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Abstract

We introduce marginalization models (MAMs),
a new family of generative models for high-
dimensional discrete data. They offer scalable and
flexible generative modeling by explicitly model-
ing all induced marginal distributions. Marginal-
ization models enable fast approximation of arbi-
trary marginal probabilities with a single forward
pass of the neural network, which overcomes a
major limitation of arbitrary marginal inference
models, such as any-order autoregressive mod-
els. MAMs also address the scalability bottleneck
encountered in training any-order generative mod-
els for high-dimensional problems under the con-
text of energy-based training, where the goal is
to match the learned distribution to a given de-
sired probability (specified by an unnormalized
log-probability function such as energy or reward
function). We propose scalable methods for learn-
ing the marginals, grounded in the concept of
“marginalization self-consistency”. We demon-
strate the effectiveness of the proposed model on
a variety of discrete data distributions, including
images, text, physical systems, and molecules,
for maximum likelihood and energy-based train-
ing settings. MAMs achieve orders of magni-
tude speedup in evaluating the marginal probabil-
ities on both settings. For energy-based training
tasks, MAMs enable any-order generative mod-
eling of high-dimensional problems beyond the
scale of previous methods. Code is available at
github.com/PrincetonLIPS/MaM.

1. Introduction
Deep generative models have enabled remarkable progress
across diverse fields, including image generation, audio syn-
thesis, natural language modeling, and scientific discovery.
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However, there remains a pressing need to better support
efficient probabilistic inference for key questions involving
marginal probabilities p(xS) and conditional probabilities
p(xU |xV), for appropriate subsets S,U ,V of the variables.
The ability to directly address such quantities is critical
in applications such as outlier or machine-generated con-
tent detection [59, 48], masked language modeling [15, 85],
image inpainting [86], and constrained protein/molecule
design [81, 65]. Furthermore, the capacity to conduct such
inferences for arbitrary subsets of variables empowers users
to leverage the model according to their specific needs and
preferences. For instance, in protein design, scientists may
want to manually guide the generation of a protein from a
user-defined substructure under a particular path over the
relevant variables. This requires the generative model to
perform arbitrary marginal inferences.
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Figure 1. Scalability of sequential discrete generative models. The
y-axis unit is # of NN forward passes required.

Towards this end, neural autoregressive models (ARMs) [3,
38] have shown great performance in conditional/marginal
inference based on the idea of modeling a high-dimensional
joint distribution as a factorization of univariate conditionals
using the chain rule of probability. Many efforts have been
made to scale up ARMs and enable any-order generative
modeling under the setting of maximum likelihood estima-
tion (MLE) [38, 78, 24], and great progress has been made
in applications such as masked language modeling [85] and
image inpainting [24]. However, marginal likelihood eval-
uation on a sequence of D variables is limited by O(D)
neural network passes with the most widely-used modern
neural network architectures (e.g., Transformers [80] and
U-Nets [62]). This scaling makes it difficult to evaluate
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Figure 2. Marginalization models (MAMs) enable estimation of any marginal probability with a neural network θ that learns to
“marginalize out” variables. The figure illustrates marginalization of a single variable on bit strings (representing molecules) with two
alternatives (versus K in general) for clarity. The bars represent probability masses.

likelihoods on long sequences arising in data such as natural
language and proteins. In addition to MLE, the setting of
energy-based training (EB) has recently received growing
interest with its applications in science domains [49, 12, 35].
Instead of empirical data samples, we only have access to
an unnormalized (log) probability function (specified by a
reward or energy function) that can be evaluated pointwise
for the generative model to match. In such settings, ARMs
are limited to fixed-order generative modeling and lack scal-
ability in training. The subsampling techniques developed
to scale the training of conditionals for MLE are no longer
applicable when matching log probabilities in energy-based
training (see Section 4.3 for details).

To enhance scalability and flexibility in the generative mod-
eling of discrete data, we propose a new family of genera-
tive models, marginalization models (MAMs), that directly
model the marginal distribution p(xS) for any subset of vari-
ables xS in x. Direct access to marginals has two important
advantages: 1) significantly speeding up inference for any
marginal, and 2) enabling scalable training of any-order
generative models under both MLE and EB settings.

The unique structure of the model allows it to simultane-
ously represent the coupled collection of all marginal distri-
butions of a given discrete joint probability mass function.
For the model to be valid, it must be consistent with the sum
rule of probability, a condition we refer to as “marginaliza-
tion self-consistency” (see Figure 2); learning to enforce this
with scalable training objectives is one of the key contribu-
tions of this work.

We show that MAMs can be trained under both maximum
likelihood and energy-based training settings with scalable
learning objectives. We demonstrate the effectiveness of
MAMs in both settings on a variety of discrete data distribu-
tions, including binary images, text, physical systems, and
molecules. We empirically show that MAMs achieve orders
of magnitude speedup in marginal likelihood evaluation. For

energy-based training, MAMs are able to scale training of
any-order generative models to high-dimensional problems
that previous methods fail to achieve.

2. Background
We first review two prevalent settings for training a gener-
ative model: maximum likelihood estimation and energy-
based training. Then we introduce autoregressive models.

Maximum likelihood (MLE) Given a dataset D =
{x(i)}Ni=1 drawn i.i.d. from a data distribution p = pdata, we
aim to learn the distribution pθ(x) via maximum likelihood
estimation:

max
θ

Ex∼pdata [log pθ(x)] ≈
1

N

∑N

i=1
log pθ(x

(i)) (1)

which is equivalent to minimizing the Kullback-Leibler di-
vergence under the empirical distribution, i.e., minimizing
DKL(pdata(x)||pθ(x)). This is the setting that is most com-
monly used in generation of images (e.g., diffusion models
[69, 22, 70]) and language (e.g. GPT [58]) where we can
easily draw observed data from the distribution.

Energy-based training (EB) In other cases, data from
the distribution are not always available. Instead, we have
access to an unnormalized probability distribution f(·) typ-
ically specified as f(x) = exp(r(x)/τ) where r(x) is an
energy (or reward) function and τ > 0 is a temperature
parameter. In this setting, the objective is to match pθ(x) to
f(x)/Z, where Z is the normalization constant of f . This
can be done by minimizing the KL divergence [49, 84, 12],

min
θ

DKL

(
pθ(x)∥

f(x)

Z

)
(2)

The reward function r(x) can be defined either by human
preferences or by the physical system from first principles.
For example, (a) In aligning large language models, r(x)
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can represent human preferences [51, 50]; (b) In molecu-
lar/material design, it can specify the proximity of a sam-
ple’s measured or calculated properties to some functional
desiderata [2]; and (c) In modeling the thermodynamic equi-
librium ensemble of physical systems, it is the (negative)
energy function of a given sample [49, 84, 12, 35].

The training objective in Equation (2) can be optimized
using a Monte Carlo estimate of the gradient using the RE-
INFORCE algorithm [83]. A generative model θ allows us
to efficiently generate samples approximately from the dis-
tribution, which would otherwise be much more expensive
via running MCMC with the energy function f(·).

Autoregressive models Autoregressive models (ARMs)
[3, 38] model a complex high-dimensional distribution p(x)
by factorizing it into univariate conditionals using the chain
rule:

log pϕ(x) =
∑D

d=1
log pϕ (xd | x<d) , (3)

where x<d = {x1, . . . , xd−1}. ARMs generate examples
by sequentially drawing x1 under pϕ(x1), then x2 under
pϕ(x2|x1), and so on. The ARM approach has produced
successful discrete-data neural models for natural language,
proteins [68, 40, 44], and molecules [66, 19].

Any-order ARMs (AO-ARMs) Uria et al. [78] propose
to learn the conditionals of ARMs for arbitrary orderings
that include all permutations of {1, . . . , D}. Under the
MLE setting, the model ϕ is trained by maximizing a lower-
bound objective [78, 24] using an expectation under the
uniform distribution of orderings. This objective allows
scalable training of AO-ARMs with architectures such as the
U-Net [62] and Transformers [80], by leveraging efficient
parallel evaluation of multiple one-step conditionals for
all next-tokens in one forward pass. However, modeling
conditionals alone with ARMs results in limitations in both
inference and training (more details in Section 4.3):

1. Test-time marginal likelihood inference: evaluation
of pϕ(x) or pϕ(xs) requires up to D neural network
passes, making it costly for high-dimensional data.

2. Energy-based training for high-dimensional prob-
lems: the objective in Equation (2) requires evaluat-
ing log pϕ(x) in full with D network forward passes
in order to calculate the difference of log pϕ(x) and
f(x)/Z. Monte Carlo estimate of log pϕ(x) no longer
works since the objective is matching log p’s instead
of maximizing log p (the MLE case). As a result, this
significantly limits ARM’s training scalability under
the EB setting when D becomes large.

3. Marginalization Models
We propose marginalization models (MAMs), a new type
of generative model that enables scalable any-order gener-
ative modeling on high-dimensional problems as well as
efficient marginal evaluation, for both maximum likelihood
and energy-based training. The flexibility and scalability of
marginalization models are enabled by the explicit modeling
of the marginal distribution and scalable training objectives
derived from marginalization self-consistency.

In this paper, we focus on generative modeling of discrete
structures using vectors of discrete variables. The vector rep-
resentation encompasses various real-world problems with
discrete structures, including language sequence modeling,
protein design, and molecules with string-based represen-
tations (e.g., SMILES [82] or SELFIES [36]). Moreover,
vector representations are inherently applicable to any dis-
crete problem, since it is feasible to encode any discrete
object into a vector of discrete variables.

Definition Let p(x) be a discrete probability distribu-
tion, where x = (x1, . . . , xD) is a D-dimensional vec-
tor and each xd takes K possible values, i.e. xd ∈ X ≜
{1, . . . ,K}.

