reduce both memory usage and computational costs as it
avoids additional matrix multiplication. Moreover, we can
enhance efficiency by discarding the buffer size b once the
optimal rank has been determined. The full algorithm is
detailed in Algorithm C.2.

C.3. Selection of Threshold α

To determine the optimal configuration for InRank, we con-
duct evaluations using various values of threshold α. Table 2
demonstrates that the performance of each threshold value is
consistent across different model sizes. Taking both predic-
tion performance and efficiency into consideration, we have

Algorithm 3 InRank-Efficient
1: Rank determination:
2: Run InRank (Algorithm 1) for T iterations and get the

final rank rlT for each layer l
3: Efficient training:
4: Reparametrize W l

t = U l
tV

l
t where U l

t ∈ Rpl×rlT and
V l
t ∈ RrlT×ql

5: Perform standard training over fixed low-rank network
until convergence

selected α = 0.9 as the default value for all experiments.
The stable choice of α ensures that InRank can automati-
cally identify the optimal rank for new tasks and models
without the need for extensive tuning, thereby minimizing
the associated costs.

8



0 50 100 150 200 250 300 350 400
Rank

1.9 × 101

2 × 101

2.1 × 101

2.2 × 101

2.3 × 101

Pe
rp

le
xi

ty

Finding intrinsic rank in GPT

Figure 2. Identifying intrinsic rank in GPT-small on WikiText-103. The cross marker signifies the rank determined by InRank. The rank
varies from 10 to 400.

Table 2. Varying threshold α in InRank-Efficient.

Threshold α GPT-small

PPL Rank Runtime Memory Parameters FLOPs

Baseline 18.5 768 24.5h 248Mb 124M 292G
0.8 19.4 152 20.2h 163Mb 81.8M 156G
0.85 19.1 193 21.9h 171Mb 85.6M 165G
0.9 18.9 254 22.2h 182Mb 91.2M 178G

Threshold α GPT-medium

PPL Rank Runtime Memory Parameters FLOPs

Baseline 19.5 1024 60.5h 709Mb 355M 828G
0.8 20.6 168 45.9h 389Mb 194M 363G
0.85 20.2 213 48.1h 411Mb 205M 389G
0.9 19.9 286 48.6h 447Mb 223M 428G

D. Proof
In this section, we present the proof of our main analysis,
as shown in Theorem 1.

As introduced in the main text, we analyze the learning tra-
jectory of a 3-layer linear network where y = W 2W 1x,
W 1 ∈ RNh×Nx and W 2 ∈ RNy×Nh are the weight
matrices of the first and second layers, respectively, and
Nh < Nx, Ny .

We assume the inputs are orthogonal, i.e., xT
i xj = 0 for

i ̸= j. In this case, the continuous gradient flow follows the
following differential equations:

∂

∂t
W 1 = W 2T

(
Σyx −W 2W 1Σxx

)
,

∂

∂t
W 2 =

(
Σyx −W 2W 1Σxx

)
W 21T .

(8)

Since the inputs are orthogonal Σxx = I , the input-output

correlation matrix Σyx contains all information we need
to learn the network. We decompose Σyx using SVD as
follows:

Σyx = UyySyxV xxT

=

Nx∑
α=1

sαuαv
T
α . (9)

Learning the direction and strength of each mode α is crucial
to interpolate the input-output correlation matrix Σyx.

To analyze the evolution of each mode independently, we
let aα be the αth column of W̄ 1, and let bαT be the αth row
of W̄ 2, where W 1 = W̄ 1V xxT

,W 2 = UyyW̄ 2. Based on
Equation 8 we can characterize the evolution of each mode
using aα and bα:

∂

∂t
aα = (sα − aα · bα) bα −

∑
γ ̸=α

bγ (aα · bγ) , ∂

∂t
bα = (sα − aα · bα) aα −

∑
γ ̸=α

aγ (bα · aγ) .

(10)

9



For both ∂
∂ta

α and ∂
∂tb

α, the first term characterizes the
cooperative learning of the strength sα using the aα and
bα. The second term characterizes the competitive learning
of the direction aα and bα given the distraction from other
directions aγ and bγ .

