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ABSTRACT

Real-world enterprise text-to-SQL workflows often involve complex cloud or lo-
cal data across various database systems, multiple SQL queries in various dialects,
and diverse operations from data transformation to analytics. We introduce Spi-
der 2.0, an evaluation framework comprising 595 real-world text-to-SQL work-
flow problems derived from enterprise-level database use cases. The databases in
Spider 2.0 are sourced from real data applications, often containing over 1,000
columns and stored in local or cloud database systems such as BigQuery and
Snowflake. We show that solving problems in Spider 2.0 frequently requires
understanding and searching through database metadata, dialect documentation,
and even project-level codebases. This challenge calls for models to interact with
complex SQL workflow environments, process extremely long contexts, perform
intricate reasoning, and generate multiple SQL queries with diverse operations,
often exceeding 100 lines, which goes far beyond traditional text-to-SQL chal-
lenges. Our evaluations indicate that based on o1-preview, our code agent frame-
work successfully solves only 15.1% of the tasks, compared with 91.2% on Spider
1.0 and 73.0% on BIRD. Our results on Spider 2.0 show that while language mod-
els have demonstrated remarkable performance in code generation — especially
in prior text-to-SQL benchmarks — they require significant improvement in order
to achieve adequate performance for real-world enterprise usage. Progress on Spi-
der 2.0 represents crucial steps towards developing intelligent, autonomous, code
agents for real-world enterprise settings.

1 INTRODUCTION

Automated code generation can serve as a crucial bridge between humans and data, assisting in-
dividuals in achieving difficult or monotonous tasks using complex data. A significant portion of
existing data is stored in relational databases, where SQL serves as an essential interface that facili-
tates human interaction with these data. In this context, semantic parsing or text-to-SQL (Dahl et al.,
1994; Zelle; Zettlemoyer & Collins, 2005; Li & Jagadish, 2014; Zhong et al., 2017; Yu et al., 2018)
is an important technology that assists data analysts in performing routine queries, orchestrating
data workflows, and accomplishing advanced business intelligence, thereby significantly reducing
repetitive human labor and alleviating the burden on programmers. Large language models (LLMs)
have demonstrated excellent capabilities in generating code (Chen et al., 2021; Austin et al., 2021),
particularly in transforming natural language questions into SQL queries. Notably, methods based
on GPT-4 achieved execution accuracy of 91.2% and 73.0% on the classic benchmarks Spider 1.0
(Yu et al., 2018) and BIRD (Li et al., 2024b), respectively.

Although LLMs excel on these datasets, they often use non-industrial databases with few tables
and columns, featuring simplistic SQL and questions that fall short of real-world complexity and
overlook diverse SQL dialects. By contrast, real-world data are stored across a diverse array of
database systems, each with its own unique SQL dialects, introducing a wide range of SQL syntax
and functions. Additionally, these enterprise-level application databases are characterized by large-
scale schemas with thousands of columns and complex nested structures. Moreover, real-world
text-to-SQL workflows require the utilization of project codebases, external knowledge, and various
contexts to construct intricate SQL queries across multiple steps, complete various operations, and
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Q: I need a daily report on key sales activities—covering tasks completed, 
events held, leads generated, and the status of opportunities.

Database Documents

Codebase

Text-to-SQL Workflow Environment

Diverse 
System

Database Metadata
External Knowledge
SQL Dialect Docs 
Query InterfaceReal 

Apps

Complex
Schema

         Language Models

models/
data/
macros/

project.yml
schema.yml

leads.sql

+20 filessalesforce.db

[ + 100 lines omitted]
activity_date account_id typeTable 1: 

opportunity_id stage_name amountTable 495:

(8695 columns omitted)

WITH opportunity AS (
 SELECT  {{ dbt.date_trunc('day','close_date') }} 
                                  AS close_date,
  CASE
     WHEN is_won THEN 'Won'
     WHEN NOT is_won AND is_closed THEN 'Lost'
     WHEN NOT is_closed AND LOWER(forecast_category) 
IN ('pipeline','best case') THEN 'Pipeline'
     END AS status
  FROM {{ var('opportunity') }}
),

LEFT JOIN event on ds.date_day =     
salesforce_event.activity_date
LEFT JOIN opportunities_created 
ON ds.date_day = opportunities_created.created_date
LEFT JOIN opportunities_closed 
ON ds.date_day = opportunities_closed.close_date

 (e.g. Google/Snowflake SQLs     )SQL

SQLs / 
Python

Exec 
feedback

Figure 1: Spider 2.0 aims to evaluate LLMs on real-world enterprise-level text-to-SQL workflows.
Solving each task requires understanding database metadata, consulting SQL dialect documentation,
handling complex workflows, and performing intricate reasoning to generate diverse SQL queries.

build a comprehensive data engineering pipeline. This includes data wrangling to clean and organize
the data for analysis, data transformation to restructure and enhance the data, and conducting data
analytics to extract insights that inform decision making and drive strategic initiatives. All these
complexities underscore the pressing need for a more realistic enterprise-level benchmark.

We present Spider 2.0, a benchmark that reflects real-world data workflows to facilitate the develop-
ment of text-to-SQL models in enterprise applications, encompassing 595 real-world complex data
wrangling, transformation, and analysis tasks. As illustrated in Fig. 1, the databases in Spider 2.0
are sourced from industrial applications (e.g. Google Analytics and Salesforce) and feature massive
schema items (an average of 755 columns) with unique structures (e.g., nested columns in Fig. 13,
multiple schema in Fig. 14), along with terabyte-scale data volumes. They encompass a variety of
database systems, including local databases (e.g., SQLite and DuckDB) and cloud data warehouses
(e.g., BigQuery and Snowflake). Complicated SQL dialects for these databases are curated from
technical tutorials, community forums, and open-source projects. On average, each ground-truth
SQL query contains 144 tokens and includes advanced functions (e.g., ST DISTANCE(x1, x2)
measures the shortest distance between two points), exhibiting a level of complexity notably sur-
passing previous benchmarks. All tasks are based on project codebases along with documents and
database interface to simulate real-world text-to-SQL writing scenarios.

Unlike previous datasets, Spider 2.0’s agentic task setting does not rely on pre-prepared inputs
(question and database schema) or expected outputs (predicted SQL). Instead, it incorporates a real
project codebase and a database interface. This complexity extends beyond merely predicting an
SQL query; it involves navigating the project and dynamically interacting with complex databases
through SQL queries and command-line scripts (in Python or Shell). The task objective is to per-
form intricate data transformations within the database or to extract analytical insights from the data.
This task setting closely mirrors real-world enterprise SQL workflows, requiring the model to refer
to the codebase and documentation, generate multiple SQL queries, and dynamically interact with
the environment to complete complex tasks and derive the final result. To simplify performance
comparisons with previous text-to-SQL methods and benchmarks, and to support faster develop-
ment and evaluation, we also introduce Spider 2.0-lite, a self-contained dataset with preprocessed
database schema and documentation. This setting omits the codebase and restricts output to SQL
only, thus eliminating the need to predict final answers or transform the database. While Spider
2.0-lite is sourced from the same raw data as Spider 2.0, it is not easier than Spider 2.0 because
Spider 2.0-lite models have access to less information (e.g., execution feedback). We present Spi-
der 2.0-lite as a direct text-input-to-SQL-output challenge that is easier to work with using current
advanced text-to-SQL parsers, and Spider 2.0 as a real-world data workflow challenge that involves
interacting with diverse sources to perform data transformation and analyses.

Our evaluation on Spider 2.0 indicates significant room for improvement in deploying LLMs within
real-world enterprise text-to-SQL workflows. The best o1-preview based code agent framework
achieves a performance of only 15.1%, underscoring the significant deficiency in LLMs’ capability
to serve as proficient SQL experts (Tab. 2). As for Spider 2.0-lite setting, even the most advanced
text-to-SQL parser could successfully address only 9.3% of the questions, a stark contrast to the
execution accuracy of 91.2% on Spider 1.0 and 73.0% on BIRD, thereby highlighting the substantial
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challenges (§3.2). Our detailed analysis further identifies major obstacles in enterprise text-to-SQL,
including accurately linking schemas from extremely large databases, correctly handling different
SQL dialects, planning sequences of nested SQL queries to perform complex transformation and
analytical tasks, and effectively leveraging external documentations and understanding project-level
codebase. (§4.1 and §4.2). These challenges in Spider 2.0 represent crucial steps toward creat-
ing a benchmark that closely aligns with real-world scenarios. With Spider 2.0, we aim to enable
the development of a new generation of intelligent autonomous agents capable of data engineering
workflows in real-world enterprise settings.

2 BENCHMARK CONSTRUCTION

In this section, we introduce the task definition, general annotation pipeline, and dataset statistics
for Spider 2.0 and Spider 2.0-lite. For concrete examples, refer to App.B.

2.1 TASK DEFINITION
Ver 3.

        Text-to-SQL
        Parser

     LM Agent

Spider 2.0-lite

Spider 2.0

    DB Metadata

SQL Query

Self-contained

        Database

   Documents

Codebase

  Result

Question

Result

Question

        Text-to-SQL
        Parser

     LM Agent

Spider 2.0-lite

Spider 2.0

    DB Schema

SQL Query

Self-contained

        Database

   Documents

Codebase

Intermediate  
Result

Question

Final Result

Question

Ver 4. (10.02)

SQLs / 
Python

Exec 
feedback

SQLs/Python
Exec

Figure 2: We offer two settings: tradi-
tional text-input-to-SQL-output Spider
2.0-lite, and agentic Spider 2.0.

Fig. 2 illustrates the task definition of both Spider 2.0 and
Spider 2.0-lite settings.

Spider 2.0. Given a question Q, a database interface I,
and a codebase C (with project context, configuration, and
documentation, illustrated in Fig. 1), the task is to itera-
tively modify the code (SQL/Python) C based on observa-
tions Ok = execute(C, I,Q) until the final result A (tex-
t/table/database) is obtained. In other words, we use the
final observation Ok as an agent’s answer to the question,
i.e., A = Ok.

Spider 2.0-lite. In contrast to Spider 2.0, Spider 2.0-lite
is formulated as a self-contained task. Given database
schema D, a natural language question Q, and auxiliary
documentation E as inputs, the text-to-SQL parser f(·)
is required to output the corresponding SQL query S =
f(Q,D, E | θ), where θ is the parameters of the parser.

2.2 ANNOTATION PIPELINE

Eight authors majoring in computer science, all highly proficient in SQL, carry out the data annota-
tion process. The annotation pipelines consist of the following six steps:

1) Database and SQL collection. We collect various databases from cloud data warehouses, in-
cluding BigQuery public data, Snowflake Marketplace data, and other platforms, to ensure that they
meet specific criteria: each database must contain more than 200 columns or have a nested schema
structure. After filtering, we select 149 BigQuery, 12 Snowflake, 30 SQLite, 40 DuckDB, 10 Post-
greSQL, and 5 ClickHouse databases. From the corresponding tutorials and forums, we gather
1, 021 complex SQL queries, as well as 157 data transformation projects sourced from Fivetran and
DBT (see App.B.2). To meet our criteria, the SQL queries must contain more than 50 tokens (to-
kenized by whitespace; for reference, the average token count of BIRD (Li et al., 2024b) is 30.9).
Furthermore, queries must originate from real projects or tutorials, not from synthetic examples or
corner cases. Ultimately, we retain 528 high-quality SQL queries and 67 DBT projects.

2) SQL rewrite to prevent data leakage. To avoid contamination and ensure the credibility of
Spider 2.0’s evaluation, annotators are required to rewrite each SQL and verify that they are bug-
free. The rewrites are performed at two levels of increasing complexity: the surface and semantic
levels, as detailed in Tab. 1. 84.2% of the examples underwent surface-level rewriting, while 42%
experienced semantic-level rewriting. Annotators must ensure that the rewritten SQL executes suc-
cessfully, completes in an acceptable time, and returns non-empty results. 85.98% of these SQL
queries utilize advanced functions in various dialects (App.B.7.1), while 11.26% require additional
DBT tools, posing challenges due to the need to integrate the project context.

3) Codebase and context setup. For each complex SQL query in Spider 2.0-lite, we collect the
external reference documents necessary to complete the task. Since the tasks span multiple database
types, we gather documentation on SQL dialects and external functions, as shown in Tab. 17. Ad-
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Table 1: The rewrite categories are as follows: “Surface” rewrites adjust the parameters and the
answer format, while “Semantic” rewrites expand the question’s meaning. Each table reference in
Example column represents the details of rewrite examples for the corresponding type.

Rewrite Categories Example

Surface
Answer format Tab. 12, replace the one channel with the channel ranking by sessions.
Condition parameters Tab. 13, more complex filter condition: citibike is faster than a taxi.
Advanced calculation Tab. 14, calculate originality score based on selected publications.

Semantic
Advanced requirements Tab. 15, change page view order to page conversion rate.
Merge related SQLs Tab. 16, merge geography-related and weather-related queries.
SQL codebase files App.B.2, change SQL and YML files in the original project.

ditionally, for Spider 2.0, we preserve the original codebase of the SQL-related project. For Spider
2.0, besides collecting reference documents, annotators also gather resources such as codebases,
database interfaces to establish the context for each task (Fig. 1). Since some complex data transfor-
mation intentions may not be fully captured by a natural language question, annotators provide ad-
ditional context, including data model descriptions (App.B.2) or predefined answer files (App.B.5),
to maintain clarity while addressing potential ambiguities.

4) Natural language task instructions annotation. Annotators are required to write questions
based on the SQLs and context gathered in Step 3, crafting two versions for Spider 2.0 and Spider
2.0-lite. The instructions are designed to balance both naturalness and unambiguity. Due to the dif-
ferences between Spider 2.0 and Spider 2.0-lite, Spider 2.0 demonstrates greater naturalness in its
questions because it provides contexts and predefined files to guide the answers, while Spider 2.0-
lite prioritizes unambiguity, ensuring clearer and more straightforward specifications (see App.B.6
for differences). Annotators manually write the instructions, making them natural by avoiding blunt
descriptions, removing ambiguity in the expected results, and ensuring that all SQL conditions are
clearly mentioned. Also, the DBT-project tasks (see Fig. 1 and App.B.2), which are realistic data
transformation coding scenarios, are exclusively used in Spider 2.0. Annotators craft task instruc-
tions based on the provided context. After the initial annotation, they verify the semantic equivalence
between the SQL queries and instructions, paraphrasing for clarity with the help of LLMs.