Marginalization For a subset of indices S ⊆ {1, . . . , D},
let xS and xSc denote the subvectors corresponding to S
and the complement set, Sc = {1, . . . , D}\S . The marginal
of xS is obtained by summing over all values of xSc :

p(xS) =
∑

xSc
p(xS ,xSc) (4)

We refer to (4) as the “marginalization self-consistency” that
a valid distribution should follow. The goal of a marginal-
ization model θ is to estimate the marginals p(xS) for any
subset of variables xS as closely as possible. To achieve
this, we train a deep neural network that fits pθ(x) to a
target distribution p(x) while fitting the marginals pθ(xS)
through the marginalization self-consistency principle. In
other words, MAM learns to approximately inference the
marginals of an arbitrary subset of variables with a single
neural net forward pass.1

Parameterization A marginalization model parameter-
ized by a neural network θ takes in xS and outputs the
marginal log probability fθ(xS) = log pθ(xS). Note that
for different subsets S and S ′, xS and x′

S lie in different
vector spaces. To unify the vector space that is fed into
the NN, we introduce an augmented vector space that ad-
ditionally includes the “marginalized out” variables xSc .
By defining a special symbol “△” to denote the missing
values of the “marginalized out” variables, the augmented
vector representation is D-dimensional and is defined to

1Estimating p(x) is a special case of marginal inference where
there are no variables to be marginalized.
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be: xaug
S (i) =

{
xi, if i ∈ S
△, otherwise

. Now, the augmented vec-

tor representation xaug
S of all possible xS’s has the same

dimension D, and for any i-th dimension xaug
S (i) ∈ X aug ≜

{1, · · · ,K,△}. To given an example, when D = 4 and
X = {0, 1}, for xS = {x1, x3} taking values x1 = 0
and x3 = 1, xaug

S = (0,△, 1,△), with the corresponding
marginal p(xaug

S ) =
∑

x2

∑
x4

p(0, x2, 1, x4). From here
onwards we will use xaug

S and xS interchangeably.

Sampling With the marginalization model, one can sam-
ple from the learned distribution by picking an arbitrary
order and sampling one variable or multiple variables at a
time. In this paper, we focus on the sampling procedure
that generates one variable at a time. Sampling multiple
variables jointly can also be done in a similar way (see Ap-
pendix B.2 for ablation studies). To get the conditionals
at each step for generation, we can use the product rule of
probability: pθ(xσ(d)|xσ(<d)) = pθ(xσ(≤d))/pθ(xσ(<d)).
However, the above conditional distribution is not exactly
valid when the following single-step marginalization consis-
tency in (5) is only approximately enforced,

pθ(xσ(<d)) ≈
∑

xσ(d)

pθ(xσ(≤d)), (5)

∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D] ,

since the estimated probabilities might not sum up exactly
to one. Hence we use following normalized conditional:

pθ(xσ(d)|xσ(<d)) =
pθ([xσ(<d), xσ(d)])∑

xσ(d)
pθ([xσ(<d), xσ(d)])

. (6)

Scalable training of marginalization self-consistency In
training, we can impose the marginalization self-consistency
by minimizing the squared error of the constraints in (5)
in log-space. Evaluation of each marginalization constraint
in (5) requires K NN forward passes, where K is the num-
ber of discrete values xd can take. This makes mini-batch
training challenging to scale when K is large. To address
this issue, we augment the marginalization models with
learnable conditionals parameterized by another neural net-
work ϕ. The marginalization constraints in (5) can be further
decomposed into K parallel marginalization constraints2.

pθ(xσ(<d))pϕ(xσ(d)|xσ(<d)) ≈ pθ(xσ(≤d)), (7)

∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D].

The consistency error for each constraint can be defined
correspondingly as follows:

ConsistencyError(x, σ, d)

=
[
log

(
pθ(xσ(<d))pϕ(xσ(d)|xσ(<d))

)
− log pθ(xσ(≤d))

]2
.

2To make sure pθ is normalized, we can either additionally
enforce pθ ((△, · · · ,△)) = 1 or let Zθ = pθ ((△, · · · ,△)) be
the normalization constant.

Other distances such as KL divergence can also be
considered. We choose squared distance for its
flexibility in selecting the q(x), allowing us to fit
marginals for various use cases with different q(x)
at test time. It’s also worth noting that training with
KL divergence and squared distance are quite similar
(see Malkin et al. [47]). The REINFORCE gradient of
DKL

(
pθ(x<σ(d))pϕ(xσ(d)|x<σ(d)) ∥ pθ(x≤σ(d)).detach()

)
is equivalent to the squared distance loss when q is set to pθ.

By breaking the original marginalization self-consistency
in Equation (4) into highly parallel marginalization self-
consistency in Equation (7), we introduce a total of
KD×D!×D×K constraints. Although this increases the
number of constraints, it becomes highly scalable to train
on the marginalization self-consistency via randomly sam-
pling constraints following a specified distribution q(x) and
q(σ). In our experiments, q(σ) is set to the uniform distri-
bution over all orderings U(SD) and q(x) is set to the data
distribution of interest for marginal inference, such as the
empirical data distribution pdata(x) or the generative model’s
distribution pθ,ϕ(x). We found that a training objective that
decomposes into highly parallel terms for sampling is key
to effectively fitting marginals with scalability.

4. Training the Marginalization Models
4.1. Maximum Likelihood Estimation Training

In this setting, we train MAMs with the maximum likelihood
objective while additionally enforcing the marginalization
constraints in Equation (5):

max
θ,ϕ

Ex∼pdata log pθ(x) (8)

s.t. pθ(xσ(<d))pϕ(xσ(d)|xσ(<d)) ≈ pθ(xσ(≤d)),

∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D].

Two-stage training A typical way to solve the above op-
timization problem is to convert the marginalization con-
straint into another objective and optimize both objectives
jointly. However, maximizing log pθ(x≤D) directly in
Equation (8) is unbounded, we empirically found this causes
the training to be slow and unstable by over-emphasizing
likelihood at the expense of self-consistency. Instead, we
identify an theoretically equivalent two-stage optimization
formulation that leads to more effective training strategy
based on the following observation:

Proposition 1. Solving the optimization problem in (8) is
equivalent to the following two-stage optimization proce-
dure, under mild assumptions about the neural networks
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used being universal approximators:

Stage 1:max
ϕ

Ex∼pdataEσ

∑D

d=1
log pϕ

(
xσ(d)|xσ(<d)

)
Stage 2:min

θ
Ex∼q(x)EσEd ConsistencyError(x, σ, d)

where σ ∼ U(SD), d ∼ U(1, · · · , D) and q(x) is the dis-
tribution of interest for marginal likelihood inference.

The first stage can be interpreted as fitting the condition-
als in the same way as AO-ARMs [78, 24] and the sec-
ond stage acts as distilling the marginals from condition-
als through training on marginalization self-consistency.
The intuition comes from the simple chain rule of probabil-
ity: we first observe a one-to-one correspondence between
the optimal conditionals log pϕ and marginals log pθ, i.e.
log pθ(x) =

∑D
d=1 log pϕ

(
xσ(d)|xσ(<d)

)
for any σ and x.

By assuming neural networks are universal approximators,
we can split the joint optimization problem into two steps by
first finding the optimal conditionals pϕ, and then solving
for the corresponding optimal marginals pθ. We provide
proof details in Appendix A.1.

There are two main advantages with the reformulated two-
stage training. First, the maximum likelihood objective
based on conditionals is now bounded and can be optimized
in parallel. Secondly, even when compared with joint train-
ing with the reformulated conditional-based likelihoods, the
decoupled two-stage training leads to improved efficiency,
since it avoids wasted compute on fitting marginals on con-
ditionals that are still being actively updated throughout
training. Additionally, the two-stage approach eliminates
the need to sweep over the hyperparameter that balances
the two objectives. In Appendix B.4, we validate this with
experiments by comparing two-stage v.s. joint training, both
using the reformulated objectives. This aligns with findings
in diffusion model distillation [71, 5], where training a stan-
dard diffusion model followed by distillation proves easier
than training a distilled model from scratch.

4.2. Energy-based Training

In this setting, the two-stage training introduced in
Section 4.1 becomes impractical for high-dimensional
problems. Stage 1 training (fitting conditionals with
LKL = Epθ

[∑D
d=1 log pϕ

(
xσ(d) | xσ(<d)

)
− log p(x)

]
)

scales poorly with D as it requires D NN forward passes
per datapoint. Therefore, for scalability, we train MAMs
by jointly minimizing the KL divergence objective over the
marginals and the self-consistency loss term that include
both marginals and conditionals:

min
θ,ϕ

DKL(pθ ∥p)+λEx∼q(x)EσEdConsistencyError(x, σ, d),

where σ ∼ U(SD), d ∼ U(1, · · · , D) and q(x) is the distri-
bution of interest for marginal likelihood inference.

Unlike the unbounded likelihood maximization in Sec-
tion 4.1, matching log pθ(x) with log p(x) in the KL term
does not lead to training instability issues. However, joint
training introduces complex dynamics, necessitating care-
ful hyperparameter selection. We find that a wide range
of small λ yield best performance. More experiments and
discussion are provided in Section B.4.

Scalable training The gradient of the KL divergence term
is estimated with the REINFORCE estimator [83]:

∇θDKL(pθ(x)||p(x))
=Ex∼pθ(x) [∇θ log pθ (x) (log pθ (x)− log f (x))] (9)

≈ 1

N

∑N

i=1
∇θ log pθ(x

(i))
(
log pθ(x

(i))− log f(x(i))
)

The consistency-error term can be estimated by randomly
sampling data x, ordering σ and step d from the specified
distribution.

Efficient sampling with persistent MCMC To efficiently
generate approximate samples of pθ for the REINFORCE es-
timator, a persistent set of Markov chains are maintained by
taking block-wise Gibbs sampling steps following a random
ordering using the conditional distribution pϕ(xσ(d)|xσ(<d))
(full algorithm in Appendix A.3), in a similar fashion to
persistent contrastive divergence [76]. The samples from
the conditional network pϕ serve as good approximation
to samples from the marginal network pθ, since they are
close to each other when conditionals and marginals are
approximately consistent with each other. In experiments,
we validate this by observing that the log-probabilities from
pθ and pϕ are highly consistent on both random and on-
policy samples. In cases when there is a strong discrepancy
between pθ and pϕ during training, we can additionally use
importance sampling to get an unbiased estimate.

