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Abstract

Training deep neural networks in biological systems is faced with major challenges
such as scarce labeled data and obstacles for propagating error signals in the absence
of symmetric connections. We introduce Tourbillon, a new architecture that uses cir-
cular autoencoders trained with various recirculation algorithms in a self-supervised
mode, with an optional top layer for classification or regression. Tourbillon is
designed to address biological learning constraints rather than enhance existing
engineering applications. Preliminary experiments on small benchmark datasets
show that Tourbillon performs comparably to models trained with backpropagation
and may outperform other biologically plausible approaches. The code and models
are available at https://github.com/IanRDomingo/Circular-Learning.

1 Introduction

Decades of machine learning have taught us that gradient descent is the sole effective optimization
method in high-dimensional spaces. Other strategies, like random search, are bound to fail. Backprop-
agation, the algorithm behind gradient computation in artificial neural networks, has been incredibly
successful. It powers advancements in Artificial Intelligence, from protein folding (e.g., AlphaFold
(1)) to natural language understanding and generation (e.g., GPT-4 (2; 3)). Backpropagation effi-
ciently computes the gradient in a network with W weights using O(W ) operations. Considering that
at least O(W ) operations are necessary to adjust W synapses, backpropagation demonstrates optimal
efficiency. Consequently, if learning is viewed as an optimization problem in a high-dimensional
space of synaptic weights, this suggests that the brain likely employs learning algorithms based on
gradient computation, either exact or approximate. Yet there are several well-known reasons in the
literature why backpropagation is implausible in biological systems (4; 5; 6; 7; 8). Thus, in short, we
hypothesize that biological systems must strive to approximate gradient descent methods without
being able to compute exact gradients by backpropagation. Here, we set out to propose a plausible
strategy for achieving this goal.

To begin, we outline the key factors that make existing neural architectures biologically implausible:
1) Symmetry of Connections (weight transport): Backpropagation requires precisely symmetric
connections between the forward and backward passes. This constraint cannot be satisfied in a
biological neural system and might be hard to realize in some physical neural systems. 2)Forward
Nonlinearities (F prime): Backpropagation relies on an exact memory in the backward pass of
the nonlinearities applied in the forward pass, such as activation functions, to compute weight
derivatives. However, there is no evidence supporting the existence of such precise memory in
biological or physical neural systems. 3) Locality: In a biological neural system, the learning rule for
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adjusting synaptic weights must be local, i.e. it must rely solely on variables available locally, both in
space (spatial locality) and time (temporal locality), at each synapse. 4) Clocked Computation: In
backpropagation, the forward and backward passes are manually clocked to compute activations and
update weights. In contrast, in a biological system, neurons communicate stochastically, lacking the
precise clocking mechanism observed in backpropagation. 5) Labeling: Training classifiers rely on
large amounts of labeled data for supervised learning. However, biological systems do not seem to
have access to large amounts of labeled data. 6) Spike: While biological neurons communicate using
noisy spikes, artificial neurons typically communicate using deterministic analog values (with known
exceptions such as dropout). 7) Distances: The architecture of deep neural networks necessitates
propagating signals over considerable neural distances in deep models, which can result in signal
dilution and lead to distorted or unstable gradients. 8) Developmental Modularity: Backpropagation
in general, requires having a complete architecture in place before training can begin, which may not
be realistic for biological systems undergoing development and other changes.

Several solutions have been suggested to try to address these problems, in isolation or small com-
binations, but no approach addresses all of them at once. Here we propose a neural architecture
called Tourbillon and its training algorithms to address all the implausibility discussed above by
combining different ideas, including stacked autoencoders, recirculation, and asynchronous training.
We emphasize that the primary goal here is to address the obstacles listed above for biological (or
neuromorphic) neural systems and not to derive a new architecture or algorithm that is practically
useful for digital applications of deep learning.

2 Biological Plausibility
Several approaches have been proposed to address the biological implausibilities enumerated above.
The most notable ones include Feedback Alignment (FA) (9; 10; 11; 12), Difference Target Prop-
agation (DTP) (5), Stacked Autoencoders (13; 14), and the Forward-Forward (FF) algorithm (15).
However, each of these methods addresses only a limited subset of the biological implausibilities
(Section A.1 and Table 1). Self-supervised learning, in particular stacked autoencoders, provides one
way of addressing the data labeling issue. However, standard autoencoders suffer from several other
issues which we now address.
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Figure 1: From left to right: Recirculation, forward forward, difference target propagation, (direct)
feedback alignment. The learning rule for each model is written at the top of the architecture
schematics.