5) Execution-based focused evaluation. In this step, annotators are required to obtain results
from the databases programmatically and write evaluation scripts (details in App.A). The evalua-
tion scripts can process the results in the form of strings, tables, and database files. It is important to
note that in table-based evaluations, predicted results may include numerous columns, which might
not exactly match the gold standard answers. This discrepancy often arises because some ques-
tions do not specify the columns that should be returned. To mitigate this, the evaluation scripts are
specifically focused on the essential components of the answers, ignoring non-essential columns and
emphasizing the core elements outlined in the instructions. This method facilitates targeted assess-
ments of key columns for each task, thus significantly reducing the occurrence of false negatives.
For Spider 2.0-lite, the setting requires that the output must be SQL, so the evaluation will compare
the execution results of the SQL queries using the table-based assessment method.

6) Quality control. To ensure the quality of our benchmark, each instruction, the gold SQL query,
and evaluation script are reviewed by at least three annotators. We require the annotators to re-
peatedly review steps 3), 4), and 5) to ensure the correctness, naturalness, and unambiguity of the
annotations. Consequently, 45% of the examples have errors identified by the first validators. After
discussions and corrections, following the second round of iteration with the second validators, only
5% of the examples contain errors. Then we correct all errors and refine all annotations, and ulti-
mately, all examples are deemed fully annotated. Additionally, we perform a “red team” assessment
of our automatic evaluation by providing a set of false results to determine if they would be correctly
classified as false, along with various correctly formatted results to verify their classification as true.

2.3 DATASET STATISTICS

We present a detailed statistical analysis of the features of Spider 2.0 and Spider 2.0-lite, comparing
them with multiple previous datasets in Tab. 2, our datasets demonstrate strong complexity and
realism in aspects such as databases, SQLs, and task scenarios.

Diverse database systems and SQL dialects. As shown in Fig. 3 and Tab. 3, our benchmarks
feature a diverse array of database systems, including cloud data warehouses like BigQuery and
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Table 2: Statistical comparison among Spider 2.0, Spider 2.0-lite, and other text-to-SQL bench-
marks. Tok. and Func. refer to tokens and functions, respectively. * denotes the statistics from dev
set due to the inaccessibility of test set. For more statistics, refer to App.B.8.

Dataset # Test
Examples

# Test
DB

# Col
/ DB

# Tok.
/ SQL

# Func.
/ SQL

External
Knowledge

SQL
Dialect

Project
Level

WikiSQL (Zhong et al., 2017) 15,878 5,230 6.3 12.2 0.0
Spider 1.0 (Yu et al., 2018) 2,147 40 27.1 18.5 0.0*
KaggleDBQA (Lee et al., 2021) 272 8 23.4 13.8 0.0
SEDE (Hazoom et al., 2021) 857 1 212.0 46.9 1.4
BIRD (Li et al., 2024b) 1,789 15 54.2 30.9 0.4*

Spider 2.0-lite 528 191 755.4 144.5 6.5
Spider 2.0 595 246 710.1 148.3 6.8

Snowflake, locally hosted databases such as Postgres and ClickHouse, and lightweight sys-
tems like SQLite and DuckDB. This diversity distinguishes our benchmarks from previous work
by encompassing various SQL dialects. Notably, 85.98% of the examples require the use of spe-
cialized functions from these dialects, with an average of 6.8 special functions utilized in each
ground-truth SQL.

BigQuery

60.5%
Clickhouse

Postgres

DuckDB
16.3%

SQLite
Snowflake

12.2%4.9%
4.1%

2.0%

Figure 3: Data distribution on dif-
ferent database systems.

Table 3: Statistics of Spider 2.0
task features.

Statistics Number
(% of Total)

Total Levels (#tokens) 595 (100%)
- Easy (#tokens < 80) 166 (27.90%)
- Medium (80 ≤ #tokens < 160) 259 (43.53%)
- Hard (#tokens ≥ 160) 170 (28.57%)

- With Cloud Database 383 (64.36%)
- With Local Database 212 (35.63%)

- With Project-level (DBT) 67 (11.26%)
- With Documentation 57 (9.58%)
- With Functions 454 (85.98%)

- With Partition Tables 44 (7.39%)
- With Multiple Schemas 102 (27.26%)
- With Nested Schemas 103 (13.44%)
- With Dynamic Database 54 (9.94%)

- With String/Number Answer 150 (25.21%)
- With Table Answer 378 (63.53%)
- With Database Answer 67 (11.26%)

Real and complex database schema. As shown in Tab. 2, the
databases in Spider 2.0 are equipped with large-scale schemas
comprising extensive tables and columns, effectively mirror-
ing real-world enterprise environments. As shown in Tab. 3,
these databases are characterized by complex schema struc-
tures (e.g., multiple and nested schemas, partitioned tables; see
Fig. 13 and Fig. 14), and dynamic tables that are updated daily.
Additionally, the data encompasses a broad spectrum of com-
plex types (Fig. 18), extensive volumes, and diverse scopes
(Fig. 17), rendering it more diverse than previous datasets.

Challenging tasks across the data engineering pipeline. The
examples in our benchmarks are collected from real tutorials
and forums, covering a wide range of issues encountered in
data pipelines, including data wrangling, data transformation,
and data analysis (see App.B.1 for examples). The difficulty
of these questions significantly exceeds that of previous SQL-
related benchmarks, as the SQL queries in Spider 2.0 contain
significantly more columns, tokens, and functions per query
than those in prior work (see Tab. 2 and Fig. 20 for examples).

Real projects scenarios with codebases and documents. As
demonstrated in Tab. 2 and 3, tasks in both datasets require ac-
cess to documentation, like external knowledge (App.B.4) and
SQL dialect (App.B.7), necessitating a deep understanding of
these resources. Compared to other prior works, for each task
in Spider 2.0, we provide a codebase context to simulate a real
workflow (App.B.5). More notably, some tasks introduce in-
novations such as project-level data transformation workflows
built on DBT (App.B.2), a widely used tool for managing data
transformations and analytics engineering. Successfully addressing these tasks requires navigat-
ing complex project codebases and databases, comprehending documentation, processing intricate
contexts, and generating diverse queries through multi-step execution and reasoning.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Evaluation metrics. For Spider 2.0, we use the Success Rate (SR) metric, which measures the
proportion of task instances successfully completed. For Spider 2.0-lite, the output for each task
must be an SQL, we use the widely used metric Execution Accuracy (EX)(Yu et al., 2018; Li
et al., 2024b). We employ the execution-based focused evaluation (App.A) to determine the success
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of each result for Spider 2.0 and assess the accuracy of SQL execution results for Spider 2.0-lite.
The evaluation scripts are designed to accept output in the form of strings, tables, or database. For
each example, an evaluation script is run for each example, producing a score of either 0 or 1. It
is worth noting that in table-based evaluations, predicted results may contain numerous columns,
leading to results that are not exactly the same as the gold answer. This occurs because, for some
examples, questions do not explicitly specify which columns to return. The evaluation scripts are
specifically focused on the essential components of the answers, disregarding irrelevant columns
and concentrating on the core elements specified in the instructions.

Difficulty level. We tokenize the gold SQL queries based on whitespace and classify their difficulty
according to the number of tokens: < 80 tokens as Easy, 80− 159 as Medium, and ≥ 160 as Hard1.

LLMs. We experiment with state-of-the-art LLMs, including open-source representatives such as
DeepseekCoder-V2.5 (Zhu et al., 2024), Qwen2.5-72B-Instruct (Team, 2024) and Llama-3.1-405B
(Meta AI, 2024), and closed-source ones including Gemini-Pro-1.5 (Reid et al., 2024), Claude-
3.5-Sonnet (Anthropic, 2024) and GPT (OpenAI, 2023) families (GPT-4o, GPT-4 and o1-preview).
Follow (Yang et al., 2024a; Chen et al., 2024), we use a temperature of 0.0 and truncate from the
beginning of the input if still exceeding the max tokens limit required by the models.

Code agent frameworks for Spider 2.0. We utilize several state-of-the-art frameworks, which have
demonstrated excellent performance on other benchmarks. These include Reflexion (Shinn et al.,
2023), CodeR (Chen et al., 2024), AutoEval (Pan et al., 2024). Inspired by React (Yao et al., 2022)
and Intercode (Yang et al., 2023), we develop an agent framework called Spider-Agent, which is
primarily focused on database-related coding tasks and projects. The framework allows for multi-
turn interactions with the database via command-line interfaces until the final answer is obtained.
The implementation details of Spider-Agent are shown in App.C.1.

Text-to-SQL methods for Spider 2.0-lite. We evaluate several state-of-the-art and widely recog-
nized text-to-SQL methods on Spider 2.0-lite, including approaches based on prompting LLMs such
as DIN-SQL (Pourreza & Rafiei, 2024), DAIL-SQL (Gao et al., 2024) and CHESS (Talaei et al.,
2024), alongside SFT CodeS (Li et al., 2024a), which fine-tuned open-source models on extensive
text-to-SQL corpora. DAIL-SQL and CHESS achieve the best performance among all accessible
methods on the Spider 1.0 and BIRD benchmark, respectively. During implementation, we opti-
mize the prompt organizations across all methods to better align with Spider 2.0-lite, incorporating
sampled cell values, external knowledge, and SQL dialect specifications (see Fig. 23).

3.2 EVALUATION RESULTS

Table 4: Success rate (SR) of different frameworks and models on Spider 2.0, grouped by difficulty
level. The costs under different settings are shown in Tab.19.

Framework Model SR (↑)
Easy Medium Hard Overall

AutoEval GPT-4o 12.05% 6.95% 1.18% 6.72%

CodeR GPT-4o 13.85% 7.72% 1.76% 7.73%

Reflexion GPT-4o 16.87% 7.72% 1.18% 8.40%

Spider-Agent o1-Preview 25.30% 15.44% 4.71% 15.12%
Claude-3.5-Sonnet 24.09% 8.10% 2.94% 11.09%

GPT-4 22.89% 8.49% 2.35% 10.58%
GPT-4o 18.07% 9.65% 3.53% 10.25%

Qwen2.5-72B 20.48% 8.11% 2.35% 9.91%
Gemini-Pro-1.5 10.84% 7.33% 1.17% 6.55%
DeepSeek-V2.5 12.65% 5.02% 1.76% 6.21%
Llama-3.1-405B 10.24% 3.86% 0.59% 5.42%

Existing LLMs are still far from being expert on real-world text-to-SQL workflow tasks. The
o1-preview model demonstrates the best performance, with a maximum success rate of 15.12%,

1While there are various ways to measure difficulty, we use SQL length here as the most common and
significant metric for experimental reference.
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Table 5: Execution Accuracy (EX) for baseline methods on three text-to-SQL datasets: Spider 1.0,
BIRD, and Spider 2.0-lite.

Method
EX (↑)

Spider 1.0 BIRD
Spider 2.0-lite

Easy Medium Hard Overall

DIN-SQL + GPT-4o 85.3% 55.9% 16.45% 5.64% 3.29% 7.32%

DAIL-SQL + GPT-4o 86.6% 57.4% 20.73% 6.16% 4.40% 9.29%
CHESS + GPT-4o 87.2% 66.7% 18.10% 5.88% 4.75% 8.36%

SFT CodeS-15B 85.4% 59.3% 6.02% 0.00% 1.12% 2.00%

leaving ample room for improvement. o1-preview performs similarly to Claude-3.5-connect and
GPT-4 on Easy cases, but significantly better on Medium cases, demonstrating its strong reasoning
capabilities. This discrepancy highlights the broad range of difficulties in Spider 2.0 and under-
scores its complexity. Other advanced LLMs, like GPT-4 and Claude-3.5-Sonnet, performed worse.
Surprisingly, the open-source LLM Qwen-2.5-72B showed excellent performance at 9.91%, com-
parable to GPT-4o, and far better than other open-source LLMs.

Existing code agent frameworks struggle with solving database-related coding tasks. Tab. 4
shows that despite using the powerful GPT-4o, advanced code agent frameworks like CodeR achieve
only a 7.73% success rate, while on SWE-Bench (Jimenez et al., 2023), the success rate is 28.33%.
Currently, no code agents are specifically designed for database-related tasks. The challenge is that
they must not only explore the codebase and documentation, but also navigate complex databases
and generate SQL queries that are far more intricate than typical code. This demands a high level of
code grounding capability. Our proposed baseline Spider-Agent, with actions tailored for Spider 2.0
tasks, currently demonstrates the highest performance. It provides a crucial baseline for Spider 2.0,
facilitating the evaluation of various LLMs, underscoring the potential for significant advancements
and inspiring methodology enhancements for future research.

Current LLM-based methods exhibit limited capability in addressing Spider 2.0-lite. Tab. 5
illustrates that Spider 2.0-lite presents a significant challenge. The highest performing method,
DAIL-SQL + GPT-4o, achieves an EX of only 9.29%, which is markedly lower compared to its
score of 86.6% on Spider 1.0 and 57.4% on BIRD datasets. With efficiently filtering the minimal
sufficient schema, CHESS + GPT-4o is able to tackle more instances with Hard level, which are
often overwhelmed by the extensive candidate schemas. Despite being extensively fine-tuned, SFT
CodeS-15B is far from solving Spider 2.0-lite, with an EX score of only 2.00%, which further reveals
the significant complexity gap between Spider 2.0-lite and the current text-to-SQL corpus.

Figure 4: pass@n results.

Sampling more candidate SQL queries achieves a notable im-
provement on Spider 2.0-lite. We employ the pass@n metric (Ku-
lal et al., 2019), where n predicted SQL queries are generated per
example, with the hope of any one in them is correct. As shown
in Fig. 4, we use DAIL-SQL + GPT-4o, with the temperature of
1.0 (Chen et al., 2021) to generate multiple SQLs on Spider 2.0-
lite. The results show that the improvement in accuracy is notice-
able as n increases, but later becomes marginal. This highlights
the inherent challenges of Spider 2.0, along with the rigorous and
high-quality task annotations provided.

4 ANALYSIS

4.1 ANALYSIS OF DIFFERENT TASK TYPES
Table 6: Performance on
DBT Project.

Task Subset % of Total SR (↑)

w/ DBT Project 11.26% 10.45%
w/o DBT Project 88.74% 15.81%

LLM-agent frameworks struggle to address project-level tasks.
As shown in Tab. 6, the LM agent’s performance on DBT-based
project-level tasks is poor, solving only 10.45% of tasks with just
7 examples correct. This underscores the challenges in there tasks,
which can be attributed to: (1) Data transformation projects often require multiple SQL queries to
complete various models, necessitating a comprehensive understanding of the project. (2) These
tasks involve complex context usage, demanding strong repository exploratory capabilities from the
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models. (3) Data is stored in databases, requiring the agent to transform data while exploring existing
data, alongside SQL coding. Fig. 27 illustrates the action process of o1-preview successfully solving
a task defined in App.B.2, while Fig. 28 is a failure case due to the failure to explore the information
in the “mrr.md” file to solve a monthly recurring revenue classification.