4.3. Addressing Limitations of ARMs

1) Test-time marginal likelihood inference Evaluation
of a marginal pϕ(xo) with ARMs (or an arbitrary marginal
with AO-ARMs) requires applying the conditional pϕ up
to D times, which is inefficient in time and memory for
high-dimensional data. In contrast, MAMs can approximate
any arbitrary marginal with just one NN forward pass. This
is achieved through explicitly modeling the marginals and
training with scalable self-consistency objectives.

2) EB training for high-dimensional problems There
are two factors that limit the scalability of ARMs for EB
training. First, the KL divergence objective in EB training
requires evaluating log pϕ(x) in full with D network for-
ward passes in order to calculate the difference of log pϕ(x)
and f(x)/Z. One might consider estimating pϕ(x) with
a single-step Monte Carlo estimate pϕ(xσ(d)|xσ(<d), but
this leads to high variance of the REINFORCE gradient in
Equation (9) due to the product of the score function and
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distance terms, which are both of high variance (validated in
experiments, see Figure 3). Consequently, training ARMs
for energy-based training necessitates a sequence of D con-
ditional evaluations to compute the gradient of the objective
function. This constraint leads to an effective batch size of
B × D for batch of B samples, significantly limiting the
training scalability of ARMs to high-dimensional problems.
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Figure 3. Approximating log pϕ(x) with one-step conditional
(ARM-MC) results in extremely high gradient variance in energy-
based training.

MAMs circumvent the first limiting factor by breaking down
the original distribution matching problem into two sub-
problems: 1) minimizing the KL divergence between the
model’s marginal probability estimate pθ(x) and the energy
function f(x), and 2) ensuring marginals log pθ and con-
ditionals log pϕ are self-consistent. The first sub-problem
requires evaluating the marginal probability pθ(x) with just
one network forward pass for each x sample. The training
objective for the second sub-problem is also scalable via
simply sampling the highly parallel self-consistency error
objectives developed in Equation (7).

The other limiting factor is associated with obtaining Monte
Carlo samples for the REINFORCE gradient estimator. Pre-
vious methods that use ARMs for energy-based training
[84, 12] assume a fixed ordering and require D sequen-
tial sampling steps to generate samples, which is slow and
costly when the dimension is large. MAM proposes a more
cost-effective sampling procedures through the utilization
of persistent block-wise Gibbs sampling.

5. Related Work
Autoregressive models Developments in deep learning
have greatly advanced the performance of ARMs across
different modalities, including images, audio, and text. Any-
order (Order-agnostic) ARMs were first introduced in [78]
by training with the any-order lower-bound objective for
the maximum likelihood setting. Recent work, ARDM [24],
demonstrates state-of-the-art performance for any-order dis-
crete modeling of image/text/audio. Germain et al. [20] train

an auto-encoder with masking that outputs the sequence of
all one-step conditionals for a given ordering, but does not
perform as well as methods [79, 85, 24] that predict one-
step conditionals under the given masking. Douglas et al.
[18] train an AO-ARM as a proposal distribution and uses
importance sampling to estimate arbitrary conditional prob-
abilities in a DAG-structured Bayesian network, but with
limited experiment validation on a synthetic dataset. Shih
et al. [67] utilizes a modified training objective of ARMs for
better marginal inference performance but loses any-order
generation capability. In the energy-based training setting,
ARMs are applied to science problems [12, 84], but suffer in
scaling to when D is large. MAMs and ARMs are compared
in detail in Section 4.3.

Arbitrary conditional/marginal models For continuous
data, VAEAC [29] and ACFlow [39] extend conditional
variational encoder and normalizing flow to arbitrary con-
ditional modeling. ACE [73] improves the expressiveness
of arbitrary conditional models by directly modeling the
energy function, which reduces the constraints on parame-
terization but increases computation costs due to the need
to approximate the normalizing constant. Instead of using
neural networks as function approximators, probabilistic
circuits (PCs) [9, 13, 56, 8, 54] offer tractable probabilistic
models for both conditionals and marginals by building a
computation graph with sum and product operations fol-
lowing specific structural constraints. Peharz et al. [54]
improved the scalability of PCs by combining arithmetic
operations into a single monolithic einsum-operation and
automatic differentiation. Further improvements of PCs are
achieved through distilling latent variables from pre-trained
deep generative models [41, 42] . All methods mentioned
above focus on MLE settings. MAMs focus on scalable
approximate marginal inference using neural networks as
function approximators on both MLE and EB settings.

GFlowNets GFlowNets [2, 4] formulate the problem of
generation as matching the probability flow at terminal
states to the target normalized density. Compared to ARMs,
GFlowNets allow flexible modeling of the generation pro-
cess by assuming learnable generation paths through a di-
rected acyclic graph (DAG). The advantages of learnable
generation paths come with the trade-off of sacrificing the
flexibility of any-order generation and exact likelihood eval-
uation. Under a fixed generation path, GFlowNets reduce
to fixed-order ARMs [87]. In Appendix A.4, we further dis-
cuss the connections and differences between GFlowNets
and AO-ARMs/MAMs. For discrete problems, Zhang et al.
[88] train GFlowNets on the squared distance loss with the
trajectory balance objective [46]. This is not scalable for
large D (for the same reason as ARMs in Section 4.3) and
doesn’t provide direct access to marginals. In the MLE set-
ting, an energy function is additionally learned from data so
that the model can be trained with energy-based training.
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6. Experiments
We evaluate marginalization models (MAM) on both MLE
and EB settings for discrete problems including images, text,
molecules and phyiscal systems. We compare MAMs with
baselines that support arbitrary marginal inference3: Any-
order ARM♦ [24], ARM♢ [38], Parallel Any-order ARMs
(P-AO-ARM) [24] and Probabilistic Circuit (PC)♦ [54].
We also include state-of-the-art generative models on
various tasks for comparison: GFlowNet [88], Discrete
Flow [77], PixelCNN++ [64], Variational Diffusion Mod-
els [33], Sparse Transformers [7, 32] and D3PM [1]. We
follow training settings or results from the literature for all
baselines. In Appendix B.1, we present additional studies on
measuring the marginal self-consistency with a carefully cu-
rated synthetic experiment. Neural network architecture and
training hyperparameter details are given in Appendix C.

6.1. Maximum Likelihood Estimation Training

We focus on three metrics: test data negative log likelihood
(NLL), marginal inference time and marginal inference qual-
ity. The later two are only available with baselines that sup-
port arbitrary marginal inference. The marginals are evalu-
ated on a randomly sampled mini-batch data of the test set
(batch size = 128, metrics are averaged over batches). To
evaluate marginal estimation quality, the marginal estimates
of each model are compared with the marginal estimates
of the best-performing model (in terms of NLL). Pearson
correlation is reported to measure the quality of marginal
likelihoods4. (1.0 means a perfect linear correlation with the
best model’s marginal estimates.) For evaluating NLL, the
conditional network and marginal network perform similarly
in ablation studies (see Appendix B.2). We use the condi-
tional network for evaluating NLL. The marginal network
is used for evaluating marginals.

Image We evaluate MAMs on Binary MNIST [63],
CIFAR-10 [37] and ImageNet32 [14, 10]. The image dimen-
sion is 1×28×28 for MNIST and 3×32×32 for CIFAR-10
and ImageNet32. MAMs achieve competitive NLL on all
tasks, equaling the best-performing arbitrary marginal in-
ference models. In terms of marginal inference, MAM
produces high quality marginal estimates while achieving
close to 4 orders of magnitude speed-up in computation time.
The Pearson correlation coefficients are close to 1.0, which
means the marginal estimates are consistent with the best
marginal estimates. It can also be interpreted as a measure
of marginalization self-consistency, since the the marginals
of MAM are evaluated against the same conditionals of

3We use ♦ to denote that the model supports arbitrary marginal
inference. ♢ is used for ARMs with fixed ordering since they only
partially support arbitrary marginal inference.

4When measuring AO-ARM against itself, two random order-
ings are measured against each other.

Table 1. Pixel modeling on Binary-MNIST
NLL (bpd) ↓ Pearson ↑ Time (s) ↓

GflowNet [88] 0.189 – –
AO-ARM♦ [24] 0.146 0.99 132.4 ± 0.03
PC (EiNets)♦ [54] 0.187 0.75 0.015 ± 0.00
MAM♦ 0.146 0.99 0.018 ± 0.00

Table 2. Pixel modeling on CIFAR-10

NLL (bpd) ↓ Pearson ↑ Time (s) ↓
D3PM [1] 3.44 – –
PixelCNN++ [64] 2.99 – –
VDM [33] 2.49 – –
Sparse Transformer [7, 32] 2.56 – –
PC (LVD-PG)♦ [42] 3.87 – –
AO-ARM♦ (800 epochs) 2.88 0.99 2401 ± 1
MAM♦ (800 epochs) 2.88 0.98 0.495 ± 0.00

AO-ARM and MAM.

Molecule We evaluate MAM on the molecular gener-
ation benchmark MOSES [55] refined from the ZINC
database [72]. The generated molecules from MAM and
AO-ARM are comparable to standard state-of-the-art molec-
ular generative models, such as CharRNN [66], JTN-
VAE [30], and LatentGAN [57] (see Tables 10 and 11),
with added controllability and flexibility in any-order gener-
ation. MAM supports much much faster marginal inference,
which is useful for domain scientists to easily reason about
the likelihood of (sub)structures. Generated molecules and
property histogram plots of are available in Appendix C.4.

Text We train a character-level generative model on
Text8 [45], which consists of 100M characters from
Wikipedia in chunks of 250 character. MAM achieves sig-
nificant speed-up in marginal inference while maintaining
comparable performance as an arbitrary marginal inference
model. The test NLL is close to a Transformer model that
is trained to only model one ordering (from left to right).