Table 1: A comparison of physical plausibility between different neural architectures from a biological
standpoint. é, ○, and Ëcorrespond to no plausibility, partial plausibility, and full plausibility,
respectively.

W Transport F prime Locality Clocked Labeling Spike Distance Modular
Backpropagation é é é é é é é é
Feedback Alignment (FA) Ë Ë é é é é é é
Direct Feedback Alignment (DFA) Ë Ë ○ é é é Ë é
Difference Target Propagation (DTP) ○ é é é ○ é Ë é
Stacked Autoencoders Ë Ë ○ é Ë é Ë ○
Forward Forward (FF) Ë Ë Ë é ○ é Ë é
Tourbillon Ë Ë Ë Ë ○ é Ë Ë
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Circular Autoencoders. In a standard feed-forward autoencoder (AE), the data itself provides the
targets (self-supervised learning). The data and hence the targets are available in the input layer.
However, they are not available in the output layer, in the sense that they are not physically local
(spatial-locality) to the output layer. This problem is addressed in circular autoencoders (CAE) (16)
where the output layer is physically equal (or physically adjacent) to the input layer (Figure 1). With
the circular layout, targets and errors can be computed at the level of the input/output layer.

Recirculation Algorithms. Standard backpropagation, or even FA, of these targets, would require a
channel (wires) running backward from the output layer to the hidden layer. However, because of the
circular layout, it is possible to use the forward connections to propagate target and error information
during learning. This is the fundamental idea behind recirculation, a family of algorithms for training
CAEs that do not require backward connections (17; 18; 7).

Consider a CAE with layers numbered from 0 to L, where 0 corresponds to the input layer. We
use the index t to denote different cyclic passes through the autoencoder, with the first pass indexed
by t = 0. After the first pass, one can locally compute the error T − H0

L, where T is the target
located at the input layer. This error could be used to train the top layer of the CAE by gradient
descent, and then train the other layers by using a form of random backpropagation where the error
signal is obtained by propagating the error T − H0

L using the forward weights of the CAE. This
however requires propagating two different kinds of signals, activities, and errors, through the CAE.
Thus rather than recirculating the error, a more uniform approach can be obtained by recirculating
activities. If Ht

i denotes the activation of layer i during the forward pass indexed by t, the main idea
behind the recirculation family of algorithms is to use Ht

i as the target for the output Ht′

i taken at a
later time t′ to produce the post-synaptic term for the weight update. The intuition is that the data
may become increasingly corrupted as it is being recycled, thus earlier pass serve as targets for later
passes. Different variations can be obtained, by varying, for instance, the post- and pre-synaptic
terms. Equation 1 describes the update rule of the weights in a circular autoencoder.

∆Wi = η(Ht
i −Ht′

i )
post(Ht

i−1)
pre (1)

This rule follows a Hebbian-product form, resembling backpropagation but with a postsynaptic
recirculation error, denoted as [H0

i − H1
i ]

post. This error term is both spatially and temporally
local, assuming that consecutive passes through the circular autoencoder fall within the proper time
window. In the input layer, the vector H0

0 represents the input data, including the targets for an
autoencoder. Consequently, the recirculation learning equation for the top layer of weights is identical
to backpropagation. Although in this work we are not using spiking neurons, such learning rules
are closely related to the concept of spike time-dependent synaptic plasticity (STDP) (19). STDP
Hebbian or anti-Hebbian learning rules have been proposed using the temporal derivative of the
activity of the post-synaptic neuron (20) to encode error derivatives.

3 Tourbillon: A CAE Stack
We propose the Tourbillon architecture as a stack of circular autoencoders, capped by a classification
or regression layer connecting the hidden representation of the top circular autoencoder and the output
layer. Each circular autoencoder has an encoder and decoder components. The hidden layer that is
shared by the encoding and decoding components is called the hinge layer. In the stack, the hinge
layer of the ith circular autoencoder becomes the input layer of the i+1th circular autoencoder (Figure
2 (b)). The Tourbillon architecture addresses the issues of target labels and spatial locality. With
the recirculation algorithms, it also addresses the issues of weight transport, forward non-linearities,
temporal locality, and distances. Using a novel training algorithm, we set out to address issues of
clocking and modularity.