The performance drops when external documents are required.

Table 7: Performance of the
model on external document
tasks in non-dbt projects.

Task Subset % of Total SR (↑)

w/ External Doc 9.58% 12.28%
w/o External Doc 79.16% 16.14%

From Tab. 7, we observe that when tasks involve external docu-
ments, the model performs poorly, correctly answering only 7 ex-
amples out of full dataset that accounts for just 9.58%. Through
error analysis, we find that the model is not incapable of ground-
ing complex documents information. These models typically have
the correct problem-solving strategies and effectively explore the
database, but fails at the most crucial step: grounding the com-
plex requirements from the documents into SQLs. As the document
shown in Fig. 15, the gold SQL is shown in Tab. 15. The failure case shows that the model cannot
combine complex document with schema information and convert it into SQL query (Fig. 29).

LLM-agent frameworks struggle interpreting databases with nested schema.

Table 8: Model performance
on databases with nested
columns in non-dbt projects.

Task Subset % of Total SR (↑)

w/ Nested Column 17.31% 11.18%
w/o Nested Columns 71.43% 20.13%

As shown in Tab. 8, the model often performs poorly when han-
dling columns with nested types. Nested columns are a common
scenario in industrial-grade databases (see Fig. 13), where data is
stored in array, dict formats within a single column. This poses
significant challenges for LLMs in understanding the schema. As
shown in Fig. 30, LLMs encounter schema linking errors due to
an incomplete understanding of the information contained within
nested fields. Most databases with nested types face the issue that
models find it difficult to fully grasp the function of each nested column’s internal information,
while humans can comprehend the database schema through multi-step reasoning and iterative un-
derstanding.

Figure 5: The effect of differ-
ent column numbers (or input
DB size) on performances.

Figure 6: Statistics of errors.
For detailed descriptions and
examples of each error cate-
gory, see App.C.3.

The performance declines as the schema size increases. In
Fig. 5, we explore the impact of the total number of columns in
the database on performance. The experimental results align with
intuition in Fig. 5. As the number of columns or required tables in-
creases beyond a certain scale, the performance drops sharply, ap-
proaching almost 1.0% successful rate. This indicates that current
LLMs still face challenges when handling extremely long schemas.
The model’s ability to understand long schemas remains a key fac-
tor limiting its performance.

4.2 ERROR ANALYSIS OF SQL GENERATION

We conduct a detailed analysis of the errors encountered by both
code agent frameworks and text-to-SQL parsing methods, as illus-
trated in Fig. 6. Representative errors along with their statistics and
causal analysis are as follows.

Erroneous data analysis (35.5%). Compare to the previous
benchmarks, Spider 2.0 and Spider 2.0-lite exhibit significantly
complex data analysis demands that challenge the models’ capa-
bilities: 1) Dialect function usage (10.3%). This includes pro-
cessing temporal (e.g., DATE TRUNC) or geographic data (e.g.,
ST DISTANCE). These functions require a nuanced understanding,
which the models often fail to exhibit. 2) Advanced data calcula-
tion (7.5%). Model struggle with tasks like grouping samples to
analyze trends within groups (using NTILE), or applying formu-
las for statistical values (e.g., CORR for Pearson correlation coef-
ficients; STDDEV for standard deviation). 3) Intricate query plan-
ning (17.7%). Gold SQLs typically involve multiple nested queries,
intermediate result processing through common table expressions
(CTEs), or merging results from various sub-queries via set oper-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ations. However, models often inadequately handle these complexities. Refer to Fig. 7 for case
studies on erroneous data processing.

Wrong schema linking (27.6%). This category includes errors with wrong tables and columns. For
column linking errors (16.6%), the average number of columns per database in Spider 2.0-lite far
exceeds those in other benchmarks (over 755 compared to approximately 54 in BIRD), making ac-
curate column linking extremely challenging. Regarding table linking (10.1%), although examples
from BigQuery support advanced syntax features like (TABLE SUFFIX) and wildcard expressions,
the models show limited flexibility in leveraging these features, even in few-shot setting.

JOIN errors (8.3%). While foreign keys represent known schema relationships essential for valid
SQL JOIN operations, databases in BigQuery often lack explicit foreign key. This omission forces
models to infer potential keys based on column names and descriptions, leading to errors.

Table 9: EX for baseline methods on Spider 2.0-lite under
oracle setting. To seek the highest possible performance,
we also employ the latest o1-preview as the base LLM.

Method EX (↑)

w/o both w.Ref.Plan w.Oracle Func

DAIL-SQL + GPT-4o 9.29% 13.56% 9.90%

DAIL-SQL + o1-preview 14.74% 18.87% 15.59%

Table 10: EX for DAIL-SQL on
Spider 2.0-lite under few-shot set-
ting with manually selected demon-
strations.

Method EX (↑)

0-shot 3-shot 9-shot

DAIL-SQL + GPT-4o 9.29% 9.40% 9.66%

Question:

Gold SQL:

Predicted SQL:

Predicted Result:

Gold Result:

Can you group users by the week they first used the app starting from July 2, 2018, and identify the group that has the highest 

retention rate in the fourth week? Each group should be named by the Monday date of their start week. Please provide the 

answer in the format 'YYYY-MM-DD'.

Question:

Gold SQL:

Predicted SQL:

SELECT
  SUM(trips) AS total_trips,
  FORMAT(‘%3.2f’, 

SUM(total_fare)/SUM(trips)
) AS average_fare

FROM ( SELECT
    NTILE(10) OVER 

(ORDER BY duration_in_minutes) 
AS quantile,

    COUNT(1) AS trips,
    SUM(fare) AS total_fare
  FROM ( SELECT
      ROUND(trip_seconds/60) 

AS duration_in_minutes,
      fare
    FROM Chicago.taxi_trips
    WHERE
      ROUND(trip_seconds/60) 

BETWEEN 1 AND 50
    ) AS initial_query
  GROUP BY duration_in_minutes )
GROUP BY quantile
ORDER BY quantile

For taxi trips with a duration rounded to the nearest minute, and between 

1 and 50 minutes, if the trip durations are divided into 10 quantiles, 

what are the total number of trips and the average fare for each quantile?

SELECT 
quantile, 
COUNT(*) AS total_trips, 
AVG(fare) AS average_fare

FROM ( SELECT 
trip_seconds, fare, 
NTILE(10) OVER 
(ORDER BY trip_seconds) 
AS quantile

FROM Chicago.taxi_trips
WHERE trip_seconds
BETWEEN 60 AND 3000

) AS subquery
GROUP BY quantile 
ORDER BY quantile

Predicted Result:

Gold Result:

(a) (b)

SELECT 
DATE_TRUNC(
DATE(user_first_touch_timestamp), WEEK(MONDAY)

) AS week_cohort,
COUNT(DISTINCT user_pseudo_id) AS active_users_next_four_weeks

FROM `firebase-public-project...events_*`
WHERE PARSE_DATE('%Y%m%d', event_date) >= DATE('2018-07-02')
AND DATE_DIFF(
PARSE_DATE('%Y%m%d', event_date), 
DATE(user_first_touch_timestamp), DAY
) BETWEEN 21 AND 27

GROUP BY week_cohort
ORDER BY active_users_next_four_weeks
DESC LIMIT 1;

1001

-- Identify new users on their first session start
WITH date_table AS (
 SELECT DISTINCT 

PARSE_DATE('%Y%m%d', `event_date`) 
AS event_date, ...
CASE WHEN DATE_DIFF(
event_date, 
DATE(user_first_touch_timestamp), DAY) = 0 

  THEN 1 ELSE 0 
  END AS is_new_user
 FROM `firebase-public-project...events_*` 
 WHERE event_date >= DATE(‘2018-07-02’) AND ... ),
-- Identify distinct new users and 
their first session start dates
new_user_list AS (
 SELECT DISTINCT user_pseudo_id, ...
 FROM date_table WHERE is_new_user = 1 ),
-- Calculate days since the start for each user
days_since_start_table AS (
 SELECT DISTINCT 
  DATE_DIFF(dt.event_date, ...) 

AS days_since_start, ...
 FROM date_table dt
 JOIN new_user_list nu ON ... ),

-- Aggregate users into weekly cohorts 
and calculate weeks since start
weeks_retention AS (
  SELECT 

DATE_TRUNC(date_cohort, WEEK(MONDAY)) AS week_cohort,
   CEIL(days_since_start / 7) AS weeks_since_start
 FROM days_since_start_table ),
-- Count the number of retained users for each week
retention_counts AS (
 SELECT week_cohort, weeks_since_start,
 COUNT(DISTINCT user_pseudo_id) AS retained_users
 FROM weeks_retention
 WHERE week_cohort >= DATE('2018-07-02')
 GROUP BY ... )
-- Calculate retention percentage for week 4
SELECT initial.week_cohort
FROM retention_counts AS initial
LEFT JOIN retention_counts AS four_week 
ON initial.week_cohort = four_week.week_cohort 
AND four_week.weeks_since_start = 4

WHERE initial.weeks_since_start = 0
ORDER BY 
four_week.retained_users / initial.retained_users
DESC LIMIT 1;

Figure 7: Case study of two representative incorrect SQL predictions due to erroneous data analysis.
(a): An example of incorrect data calculation, where quantiles were incorrectly divided based on
the number of trips, rather than on the trip duration as required. (b): An example of incorrect
planning, where the predicted SQL incorrectly sorted data by the number of users, rather than by
the required retention ratio. The prerequisite for achieving this is to properly plan a sequence of
CTEs. Additional examples of error cases across all categories are available in Fig. 24 and Fig. 25.

4.3 ANALYSIS OF DIFFERENT EXPERIMENTAL SETTINGS

Reference plan can significantly improve SQL generation performance. Annotators are required
to provide detailed annotations for task instructions. While the original instructions are brief and
conversational, the reference plan offers a comprehensive, step-by-step explanation of how to write
each SQL. This approach decouples the exploration of the database from the process of generating
text-to-SQL. An example is provided in App.B.1. As shown in Tab. 9, incorporating a reference
plan resulted in an approximate 4% improvement in the EX of DAIL-SQL. By harnessing the latest
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o1-preview, which excels at code generation, 18.4% of the instances can be correctly solved. This
suggests that some challenging instances can’t be solved by directly generating the final SQL but
benefit from a step-by-step approach using multiple CTE clauses.

Providing oracle functions leads to a slight performance improvement. Considering that Spider
2.0 and Spider 2.0-lite involve SQL dialects from various database systems, we provide syntax and
function documentation for each system to prevent the methods from suffering due to lack of syn-
tax knowledge. For each example, we manually include the relevant function documentation that
may be required, eliminating the need for a retrieval method and ensuring that the necessary syntax
knowledge is readily accessible. As shown in Tab. 9, providing oracle SQL function documenta-
tion results in only a slight improvement in model performance. This suggests that, to a certain
extent, models are capable of selecting appropriate functions and understanding their basic usage
and syntax. However, the critical challenge lies in accurately utilizing these functions to reflect user
intentions, as illustrated in Fig. 7(a).

Few-shot prompting has little impact on performance. Spider 2.0-lite is not divided into train and
dev sets, we manually select 9 representative examples with distinct characteristics (encompassing
multiple CTE or nested queries, or requiring intricate data processing) to serve as few-shot examples.
Unexpectedly, few-shot in-context learning shows only marginal improvements in performance (see
Tab. 10). This may be due to the gap between the simplistic text-to-SQL pre-training data used with
LLMs and the complexity of the few-shot examples. Additionally, extensive schema prompts may
hinder the model’s ability to effectively assimilate information in the few-shot examples.

5 RELATED WORK
Code generation and text-to-SQL benchmark. As model capabilities advance, code generation
benchmarks have become more complex and generalized. Many benchmarks (e.g., SQL-Spider (Yu
et al., 2018), Bash-NL2Bash (Lin et al., 2018), Python-HumanEval (Chen et al., 2021)) treat code
generation as seq2seq tasks. DS-1000 (Lai et al., 2023) and Arcade (Yin et al., 2023) define code
generation tasks for data science. MLAgentBench (Huang et al., 2023) and Intercode (Yang et al.,
2024b) focus on interactive environments, while SWE-Bench (Jimenez et al., 2023) emphasizes
repository-level coding tasks. Particularly for the text-to-SQL task, WikiSQL (Zhong et al., 2017)
is the first large-scale dataset for evaluating text-to-SQL methods. KaggleDBQA (Lee et al., 2021)
includes database documentation, while SEDE (Hazoom et al., 2021) and MIMICSQL (Wang et al.,
2020) feature more sophisticated SQL queries within specific domains. BIRD (Li et al., 2024b)
focuses on SQL execution efficiency and requires an understanding of external knowledge. How-
ever, existing text-to-SQL benchmarks primarily target lightweight local databases, much smaller
in schema scale and data volume than cluster-hosted industrial databases, and fail to capture the
agentic nature of SQL programming using various dialects in real scenarios. Spider 2.0 bridges the
gap between research and enterprise-level industrial text-to-SQL workflows.

Code agent framework and text-to-SQL methods. The intersection of generative code models
and interactive problem-solving has spurred significant advancements in both agent-based frame-
works and text-to-SQL methodologies. Recent efforts aim to enhance the reasoning capabilities of
language models, as evidenced by a surge in agent methods designed for code generation tasks (Yao
et al., 2022; Zhang et al., 2022; Chen et al., 2023; Wang et al., 2023b; Shinn et al., 2024; Zhang et al.,
2024; Xia et al., 2024). Several works have designed special actions to standardize agent operations
(Wang et al., 2024; Yang et al., 2024a). For methods specifically designed for text-to-SQL, sev-
eral fine-tuning methods (Li et al., 2024a) and LLM-prompting methods (Dong et al., 2023; Wang
et al., 2023a; Zhang et al., 2023; Talaei et al., 2024; Pourreza & Rafiei, 2024; Gao et al., 2024)
have achieved strong performance on previous benchmarks. We propose Spider-Agent, a code agent
framework specifically designed for database-related tasks, showcasing strong performance in this
domain. For Spider 2.0-lite, we also adapt several text-to-SQL methods to suit our benchmark.

6 CONCLUSION
We propose Spider 2.0, a benchmark for real-world enterprise-level text-to-SQL workflow tasks.
It encompasses diverse database systems with various SQL dialects, large and complex database
schemas, and challenging tasks across the data engineering pipeline, all set within real project
scenarios including codebases and documentation. Despite being the most advanced LLMs (o1-
preview), they still perform poorly on Spider 2.0, achieving a success rate of only 15.1%, which
underscores its status as a highly challenging benchmark. Spider 2.0 presents a novel challenge for
text-to-SQL research, providing a direction towards more realistic and intelligent solutions.
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CODE OF ETHICS AND ETHICS STATEMENT

In the process of collecting databases and SQL queries for Spider 2.0, we ensure that all sources
come from public data, used solely for academic research and not for commercial purposes, in full
compliance with the copyright rights granted by the sources. We guarantee that none of the databases
contain harmful information to society, such as racial discrimination, violence, or any private data.
Our work aims to contribute to the welfare of society and humanity, and any researcher is free to use
our dataset for research purposes. All the data and experiments presented in our paper adhere to the
highest standards of scientific excellence, ensuring the authenticity and accuracy of the data.