6.2. Energy-based Training

In the existing literature, only ARM with fixed variable
order has been used for this training setting (for example
in Wu et al. [84], Damewood et al. [12]). We additionally
implement two more baselines: ARM-MC that uses single-
step conditional as a Monte Carlo estimate to log pϕ and
GFlowNet [46]. The effective batch size for ARM and
GFlowNet is B × D for batch of B data samples (due to
reasons mentioned in Section 4.3), and B× 1 for ARM-MC
and MAM . MAM and ARM use the REINFORCE gradient
estimator with baseline. GFlowNet is trained on per-sample
gradient of squared distance [88]. Note that MAM is an any-
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-0.4627, 0.0000 -2326.1995, -2156.8149 -3975.1997, -3873.0151 -5427.7236, -5406.5122 -6642.8984, -6739.9624 -7707.4326, -7895.3428 -8697.5957, -8974.0234

Figure 4. An example of the marginal estimates of an ImageNet32 image along the generation trajectory using a random ordering. The
numbers in the captions show that the learned (log) marginals (left) v.s. learned (log) conditionals (right) are approximately self-consistent.

Table 3. Pixel modeling on ImageNet32
NLL (bpd) ↓ Pearson ↑ Time (s) ↓

Image Transformer [53] 3.77 – –
VDM [33] 3.72 – –
PC (LVD-PG)♦ [42] 4.06 – –
AO-ARM♦ (16 epochs) 3.60 0.99 4995 ± 1
MAM♦ (16 epochs) 3.60 0.98 1.243 ± 0.00

Table 4. Character modeling on text8
NLL (bpc) ↓ Pearson ↑ Time (s) ↓

D3PM [1] 1.47 – –
Discrete Flow [77] 1.23 – –
Transformer [80] 1.35 – –
AO-ARM♦ (3000 epochs) 1.48 0.987 41.40 ± 0.01
MAM♦ (3000 epochs) 1.48 0.945 0.005 ± 0.00

order generative model, which is a more difficult learning
task than ARM that uses fixed ordering and GFlowNet that
uses learned ordering.

Table 5. Energy-based modeling of Ising model (D = 100)
NLL (bpd) ↓ KL div. ↓ Time (s) ↓

ARM-One-Order♢ [12] 0.79 -78.63 5.3±0.1e-01
ARM-MC-One-Order♢ 24.84 -18.01 5.3±0.1e-01
GFlowNet [88] 0.78 -78.17 –
MAM-Any-Order♦ 0.80 -77.77 3.7±0.1e-04

Table 6. Energy-based modeling of Ising model (D = 900)
NLL (bpd) ↓ KL div. ↓ Time (s) ↓

ARM-One-Order♢ [12] – Out of GPU memory –
Random Samples 1.00 -623.9 –
MAM-Any-Order♦ 0.83 -685.8 3.7±0.1e-04

Physical systems Ising models [28] model interacting
spins on a square lattice and are widely studied in mathe-
matics and physics (see MacKay [43]). The spins of the D
sites are represented by a D-dimensional binary vector x,
whose distribution p∗(x) ∝ exp (−EJ(x)) is determined
by the energy function EJ(x) ≜ −x⊤Jx− θ⊤x, with J
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Figure 5. Ising model. Left: D = 10× 10. Right: D = 30× 30

being the adjacency matrix. We compare MAM with ARM,
ARM-MC, and GFlowNet on a 10×10 (D = 100) and a
larger 30×30 (D = 900) Ising model where ARMs and
GFlowNets fail to scale. We generate 2000 ground truth
samples following Grathwohl et al. [21] and we measure test
negative log-likelihood on those samples. We also measure
DKL(pθ(x)||p∗) by sampling from the learned model and
evaluating

∑M
i=1(log pθ(xi)−log f∗(xi)). Figure 5 con-

tains KDE plots of −EJ(x) for the generated samples. We
validate the analysis in Section 4.3, the ARM-MC gradient
has high variance which leads to non-convergence or mode
collapse. MAM achieves significant speedup in marginal
inference and is the only model that supports any-order
generative modeling. The performance in terms of KL di-
vergence and likelihood are only slightly worse than models
with fixed/learned order, which is expected since any-order
modeling is harder than fixed-order modeling, and MAM is
solving a more complicated task of jointly learning condi-
tionals and marginals. On a 30×30 (D = 900) Ising model,
MAM achieves a bpd of 0.835 while ARM and GFlowNet
fail to fit in the GPU memory (see Figure 5 and Table 6).

Molecular generation with target property In this
task, we are interested in training generative mod-
els towards a specific target property of interest g(x),
such as lipophilicity (logP), synthetic accessibility (SA),
etc. We define the distribution of molecules to follow
p∗(x) ∝ exp(−(g(x)− g∗)2/τ), where g∗ is the target
value of the property and τ is a temperature parameter. We
train ARM and MAM for lipophilicity of target values 4.0
and −4.0, both with τ = 1.0 and τ = 0.1. Both models
are trained for 4000 iterations with batch size 512. Results
are shown in Figure 6 (additional results in Appendix C).
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Figure 6. EB molecule targeted generation. Left: 55d. Right: 500d

Findings are consistent with the Ising model experiments.
Again, MAM performs just marginally below ARM. How-
ever, only MAM supports any-order modeling and scales to
high-dimensional problems. Figure 6 (right) shows molecu-
lar generation with MAM for D = 500.

[C][=C][C][=C][C][=C][Ring1][=Branch1]

[?][?][?][?][C][=C][Ring1][=Branch1]

[C][=C][C][=C][?][?][?][?][?][?][?][?][?]⋯

Figure 7. Illustration of conditional design of molecules towards
low lipophilicity from a user-defined substructure in a given order.
Left: Impainting the left 4 characters. Right: Impainting the right
4-20 characters. Shaded regions denote the impainted structures.

6.3. Comparison with Parallel AO-ARMs

Inference of AO-ARMs can be parallelized with fewer
steps using dynamic programming at cost of minimal log-
likelihood degradation, which make it a strong baseline for
accelerated inference as shown in Hoogeboom et al. [24].
In Figure 8, we compare the quality of MAM against P-AO-
ARM (PARM) with varying number of sampling steps T .
MAM is consistently faster and produces better-correlated
marginal estimates than PARM. PARM’s effectiveness
varies across datasets. Text and molecule data require more
steps of PARM for accurate estimation due to their sequen-
tial dependencies. Interestingly, ImageNet32 needs much
fewer PARM steps for correlated log-likelihoods (despite
values being quite off), suggesting easier parallelization of
sampling/inference once some pixels are filled.

6.4. Out-of-distribution Robustness

The marginal estimates from MAM are not perfectly-
normalized but only approximate log-likelihood values.
Hence we test the how useful and robust those approxi-
mate marginals are in real-world use cases which are often
out-of-distribution with various degrees.

We tested MAM’s marginal estimates on generated “syn-

10 1 100 101 102

Time (s) 

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

M
ar

gi
na

l e
st

im
at

e 
qu

al
ity

 

MNIST Binary

Spearman
Pearson

MAM
PARM T = 2
PARM T = 5
PARM T = 10
PARM T = 20
ARM T=784

100 101 102 103

Time (s) 

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

gi
na

l e
st

im
at

e 
qu

al
ity

 

ImageNet32

Spearman
Pearson

MAM
PARM T = 1
PARM T = 2
PARM T = 5
ARM T=3072

10 2 10 1 100 101

Time (s) 

0.95

0.96

0.97

0.98

0.99

M
ar

gi
na

l e
st

im
at

e 
qu

al
ity

 

Molecular Sets

Spearman
Pearson

MAM
PARM T = 5
PARM T = 10
PARM T = 20
PARM T = 40
ARM Full T=55

10 2 10 1 100 101

Time (s) 

0.80

0.85

0.90

0.95

M
ar

gi
na

l e
st

im
at

e 
qu

al
ity

 

text8

Spearman
Pearson

MAM
PARM T = 2
PARM T = 5
PARM T = 10
PARM T = 20
PARM T = 40
ARM Full T=250

Figure 8. Comparison with Parallel AO-ARMs.

thetic” data from masked MNIST (Appendix C.3.3) and
Text8 examples (Appendix C.5). MAM log p estimates
maintain a high correlation with actual log-likelihoods on
data that are on-manifold but slightly out-of-distribution. In
Appendix C.5.1, we also tested the model’s generalizability
for length extrapolation on Text8. The model is trained on
D = 250 and tested on sequences with D = 300 from the
same dataset. MAM’s predicted log p marginals generalize
gracefully to longer sequences. The quality matches Paral-
lel AO-ARM with 10 ∼ 20 steps while using significantly
less time (2000×). Finally, in Appendix C.4,we tested the
model on a more challenging task: using MAM model’s
marginal likelihood estimates trained on Molecular Sets (a
general chemical space of drug-like compounds) to distin-
guish between two focused chemical spaces (tyrosine kinase
inhibitors and organic photodiodes) that are not seen during
training. We created 1000 pairs consisting of one of each
using datasets from Subramanian et al. [74], controlling for
other factors like SMILES length and chemical space to
increase difficulty. MAM marginals correctly identified the
drug molecule 74% of the time (v.s. 79% for AO-ARM),
with 90% alignment on marginal estimates with AO-ARM.

7. Conclusion
In conclusion, marginalization models are a novel family of
generative models for high-dimensional discrete data that of-
fer scalable and flexible generative modeling. These models
explicitly model all induced marginal distributions, allow-
ing for fast evaluation of arbitrary marginal probabilities
with a single neural net forward pass. MAMs also support
scalable training objectives for any-order generative mod-
eling, which previous methods struggle to achieve under
the energy-based training context. Potential future work
includes designing novel neural network architectures that
automatically satisfy the marginalization self-consistency.
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Impact Statement
As a deep learning model, MAM has the risk of low robust-
ness on data from unseen domain or manifold. In practice,
one should not blindly apply it to data that is far away from
the training data distribution and expect the marginal likeli-
hood estimate can be trusted. For the same reason, MAM
will also be susceptible to adversarial attacks just as other
commonly deep learning models.