It is difficult to solve Equation 10 given arbitrary weight
initialization due to complex competitive interaction be-
tween modes. Therefore, we assume the weight initializa-
tion follows W 2

0 = UyyM2OT ,W 1
0 = OM1V xxT

, where
M2,M1 are diagonal matrices, and O is an arbitrary orthog-
onal matrix. W 2

0W
1
0 ensures that each mode α is learned

independently right from the beginning of training, enabling
us to analyze the learning trajectory of each mode sepa-
rately. aα and bα will remain parallel to a certain direction
rα throughout the learning process, and we can rewrite
Equation 10 as follows:

∂

∂t
a = b(s− ab),

∂

∂t
b = a(s− ab), (11)

where we let a = aα · rα, b = bα · rα, and s = sα. By
further assuming a = b and u = ab, we obtain:

∂

∂t
u = 2u(s− u). (12)

Integrate the above equation to obtain:

t = τ

∫ uf

u0

du

2u(s− u)
=

τ

2s
ln

uf (s− u0)

u0 (s− uf )
, (13)

where u0 is the initial value determined by M2 and M1, uf

is the target value of strength, and τ is a constant. t is the
time it takes for u to travel from u0 to uf .

As we analyze the difference of the product matrix Dt =
At − A0, it is equivalent to analyzing the residual of each
mode: ut − u0. To analyze the entire evolution (uf ≈ s) of
u over time, we yield the following equation:

uf (t) =
se2st/τ

e2st/τ − 1 + s/u0
− u0. (14)

E. Clarification on Greedy Low-Rank
Learning

In this section, we additional clarification on the greedy low-
rank learning hypothesis, which is presented in Theorem 2.

Several works have demonstrated the greedy low-rank learn-
ing behavior under various settings and assumptions. Li
et al. (2021) prove it under matrix factorization setting for
deep linear network by analyzing the asymptotic behavior
of gradient flow under infinitesimal initialization. Jacot et al.
(2022) also demonstrate the saddle-to-saddle learning be-
havior for deep linear networks, although they prove the

rank-one case only. Razin et al. (2021) further extend the
discussion to the setting of tensor factorization.

A formal description of Theorem 2 is given below:

Theorem 3. Let W̃r be the r-th critical point of a rank-r
subspace of W , and let W̃0 = 0 be the saddle point at
zero. From an infinitesimal initialization (W0 ≈ W̃0), the
gradient flow G(W ) first visits the critical point W̃1. If W̃1

is not a minimizer, G(W ) will expand the searching space
to a rank-2 subspace and converge to the critical point W̃2.
If W̃2 is also not a minimizer, this process continues until
G(W ) reaches W̃r∗ in a rank-r∗ subspace that minimizes
the objective function, provided that r∗ < rank(W ).

The theorem implies the greedy low-rank learning trajectory,
such that the gradient descent first searches over a rank-1
subspace of Aθ, and then greedily increases the rank by one
whenever it fails to reach the minimizer.

Proving this requires the analysis of the limiting flow
Gr→r+1(W ), which is the gradient flow between two criti-
cal points W̃r and W̃r+1. Theorem 3 holds by showing that
the flows G0→1(W ), G1→2(W ), ..., Gr∗−1→r∗(W ) all ex-
ist during learning, which is a general proving direction
adopted by recent works. The details of the proof can be
found in Li et al. (2021); Jacot et al. (2022).

10



F. Low-Rank Learning in Practice
In this section, we provide additional results demonstrat-
ing that the cumulative weight updates follow the low-rank
learning trajectory over a broad range of network architec-
tures and learning algorithms.

F.1. Evaluation on Theorem 1

To validate this, we carry out an empirical simulation using
different sets of u0 and s. As illustrated in Figure 3, under
various scales of initialization, the evolution of uf (t) consis-
tently adheres to the low-rank learning trajectory. We note
that analyzing weights W 2W 1 directly under infinitesimal
initialization in Li et al. (2021) can be viewed as a special
case of analyzing Dt here.

F.2. Low-Rank learning under different initialization

As shown in Figure 4, cumulative weight updates Dt follow
the greedy low-rank learning trajectory even under regular
initializations, including Orthogonal, ZerO, and Kaiming
methods (Saxe et al., 2014; He et al., 2015; Zhao et al.,
2021).

F.3. Low-Rank learning under different architectures

We further verify our theory on different architectures, in-
cluding LSTM and Transformer.

F.3.1. LSTM

As shown in Figure 5, the cumulative weight updates Dt of
LSTM follow the low-rank learning trajectory.

F.3.2. TRANSFORMER

As shown in Figure 6, the cumulative weight updates Dt of
Transformer follow the low-rank learning trajectory.

F.4. Low-Rank learning under different learning
algorithms

We further verify our theory on different learning algorithms,
including SGD and Adam. As shown in Figure 7, the cu-
mulative weight updates Dt of MLP follow the low-rank
learning trajectory under both SGD and Adam.

G. Rank Evolution during Training
We present the rank evolution in various MLP layers when
applying InRank on GPT-small model. As shown in Fig-
ure 8, we visualize the rank evolution over the first 5% of
the total training iterations. The figure indicates that the
increment of rank mostly happens in the early stage of train-
ing.