REPRODUCIBILITY

Our datasets and annotation process are introduced in §2.2, and the experimental settings are de-
scribed in §3.1. Specific implementation details can be found in App.C.1 and App.C.2. To facilitate
the reproduction of our experiments, the code is provided in https://anonymous.4open.
science/r/Spider2-F78F.
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A SPIDER 2.0 EVALUATION SCRIPTS

In this section, we present the detailed definition and discussion of evaluation metrics for Spider
2.0-lite and Spider 2.0.

Spider 2.0-lite. The setting of Spider 2.0-lite resembles that of a traditional text-to-SQL task in
which text-to-SQL parsers are required to generate SQL queries. Therefore, Execution Accu-
racy(EX) is used as the primary evaluation metric. Slightly different from existing works, we
employ an execution-based focused evaluation, which measures whether all columns in the gold
value are present in the output of the predicted SQL query. This is defined as follows:

EX =

∑N
n=1 1(v

n, v̂n)

N
, (1)

where 1(v, v̂) =

{
1, if vi ∈ v̂,∀vi ∈ v

0, if vi /∈ v̂,∃vi ∈ v
, (2)

where vi represents the i-th column of data frame v, vn and v̂n denote execution results of the gold
SQL and predicted SQL for the n-th instance in the evaluation set, respectively. Empirically, this
evaluation method significantly reduces the false negative rate without increasing the number of false
positives. Given that the ground-truth values result from extensive data wrangling, transformation,
and analysis, it is difficult for models to manipulate or exploit the system.

Spider 2.0. We use the Success rate (SR), which measures the proportion of task instances suc-
cessfully resolved. Human-written evaluation scripts are used to determine whether an example is
resolved. For each example, we provide string-based, table-based, and database-based evaluation
functions, depending on the type of answer output, as shown in Tab. 11.

Examples. Maintaining naturalness and unambiguity is often a conflicting challenge. To ad-
dress this, we provide an example to illustrate the important parameters “condition cols” and “ig-
nore order”. Achieving a balance between these two aspects is quite challenging, which is why we
incorporate this mechanism into our evaluation scripts.

Given a data frame v with a set of column vectors {vi}, each representing the cell values for the
i-th column, a prediction v̂ is considered equivalent with v if and only if for any vi ∈ v, vi ∈ v̂.
Therefore, at such times, we only check whether a specific column appears in it. Intuitively, if all
columns in the reference table appear in the result table, the result is considered correct.

For example, as illustrated in Fig. 8, the question does not explicitly specify which columns are
required in our response. Consider the following question: “The company management has re-
quested a detailed report on the year-to-date performance of the Magnificent 7 stocks.”. We need
to carefully analyze the task requirements and only check if the following columns in the refer-
ence answer—“Ticker”, “Change YTD”—appear in the predicted answer. This meets the semantic
requirements of the abstract instruction. Empirically, we find our evaluation metric is reliable in
identifying solutions with alternative output, with a relatively low false-negative rate.

The company management has requested a detailed report on 
the year-to-date performance of the Magnificent 7 stocks.

Task

Agent get results

Score = 1

Gold Answer

Figure 8: An example of evaluation scripts for table-based evaluation: in this example, the
condition cols is {0, 5}, and the ignore order is true. As long as these two columns
are predicted correctly, the example can be considered solved.
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Table 11: The evaluation scripts for Spider 2.0 are tailored to the specific format of the model’s
output. Each script is optimized to handle various output types, ensuring precise and contextually
appropriate evaluation.

Output Type Description Parameters
String
w/o number

If the answer is found
in the string, it is
given a score of 1;
otherwise, it receives
a score of 0.

pred (str): The string in which to search for substrings.
gold (List of str): A list of strings to check within the
predicted string.
conj (str): The conjunction used for matching (‘and’ or
‘or’). Default is ‘or’.
exclude (List of Str): Strings that must not be present in
the answer.

String
w. number

For output strings
containing numbers,
the script captures
these numbers and
performs num-
ber matching for
scoring using the
number match
function.

pred (str): The string in which to search for substrings.
gold (List[str|float]): A list of strings or numbers to
check within the predicted string.
percentage (bool): Default is false. If the gold answer
is related to percentages, set this to true for more robust
evaluation.
precision (int): The number of decimal places to con-
sider. Defaults to 4.
conj (str): The conjunction used for matching (‘and’ or
‘or’). Default is ‘or’, and it’s typically ‘or’.

Table If the answer is a
CSV file or a table in
string format, table-
level evaluation is
performed.

result (str): Path to the CSV file or result string.
gold (str | List[str]): Path(s) to the gold file(s), exclud-
ing the root directory. Multiple potential gold answers
are supported.
condition cols (List[int] | List[List[int]]): List of col-
umn indices to match conditions. For example, [0, 1]
uses the 0th and 1st columns in the gold table for match-
ing, while ignoring the others.
ignore order (bool): Whether to ignore the order of rows
when matching elements.

Database If the answer is
stored in a DB file,
database-level eval-
uation is applied
using the db match
function.

result (str): Path to the DuckDB file containing the result
tables.
gold (str): Path to the DuckDB file containing the gold
standard tables.
condition tabs (List[str], optional): List of table names
to be checked. If not provided, all tables in the gold
DuckDB file will be considered.
condition cols (List[List[int]], optional): A list of lists,
where each inner list contains column indices used for
matching conditions for the corresponding table. De-
faults to considering all columns.
ignore orders (List[bool], optional): A list of boolean
values indicating whether to ignore the row order for each
table comparison. Defaults to [False] for each table.

SQL If the output is an
SQL, execution-
based evaluation
is used. This is
primarily designed
for Spider 2.0-lite.

To compare the execution results of the predicted SQL
and the gold SQL, table matching is used.
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B ANNOTATION DETAILS

B.1 SQL ANNOTATION EXAMPLES

In this section, we present several representative examples of the SQL annotation process, includ-
ing the original SQL, how the SQL was rewritten to obtain the gold SQL, and the use of external
knowledge.

Tab. 12 presents an example based on the Google Analytics database. The task is to calculate the
source of web traffic and count the number of sessions for each traffic channel within a given time
period.

Tab. 13 presents an example based on New York City public data, where the task is to find Citibike
and taxi trips between specified locations and analyze whether Citibike or taxi is more suitable for
travel between the two locations. In this case, the condition in the original SQL is to calculate trips
between the two locations by Citibike and car. We extend this condition by introducing a real-life
problem: identifying which routes are faster by Citibike compared to taxi.

Tab. 14 is based on the Google Patents database, which contains a large amount of patent informa-
tion. The original SQL applied several filtering conditions to retrieve a set of patents. We find a
document explaining how to calculate a patent’s originality score, which led to an advanced calcu-
lation method. As a result, the final task include additional complex calculation steps.

Tab. 15 is also based on the Google Analytics database. The original SQL calculates the Product
List Page (PLP) and Product Details Page (PDP). Based on the description in the blog, we define a
new task to calculate the conversion rate by determining the probability of users clicking from PLP
to PDP.

Tab. 16 presents an example where we merge and rewrite two related SQL queries. The first SQL
calculates the 50 weather stations closest to downtown Chicago, while the second SQL calculates
the number of bike trips on rainy and non-rainy days in New York City. We combine these two
tasks, meaning that to determine whether it is a rainy day, we first need to find data from the weather
station closest to downtown New York City.

B.2 DBT PROJECT ANNOTATION EXAMPLES

Figure 9: Codebase for a DBT project, showing
models, macros, and configuration files.

Annotation Pipeline of DBT Project. The DBT
project can be found on online resources and is
one of the projects with the most SQL scripts.
Similar data transformation tools are widely used
in industrial production. Completing a DBT
project requires a comprehensive understanding
of both the code and documentation within the
project to accomplish the entire task. Fig. 9 shows
a Salesforce-based project in Spider 2.0. This
represents a natural and realistic SQL generation
scenario. Using a Fivetran Salesforce transfor-
mation package 2 as an example, we transform
a complex DBT project into a Spider 2.0 example
through the following steps.

(1) Run a DBT project from start to finish, en-
suring it is bug-free and generates a dbt DAG
(Fig. 11). This allows for a comprehensive un-
derstanding of the data flow.

(2) The DBT project includes yml files and mark-
down documents, where the project developers
have already planned out the data models and data
flow. We will use these as the basis for task instructions.

2https://github.com/fivetran/dbt_salesforce/
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Figure 10: This is a common configuration file in DBT projects used to define the schema of a data
model. It represents a natural SQL generation scenario, specifying details such as field names, data
types, and references for the “salesforce opportunity enhanced” data model.

(3) We remove the .sql files corresponding to a specific data flow within the complete DBT project.
For example, in Fig. 11, we may delete one to three data flows, as shown in Fig. 12, removing
“sales daily activity” and “salesforce contact enhanced” along with their upstream nodes. This
turns it into an incomplete transformation project. Note that the DAG figure is only used as an
aid for data annotation, and the task does not include any images.

(4) Write the task instructions. For instance, we can draft a prompt like, “I need a daily report
on key sales activities—covering tasks completed, events held, leads generated, and the status of
opportunities.” Although the data model contains many columns, thanks to the presence of yml files
(see Fig. 10), there is no need to describe the output columns in detail in the instructions.

Approach to Solving DBT Project Examples. As shown in Fig. 27, completing a DBT project
example typically requires the following abilities:

1) Problem comprehension. First, it is necessary to fully understand a natural language task.

2) Project reading ability. A real-world data transformation project consists of multiple files, as
illustrated in Fig. 9. The method needs to explore the codebase and review relevant project files,
including .yml, .md, and .sql files. YML files (Fig. 10) generally define the data models for the data
transformation, .md files contain textual descriptions of the data models, and SQL files are the data
transformation models themselves.
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Figure 11: A DAG (Directed Acyclic Graph) illustrating the data flow and dependencies between
various Salesforce tables and models in a dbt (data build tool) project. The graph shows stages of
transformation, from raw Salesforce data (green nodes) to enhanced and aggregated models (blue
nodes), representing different entities such as opportunities, contacts, accounts, and events.

Figure 12: In this version of the DAG, several data models are missing, including “sales-
force daily activity” and “salesforce contact enhanced” along with their upstream nodes. This cre-
ates an incomplete data flow compared to the original.

3) Database exploration ability. The codebase only contains the data transformation code, while the
data to be transformed is stored in a database. The method must explore the database to understand
the available source data and identify any missing data models.

4) Problem localization ability. By combining the natural language problem and the YML files, the
method should locate where to add or modify the code in the project.

5) Coding ability. The method needs to complete complex data transformation code based on the
data models defined in the YML files and add the .sql files in the appropriate locations. Visually, it
requires completing the data models defined in the yml file, transitioning from Fig. 12 to Fig. 11.

6) Data transformation execution. Once the SQL is written, it is necessary to run dbt run to
execute the data transformation.

7) Debugging. After running the DBT project, if the data transformation is successful, the data
models (the tables) in the database will change, with tables being added or removed. The method
needs to examine the database to determine if the transformation was fully successful. If not, the
above steps must be repeated until the method meets the problem’s requirements.
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Table 12: Google analytics traffic session examples, using answer format surface rewrite.

Question
Provide the number of sessions and percentage breakdown by channel for December 2020.

Reference Plan
1. First, read the document to understand how traffic is divided into 18 channel groups, primarily based on the metrics of source,
medium, and campaign. 2. Extract all visits from the database for December, each visit having a unique user ID and session
ID. Retrieve the source, medium, and campaign for each visit. 3. Based on the classification standards for channel groups in the
document, write conditional statements to determine which channel each set of data belongs to, mainly using regular expressions.
If the data source (source) contains any of the following: ’badoo’, ’facebook’, ’fb’, ’instagram’, ’linkedin’, ’pinterest’, ’tiktok’,
’twitter’, or ’whatsapp’, and the medium (medium) includes ’cp’, ’ppc’, or starts with ’paid’, then categorize it as ’Paid Social’. 4.
Calculate the number of sessions and percentage for each channel based on the channel grouping.

Gold SQL (After rewriting)
WITH prep AS (
SELECT user_pseudo_id,
 (SELECT value.int_value FROM UNNEST(event_params) WHEREkey = 'ga_session_id') AS session_id, 

 ARRAY_AGG((SELECTvalue.string_value FROM UNNEST(event_params) WHERE key = 'source') 
IGNORE NULLS ORDER BY event_timestamp)[SAFE_OFFSET(0)] AS source,
 ARRAY_AGG((SELECTvalue.string_value FROM UNNEST(event_params) WHEREkey = 'medium') 
IGNORE NULLS ORDER BY event_timestamp)[SAFE_OFFSET(0)] AS medium,
 ARRAY_AGG((SELECTvalue.string_value FROM UNNEST(event_params) WHEREkey = 'campaign') 
IGNORE NULLS ORDER BY event_timestamp)[SAFE_OFFSET(0)] AS campaign

FROM `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*` 
WHERE _TABLE_SUFFIX BETWEEN'20201201'AND'20201231' GROUP BY user_pseudo_id, session_id )
grouped_data AS (
SELECT CASE
WHEN source = '(direct)'AND (medium IN ('(not set)', '(none)')) THEN'Direct', 

WHEN REGEXP_CONTAINS(campaign, 'cross-network') THEN'Cross-network'
WHEN (REGEXP_CONTAINS(source, 'alibaba|amazon|google shopping|shopify|etsy|ebay|stripe|walmart') 

OR REGEXP_CONTAINS(campaign, '^(.*(([^a-df-z]|^)shop|shopping).*)$'))
AND REGEXP_CONTAINS(medium, '^(.*cp.*|ppc|paid.*)$') THEN'Paid Shopping' , 

WHEN REGEXP_CONTAINS(source, 'baidu|bing|duckduckgo|ecosia|google|yahoo|yandex') 
AND REGEXP_CONTAINS(medium, '^(.*cp.*|ppc|paid.*)$') THEN 'Paid Search' , 