MaM enables training of a new type of generative model.
Access to fast marginal likelihood is helpful for many down-
stream tasks such as outlier detection, protein/molecule de-
sign or screening. By allowing the training of order-agnostic
discrete generative models scalable for distribution match-
ing, it enhances the flexibility and controllability of gen-
eration towards a target distribution. This also poses the
potential risk of deliberate misuse, leading to the genera-
tion of content/designs/materials that could cause harm to
individuals.
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A. Additional Technical Details
A.1. Proof of Proposition 1

Proof. From the single-step marginalization self-consistency in (7), we have

log pθ(x) =
∑D

d=1
log pϕ

(
xσ(d)|xσ(<d)

)
, ∀x, σ.

Therefore we can rewrite the optimization in (8) as:

max
ϕ

Ex∼pdataEσ∼U(SD)

∑D

d=1
log pϕ

(
xσ(d) | xσ(<d)

)
(10)

s.t. pθ(xσ(<d))pϕ(xσ(d)|xσ(<d)) = pθ(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D].

Let p∗ be the optimal probability distribution that maximizes the likelihood on training data, and from the chain rule we
have:

p∗ = argmax
p

Ex∼pdata log p(x) = Ex∼pdataEσ∼U(SD)

∑D

d=1
log p

(
xσ(d)|xσ(<d)

)
Then p∗ is also the optimal solution to (10) the marginalization constraints are automatically satisfied by p∗ since it is a
valid distribution. From the universal approximation theorem [27, 26, 11], we can use separate neural networks to model pθ
(marginals) and pϕ (conditionals), and obtain optimal solution to (10) with θ∗ and ϕ∗ that approximates p∗ arbitrarily well.

Specifically, if θ∗ and ϕ∗ satisfy the following three conditions below, they are the optimal solution to (10):

pϕ∗
(
xσ(d) | xσ(<d)

)
= p∗

(
xσ(d) | xσ(<d)

)
, ∀ x, σ (11)

pθ∗(xs) = p∗(xs)Zθ∗ , ∀ x, s ⊆ {1, · · · , D} (12)

pθ∗(xσ(<d))pϕ∗(xσ(d)|xσ(<d)) = pθ∗(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D] (13)

where Zθ∗ is the normalization constant of pθ∗ and is equal to pθ∗ ((△, · · · ,△)). It is easy to see from the definition of
conditional probabilities that satisfying any two of the optimal conditions leads to the third one.

To obtain the optimal ϕ∗, it suffices to solve the following optimization problem:

Stage 1: max
ϕ

Ex∼pdataEσ∼U(SD)

∑D

d=1
log pϕ

(
xσ(d) | xσ(<d)

)
because p∗ = argmaxp Ex∼pdataEσ∼U(SD)

∑D
d=1 log p

∗ (xσ(d)|xσ(<d)

)
due to chain rule. Solving Stage 1 is equivalent to

finding ϕ∗ that satisfies condition (11). Then we can obtain the optimal θ∗ by solving for condition (13) given the optimal
conditionals ϕ∗:

Stage 2: min
θ

Ex∼q(x)Eσ∼U(SD)Ed∼U(1,··· ,D)

(
log[pθ(xσ(<d))pϕ∗(xσ(d)|xσ(<d))]− log pθ(xσ(≤d))

)2

A.2. Expected Lower bound of Log-Likelihood

Here we present the expected lower bound objective used for training AO-ARMs under maximum likelihood setting, which
was first proposed by Uria et al. [78]. Hoogeboom et al. [24] provided the expected lower bound perspective.

Given an ordering σ,

log p(x | σ) =
∑D

d=1
log p

(
xσ(d) | xσ(<d)

)
. (14)

By taking the expectation over all orderings σ, we can derive a lower bound on the log-likelihood via Jensen’s inequality.

log pϕ(x) = logEσ pϕ(x | σ)
Jensen’s inequality

≥ Eσ

∑D

d=1
log pϕ

(
xσ(d) | xσ(<d)

)
= Eσ∼U(SD) DEd∼U(1,...,D) log pϕ

(
xσ(d) | xσ(<d)

)
= DEd Eσ

1

D − d+ 1

∑
j∈σ(≥d)

log pϕ
(
xj | xσ(<d)

)
, (15)

where σ ∼ U(SD), d ∼ U(1, . . . , D) and xσ(<d) = {xσ(1), . . . , xσ(d−1)}. U(S) denotes the uniform distribution over a
finite set S and σ(d) denotes the d-th element in the ordering.
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A.3. Algorithms

We present the algorithms for training MAM for maximum likelihood and energy-based training settings in Algorithm 1 and
Algorithm 2.

Algorithm 1 MLE training of MAMs

Input: Data Dtrain, q(x), network θ and ϕ
Stage 1: Train ϕ with Equation (15) used in AO-ARM
for minibatch x ∼ Dtrain do

Sample σ ∼ U(SD), d ∼ U(1, · · · , D)
L ← D

D−d+1

∑
j∈σ(≥d) log pϕ

(
xj |xσ(<d)

)
Update ϕ with gradient of L

end for
Stage 2: Train θ to distill the marginals from optimized conditionals ϕ
for minibatch x ∼ q(x) do

Sample σ ∼ U(SD), d ∼ U(1, · · · , D)
L ← squared error of the inconsistencies in Equation (7)
Update θ with gradient of L

end for

Algorithm 2 Energy-based training of MAMs

Input: q(x), network θ and ϕ, Gibbs sampling block size M
Joint training of ϕ and θ:
for j in {1, · · · , N} do

Sample σ ∼ U(SD)
Update x ∼ pϕ(xσ(≤M)|xσ(>M))

▷ Persistent block Gibbs sampling
Sample x̃ ∼ q(x)
Sample d̃ ∼ U(1, · · · , D), σ̃ ∼ U(SD)
Lpenalty ← squared error of Equation (7), for d̃ and σ̃ with x̃
∇θ,ϕDKL ← REINFORCE est. with x
∇θ,ϕ ← ∇θ,ϕDKL + λ∇θ,ϕLpenalty
Update θ and ϕ with gradient

end for

A.4. Connections between MAMs and GFlowNets

In this section, we identify an interesting connection between generative marginalization models and GFlowNets. The two
type of models are designed with different motivations. GFlowNets are motivated by learning a policy to generate according
to an energy function and MAMs are motivated from any-order generation through learning to perform marginalization.
However, under certain conditions, there exists an interesting connection between generative marginalization models
and GFlowNets. In particular, the marginalization self-consistency condition derived from the definition of marginals in
Equation (4) has an equivalence to the “detailed balance” constraint in GFlowNet under the following specific conditions.
Observation 1. When the directed acyclic graph (DAG) used for generation in GFlowNet is specified by the following
conditions, there is an equivalence between the marginalization self-consistency condition in Equation (7) for MAM and the
detailed balance constraint proposed for GFlowNet [4]. In particular, the pθ(xσ(d)|xσ(<d)) in MAM is equivalent to the
forward policy PF (sd+1 | sd) in GFlowNet, and the marginals pθ(xσ(d)) are equal to the flows F (sd) up to a normalizing
constant.

• DAG Condition: The DAG used for generation in GFlowNet is defined by the given tree-like structure: a sequence x is
generated by incrementally adding one variable at each step, following a uniformly random ordering σ i.e. σ ∼ U(SD).
At step d, the state along the generation trajectory is defined to be sd = xσ(≤d).
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• Backward Policy Condition: At step D− d, the backward policy under the DAG is fixed by removing (un-assigning) the
value of the d+ 1-th element under ordering σ , i.e. PB(sd | sd+1;σ) = 1{sd=xσ(≤d)}. Or equivalently, the backward
policy removes (un-assigns) one of the existing variables at random, i.e. PB(sd | sd+1) = 1/d+11{sd⊂sd+1}.

Intuitively, this is straight forward to understand, since GFlowNet generates a discrete object autoregressively. The model
was proposed to enhance the flexibility of generative modeling by allowing for a learned ordering, as compared with auto-
regressive models (see [88] Sec. 5 for a discussion). When the generation ordering is fixed, it is reduced to autoregressive
models with fixed ordering, which is discussed in [87]. Observation 1 presented above for any-order ARMs can be seen as a
extended result of the connection between GFlowNets and fixed-order ARMs.

We have seen the interesting connection of GFlowNets with ARMs (and MAMs). Next, we discuss the differences between
GFlowNets and MAMs.

Remark 1. The detailed balance constraint was proposed only as a theoretical result in Bengio et al. [4]. In actual
experiments, GFlowNets are trained using either flow matching [2] or trajectory balance [46, 88].

Zhang et al. [88] is the most relevant GFlowNet work that targets the discrete problem setting. Training is done via
minimizing the squared distance loss with trajectory balance objective. For the MLE training, it proposes to additionally
learn an energy function from data so that the trajectory balance objetive can still be applied. In particular, MAM is different
from GFlowNet in Zhang et al. [88] in three main aspects.

• First of all, MAMs target any-order generation and direct access to marginals, where as GFlowNets aim for flexibility
in learning generation paths and does not offer exact likelihood or direct access to marginals under learnable generation
paths. When the generation path is fixed to follow a ordering or random ordering, they are reduced to ARMs or
any-order ARMs, which allow for exact likelihood. However, training with the trajectory balance objective does not
offer direct access to marginals (just like how ARMs do not offer direct access to marginals but only conditionals).

• Second, training under MLE setting is signiticantly different: GFlowNets learn an additional learned energy function to
reduce MLE training back to energy-based training, while MAMs directly maximizes the expected lower bound on the
log-likelihood under the marginalization self-consistent constraint.

• Lastly, the training objective is different under energy-based training. GFlowNets are trained on squared distance
under the expectation to be specified to be either on-policy, off-policy, or a mixture of both. MAMs are trained on
KL divergence where the expectation is defined to be on-policy. It is possible though to train MAMs with squared
distance and recently Malkin et al. [47] have shown the equivalence of the gradient of KL divergence and the on-policy
expectation of the per-sample gradient of squared distance (which is the gradient actually used for training GFlowNets).