Asynchronous Training. To fully address modularity and provide non-clocked computations, we
consider asynchronous training. In this case, each CAE can be viewed as a “spinning wheel” and these
wheels can spin independently of each other. At any random time, a CAE may elect to recirculate
whatever happens to be in its input layer and adapt its synapses accordingly. The algorithm for
asynchronous training is given in the Appendix.

4 Experiments and Results

We begin by training CAEs and investigate the effects of various parameters, including the number of
cycles (t), the CAE size (i.e., the number of hidden layers in the CAE except the input and output
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Figure 2: (a): Train and test loss of three autoencoders trained with backpropagation (BP), feedback
alignment (FA), and recirculation (CAE) on MNIST (top row) and Fashion MNIST (bottom row).
Each line shows the mean of five runs, with shaded areas indicating standard deviation. (b) Tourbillon
architecture with a stack of three circular autoencoders (CAE) trained by recirculation.

Table 2: The mean-squared reconstruction loss of CAEs with different cycles and CAE sizes trained
on MNIST and Fashion MNIST. Each number is the mean of five distinct runs. The top results are in
boldface.

CAE size
MNIST Fashion MNIST
Cycles Cycles

1 2 3 1 2 3

1 0.0099 0.0093 0.0090 0.0132 0.0124 0.0123

3 0.0165 0.0154 0.0151 0.0204 0.0198 0.0204

layers), and different learning rules (Equation 1), on training dynamics. Then, using the best set of
these parameters, we develop and train several Tourbillon architectures, both with and without a top
classifier layer, using different stack depths and training algorithms. The goal of these experiments is
not to outperform existing deep learning models but to show that Tourbillon architectures can learn
complex tasks while satisfying the plausibility constraints. Similar to recently proposed plausible
architectures (15), we use relatively small datasets and models, leaving the scaling up to future studies.
Details on the hyperparameters, hardware, and CAE implementation are in the appendix and the
gitHub repository.

4.1 Training Tourbillon CAEs

We train CAEs using the learning rule in Equation 1. We optimize each architecture using a mean-
squared reconstruction loss. In all experiments, we use symmetric CAEs, where the number of
hidden layers in the encoder and decoder are equal. To satisfy distance plausibility, we use CAEs
with a small number of hidden layers (CAE size = one and three). Additionally, to maintain the
temporal locality of the variables, we limit the number of cycles (t) to less than four. We train
CAEs with fully connected layers for the MNIST and Fashion MNIST datasets. Table 2 displays
the reconstruction loss on the test datasets. Notably, using a CAE size of one and one cycle (t = 1)
yields the lowest testing loss. This corresponds to the greatest level of spatial and temporal locality.
Using the best values for the CAE size and number of cycles, we further show the viability of training
CAEs with the learning rule above. We compare the mean-squared loss of the trained CAE with the
same autoencoder trained with backpropagation, FA, and DFA. Figure 2 (a) shows the training and
test error curves for the MNIST and Fashion MNIST datasets. Our results show that recirculation
achieves comparable, and possibly superior, reconstruction errors compared to backpropagation and
FA.
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Table 3: The mean-squared reconstruction loss of CAEs with different depths on MNIST, Fashion
MNIST.

MNIST Fashion MNIST
Stack Depth Stack Depth

2 3 4 2 3 4

0.0088 0.0190 0.0251 0.0141 0.0290 0.0426

4.2 Tourbillons With Various Depth

We construct stacks of two, three, and four compressive CAEs and train them using asynchronous
algorithms. Table 3 presents the reconstruction error of the stacks, indicating the depth and training
algorithm applied to each CAE.