WHEN REGEXP_CONTAINS(source, 'badoo|facebook|fb|instagram|linkedin|pinterest|tiktok|twitter|whatsapp')
                                             AND REGEXP_CONTAINS(medium, '^(.*cp.*|ppc|paid.*)$') THEN'Paid Social' , 
WHEN REGEXP_CONTAINS(source, 'dailymotion|disneyplus|netflix|youtube|vimeo|twitch|vimeo|youtube')
                                          AND REGEXP_CONTAINS(medium, '^(.*cp.*|ppc|paid.*)$') THEN'Paid Video' , 
WHEN medium IN ('display', 'banner', 'expandable', 'interstitial', 'cpm') THEN 'Display'
WHEN REGEXP_CONTAINS(source, 'alibaba|amazon|google shopping|shopify|etsy|ebay|stripe|walmart')

OR REGEXP_CONTAINS(campaign, '^(.*(([^a-df-z]|^)shop|shopping).*)$') THEN'Organic Shopping'
WHEN REGEXP_CONTAINS(source, 'badoo|facebook|fb|instagram|linkedin|pinterest|tiktok|twitter|whatsapp') 
       OR medium IN ('social', 'social-network', 'social-media', 'sm', 'social network', 'social media') THEN'Organic Social'
WHEN REGEXP_CONTAINS(source, 'dailymotion|disneyplus|netflix|youtube|vimeo|twitch|vimeo|youtube')

OR REGEXP_CONTAINS(medium, '^(.*video.*)$') THEN'Organic Video' 
WHEN REGEXP_CONTAINS(source, 'baidu|bing|duckduckgo|ecosia|google|yahoo|yandex') OR medium = 'organic'  THEN'Organic Search' 
WHEN REGEXP_CONTAINS(source, 'email|e-mail|e_mail|e mail') OR REGEXP_CONTAINS(medium, 'email|e-mail|e_mail|e mail') THEN'Email'
WHEN medium = 'affiliate' THEN 'Affiliates' WHEN medium = 'referral'THEN'Referral'
WHEN medium = 'audio'THEN'Audio' WHEN medium = 'sms'THEN'SMS'
WHEN medium LIKE'%push'OR REGEXP_CONTAINS(medium, 'mobile|notification') THEN'Mobile Push Notifications' ELSE'Unassigned'
END AS channel_grouping_session, COUNT(DISTINCTCONCAT(user_pseudo_id, session_id)) AS session_count
FROM
 prep GROUP BY channel_grouping_session
),
total_sessions AS (
SELECT SUM(session_count) AS total_count FROM grouped_data )
SELECT  gd.channel_grouping_session, gd.session_count, ROUND(gd.session_count / ts.total_count * 100, 2) AS percentage_of_total
FROM  grouped_data gd, total_sessions ts
ORDER BY gd.session_count DESC LIMIT 10;

Original SQL
WITH prep AS (
SELECT user_pseudo_id,
 (SELECT value.int_value FROM UNNEST(event_params) WHEREkey = 'ga_session_id') AS session_id, 

 ARRAY_AGG((SELECTvalue.string_value FROM UNNEST(event_params) WHERE key = 'source') 
IGNORE NULLS ORDER BY event_timestamp)[SAFE_OFFSET(0)] AS source,
 ARRAY_AGG((SELECTvalue.string_value FROM UNNEST(event_params) WHEREkey = 'medium') 
IGNORE NULLS ORDER BY event_timestamp)[SAFE_OFFSET(0)] AS medium,
 ARRAY_AGG((SELECTvalue.string_value FROM UNNEST(event_params) WHEREkey = 'campaign') 
IGNORE NULLS ORDER BY event_timestamp)[SAFE_OFFSET(0)] AS campaign

FROM `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*` 
WHERE _TABLE_SUFFIX BETWEEN'20201201'AND'20201231' GROUP BY user_pseudo_id, session_id )
grouped_data AS (
SELECT CASE
WHEN source = '(direct)'AND (medium IN ('(not set)', '(none)')) THEN'Direct', 

WHEN REGEXP_CONTAINS(campaign, 'cross-network') THEN'Cross-network'
WHEN (REGEXP_CONTAINS(source, 'alibaba|amazon|google shopping|shopify|etsy|ebay|stripe|walmart') 

OR REGEXP_CONTAINS(campaign, '^(.*(([^a-df-z]|^)shop|shopping).*)$'))
AND REGEXP_CONTAINS(medium, '^(.*cp.*|ppc|paid.*)$') THEN'Paid Shopping' , 

WHEN REGEXP_CONTAINS(source, 'baidu|bing|duckduckgo|ecosia|google|yahoo|yandex') 
AND REGEXP_CONTAINS(medium, '^(.*cp.*|ppc|paid.*)$') THEN 'Paid Search' , 

WHEN REGEXP_CONTAINS(source, 'badoo|facebook|fb|instagram|linkedin|pinterest|tiktok|twitter|whatsapp')
                                             AND REGEXP_CONTAINS(medium, '^(.*cp.*|ppc|paid.*)$') THEN'Paid Social' , 
WHEN REGEXP_CONTAINS(source, 'dailymotion|disneyplus|netflix|youtube|vimeo|twitch|vimeo|youtube')
                                          AND REGEXP_CONTAINS(medium, '^(.*cp.*|ppc|paid.*)$') THEN'Paid Video' , 
WHEN medium IN ('display', 'banner', 'expandable', 'interstitial', 'cpm') THEN 'Display'
WHEN REGEXP_CONTAINS(source, 'alibaba|amazon|google shopping|shopify|etsy|ebay|stripe|walmart')

OR REGEXP_CONTAINS(campaign, '^(.*(([^a-df-z]|^)shop|shopping).*)$') THEN'Organic Shopping'
WHEN REGEXP_CONTAINS(source, 'badoo|facebook|fb|instagram|linkedin|pinterest|tiktok|twitter|whatsapp') 
       OR medium IN ('social', 'social-network', 'social-media', 'sm', 'social network', 'social media') THEN'Organic Social'
WHEN REGEXP_CONTAINS(source, 'dailymotion|disneyplus|netflix|youtube|vimeo|twitch|vimeo|youtube')

OR REGEXP_CONTAINS(medium, '^(.*video.*)$') THEN'Organic Video' 
WHEN REGEXP_CONTAINS(source, 'baidu|bing|duckduckgo|ecosia|google|yahoo|yandex') OR medium = 'organic'  THEN'Organic Search' 
WHEN REGEXP_CONTAINS(source, 'email|e-mail|e_mail|e mail') OR REGEXP_CONTAINS(medium, 'email|e-mail|e_mail|e mail') THEN'Email'
WHEN medium = 'affiliate' THEN 'Affiliates' WHEN medium = 'referral'THEN'Referral'
WHEN medium = 'audio'THEN'Audio' WHEN medium = 'sms'THEN'SMS'
WHEN medium LIKE'%push'OR REGEXP_CONTAINS(medium, 'mobile|notification') THEN'Mobile Push Notifications' ELSE'Unassigned'
END AS channel_grouping_session, COUNT(DISTINCTCONCAT(user_pseudo_id, session_id)) AS session_count
FROM
 prep GROUP BY channel_grouping_session
),
ORDER BY
 COUNT(DISTINCT CONCAT(user_pseudo_id, session_id)) DESC
LIMIT 1
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Table 13: Citibike and taxi of NYC public data example, condition parameters surface rewrite.

Question
For the top 20 Citi Bike routes in 2016, which route is faster than yellow taxis and among
those, which one has the longest average bike duration? Please provide the start station name
of this route. The coordinates are rounded to three decimals.

Reference Plan
1. Focus on 2016 data to determine the top 20 most popular bike routes based on start and end stations, noting their latitude and
longitude. 2. Calculate the average bike duration and count the number of bike trips for each route. 3. Extract the average duration
for corresponding taxi routes using the same latitude and longitude for start and end points. 4. Calculate the average taxi duration
for the matching routes. 5. Filter the results to find the bike route where the average bike duration is shorter than the average taxi
duration. 6. Order the results by average bike duration in descending order and limit the output to one record.

Gold SQL (After rewriting)
WITH top20route AS (
SELECT
 start_station_name, end_station_name, avg_bike_duration, avg_taxi_duration
FROM (
SELECT start_station_name, end_station_name,
 ROUND(start_station_latitude, 3) AS ss_lat, ROUND(start_station_longitude, 3) AS ss_long,
 ROUND(end_station_latitude, 3) AS es_lat, ROUND(end_station_longitude, 3) AS es_long,
 AVG(tripduration) AS avg_bike_duration,  COUNT(*) AS bike_trips
FROM
`bigquery-public-data.new_york.citibike_trips`
WHERE
 EXTRACT(YEAR from starttime) = 2015 AND start_station_name != end_station_name
GROUP BY  start_station_name, end_station_name, ss_lat, ss_long, es_lat, es_long
ORDER BY  bike_trips DESC LIMIT 20
) a
JOIN (
SELECT
 ROUND(pickup_latitude, 3) AS pu_lat,  ROUND(pickup_longitude, 3) AS pu_long,
 ROUND(dropoff_latitude, 3) AS do_lat,  ROUND(dropoff_longitude, 3) AS do_long,
 AVG(UNIX_SECONDS(dropoff_datetime)-UNIX_SECONDS(pickup_datetime)) AS avg_taxi_duration,
 COUNT(*) AS taxi_trips
FROM
`bigquery-public-data.new_york.tlc_yellow_trips_2015`
GROUP BY
 pu_lat, pu_long, do_lat, do_long
) b
ON
 a.ss_lat = b.pu_lat AND  a.es_lat = b.do_lat AND
 a.ss_long = b.pu_long AND  a.es_long = b.do_long
)
SELECT start_station_name FROM top20route
WHERE avg_bike_duration < avg_taxi_duration 
ORDER BY avg_bike_duration DESC LIMIT 1

Original SQL
SELECT
 start_station_name, end_station_name, avg_bike_duration, avg_taxi_duration, avg_taxi_fare
FROM (
SELECT start_station_name, end_station_name,
 ROUND(start_station_latitude, 3) AS ss_lat, ROUND(start_station_longitude, 3) AS ss_long,
 ROUND(end_station_latitude, 3) AS es_lat,ROUND(end_station_longitude, 3) AS es_long,
 COUNT(*) AS bike_trips
FROM`bigquery-public-data.new_york.citibike_trips`
WHERE start_station_name != end_station_name
GROUP BY start_station_name, end_station_name, ss_lat, ss_long, es_lat, es_long
ORDER BY bike_trips DESC LIMIT 100 ) a
JOIN (     SELECT
 ROUND(pickup_latitude, 3) AS pu_lat, ROUND(pickup_longitude, 3) AS pu_long,
 ROUND(dropoff_latitude, 3) AS do_lat, ROUND(dropoff_longitude, 3) AS do_long,
 COUNT(*) AS taxi_trips
FROM`bigquery-public-data.new_york.tlc_yellow_trips_2016`
GROUP BY pu_lat, pu_long, do_lat, do_long)b
ON
 a.ss_lat=b.pu_lat AND a.es_lat=b.do_lat AND a.ss_long=b.pu_long AND a.es_long=b.do_long
ORDER BY bike_trips DESC LIMIT 20;
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Table 14: Google patent example, advanced calculation surface rewrite.

Question
What is the publication number of US patent granted at January 2018, with the highest origi-
nality score based on the diversity of 4-digits IPC codes from its backward citations?

Reference Plan
1. Filter US Patents: Select publication numbers and application numbers from the dataset, including only records where the country
code is ’US’, the grant date is within January 2018, and excluding records with a grant date of 0. Additionally, only consider patents
with a specific kind code pattern (e.g., %B2%). 2. Extract IPC Codes: Select the publication number and count the unique 4-digit IPC
codes associated with each selected patent. 3. Identify Maximum IPC Code Count: Create a subset of records that have the maximum
count of a specific 4-digit IPC code for each patent. 4. Calculate IPC Occurrences in Backward Citations: Join the filtered patents
with their backward citations. For each backward citation, join with the subset of records to get the 4-digit IPC codes, counting
occurrences of each IPC code in the backward citations for each patent. 5. Compute Originality Score: For each patent, calculate
an originality score based on the diversity of the 4-digit IPC codes from the backward citations, using a formula that considers the
sum of squared occurrences of each IPC code, normalized by the total number of occurrences. 6. Select Highest Originality Score:
From the computed originality scores, select the patent with the highest score. 7. Return Result: Output the publication number of
the patent with the highest originality score.

Gold SQL (After rewriting)
WITH patents_sample AS (
SELECT
 t1.publication_number, t1.application_number  FROM `patents-public-data.patents.publications` t1 
WHERE
 country_code = 'US' AND grant_date between 20180101 AND 20180131
AND grant_date != 0 AND publication_number LIKE '%B2%'
),
interim_table AS (
SELECT t1.publication_number, SUBSTR(ipc_u.code, 0, 4) AS ipc4, 
COUNT(SUBSTR(ipc_u.code, 0, 4)) AS ipc4_count
FROM
 patents-public-data.patents.publications t1, UNNEST(ipc) AS ipc_u
GROUP BY t1.publication_number, ipc4
),
chosen_ipc4_view AS (

SELECT * FROM interim_table
WHERE CONCAT(interim_table.publication_number, interim_table.ipc4_count) IN (
SELECT CONCAT(publication_number, MAX(ipc4_count)) FROM interim_table GROUP BY  publication_number )
ORDER BY ipc4_count DESC ),

ipc_counts AS (
SELECT t1.publication_number, t3.ipc4, COUNT(t3.ipc4) AS ipc_occurrences
FROM  patents_sample t1
LEFT JOIN (
SELECT
 x2.publication_number AS citing_publication_number, citation_u.publication_number AS backward_citation
FROM
 patents-public-data.patents.publications x2, UNNEST(citation) AS citation_u) t2
ON
 t2.citing_publication_number = t1.publication_number
LEFT JOIN chosen_ipc4_view t3 ON  t3.publication_number = t2.backward_citation
GROUP BY t1.publication_number, t3.ipc4 

),
max_originality AS ( 

SELECT publication_number,
1 - SUM(POWER(ipc_occurrences, 2)) / POWER(SUM(ipc_occurrences), 2) AS originality
FROM ipc_counts GROUP BY publication_number
HAVING  SUM(ipc_occurrences) > 0 ORDER BY originality DESC LIMIT 1

)
SELECT  publication_number FROM max_originality

Original SQL
WITH patents_sample AS (
SELECT
 t1.publication_number, t1.application_number  FROM `patents-public-data.patents.publications` t1 
WHERE
 country_code = 'US' AND grant_date between 20180101 AND 20180131
AND grant_date != 0 AND publication_number LIKE '%B2%'
),
interim_table AS (
SELECT t1.publication_number, SUBSTR(ipc_u.code, 0, 4) AS ipc4, 
COUNT(SUBSTR(ipc_u.code, 0, 4)) AS ipc4_count
FROM
 patents-public-data.patents.publications t1, UNNEST(ipc) AS ipc_u
GROUP BY t1.publication_number, ipc4
),
chosen_ipc4_view AS (

SELECT * FROM interim_table
WHERE CONCAT(interim_table.publication_number, interim_table.ipc4_count) IN (
SELECT CONCAT(publication_number, MAX(ipc4_count)) FROM interim_table GROUP BY  publication_number )
ORDER BY ipc4_count DESC ),

SELECT t1.publication_number, t3.ipc4, COUNT(t3.ipc4) AS ipc_occurrences
FROM  patents_sample t1
LEFT JOIN (

SELECT
 x2.publication_number AS citing_publication_number, 
citation_u.publication_number AS backward_citation

FROM
 patents-public-data.patents.publications x2, UNNEST(citation) AS citation_u) t2

ON
 t2.citing_publication_number = t1.publication_number
LEFT JOIN chosen_ipc4_view t3 ON  t3.publication_number = t2.backward_citation
GROUP BY t1.publication_number, t3.ipc4 
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Table 15: Google analytics page conversion rate example, advanced requirements semantic rewrite.