A.5. Additional literature on discrete generative models

Discrete diffusion models Discrete diffusion models learn to denoise from a latent base distribution into the data
distribution. Sohl-Dickstein et al. [69] first proposed diffusion for binary data and was extended in Hoogeboom et al. [25]
for categorical data and both works adds uniform noise in the diffusion process. A wider range of transition distributions was
proposed in D3PM [1] and insert-and-delete diffusion processes have been explored in Johnson et al. [31]. Hoogeboom et al.
[24] explored the connection between ARMs and diffusion models with absorbing diffusion and showed that OA-ARDMs
are equivalent to absorbing diffusion models in infinite time limit, but achieves better performance with a smaller number of
steps.

Discrete normalizing flow Normalizing flows transform a latent base distribution into the data distribution by applying a
sequence of invertible transformations [61, 75, 16, 69, 60, 17, 34, 52]. They have been extended to discrete data [77, 23]
with carefully designed discrete variable transformations. Their performance is competitive on character-level text modeling,
but they do not allow any-order modeling and could be limited to discrete data with small number of categories due to the
use of a straight-through gradient estimators.

Discussion of neural generative models and Probabilistic circuits Probabilistic circuits [8, 54, 41, 42] is a powerful
modeling approach exhibiting fast and exact marginalization though the design of the model’s structure and operations. In
contrast, neural generative models are highly expressive, allowing them to perform powerful approximate inference. Despite
not having the exact marginalization property, the neural network approach has the advantage of much greater flexibility in
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modeling the complex distributions found in practical applications [67, 24]. Hence, a trade-off currently exists between exact
marginalization and approximate marginalization with a more expressive network. Our work falls in the neural generative
models category, but directly approximates marginals. Direct modeling of marginals opens opportunities for more flexible
sampling, as shown in Appendix B.2, and more scalable approximate marginal inference and training under EB settings.

B. Ablation Studies
B.1. Testing marginal self-consistency

The marginal self-consistency in MAMs is enforced through optimizing the scalable training objective. Here we empirically
examine how well they are enforced in practice. First we look at checkerboard, a synthetic problem often used for testing
clustering algorithms. More recently it has been used for testing and visualizing both continuous and discrete generative
models. We define a discrete input space by discretizing the continuous coordinates of points in 2D. To be more concrete,
the origin range [−4, 4] of each dimension is converted into a 16-bit string following the standard way of converting float to
string. The target unnormalized probability p(x) is set to 1 for points within dark squares and 1e− 10 within light squares
(since it is infeasible to set it to ln(0) = −∞ for a NN to learn, and in practice 1e− 10 is negligible compared to 1). We
trained a 5-layer MLP with hidden node size 2048 and residual connections on this problem on both MLE and EBM settings
and q(x) is set to be a balanced mixture of ground truth data and samples from pθ for MLE or uniform random for EBM:

min
θ
−Ex∼pdatapθ (x) + λEx∼q(x)EσEd

(
log

∑
xσ(d)

pθ([xσ(<d), xσ(d)])− log pθ([xσ(<d), xσ(d)])
)2

.

min
θ

DKL(pθ (x)∥p(x)) + λEx∼q(x)EσEd

(
log

∑
xσ(d)

pθ([xσ(<d), xσ(d)])− log pθ([xσ(<d), xσ(d)])
)2

.

For this problem, only a marginal network θ is trained to predict the log p of any marginals. Upon training to convergence,
the generative models perform on par or better than state of the art discrete generative models and achieve a 20.68 test NLL.
See Figure 9 for a comparison of ground truth and learned PMF heatmap. It can be seen the PMF are approximated quite
accurately. We investigate how well the marginal self-consistency are enforced, by looking at the marginal estimates of
MAMs trained with λ = 1e2 and λ = 1e4. We evaluate marginals over the first dimension (0− 16 bits) by fixing the second
dimension (17− 32 bits) to 1.0 (bit string = 0001111111111111). We plot marginals by marginalizing out bit 3− 16 (i.e.
(x1, x2, · · · )) and bit 5− 16 (i.e. (x1, x2, x3, x4, · · · )). In Figure 12, when λ = 1e4, the self-consistency are more strictly
enforced, leading to matched marginals. Notice that there is some tiny residue PMF at the light squares due to the 1e− 10
approximation applied to points with 0 probability, but they are negligible compared to the significant probability masses.
After normalizing the marginals over all possibilities, the marginals are almost exactly matched. In Figure 13, when λ = 1e2,
the self-consistency are more loosely enforced as compared to λ = 1e4. But it is notable that they are only shifted by a
constant as compared to the ground truth marginals. This means although marignal self-consisteny is not strictly enforced
when λ = 1e2, softly enforcing it leads to shifted but consistent estimates of marginals, as the NN learns to generalize and
predict symmetric probabilities for symmetric regions. Using the constant-shifted marginals to sample will result in the
same distribution with the ground truth, because the normalized MAM marginals match the ground truth almost exactly.
This is observed in the samples generated under λ = 1e2 in Figure 9 and consistent normalized marginals in Figure 13.

B.2. Sampling with marginals v.s. conditionals

The trained marginalization model comes with two networks. The conditional network ϕ estimates any-order conditionals
pϕ(xσ(d)|xσ(<d)), and the marginal network θ estimates arbitrary marginals pθ(xσ(≤d)). When MAM is used for sampling,
either network can be used. With the conditional network ϕ, samples can be drawn autoregressively one variable at each
step. Or the marginals can be used to draw variables using the normalized conditional:

pθ(xsi |xs(<i)) =
pθ([xsi ,xs(<i)])∑
xsi

pθ([xsi ,xs(<i)])
.

where xsi is the next block of variables (can be multiple) to sample at step i and xs(<i) are the previously sampled variables.
We show with experiments that the marginals are also effective to be used for sampling and they provide extra flexibility
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Figure 9. PMF heat map under EB training. The learned PMF and ground truth PMF are consistent to each other relatively well. The MSE
on log p (or p) of dark pixels is 0.0033 (or 7.67e−20) and the MSE on light pixels is 0.0076 (or 3.73e−30). We are evaluating marginals
along the red line: i.e. fixing (x17, · · · ,x32) = (0, 0, 0, 1, 1, 1, · · · , 1), which correspond to 1 in floating number for y-axis, and perform
marginalization over (x1, · · · ,x16). (0, 0, · · · ) corresponds to [0, 2]. (0, 1, · · · ) corresponds to [2, 4]. (1, 0, · · · ) corresponds to [−2, 0].
(1, 1, · · · ) corresponds to [−4,−2].
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Figure 10. Marginal consistency λ = 1e2 under EB training. Ground truth: summing over ground truth PMF. MAM Probability Sum:
summing over learned PMF from MAM. MAM Marginal: direct estimate with MAM. The small discrepancy in p(1, 0, ?, · · · , ?) is due
to the corner case of (1, 0, 0, 0, · · · , 0) be assigned to a positive value due to numerical errors in float conversion.
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Figure 11. PMF heat map under MLE training. The learned PMF and ground truth PMF are consistent to each other relatively well. The
MSE on log p (or p) of dark pixels is 0.533 (or 2.5e− 19) and the MSE on light pixels is 2.5 (or 3e− 28).

in the sampling procedure. We test sampling with different block sizes using the marginals with random orderings and
compare them to sampling with conditionals in Figure 14. The samples generated are of similar quality. And those different
sampling procedures exhibit similar likelihood on test data. However, sampling with large block size enables to trade
compute memory for less time spent (due to fewer steps) in generation inference, which we find it interesting to explore for
future work. Compared with the conditional network, the marginal network allows sampling in arbitrary block variable size
and ordering. This illustrates the potential utility of MAMs in flexible generation with tractable likelihood.

B.3. Choice of q in sampling the marginalization self-consistency for training

In simple examples such as the synthetic checkerboard problem, it does not really matter, we have tried pdata or pθ or random,
or a mixture of them. All work fairy well given that the problem is relatively easy.
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Figure 12. Marginal consistency λ = 1e4 with MLE training. Ground truth: summing over ground truth PMF. MAM Probability Sum:
summing over learned PMF from MAM. MAM Marginal: direct estimate with MAM. Note that p for (0, 1) and (1, 0) should be in
principle close to zero, but are non-zero due to float-to-int converting numerical errors.
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Figure 13. Marginal consistency λ = 1e2 with MLE training.
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Figure 14. MAM sampling using marginal network (a-d) with different number of variables at each step v.s. sampling using conditional
network (e) with 1 variable at eacth step. (f) compares NLL under different sampling procedures and the model inference time.

In real-world data problems, it boils down to what the marginal will be used for at test time. Uniform distribution over x will
be a bad choice if there is a data manifold we care about. If it will be used for generation, for example in the MNIST Binary
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example in Appendix B.2, q is set to a mixture of pθ and pdata. If it will be used for mariginal inference on the data manifold,
pdata will be enough. We all know the NN is not robust on data it hasn’t trained on, and so are the marginal networks, they
will not give correct estimates if we evaluate on arbitrary datapoint off the manifold or policy.

B.4. Two-Stage v.s. Joint Training

On MNIST maximum likelihood training, we compare two-stage training and joint training in Figure 15. Both training uses
the decomposed conditionals for the log likelihood objective, otherwise joint training will lead to inflated log likelihoods.
We observe that two-stage training converges faster than joint training (20 epochs v.s. 80 epochs) and needs less GPU
memory since it only requires gradient of one model instead of two models. For joint training, it is observed that smaller λ
is preferred for fast convergence and better performance while large λ hurts the model’s inference performance.

20 40 60 80 100 120
Epoch

100

95

90

85

80

75 Test Negative Log-Likelihood

Joint Training, = 1
Joint Training, = 1e 1
Joint Training, = 1e 2
Two-Stage Training, at 20 Epochs

0 5000 10000 15000 20000 25000 30000 35000
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

Self-consistency Loss
= 1
= 1e 1
= 1e 2

Figure 15. Two-stage training v.s. joint training on MNIST-Binary maximum likelihood training. λ is the penalty hyperparameter of
self-consistency error term.