H. Repeated Experiment on different GPT
models

We report the evaluation results of InRank and InRank-
Efficient on different sizes of GPT models in Table 3. All
experiments are repeated 3 times. We also report testing
perplexity instead of validation perplexity.

11



0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

u f
(t)

a=1.00e-01, b=1.00e-02

0 1 2 3 4 5
t

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

a=1.00e-01, b=1.00e-06

0 1 2 3 4 5
t

0

2

4

6

8

10

a=1.00e+00, b=1.00e-02

0 1 2 3 4 5
t

0

2

4

6

8

10

a=1.00e+00, b=1.00e-06

Figure 3. uf (t) follows low-rank learning trajectory regardless of s and u0. We generate a set of s given si = a× i, i = 1, ..., 10 while
varying a from 0.1 to 1.0. We also generate a set of u0 given u0 ∼ N (0, b2). Darker colors indicate singular vectors with higher
strengths.

0 500 1000 1500 2000 2500
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

St
re

ng
th

Infinitesimal Init

0 500 1000 1500 2000 2500
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0
ZerO Init

0 500 1000 1500 2000 2500
Iterations

0.0

0.5

1.0

1.5

2.0

2.5
Orthogonal Init

0 500 1000 1500 2000 2500
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Kaiming Init

Figure 4. The evolutions of top 20 singular vectors of cumulative weight updates Dt over training under different initializations. They are
evaluated on the training of a 3-layer perceptron on Fashion MNIST. Darker colors indicate singular vectors with higher strengths.

Table 3. Evaluating InRank across different sizes of GPT models. All experiments are repeated 3 times.

Model Method Test Perplexity

GPT-small InRank 19.96± 0.10
InRank-Efficient 20.07± 0.14

GPT-medium InRank 22.14± 0.07
InRank-Efficient 21.23± 0.05

GPT-large InRank 22.63± 0.09
InRank-Efficient 21.49± 0.07

12



0 2000 4000 6000 8000 10000 12000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

St
re

ng
th

input layer (gate f)

0 2000 4000 6000 8000 10000 12000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
input layer (gate g)

0 2000 4000 6000 8000 10000 12000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

input layer (gate i)

0 2000 4000 6000 8000 10000 12000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
input layer (gate o)

0 2000 4000 6000 8000 10000 12000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

St
re

ng
th

hidden layer (gate f)

0 2000 4000 6000 8000 10000 12000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

hidden layer (gate g)

0 2000 4000 6000 8000 10000 12000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

hidden layer (gate i)

0 2000 4000 6000 8000 10000 12000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

hidden layer (gate o)

Figure 5. The evolutions of all singular vectors of cumulative weight updates Dt over the training of LSTM. The top row shows the
input-to-hidden weight matrix Wih, and the bottom row shows the hidden-to-hidden weight matrix Whh. Darker colors indicate singular
vectors with higher strengths.

0 2000 4000 6000 8000 10000 12000
Iterations

0

2

4

6

8

St
re

ng
th

linear layer 1

0 2000 4000 6000 8000 10000 12000
Iterations

0

1

2

3

4

linear layer 2

0 2000 4000 6000 8000 10000 12000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

self-attention head 1

0 2000 4000 6000 8000 10000 12000
Iterations

0.0

0.5

1.0

1.5

2.0

self-attention head 2

Figure 6. The evolutions of all singular vectors of cumulative weight updates Dt over the training of Transformer. In a single layer, we
visualize two weight matrices in MLP and two K matrices in self-attention. Darker colors indicate singular vectors with higher strengths.

13



0 500 1000 1500 2000 2500
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

St
re

ng
th

SGD

0 500 1000 1500 2000 2500
Iterations

0

20

40

60

80

100
Adam

Figure 7. The evolutions of all singular vectors of cumulative weight updates Dt over the training of MLP using SGD and Adam
optimizers. Darker colors indicate singular vectors with higher strengths.

0 2000 4000 6000 8000 10000
Iterations

0

50

100

150

200

250

300

Ra
nk

Layer 1
Ratio: 0.8
Ratio: 0.85
Ratio: 0.9

0 2000 4000 6000 8000 10000
Iterations

0

50

100

150

200

250

300

Ra
nk

Layer 6

0 2000 4000 6000 8000 10000
Iterations

0

50

100

150

200

250

300

Ra
nk

Layer 11

0 2000 4000 6000 8000 10000
Iterations

0

50

100

150

200

250

300

Ra
nk

Layer 17

Figure 8. The rank evolution in various MLP layers when applying InRank on GPT-small model.

14