Experimenting with different learning rate schedules for each CAE in the stack reveals that decreasing
the learning rates from the bottom to the top layers is crucial. The training algorithm’s inherent
randomness also leads to a higher test reconstruction error. However, the focus of this study is not
on performance but on introducing a biologically plausible training algorithm and demonstrating its
feasibility. After training the stacks, we add a top classifier layer. Based on Table 3, we use three CAEs
for MNIST and Fashion MNIST. We conduct classification experiments to compare Tourbillon’s
performance with neural networks of similar architecture trained using backpropagation, FA, and
DFA. Tourbillon outperforms FA and matches backpropagation, particularly in fully connected
architectures. A key advantage of Tourbillon is its ability to leverage unlabeled data for unsupervised
training of the stack, allowing the top classifier to be trained with less labeled data. This reduces
reliance on labeled data, enhancing biological plausibility.
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Figure 3: Train and test accuracy of three classifiers trained on MNIST dataset using backpropagation
(BP), feedback alignment (FA), and Tourbillon. Each line corresponds to the mean of five distinct
runs with the standard deviation shown as the shaded area.

5 Conclusion

Tourbillon represents a systematic approach toward addressing the major biological implausibilities in
both structures and training algorithms of existing neural networks. In essence, it is a stack of circular
autoencoders, each trained by recirculation at random times. Hence we chose the name Tourbillon
(associated with turbulence in French) the turbulent topology of the architecture. Moreover, in
horology, a tourbillon is an addition to the mechanics of a watch escapement to increase its accuracy.
While we do not claim to have increased accuracy, we have shown that the Tourbillon approach
shows similar performance to existing neural networks, at least on small datasets, while being more
biologically plausible. In conclusion, Tourbillon serves as a framework to investigate the biological
implausibilities of artificial neural architectures and aims to advance the field of biologically plausible
deep learning. By addressing key implausibilities, Tourbillon opens up new possibilities for studying
neural networks in accordance with biological principles.
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A Appendix

In this appendix, we provide additional details regarding the algorithms and the experiments. All the
experiments are conducted using a single NVidia Titan X GPU.

A.1 Biological Plausibility

We describe the learning equation (weight update) using post- and pre-synaptic terms. For a forward
weight Wi at layer i, the backpropagation learning equation can be written as:

∆Wi = ηBpost
i Hpre

i−1, Bpost
L = T −HL, (2)

Bpost
i−1 = F ′

i−1 ◦WT
i Bpost

i

where η denotes the learning rate, Bpost
i denotes the postsynaptic backpropagated error at layer i,

and Hpre
i−1 denotes the pre-synaptic activity. F ′

i−1◦ denotes the component wise multiplication by the
vector of activation function derivatives in layer i− 1. T and HL are the targets and the activation at
the top layer L. Note that in order to avoid further cluttering the notation, we omit the transpose sign
for all the presynatpic terms throughout this document.

A.1.1 Feedback Alignment

Feedback Alignment (FA) or Random Backpropagation (RBP) refers to a family of algorithms
(9; 10; 11; 12) that address the weights transport problem by using non-symmetric, and usually
random, weights in the backward pass as follows:

∆Wi = ηBpost
i Hpre

i−1, Bpost
L = T −HL, (3)

Bpost
i−1 = F ′

i−1 ◦RiB
post
i

where Ri denotes the random fixed matrices (random backward channels) to fix the issue of weights
transport.

While FA and its variants address the weight transport problem, by themselves they do not address
the other problems. Among several flavors of FA (10; 21), Direct Feedback Alignment (DFA) (11),
backpropagates the error signal obtained at the top layer to each of the lower layers independently
using direct fixed random matrices. By this means, DFA can address the issues of spatial locality and
distance implausibilities. The learning equation of DFA can be written as follows:

∆Wi = ηBpost
i Hpre

i−1, Bpost
i = Ri(T −HL) (4)

A version with component-wise multiplication by the derivatives of the corresponding activation
functions is also possible. Experiments reported in the literature suggest that FA and its variants do
not work well with convolutional layers (22; 23; 24). A few methods have been proposed to address
this apparent weakness of FA algorithms, however, most of them introduce more constraints and
dependence on the forward pass which may make them less biologically plausible (23; 25; 26).

A.1.2 Difference Target Propagation

Difference Target Propagation (DTP) (5) as another biologically plausible model, trains the weights
using a local target at each layer Ŷi that is propagated from the original target Y to each of the lower
layers using learnable weights Gi.