Question
Calculate the conversion rate from product list pages to product detail pages for all sessions
at January 2nd, 2021.

Reference Plan
1. query the event data to retrieve all unique event names 2. Selects events data from the Google Analytics 4 (GA4) sample e-
commerce dataset for the specific date (20210102) 3. Filter to include only events named page view, which represent page views.
4. flatten the nested event params array and extract values for ga session id, ga session number, page title, and page location. This
allows the analysis of individual page views within each user’s session. 5. Further processes the unnested event data to classify
pages based on URL depth and specific keywords into either Product Detail Pages (PDP) or Product Listing Pages (PLP). 6. Applies
window functions to the categorized data to calculate the previous and next pages for each session per user, facilitating analysis of
navigation paths between pages. 7. Filters sessions where the current page is a PLP and the next page is a PDP. 8. Counts the number
of sessions transitioning from PLP to PDP and divides this by the total views of PLP pages to calculate the conversion rate.

Gold SQL (After rewriting)
WITH base_table AS (
SELECT
 event_name, event_date, event_timestamp, user_pseudo_id, user_id, device, geo, traffic_source, event_params, user_properties
FROM
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`
WHERE
 _table_suffix BETWEEN'20210101'AND'20210131'AND event_name IN ('page_view')
),
unnested_events AS (
SELECT
       event_date ASdate, event_timestamp AS event_timestamp_microseconds,user_pseudo_id,
       MAX(CASE WHEN c.key = 'ga_session_id' THEN c.value.int_value END) AS visitID, 

MAX(CASE WHEN c.key = 'ga_session_number' THEN c.value.int_value END) AS visitNumber,
       MAX(CASE WHEN c.key = 'page_title' THEN c.value.string_value END) AS page_title, 
       MAX(CASE WHEN c.key = 'page_location'THEN c.value.string_value END) AS page_location
FROM   base_table, UNNEST(event_params) c 
GROUP BY 1, 2, 3  ),
unnested_events_categorised AS (
SELECT
 *, 
CASE
WHEN ARRAY_LENGTH(SPLIT(page_location, '/')) >= 5 AND CONTAINS_SUBSTR(ARRAY_REVERSE(SPLIT(page_location, '/'))[SAFE_OFFSET(0)], '+')
AND (LOWER(SPLIT(page_location, '/')[SAFE_OFFSET(4)]) 
IN('accessories','apparel','brands','campus+collection','drinkware','electronics','google+redesign',
'lifestyle','nest','new+2015+logo','notebooks+journals','office','shop+by+brand','small+goods','stationery','wearables')
           OR LOWER(SPLIT(page_location, '/')[SAFE_OFFSET(3)]) IN 
('accessories','apparel','brands','campus+collection','drinkware','electronics','google+redesign','lifestyle','nest','new+2015+logo','
notebooks+journals','office','shop+by+brand','small+goods','stationery','wearables')) THEN 'PDP'
WHEN NOT CONTAINS_SUBSTR(ARRAY_REVERSE(SPLIT(page_location, '/'))[SAFE_OFFSET(0)], '+') AND (LOWER(SPLIT(page_location, 
'/')[SAFE_OFFSET(4)]) IN 
('accessories','apparel','brands','campus+collection','drinkware','electronics','google+redesign','lifestyle','nest','new+2015+logo','
notebooks+journals','office','shop+by+brand','small+goods','stationery','wearables') OR LOWER(SPLIT(page_location, 
'/')[SAFE_OFFSET(3)]) IN 
('accessories','apparel','brands','campus+collection','drinkware','electronics','google+redesign','lifestyle','nest','new+2015+logo','
notebooks+journals','office','shop+by+brand','small+goods','stationery','wearables')) THEN 'PLP'
ELSE 'Other'                               END  AS page_category FROM unnested_events )
ranked_screens AS (
SELECT   *,
 LAG(page_category, 1) OVER (PARTITIONBY user_pseudo_id, visitID ORDER BY event_timestamp_microseconds) AS previous_page,
 LEAD(page_category, 1) OVER (PARTITIONBY user_pseudo_id, visitID ORDER BY event_timestamp_microseconds) AS next_page
FROM unnested_events_categorised
),
PLPtoPDPTransitions AS ( SELECT page_title, COUNT(*) AS transitions FROM ranked_screens WHERE page_category = 'PLP' AND next_page = 
'PDP' GROUP BY page_title ),
TotalPLPViews AS ( SELECT page_title, COUNT(*) AS total_plp_views FROM ranked_screens WHERE page_category = 'PLP' GROUP BY 
page_title ),
ConversionRates AS ( 
SELECT p.page_title, (CAST(t.transitions AS FLOAT64) / p.total_plp_views) * 100.0 AS conversion_rate
FROM TotalPLPViews p JOIN PLPtoPDPTransitions t ON p.page_title = t.page_title )
SELECT page_title, MAX(conversion_rate) AS max_conversion_rate FROM ConversionRates GROUP BY page_title ORDER BY max_conversion_rate 
DESC LIMIT 1;

Original SQL
WITH base_table AS (
SELECT
 event_name, event_date, event_timestamp, user_pseudo_id, user_id, device, geo, traffic_source, event_params, user_properties
FROM
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`
WHERE
 _table_suffix BETWEEN'20210101'AND'20210131'AND event_name IN ('page_view')
),
unnested_events AS (
SELECT
       event_date ASdate, event_timestamp AS event_timestamp_microseconds,user_pseudo_id,
       MAX(CASE WHEN c.key = 'ga_session_id' THEN c.value.int_value END) AS visitID, 

MAX(CASE WHEN c.key = 'ga_session_number' THEN c.value.int_value END) AS visitNumber,
       MAX(CASE WHEN c.key = 'page_title' THEN c.value.string_value END) AS page_title, 
       MAX(CASE WHEN c.key = 'page_location'THEN c.value.string_value END) AS page_location
FROM   base_table, UNNEST(event_params) c 
GROUP BY 1, 2, 3  ),
unnested_events_categorised AS (
SELECT
 *, 
CASE
WHEN ARRAY_LENGTH(SPLIT(page_location, '/')) >= 5 AND CONTAINS_SUBSTR(ARRAY_REVERSE(SPLIT(page_location, '/'))[SAFE_OFFSET(0)], '+')
AND (LOWER(SPLIT(page_location, '/')[SAFE_OFFSET(4)]) 
IN('accessories','apparel','brands','campus+collection','drinkware','electronics','google+redesign',
'lifestyle','nest','new+2015+logo','notebooks+journals','office','shop+by+brand','small+goods','stationery','wearables')
           OR LOWER(SPLIT(page_location, '/')[SAFE_OFFSET(3)]) IN 
('accessories','apparel','brands','campus+collection','drinkware','electronics','google+redesign','lifestyle','nest','new+2015+logo
','notebooks+journals','office','shop+by+brand','small+goods','stationery','wearables')) THEN 'PDP'
WHEN NOT CONTAINS_SUBSTR(ARRAY_REVERSE(SPLIT(page_location, '/'))[SAFE_OFFSET(0)], '+') AND (LOWER(SPLIT(page_location, 
'/')[SAFE_OFFSET(4)]) IN 
('accessories','apparel','brands','campus+collection','drinkware','electronics','google+redesign','lifestyle','nest','new+2015+logo
','notebooks+journals','office','shop+by+brand','small+goods','stationery','wearables') OR LOWER(SPLIT(page_location, 
'/')[SAFE_OFFSET(3)]) IN 
('accessories','apparel','brands','campus+collection','drinkware','electronics','google+redesign','lifestyle','nest','new+2015+logo
','notebooks+journals','office','shop+by+brand','small+goods','stationery','wearables')) THEN 'PLP'
ELSE 'Other'                               END  AS page_category FROM unnested_events )
SELECT (SELECT COUNT(*) FROM unnested_events_categorised WHERE page_title_adjusted='PDP') 
/ (SELECT COUNT(*) FROM unnested_events_categorised)*100;
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Table 16: GSOD and NYC public data example, merge related SQLs semantic rewrite.

Question
Get the average number of trips on rainy and non-rainy days in New York City during 2016,
using data from the closest weather station located near the coordinates (-74.0060, 40.7128).
Define a “rainy day” as any day where the precipitation recorded is more than 0 millimeters.

Reference Plan
1. Which days were rainy in 2016, and how can we obtain weather information? 2. The GHCN-D database allows us to access
weather data from each weather station. 3. Given that the central coordinates of New York City are (-74.0060, 40.7128), we need
to select a weather station to represent the weather data for New York City. 4. Calculate the weather stations closest to the center of
New York City based on their distance. 5. Obtain the precipitation data from that weather station. 6. Use the precipitation data to
classify the days in 2016 as either rainy or non-rainy. 7. The New York Citibike database stores daily bike rental data, which can be
grouped based on whether it was a rainy day and then averaged. 8. Compare the differences in the average number of bike rentals on
rainy days versus non-rainy days.

Gold SQL (After rewriting)
WITH params AS (
SELECT ST_GeogPoint(-74.0060, 40.7128) AS center, 50 AS maxn_stations, 50 AS maxdist_km
),
distance_from_center AS (
  SELECT id, name, state,
     ST_GeogPoint(longitude, latitude) AS loc,
     ST_Distance(ST_GeogPoint(longitude, latitude), params.center) AS dist_meters
  FROM `bigquery-public-data.ghcn_d.ghcnd_stations`,
     params
 WHERE ST_DWithin(ST_GeogPoint(longitude, latitude), params.center, params.maxdist_km * 1000)
),
nearest_stations AS (
  SELECT *, RANK() OVER (ORDER BY dist_meters ASC) AS rank FROM  distance_from_cent
),
nearest_nstations AS (
SELECT
   station.* FROM nearest_stations AS station, params  WHERE rank <= params.maxn_stations ),
station_ids AS (
SELECT id, dist_meters from nearest_nstations ORDER BY dist_meters ASC LIMIT 50 ),
bicycle_rentals AS (
SELECT
     COUNT(starttime) as num_trips, EXTRACT(DATEfrom starttime) as trip_date
FROM`bigquery-public-data.new_york_citibike.citibike_trips` GROUP BY trip_date
),
closest AS (
SELECT station_ids.id as id, ANY_VALUE(station_ids.dist_meters) as dist
FROM `bigquery-public-data.ghcn_d.ghcnd_2016`AS wx
JOIN station_ids on wx.id=station_ids.id GROUP BY station_ids.id ORDER BY dist ASC LIMIT 1
),
rainy_days AS
(
SELECT date, COALESCE(MAX(prcp), 0) > 0) AS rainy
FROM (
SELECT wx.date AS date, IF (wx.element = 'PRCP', wx.value/10, NULL) AS prcp
FROM
`bigquery-public-data.ghcn_d.ghcnd_2016`AS wx
WHERE wx.id in (SELECT id FROM closest) ) GROUP BY date )
SELECT
 ROUND(AVG(bk.num_trips)) AS num_trips,  wx.rainy
FROM bicycle_rentals AS bk JOIN rainy_days AS wx ON wx.date = bk.trip_date GROUP BY wx.rainy

Original SQL
--SQL1: New York City Rainy Days
WITH bicycle_rentals AS (
SELECT 

COUNT(starttime) as num_trips, 
EXTRACT(DATE from starttime) as trip_date

FROM`bigquery-public-data.new_york_citibike.citibike_trips` GROUP BY trip_date
),
rainy_days AS
( SELECT date, (MAX(prcp) > 5) AS rainy
      FROM (

SELECT  wx.date ASdate,
IF (wx.element = 'PRCP', wx.value/10, NULL) AS prcp
FROM `bigquery-public-data.ghcn_d.ghcnd_2016`AS wx
WHERE  wx.id = 'USW00094728'

) GROUP BY date  )
SELECT  ROUND(AVG(bk.num_trips)) AS num_trips, wx.rainy
FROM bicycle_rentals AS bk JOIN rainy_days AS wx
ON wx.date = bk.trip_date GROUP BY wx.rainy

--SQL2: Chicago Nearest Weather Station
WITH params AS (
SELECT ST_GeogPoint(-87.63, 41.88) AS center,
50 AS maxn_stations, 50 AS maxdist_km ),
distance_from_center AS (
SELECT
 id, name, state, ST_GeogPoint(longitude, latitude) AS loc,
 ST_Distance(ST_GeogPoint(longitude, latitude), params.center) AS dist_meters
FROM
`bigquery-public-data.ghcn_d.ghcnd_stations`,
 params
WHERE ST_DWithin(ST_GeogPoint(longitude, latitude), 
params.center, params.maxdist_km*1000)
)
SELECT * from distance_from_center
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B.3 SPIDER 2.0 DATABASE EXAMPLES

Google Analytics 4 serves as a notable example of a Spider 2.0 database (see Fig. 13). For
each Google Analytics 4 property and linked Firebase project enabled for BigQuery export, a
dataset named analytics {property id} is created. Within the dataset, daily tables named
events YYYYMMDD are generated when the Daily export option is enabled.

To accommodate latency, Google Analytics 4 updates these daily tables for up to three days with
late-arriving events, ensuring proper timestamping. Each column in these tables represents specific
event parameters, some of which are nested within RECORDS and may be repeated. For instance,
the item params RECORD stores custom item parameters unique to each implementation.

     Google Analytics 4

analytics_<property_id>

events_YYYYMMDD

Columns

| event_id |
| event_timestamp |
| user_properties |
| device |
| geo |         
| traffic_source |
| app_info |
| items |                 

* NESTED RECORDS

geo:

| - continent: STRING |

| - sub_continent: STRING |

| - country: STRING |

| - region: STRING |

| - metro: STRING |

| - city: STRING |

traffic_source:

| - manual_campaign_id: STRING |

| - manual_campaign_name: STRING |

| ... |

event_params:
| - key
| - value
 * string_value
 * int_value
 * float_value
 * double_value

app_info:
| - app_id: STRING |

| - app_version: STRING |

| ... |

event_date event_timestamp event_name event_params.key event_params_value.string_value

20220222 1643673600483790 page_view page_location https://example.com

   page_title Home

   source google

   <parameters...> <values...>

Figure 13: Google analytics 4 database schema with nested record.