For joint training under energy-based training setting, we empirically test out how λ affects models performance. We find
that a wide range of small λ leads to best results. See Figure 16 for training dynamics of different λ values. Our hypothesis
is that LKL is easier to fit than LSC, since it only involves fitting one term instead of many constraints. When λ is relatively
small, LKL is closely fitted first, then training objective is left with λLSC. Since optimization with Adam is scale-invariant,
the training converges to similar solutions. When λ is too large, LSC is first fitted very close to 0, but this restricts the
flexibility of the conditionals and marginals to fit LKL well, hence hurting its generative performance.
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Figure 16. Two-stage training v.s. joint training on Ising Model 10 × 10 energy-based training. λ is the penalty hyperparameter of
self-consistency error term.

C. Additional Experiments Details
C.1. Dataset details

Binary MNIST Binary MNIST is a dataset introduced in [63] that stochastically set each pixel to “1” or “0” in proportion
to its pixel intensity. We use the training and test split of [63] provided in https://github.com/yburda/iwae/tree/master [6].
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Table 7. Length Extrapolation on Text8

Method Spearman ↑ Pearson ↑ Time (s) ↓
MAM 0.947 0.944 0.006
P-AO-ARM T = 2 0.859 0.854 2.223
P-AO-ARM T = 5 0.923 0.931 5.683
P-AO-ARM T = 10 0.927 0.931 11.63
P-AO-ARM T = 20 0.957 0.970 23.28
AO-ARM T = 300 0.969 0.966 349.7

CIFAR-10 The CIFAR-10 dataset [37] comprises 60,000 32x32 color images across 10 classes, split into 50,000 training
and 10,000 test images. It’s used for image recognition and classification tasks in machine learning.

ImageNet32 ImageNet32 [14, 10] is a downsampled variant of the ImageNet dataset, resized to 32x32 pixels. It maintains
the diversity of the original with over 14 million images across thousands of categories, but in a lower resolution for
computational efficiency.

Molecular Sets The molecules in MOSES are represented either in SMILES [82] or SELFIES [36] strings. We construct
a vocabulary (including a stop token) from all molecules and use discrete valued strings to represent molecules. It is worth
noting that MAM can also be applied for modeling molecules at a coarse-grained level with predefined blocks, which we
leave for future work.

The test set used for evaluating likelihood estimate quality is constructed in a similar manner to Binary MNIST, by drawing
sets of random samples from the test dataset.

text8 In this dataset, we use a vocabulary of size 27 to represent the letter alphabet with an extra value to represent spaces.

The test set of datasets used for evaluating likelihood estimate quality is constructed in a similar manner to Binary MNIST,
each set is generated by randomly masking out portions of a test text sequence (by 50, 100, 150, 200 tokens) and generating
samples.

Ising model The Ising model is defined on a 2D cyclic lattice. The J matrix is defined to be σAN , where σ is a scalar
and AN is the adjacency matrix of a N × N grid. Positive σ encourages neighboring sites to have the same spins and
negative σ encourages them to have opposite spins. The bias term θ places a bias towards positive or negative spins. In
our experiments, we set σ to 0.1 and θ to 1 scaled by 0.2. Since we only have access to the unnormalized probability, we
generate 2000 samples following [21] using Gibbs sampling with 1, 000, 000 steps for 10× 10 and 30× 30 lattice sizes.
Those data serve as ground-truth samples from the Ising model for evaluating the test log-likelihood.

Molecular generation with target property During training, we need to optimize on the loss objective on samples
generated from the neural network model. However, if the model generates SMILES strings, not all strings correspond to a
valid molecule, which makes training at the start challenging when most generated SMILES strings are invalid molecules.
Therefore, we use SELFIES string representation as it is a 100% robust in that every SELFIES string corresponds to a valid
molecule and every molecule can be represented by SELFIES.

C.2. Training details

Binary MNIST, CIFAR10, ImageNet32

• Pixel values are converted to scalar values as input. “0”, “1” for Binary MNIST, “0−255” for CIFAR-10 and ImageNet.
“△” takes the value 0. For each pixel, there is an additional mask indicating if it is a “△”.

• U-Net with 4 ResNet Blocks for MNIST, 32 ResNet Blocks for CIFAR-10 sand ImageNet, interleaved with attention
layers for both AO-ARM and MAM. MAM uses two separate neural networks for learning marginals ϕ and conditionals
θ. Input resolution is 1× 28× 28 or 3× 32× 32 with 256 channels used.

• The mask is concatenated to the input. 3/4 of the channels are used to encode input. The remaining 1/4 channels
encode the mask cardinality (see [24] for details).

22



Generative Marginalization Models

• MAM first learns the conditionals ϕ and then learns the marginals θ by finetuning on the downsampling blocks and an
additional MLP with 2 hidden layers of dimension 4096. We observe it is necessary to distill the marginals by not only
finetuning on the additional MLP but also on the downsampling blocks to get a good fitting of the marginal probability,
which shows marginal network and conditional network rely on different features to make the final prediction.

• Batch size is 128 for MNIST and 32 for CIFAR-10 and ImageNet. Adam is used with learning rate 0.0001. Gradient
clipping is set to 100. Both AO-ARM and MAM conditionals are trained for 100 epochs on MNIST, 800 epochs on
CIFAR-10, 16 epochs on ImageNet. MAM marginals are finetuned from the trained conditionals for 25 epochs on
MNIST, 25 epochs on CIFAR-10 and 3 epochs on ImageNet.

The effectiveness of the proposed two-stage training is validated during experiments. Distilling marginals from
conditionals are much faster and easier than learning conditionals and marginals jointly from scratch. And distilling
marginals require much fewer epochs than fitting the conditionals.

MOSES and text8

• Transformer with 12 layers, 768 dimensions, 12 heads, 3072 MLP hidden layer dimensions for both AO-ARM and
MAM. Two separate networks are used for MAM.

• SMILES or SELFIES string representation and “△” are first converted into one-hot encodings as input to the
Transformer.

• MAM first learns the conditionals ϕ and then learns the marginals θ by finetuning on the MLP of the Transformer.

• Batch size is 512 for MOSES and 256 for text8.

• AdamW is used with learning rate 0.0005, betas 0.9/0.99, weight decay 0.001. Gradient clipping is set to 0.25. Both
AO-ARM and MAM conditionals are trained for 1000 epochs for text8 and 200 epochs for MOSES. The MAM
marginals are finetuned from the trained conditionals for 200 epochs.

Ising model and molecule generation with target property

• Ising model input are of {0, 1,△} values and are one-encoded as input to the neural network. The same is done for
molecule SELFIES strings.

• MLP with residual layers, 3 hidden layers, feature dimension is 2048 for Ising model. 6 hidden layers, feature
dimension 4096 for molecule target generation.

• Adam is used with learning rate of 0.0001. Batch size is 512 and 4096 for molecule target generation. ARM, GFlowNet
and MAM are trained with 19, 800 steps for the Ising model. ARM and MAM are trained with 3, 000 steps for molecule
target generation.

• Separate networks are used for conditionals and marginals of MAM. They are trained jointly with penalty parameter λ
set to 4.

Compute

• All models are trained on a single NVIDIA A100. The evaluation time is tested on an NVIDIA GTX 1080Ti.

C.3. Additional results on Images

C.3.1. CIFAR-10

We train MaMs conditionals for 800 epochs and then further train 25 epochs to fit the marginals. MAM achieves a test NLL
of 2.88 bpd (if we continue training to 3000 epochs, test NLL will get close to 2.69 bpd shown in the AO-ARM literature
[24]). Test NLL is compared in Table 2. MaM achieve highly correlations in terms of log p estimate when compared with
AO-ARM log p’s. The marginal self-consistency error is averaged ∼ 0.3 in log p values. Generated samples are shown in
Figure 17 and Figure 18.
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Figure 17. . CIFAR-10: conditional generation.

Figure 18. . CIFAR-10: generated samples. Note that sometimes images are flipped because MaM is trained on augmented images.

C.3.2. IMAGENET32

We train MaMs conditionals for 16 epochs and train 3 more epochs for fitting the marginals. MAM achieves a test NLL
of 2.88 bpd (if we continue training to 3000 epochs, test NLL will get close to 2.69 bpd shown in the AO-ARM literature
[24]). Test NLL is compared in Table 3. MaM achieve highly correlations in terms of log p estimate when compared with
AO-ARM log p’s. The marginal self-consistency error is averaged ∼ 0.3 in log p values. Generated samples are shown in
Figure 19 and Figure 20.

Figure 19. . ImageNet32: conditional generation.

C.3.3. BINARY MNIST

Likelihood estimate on partial Binary MNIST images

Figure 22 illustrates an example set of partial images that we evaluate and compare likelihood estimate from MAM against
ARM. Table 8 contains the comparison of the marginal likelihood estimate quality and inference time.

Likelihood estimate on synthetic Binary MNIST images
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Figure 20. . ImageNet32: generated samples.

Original Censored-100 Censored-400 Censored-700

-54.48, -57.47

Generated-100

-60.48, -63.37

Generated-400

-106.45, -108.58

Generated-700

Figure 21. An example of the data generated (with 100/400/700 pixels masked) for comparing the quality of likelihood estimate.
Numbers below the images are LL estimates from MAM’s marginal network (left) and AO-ARM-E’s ensemble estimate (right).
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Figure 22. An example set of partial images for evaluating marginal likelihood estimate quality. The numbers in the captions show the
log-likelihood calculated using learned marginals (left) v.s. learned conditionals (right)

Table 8. Marginal estimates on Binary-MNIST partial images

Pearson ↑ Marg. inf. time (s) ↓
AO-ARM 0.997 49.75 ± 0.03
MAM 0.995 0.02 ± 0.00

Figure 21 illustrates an example of “synthetic” MNIST images generated from masked MNIST images that we evaluate
and compare likelihood estimate from MAM against ARM. Table 9 shows the marginal likelihood estimate shows strong
correlation with actual log p from ARM, demonstrating strong generalizing to data on the manifold but not seen during
training.