∆Wi = ηŶ post
i Hpre

i−1, Ŷi = Ŷi+1Gi+1 (5)

The Gis are trained in the forward pass to approximate the inverse of the forward operation at each
layer. Propagating the target using Gis at the top two layers is dependent on the backpropagation and
weight transport (24). Also, the forward and backward passes through the network are completely
clocked to learn Gis. However, since the information flows through layers independently, the variables
are local in space, thus, this architecture can address space-locality and distance implausibilities.
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A.1.3 Stacked Autoencoders

A well known approach to address the labeling issue is using a stack of autoencoders (13; 14),
where each autoencoder learns to reproduce the hidden representation of the previous one in a
self-supervised manner, allowing the stack to learn increasingly abstract representations without
labels. Labels are only used to train the top layer in a supervised way, with the option to fine-tune all
layers via backpropagation (27).

This approach also addresses the distance and developmental modularity issues since backpropagation
within each autoencoder limits error gradients to short distances and allows training to begin before
the entire architecture is complete. However, stacked autoencoders do not solve the locality and
weight transport issues. Each autoencoder, being deep, requires backpropagation across at least
two adaptive layers, necessitating a learning channel for error signals and symmetric weights to
implement backpropagation.

A.1.4 Forward Forward

The recently introduced Forward Forward algorithm (FF) (15), attempts to address the implausibility
through a contrastive learning framework. Positive and negative data are fed through the network.
Then the weights can be updated using a local target defined at each layer as follows:

∆Wi = η(||H+
i −H−

i ||2)postHpre
i−1 (6)

FF uses variables that are local in space and can be assumed to be local in time (due to the short
neural distance). Given the contrastive learning framework, it can be trained in a self-supervised
manner, however, the computation remains heavily clocked for feeding positive and negative data
one at a time.

A.2 Training Tourbillon CAEs

Table 4 summarizes the parameters used for training the CAEs in Section 4.1 of the main article.

Table 4: CAE size refers to the number of hidden layers except for the input and output layers. The
CAEs are symmetric, with an equal number of hidden layers in both the encoder and decoder.

CAE size MNIST and Fashion MNIST
Hidden Layers Dim

1 784-256-784

3 784-256-64-256-784

Additionally, all models were trained for 100 epochs with a batch size of 64. To optimize the
activation function and learning rates, a grid search was conducted, resulting in the use of tanh
activation function and a learning rate of 0.01 for the initial layers. Subsequently, a smaller learning
rate of 0.001 was employed for the remaining fully connected layers across all architectures.

A.3 Stacking CAEs With Various Depth and Training Algorithms

Here we explain the details of the experiments conducted in Section 4.2. Specifically, Table 5
summarizes the parameters used for stacking and training the CAEs.

Table 5: Depth refers to the number of CAEs used to construct the stack.

Depth Input and Hinge Layers Dim

2 (784,256)-(256,128)

3 (784,256)-(256,128)-(128,64)

4 (784,256)-(256,128)-(128,64)-(64,64)

For the asynchronous training algorithm, we use a batch size of 64 and we train the entire stack for
3000 iterations. According to Algorithm 1, an iteration refers to feeding one batch of data through

9



Algorithm 1: Asynchronous training
Input: T : A stack of m sequential circular autoencoders T = CAEm ◦ ... ◦ CAE1,
CAEi = Di ◦ Ei(datasample), data: training data, S: steps
for i = 1 to S do
1 ≤ j = random ≤ m
h = Ej−1 ◦ ... ◦ E1

circulation(CAEj , h)

CAE3

CAE2

CAE1

CAE2 CAE3 CAE1
Random Selection 

of CAEs:

Figure 4: Random phases of the asynchronous training. Each time, one CAE is selected randomly
and trained by recirculating the information.

the stack and updating the weights of one CAE within the stack. We provide a pseudocode of the
asynchronous training in Algorithm 1. To further enhance clarity, we have depicted the schematics of
the asynchronous training algorithm in Figure 4.

To evaluate the performance of the Tourbillon architecture when adding the top classification layer,
we conducted a comparison with similar architectures trained using backpropagation, FA, and DFA.
Figure 3 presents the results of this experiment specifically for the Tourbillons, trained sequentially
with a stack of three fully connected CAEs using the Fashion MNIST dataset.
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