Fig. 14 showcases an example of an enterprise-level real-world database environment from Spider
2.0, with multiple schemas to navigate through, each of them containing a variety of tables. It
highlights the complex structure types of Spider 2.0 databses, which exemplifies how our benchmark
encompasses a broader and more intricate variety compared to others.

Bigquery Database Env.

New_york：
- new_york_311：
 - 311_service_requests

-new_york_citibike：
 - citibike_stations

 - citibike_trips

- new_york_mv_collisions：
 - nypd_mv_collisions

- new_york_taxi_trips：
 - taxi_zone_geom

 - tlc_fhv_trips_2015

 - tlc_fhv_trips_2016

 - tlc_green_trips_2013

 - ... 

* MULTIPLE SCHEMAS & TABLES Noaa_global_forecast_system：

- NOAA_GFS0P25

noaa_goes16：
- abi_l1b_radiance

- abi_l2_cmip

- all_files

- ...

noaa_goes17：
- abi_l1b_radiance

- abi_l2_cmip

- ...

noaa_gsod：
- gsod1929  - gsod2022

- gsod1930  - gsod2023

- gsod1931  - gsod2024

- ...       - stations

Figure 14: Bigquery database environment with multiple schema and tables.

B.4 EXAMPLES OF EXTERNAL DOCUMENTS

In this section, we present the external documents utilized in Spider 2.0. The first is a table that
outlines the categorization method for traffic channels. The original document provided an HTML
table, which we present here in Fig. 15. The second document is the Google Page Category as shown
in Fig. 16, which demonstrates how to classify a page into categories such as Product List Page and
Product Detail Page.
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Figure 15: Channel group of Google Analytics, external document for a bigquery example.

Product page category

### Refined Page Classification Criteria

#### Overview
To enhance our understanding of user engagement on our e-commerce platform, we differentiate between
two types of pages based on the URL structure: Product Listing Pages (PLPs) and Product Detail Pages
(PDPs). These classifications are crucial for analyzing user behavior and improving site navigation effi-
ciency.

#### Product Listing Pages (PLPs)
PLPs are identified by specific characteristics in the URL:
- The URL must be divided into at least five segments.
- Neither the fourth nor the fifth segment contains a ’+’ sign, ensuring these are not detail views.
- The fourth or fifth segment must contain one of the following category names, indicating a broader cate-
gory or collection page rather than a specific product focus:
- Accessories - Apparel - Brands - Campus Collection - Drinkware - Electronics - Google Redesign -
Lifestyle - Nest - New 2015 Logo - Notebooks & Journals - Office - Shop by Brand - Small Goods -
Stationery - Wearables

#### Product Detail Pages (PDPs)
PDPs, which focus on individual products, are marked by:
- A URL split into at least five segments, akin to PLPs.
- The presence of a ’+’ sign in the last segment, a common marker for detailed product pages.
- The fourth or fifth segment must also include one of the specified category names, ensuring that the detail
being viewed pertains to one of the recognized product categories:
- Accessories - Apparel - Brands - Campus Collection - Drinkware - Electronics - Google Redesign -
Lifestyle - Nest - New 2015 Logo - Notebooks & Journals - Office - Shop by Brand - Small Goods -
Stationery - Wearables

### Conclusion
This detailed classification approach enables a more nuanced analysis of user pathways and interactions on
our platform. By distinguishing between general browsing (PLPs) and targeted product interest (PDPs), we
can tailor our content and design strategies to better meet the needs of our users, ultimately enhancing the
shopping experience and improving business outcomes.

Figure 16: Page category document of Google analytics 4.

B.5 EXAMPLES OF CONTEXT SETUP

Besides the context setup method for the DBT project mentioned in App.B.2, we will outline the
process for establishing the context in a example about query database.
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For the task, Can you provide the details of the top 5 longest bike share trips that started during the
second half of 2017?, ‘query.py’ serves as our predefined interface for interaction between the model
and the cloud database. This question is inherently ambiguous; without specifying the answer for-
mat constraints, evaluating the responses becomes challenging. Therefore, we provide “result.csv’,
which defines the required answer format.

|--- README.md # The task description
|--- query.py # The query interface
|--- bigquery_credential.json # Bigquery credentials
‘--- result.csv # Answer format of data in November 2022

-- result.csv
trip_id,duration_sec,star_date,start_station_name,route,bike_number,
subscriber_type,member_birth_year,age,age_class,member_gender,region_name

For the examples presented in Tab. 12, we outline the setup details for the Spider 2.0 example.
Additionally, we provide answer examples for specific cases, which not only constrain the answer
format but also enable the agent to perform self-debugging using these examples.

The task instruction is Provide the number of sessions and percentage breakdown by channel for
December 2020. We supply ‘202011.csv’ and ‘202101.csv’ as demonstration answers. We envision
a real SQL writing scenario where the agent can first query November 2020 to check for consistency
with ‘202011.csv’. If discrepancies arise, the agent can identify that their SQL is incorrect and make
the necessary corrections. Note that this is not a task requirement; it is simply our belief that real
SQL writing has such a need, and we will not mandate that the model does this. We believe this
approach reflects a natural and realistic setting, although we only provide answer constraints for a
limited number of examples.

|--- README.md # The task description
|--- query.py # The query interface
|--- BASIC_SQLs # SQL examples of google analytics
|--- bigquery_credential.json # Bigquery credentials
|--- 202012.csv # The predefined answer file,
|--- 202101.csv # Answer format of data in January 2021
‘--- 202011.csv # Answer format of data in November 2022

-- 202011.csv

item_name,item_quantity
Google Decal,103
Google Clear Pen 4-Pack,81
Google Mesh Bag Red,79
Google Mini Kick Ball,77
Google Light Pen Red,8
Google Laptop and Cell Phone Stickers,7
Google Pen Neon Coral,7
Google Metallic Notebook Set,7
Google Pen Lilac,5
Google Pen Red,5

The query interface of Bigquery “query.py’ is

import os
import pandas as pd
from google.cloud import bigquery

def query_data(sql_query, is_save, save_path="result.csv"):
"""
Queries data from BigQuery based on the provided SQL query and handles the result.

Args:
sql_query (str): SQL query string to be executed.
is_save (bool): If True, saves the query results to a CSV file at the specified save_path.

If False, prints the results to the console.
save_path (str): The file path where the results will be saved if is_save is True.
Defaults to ’result.csv’.
"""
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "bigquery_credential.json"
client = bigquery.Client()
query_job = client.query(sql_query)
try:
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results = query_job.result().to_dataframe()
if results.empty:
print("No data found for the specified query.")

else:
if is_save:

results.to_csv(save_path, index=False)
print(f"Results saved to {save_path}")

else:
print(results)

except Exception as e:
print("Error occurred while fetching data: ", e)

if __name__ == "__main__":

# Write your SQL query in the sql_query variable to interact with the database,
#example SQL query related to this task is provided below
sql_query = """
SELECT

*
FROM

‘bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*‘
WHERE

_TABLE_SUFFIX BETWEEN ’20201201’ AND ’20201231’
LIMIT 1
"""
query_data(sql_query, is_save=True, save_path="result.csv")

B.6 THE DIFFERENCE IN TASK INSTRUCTIONS BETWEEN SPIDER 2.0 AND SPIDER 2.0-LITE.

During the annotation process, we found that unambiguity and naturalness are two mutually exclu-
sive concepts. Therefore, in Spider 2.0-Lite, we emphasize unambiguity, while in Spider 2.0, we
emphasize naturalness. The two instructional approaches restore the possible question forms that
may arise in real-world text-to-SQL workflows.

Example 1:

Spider 2.0: The company management has requested a detailed report on the year-to-date perfor-
mance of the Magnificent 7 stocks.

Spider 2.0-lite: Please show the price change rate of the Magnificent 7 stocks from the beginning of
this year to today.

Example 2:

Spider 2.0: Can you provide the details of the top 5 longest bike share trips that started during the
second half of 2017?

Spider 2.0-lite: Can you provide the details of the top 5 longest bike share trips that started during
the second half of 2017, including the trip ID, duration in seconds, start date, start station name,
route (start station to end station), bike number, subscriber type, member’s birth year, age, age
classification, gender, and the region name of the start station?

Example 3:

Spider 2.0: What’s the no-tip percentage for NYC yellow taxi trips in each borough from January
1-7, 2016, considering valid trips with at least one passenger and non-negative amounts?

Spider 2.0-lite: For NYC yellow taxi trips between January 1-7, 2016, could you tell me the percent-
age of no tips in each borough. Ensure trips where the dropoff occurs after the pickup, the passenger
count is greater than 0, and trip distance, tip, tolls, MTA tax, fare, and total amount are non-negative.
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B.7 SQL DIALECT DOCUMENTS COLLECTION

The core of SQL dialects lies in different advanced functions and subtle syntax variations across
SQL versions. To support retrieval-augmented agent frameworks, we crawled and pre-processed
the function documents for different database systems from their official websites. The detailed
statistics of the crawled web pages and parsed categories/functions are presented in Tab. 17. Note
that, functions belonging to the same category (e.g., aggregate functions like COUNTIF and
STRING AGG) may be introduced in the same paragraph in some web pages. In this case, we re-use
the description on this shared function category for different concrete functions.

Table 17: Statistics of different database systems on Spider 2.0. Notice that, † means there is no
well-defined function list in the official web pages for Postgres, thus we merely use the summarized
document for each function category.

Database Documentation Website # Page # Category # Function

BigQuery
https://cloud.google.com/bigquery/docs/reference/

standard-sql/functions-and-operators
34 34 390

Snowflake https://docs.snowflake.com/en/sql-reference/ 719 30 719
Postgres https://www.postgresql.org/docs/current/functions.html 30 30 30†

Clickhouse https://clickhouse.com/docs/en/sql-reference/functions 226 6 226
SQLite https://www.sqlite.org/docs.html 6 6 147
DuckDB https://duckdb.org/docs/sql/functions/overview 24 24 513
Total 1039 130 2025

B.7.1 PROCESSED FUNCTIONS FOR DIFFERENT DATABASE SYSTEMS

In this section, we demonstrate examples of parsed documents for different database systems. These
pre-parsed chunks can be retrieved and inserted into the prompt to compensate agents for their
deficiencies in SQL dialect knowledge.

Document of BigQuery Functions

database=“BigQuery”, function=“ST INTERSECTS”, category=“geography-functions”

## ST INTERSECTS

ST INTERSECTS(geography 1, geography 2)

**Description**

Returns ‘ TRUE ‘ if the point set intersection of ‘ geography 1 ‘ and ‘ geography 2 ‘ is non-empty. Thus,
this function returns ‘ TRUE ‘ if there is at least one point that appears in both input ‘ GEOGRAPHY ‘
s.

If ‘ ST INTERSECTS ‘ returns ‘ TRUE ‘ , it implies that ‘ ST DISJOINT ‘ returns ‘ FALSE ‘ .

**Return type**

‘ BOOL ‘

Document of Postgres Functions
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database=“Postgres”, function category=“enum-support-functions”

For enum types (described in Section 8.7), there are several functions that allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9.35. The examples
assume an enum type created as:

CREATE TYPE rainbow AS ENUM ("red", "orange", "yellow", "green",
"blue", "purple");

Table 9.35. Enum Support Functions

Function
Description
Example(s)

enum first ( anyenum ) → anyenum
Returns the first value of the input enum type.
enum first(null::rainbow) → red

enum last ( anyenum ) → anyenum
Returns the last value of the input enum type.
enum last(null::rainbow) → purple

enum range ( anyenum ) → anyarray
Returns all values of the input enum type in an ordered array.
enum range(null::rainbow) → red,orange,yellow,green,blue,purple

enum range ( anyenum, anyenum ) → anyarray
Returns the range between the two given enum values, as an ordered array. The values must be from the
same enum type. If the first parameter is null, the result will start with the first value of the enum type. If
the second parameter is null, the result will end with the last value of the enum type.
enum range("orange"::rainbow, ’green"::rainbow) → orange,yellow,green
enum range(NULL, "green"::rainbow) → red,orange,yellow,green
enum range("orange"::rainbow, NULL) → orange,yellow,green,blue,purple

Notice that except for the two-argument form of enum range, these functions disregard the specific value
passed to them; they care only about its declared data type. Either null or a specific value of the type can
be passed, with the same result. It is more common to apply these functions to a table column or function
argument than to a hardwired type name as used in the examples.

Document of Snowflake Functions
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database=“Snowflake”, function=“ATAN2”, category=“numeric-functions”

Categories: Numeric functions (Trigonometric)

## ATAN2

Computes the inverse tangent (arc tangent) of the ratio of its two arguments.
For example, if x > 0, then the expression ATAN2(y, x) is equivalent to ATAN(y/x).
The arc tangent is the angle between:

The X axis.
The ray from the point (0,0) to the point (X, Y) (where X and Y are not both 0).

See also: ATAN

## Syntax

ATAN2( <y> , <x> )

Copy Note that the first parameter is the Y coordinate, not the X coordinate.

## Arguments

y This parameter is the Y coordinate of the point at the end of the ray. The data type is DOUBLE.

x This parameter is the X coordinate of the point at the end of the ray. The data type is DOUBLE.

## Returns

The data type of the returned value is DOUBLE.
The returned value is in radians, not degrees.
The returned value is a number in the interval [-pi, pi].

## Usage notes

If the data type of an argument is a numeric data type other than DOUBLE, then the value is converted to
DOUBLE.
If the data type of an argument is string, the value is converted to DOUBLE if possible.
If the data type of an argument is any other data type, the function returns an error.
If either argument is NULL, the returned value is NULL.

## Examples

SELECT ATAN2(5, 5);

--------------+
ATAN2(5, 5) |
--------------+
0.7853981634 |
--------------+

Document of DuckDB Functions

database=“DuckDB”, function=“datediff”, category=“date-functions”

Function: datediff(part, startdate, enddate)
The number of partition boundaries between the dates. Alias of date diff.

Description: The number of partition boundaries between the dates.
Example: datediff(’month’, DATE ’1992-09-15’, DATE ’1992-11-14’)
Result: 2
Alias: date diff.

Document of SQLite Functions
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database=“SQLite”, function=“group concat(X,Y)”, category=“aggregate-functions”

Function: group concat(X,Y)

Usage: group concat(X) group concat(X,Y) string agg(X,Y)

Descritpion: The group concat() function returns a string which is the concatenation of all non-NULL
values of X. If parameter Y is present then it is used as the separator between instances of X. A comma
(",") is used as the separator if Y is omitted.