Generated samples

25



Generative Marginalization Models

Table 9. Marginal estimates on Binary-MNIST “synthetic” images

Pearson ↑
AO-ARM 0.993
MAM 0.993

0.1111, 0.0000 -14.2229, -16.1155 -26.9883, -28.8949 -39.1542, -42.2621 -51.3186, -53.8418 -61.0715, -63.9271 -67.4851, -71.1942 -79.8951, -84.4266

Figure 23. An example of the trajectory every 112 step when generating an MNIST digit following a random order. The future pixels are
generated by conditioning on the existent filled-in pixels. The numbers in the captions show the log-likelihood calculated using learned
marginals (left) v.s. learned conditionals (right)

-0.4627, 0.0000 -2326.1995, -2156.8149 -3975.1997, -3873.0151 -5427.7236, -5406.5122 -6642.8984, -6739.9624 -7707.4326, -7895.3428 -8697.5957, -8974.0234

Figure 24. An example of the trajectory when generating an ImageNet image following a random order. The future pixels are generated
by conditioning on the existent filled-in pixels. The numbers in the captions show the log-likelihood calculated using learned marginals
(left) v.s. learned conditionals (right).

Figure 23 shows how a digit is generated pixel-by-pixel following a random order. We show generated samples from MAM
using the learned conditionals ϕ in Figure 25.

C.4. Additional results on MOSES

C.4.1. COMPARING MAM WITH SOTA ON MOSES MOLECULE GENERATION

We compare the quality of molecules generated by MAM with standard baselines and state-of-the-art methods in Table 11
and Figure 26. Details of the baseline methods are provided in [55]. MAM-SMILES/SELFIES represents MAM trained on
SMILES/SELFIES string representations of molecules. MAM performs either better or comparable to SOTA molecule
generative modeling methods. The major advantage of MAM and AO-ARM is that their order-agnostic modeling enables
generation in any desired order of the SMILES/SELFIES string (or molecule sub-blocks).

C.4.2. GENERATED MOLECULAR SAMPLES

Figure 27 and 28 plot the generated molecules from MAM-SMILES and MAM-SELFIES.

C.4.3. OUT-OF-DISTRIBUTION TEST ON DIFFERENTIATING DRUG VS. PHOTODIODE

We challenged the model with a more difficult OOD task: distinguishing between tyrosine kinase inhibitors (a specific type
of drug) and organic photodiodes from focused chemical spaces while the MAM model is trained on a general chemical
space of drug-like compounds. The tyrosine kinase inhibitors should be considered by the model to have higher likelihood
given that it has more similar properties (such as moderate weight and lipophilicity) to the molecules in ZINC.

We created 1000 pairs consisting of one of each using datasets from Subramanian et al. [74], controlling for other factors
like SMILES length and chemical space to increase difficulty. Despite this, MAM’s marginals correctly identified the drug
molecule 74% of the time (vs. 79% for AO-ARM), with 90% alignment between marginal estimates and AO-ARM log p’s.
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Figure 25. Generated samples: Binary MNIST
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Figure 26. KDE plots of lipophilicity (logP), Synthetic Accessibility (SA), Quantitative Estimation of Drug-likeness (QED), and molecular
weight for generated molecules. 30, 000 molecules are generated for each method.
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Figure 27. Generated samples from MAM-SMILES: MOSES
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Figure 28. Generated samples from MAM-SELFIES: MOSES
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Table 10. Character modeling on Molecular Sets

NLL (bpc) ↓ Pearson ↑ Time (s) ↓
AO-ARM♦ 0.655 0.994 19.32± 0.01
MAM♦ 0.655 0.995 0.006±0.00

Table 11. Performance Comparison on MOSES

Model Valid↑ Unique
10k↑

Frag Test↓ Scaf
TestSF↑

Int Div1↑ Int Div2↑ Filters↑ Novelty↑

Training data 1.0 1.0 1.0 0.9907 0.8567 0.8508 1.0 1.0
HMM 0.076 0.5671 0.5754 0.049 0.8466 0.8104 0.9024 0.9994
NGram 0.2376 0.9217 0.9846 0.0977 0.8738 0.8644 0.9582 0.9694
CharRNN 0.9748 0.9994 0.9998 0.1101 0.8562 0.8503 0.9943 0.8419
JTN-VAE 1.0 0.9996 0.9965 0.1009 0.8551 0.8493 0.976 0.9143
MAM-SMILES 0.7192 0.9999 0.9978 0.1264 0.8557 0.8499 0.9763 0.9485
MAM-SELFIES 1.0 0.9999 0.997 0.0943 0.8684 0.8625 0.894 0.9155
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C.5. Additional results on text8

C.5.1. LENGTH EXTRAPOLATION ON TEXT8

In Table 7, we evaluated the model’s ability to handle length extrapolation on Text8. We trained data with D = 250 and
tested on sequences with D = 300.

Robustness MAM’s predicted log p marginals maintain a high correlation with those calculated using AO-ARM condi-
tionals, even on longer sequences. Its quality matches Parallel AO-ARM with 20 steps.

Graceful Extrapolation We observe the absolute errors in log pθ(x)− log pARM(x) increase due to challenge from OOD
prediction, but the variance of these errors remains surprisingly similar to that observed when D = 250. This indicates that
MAM gracefully extrapolates the relative scales among log p values, explaining the high observed correlation in the Table.

C.5.2. SAMPLES USED FOR EVALUATING LIKELIHOOD ESTIMATE QUALITY

We show an example of a set of generated samples from masking different portions of the same text, which is then used for
evaluating and comparing the likelihood estimate quality. Their log-likelihood calculated using the conditionals with the
AO-ARM are in decreasing order. We use MAM marginal network to evaluate the log-likelihood and compare its quality
with that of the AO-ARM conditionals.

Original text:
the subject of a book by lawrence weschler in one nine nine five entitled mr wilson s

cabinet of wonder and the museum s founder david wilson received a macarthur foundation

genius award in two zero zero three the museum claims to attract around six

Text generated from masking out 50 tokens:
the su je t of a b ok by la r nce es h n o nine n ne five entitled mr wilson

s cabinet of wonder and the museum s founder vid w l o r eive a macarthur fou a on

e s awa d in two ero z r hree he museum c aims o attr ct ar u d s

the subject of a book by lawrence heschell in one nine nine five entitled mr wilson s

cabinet of wonder and the museum s founder david wilson received a macarthur foundation

dennis award in two zero zero three the museum claims to attract around sev

Text generated from masking out 100 tokens:
the su je t f b k y l r nc es h n o nine n ne five

enti l d mr wil o c b et of wond r an h mu eu s f u der vid

w l eive a maca thur f u a n e a a d two er z r h ee museum c a ms o

tr ct ar u

the subject of a book by lawrence bessheim in one nine nine five entitled mr wilson s

cabinet of wonder and the museum s founder david wilson received a macarthur foundation

leaven award in two zero zero three the museum claims to detract around the

Text generated from masking out 150 tokens:
the u t f l r nc es h n o n e n ne ive

e ti l m wil c et of won an s u der vid

w eiv a a a th a n e a two e z r e use m c a ms

tr ct a

the tudepot of europe de laurence desthefs in one nine nine five entitled mr wild the

cabinet of wonder anne cedallica s founder david wright received arnasa the culmination

team sparked in two zero zero three the museum claims to retract athlet c a
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Figure 29. Samples: 10× 10 Ising model. Ground truth (left) v.s. MAM (right).

Figure 30. Samples: 30× 30 Ising model. Ground truth (left) v.s. MAM (right).

Text generated from masking out 200 tokens:
t f l r o e n iv

e i l wil c t w a der d

w e a a a n e a t

e u e c a s r c a

the builder of the pro walter a a e sec press one nine nine five esciele the wild men

convert of wark flax notes the world undergroand whirl spiken america ascent and martin

decree a letter to the antler s default museum chafes in america ascent vis

C.6. Additional experiments on Ising model

Generated samples

We compare ground truth samples and MAM samples in Figure 29 and 30.
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C.7. Additional experiments on molecule target generation

C.7.1. TARGET PROPERTY ENERGY-BASED TRAINING ON LIPOPHILICITY (LOGP)

Figure 31 and 32 show the logP of generated samples of length D = 55 towards target values 4.0 and−4.0 under distribution
temperature τ = 1.0 and τ = 0.1. For τ = 1.0, the peak of the probability density (mass) appears around 2.0 (or −2.0)
because there are more valid molecules in total with that logP than molecules with 4.0 (or −4.0), although a single molecule
with 4.0 (or −4.0) has a higher probability than 2.0 (or −2.0). When the temperature is set to much lower (τ = 0.1),
the peaks concentrate around 4.0 (or −4.0) because the probability of logP value being away from 4.0 (or −4.0) quickly
diminishes to zero. We additionally show results on molecules of length D = 500. In this case, logP values are shifted
towards the target but their peaks are closer to 0 than when D = 55, possibly due to the enlarged molecule space containing
more molecules with logP around 0. Also, this is validated by the result when τ = 0.1 for D = 500, the larger design space
allows for more molecules with logP values that are close to, but not precisely, the target value.
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Figure 31. Target property matching with different temperatures. 2000 samples are generated for each method.
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Figure 32. Target property matching with different temperatures. 2000 samples are generated for each method.

C.7.2. CONDITIONALLY GENERATED SAMPLES

More samples from conditionally generating towards low lipophilicity (target = −4.0, τ = 1.0) from user-defined
substructures of Benzene. We are able to generate from any partial substructures with any-order generative modeling
of MAM. Figure 33 shows conditional generation from masking out the left 4 SELFIES characters. Figure 34 shows
conditional generation from masking the right 4 ∼ 20 characters.
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Figure 33. Generated samples from masking out the left 4 SELFIES characters of a Benzene. Shaded region are the impainted structures.

Figure 34. Generated samples from masking out the right 4-20 SELFIES characters of a Benzene. Shaded region are the impainted
structures.
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