The string agg(X,Y) function is an alias for group concat(X,Y). String agg() is compatible with Post-
greSQL and SQL-Server and group concat() is compatible with MySQL.

The order of the concatenated elements is arbitrary unless an ORDER BY argument is included immediately
after the last parameter.

Document of Clickhouse Functions

database=“Clickhouse”, function=“JSONHas”, category=“json-functions”

## JSONHas
If the value exists in the JSON document, 1 will be returned. If the value does not exist, 0 will be returned.

### Syntax

JSONHas(json [, indices or keys]...)

### Parameters
json
- JSON string to parse. String
indices or keys
- A list of zero or more arguments, each of which can be either string or integer. String, Int*.
indices or keys
type:
String = access object member by key.
Positive integer = access the n-th member/key from the beginning.
Negative integer = access the n-th member/key from the end.

### Returned value
Returns 1 if the value exists in json , otherwise 0. UInt8.

### Examples
Query:

SELECT JSONHas(’{”a”: ”hello”, ”b”: [-100, 200.0, 300]}’, ’b’) = 1
SELECT JSONHas(’{”a”: ”hello”, ”b”: [-100, 200.0, 300]}’, ’b’, 4) = 0

The minimum index of the element is 1. Thus the element 0 does not exist. You may use integers to access
both JSON arrays and JSON objects. For example:

SELECT JSONExtractKey(’{”a”: ”hello”, ”b”: [-100, 200.0, 300]}’, 1) = ’a’
SELECT JSONExtractKey(’{”a”: ”hello”, ”b”: [-100, 200.0, 300]}’, 2) = ’b’
SELECT JSONExtractKey(’{”a”: ”hello”, ”b”: [-100, 200.0, 300]}’, -1) = ’b’
SELECT JSONExtractKey(’{”a”: ”hello”, ”b”: [-100, 200.0, 300]}’, -2) = ’a’
SELECT JSONExtractString(’{”a”: ”hello”, ”b”: [-100, 200.0, 300]}’, 1) = ’hello’

B.8 EXTEND DATASET STATISTIC

Database scope. As shown in Fig. 17, the databases utilized in Spider 2.0 encompass a wide array
of domains and real-world scenarios, providing a notable degree of diversity.

Data types. As depicted in Fig. 18, the Spider 2.0 database encompasses a wide variety of data types,
including text-based data types including STRING and BOOLEAN, number-based like INTEGER
and FLOAT, structured data as STRUCT, JSON, time-related data such as TIMESTAMP, and spatial
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data like GEOGRAPHY in google bigquery datasets. The diversity and breadth of these data types
underscore the extensive complexity and wide-ranging nature of our benchmark database. This
variability is reflected in the SQL dialects and the intricacies of data handling, thereby presenting
significant challenges for SQL generation.

Keywords. As shown in Fig. 19, due to the complexity of the SQL in the Spider 2.0 dataset and its
coverage of various dialects, it contains more SQL keywords than any previous datasets.

Number of Tables. As shown in Fig. 19, the databases in Spider 2.0 contain more tables than
previous datasets. Additionally, each SQL query in Spider 2.0 requires joining more tables on
average.

Data Volume. The databases used in Spider 2.0 contain significantly larger data volumes. In com-
parison, each database in WikiSQL has only 17 rows, Spider 1.0 contains 2K rows, KaggleDBQA
has 280K rows, and BIRD has 549K rows. In contrast, the average database in Spider 2.0 has
5273.42M rows, with many databases reaching TB-level sizes.

Figure 17: Domain distribution of Spider 2.0
database.

Figure 18: Data types of Spider 2.0 database.
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Figure 19: A comparative statistical analysis of SQL queries in Spider 2.0 and previous text-to-
SQL benchmarks.

C DETAILS OF EXPERIMENTS

C.1 SPIDER-AGENT FRAMEWORK

Inspired by React (Yao et al., 2022) and Intercode (Yang et al., 2023), we developed an agent frame-
work called Spider-Agent, which is primarily focused on database-related coding tasks and projects.
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SELECT T2.name, T2.budget

FROM instructor as T1 JOIN department as

T2 ON T1.department_id = T2.id 

GROUP BY T1.department_id

HAVING avg(T1.salary) > 

    (SELECT avg(salary) FROM instructor)

Spider 2.0

SELECT  top 50 count(v.postid) as 'Total Votes', 
v.postid AS [Post Link]
FROM Votes v
INNER JOIN Posts p ON p.id = v.postid
WHERE 
PostTypeId = 1 
AND v.VoteTypeId=2 
AND p.tags like LOWER('%<' + ##tagname:string## + '>%')
AND p.CreationDate >= DATEADD(month, -6, GETDATE())
GROUP BY v.postid
ORDER BY 'Total Votes' desc

BIRD

SELECT coachID FROM coaches 
WHERE lgID='NBA' AND post_wins !=0
AND post_losses != 0 AND coachID IN
(SELECT coachID FROM coaches WHERE lgID='NBA' 
GROUP BY coachID
HAVING COUNT(tmID)>=2) 
ORDER BY post_losses ASC LIMIT 1;

KaggleDBQA

Spider 1.0

SEDE

SELECT T1.school_district
FROM FINREV_FED_17 as T1 JOIN 
FINREV_FED_KEY_17 as T2
ON T1.state_code = T2.state_code WHERE 
T2.state = "Wisconsin"
ORDER BY T1.t_fed_rev DESC LIMIT 1

WITH cohorts AS (
  SELECT
    User_id, DATE(created_at) AS order_date,
    DATE(DATE_TRUNC(FIRST_VALUE(created_at) 
    OVER(PARTITION BY user_id ORDER BY created_at), month)) AS cohort
  FROM `bigquery-public-data.thelook_ecommerce.orders`
  WHERE DATE(created_at) BETWEEN '2020-01-01' AND '2020-12-31'
),
-- calculate the number of months after the first month 
activity AS (
  SELECT
    User_id, cohort,
    DATE_DIFF(order_date, cohort, month) AS month_since_first_order
  FROM cohorts
  WHERE DATE(cohort) = '2020-01-01'
),
-- counting the number of unique users for each cohort new_users AS ( 
  SELECT
    cohort, month_since_first_order, COUNT(DISTINCT user_id) AS new_user
  FROM
    activity
  GROUP BY cohort, month_since_first_order
),
-- calculate the total customer on each cohort
cohort_users AS (
  SELECT
    cohort, month_since_first_order, new_user,
    FIRST_VALUE(new_user) 
OVER(PARTITION BY cohort ORDER BY month_since_first_order) AS cohort_user
  FROM  new_users
)
-- calculate the cohort users percentage
SELECT 
  cohort, month_since_first_order,
  new_user, cohort_user,
  new_user / cohort_user AS cohort_users_percentage
FROM 
  cohort_users
WHERE
  month_since_first_order > 0 -- Exclude January data (month 0)
ORDER BY
  cohort, 
  month_since_first_order;

SEDE

Figure 20: A comparison of SQL examples selected based on the median token length for Spider
2.0 and previous text-to-SQL benchmarks. Spider 2.0 examples were selected with token counts at
the median, while examples from the other four datasets were selected from the original papers.
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The framework allows for multi-turn interactions with the database via command-line interfaces un-
til the final answer is obtained. To ensure the agent focuses solely on interacting with the database,
as shown in Tab. 18, we designed a set of specialized actions. We use a temperature of 1.0 and top-p
of 0.9 and truncate from the beginning of the input if still exceeding the max tokens limit required
by the models.

The model automatically terminates if it outputs the same result three times in a row or if any action
takes longer than 120 seconds. The prompts used in the experiments are provided in App.C.6. We
heuristically request the agents to complete the tasks within a max step limit of 30, which is enough
for most tasks.

Table 18: The action space of Spider-Agent, an agent baseline method for Spider 2.0.

Action Description
BASH Executes shell commands, such as checking file information, running code, or executing DBT commands.
CreateFile Creates a new file with specified content.
EditFile Edits or overwrites the content of an existing file.
ExecuteSQL Executes a SQL query on BigQuery/Snowflake, with an option to print or save the results.
GetTables Retrieves all table names and schemas from a specified BigQuery/Snowflake dataset.
GetTabInfo Retrieves detailed column information for a specific table in BigQuery/Snowflake.
SampleRows Samples a specified number of rows from a BigQuery/Snowflake table and saves them as JSON.
FAIL Agent decides the task is infeasible.
Terminate Agent decides the task is finished.

The number of joins does not have a direct correlation with model performance. For Tab. 21,
there was no clear correlation observed between performance and the number of joins. We speculate
that this is due to the fact that during the SQL annotation process, we ensured that all examples were
quite complex, which made performance independent of the number of tables in SQL involved.

Action analysis of Spider-Agent. We analyze the results of Spider-Agent. For all correctly com-
pleted tasks, the agent needed an average of 9.0 steps (with a maximum of 17 steps and a minimum
of 6 steps) within the defined action space to achieve the desired result. We also analyze the fre-
quency with which actions are invoked at each turn by Spider-Agent, as shown in Fig. 22.
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Figure 21: The effect of the number of Join on
performance.
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Figure 22: The frequency with which actions
are invoked at each turn by Spider-Agent w/ o1-
Preview for task instances that it solved on the
Spider 2.0 (286 trajectories).

C.2 DETAILS OF SPIDER 2.0-LITE EXPERIMENTS

Details of baseline methods. LLM-based text-to-SQL methods have demonstrated exceptional
zero-shot reasoning and domain generalization capabilities. DIN-SQL (Pourreza & Rafiei, 2024)

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Reference Plan
CREATE TABLE "bikeshare_trips"
(

"trip_id" STRING COMMENT "Numeric ID of bike trip",
"start_time" TIMESTAMP COMMENT "Start timestamp of trip",
"start_station_id" INT64 COMMENT "Numeric reference for start station",
"duration_minutes" INT64 COMMENT "Time of trip in minutes"

)

CREATE TABLE "bikeshare_stations"
(

"station_id" INT64,
"name" STRING,
"status" STRING,
"address" STRING,

)

Database Schema

### bikeshare_trips 

| trip_id  | start_time                | start_station_id | duration_minutes |

|---------- |-------------------------- |----------------- |----------------- |

| 4098781  | 2015-03-12 22:24:45+00:00| 2546             | 44               |

### bikeshare_stations 

| station_id | name       | status | address           |

|--------------|---------------|----------|-------------------|

| 3464       | Pease Park | closed | 1155 Kingsbury St |

Sampled cell values

External Knowledge

Task Instruction with Specific SQL Dialect

Generate a Goole BigQuery SQL statement to answer the following question, ensuring that the 

syntax and functions are appropriate for Goole BigQuery.

Question 

Which bike station in the Austin bikeshare system has the lowest average trip duration? I want 

the station ID. 

Few-shot Example

/* Question: */

How does average reputation and badge count vary among Stack Overflow users based on 

their tenure, measured in years?

/* SQL query: */

SELECT User_Tenure,

COUNT(1) AS Num_Users,

ROUND(AVG(reputation)) AS Avg_Reputation,

…

GROUP BY User_Tenure

ORDER BY User_Tenure

/* A plan that is useful for guiding the generation of components of a 

complete SQL query: */

1. **Define Data Sources**:

- Establish temporary datasets for bike stations and trip data by selecting all relevant columns from 

each respective source.

2. **Prepare Trip Data**:

- Within the trip data, ensure proper data types by safely converting necessary fields to integers and 

extracting the required columns for analysis.

…

Oracle SQL Functions

/* Potentially useful special functions with their usage: */

## CAST

CAST(expression AS typename [format_clause])

**Description**

Cast syntax is used in a query to indicate that the result type of an expression should be converted to 

some other type.

When using ` CAST ` , a query can fail if GoogleSQL is unable to perform the cast. If you want to 

protect your queries from these types of errors, you can use  SAFE_CAST  .

…

**Examples**

The following query results in ` "true" ` if ` x ` is ` 1 ` , ` "false" ` for any other non- ` NULL ` value, and ` 

NULL ` if ` x ` is ` NULL ` .

It's beneficial to understand the typical usage patterns of bike share systems. These systems 

often see higher ridership during peak commuting hours

…

Figure 23: An example of prompt organization given by DAIL-SQL. prompt components that tai-
lored to Spider 2.0-lite are highlighted. All these prompt components are similarly implemented for
all other evaluated baseline methods including DIN-SQL, CHESS and CodeS.

employs task decomposition and adaptive prompting strategies tailored to task complexity. DAIL-
SQL (Gao et al., 2024) achieves the best EX on Spider through elaborately designed prompt opti-
mizations and in-context learning. CHESS (Talaei et al., 2024) integrates schema filtering based on
entity and context retrieval, and SQL revision, achieving the best EX on BIRD. CodeS (Li et al.,
2024a) fine-tunes open-source code generation models on extensive text-to-SQL corpora, obtaining
performance comparable to methods that are based on prompting LLMs.

The treatment for sampled cell values. Spider 2.0-lite contains various complex data types, such
as nested structures (RECORTED) or array (REPRATED) in BigQuery). if we only provide data
type indicators, it is challenging for models to correctly process these types by appropriate SQL
functions. Therefore, we provide sampled cell values (in markdown format) from each table in the
prompt for all evaluated methods.

The treatment for value linking. During evaluation, we do not perform value linking (entity re-
trieval in CHESS, value retriever in CodeS) when solving instances from BigQuery, as the API cost
of retrieving all values from a terabyte-scale cloud database is prohibitively expensive. Since value
linking is crucial for identifying entities in filter conditions, its omission may hinder performance.
Exploring cost-efficient methods for value linking or alternative approaches is an important direction
for future work.

LLM. Given the extensive length of prompts after serializing large-scale schemas, we default to
using GPT-4o, which supports a 128K context window, as the base LLM. Specifically for CHESS,
we use GPT-3.5-turbo for column filtering to reduce costs.

Temperature. For all methods, we set the temperature of the LLM to 0 to ensure the reproducibility
of the results.
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Table 19: Average cost per instance across all methods.

Method Avg. Cost (↓)

Spider-Agent + o1-preview 0.75 $

Spider-Agent + GPT-4-Turbo 0.58 $

Spider-Agent + GPT-4o 0.32 $

DIN-SQL + GPT-4o 0.14 $

DAIL-SQL + GPT-4o 0.09 $

DAIL-SQL + o1-preview 0.32 $

CHESS + GPT-4o 0.43 $

SFT CodeS-15B 0.00 $

C.3 DETAILS OF ERROR ANALYSIS

We summarize the descriptions for all error categories in Fig. 24.

Error Type Subcategory
Example of 

Predicted SQL

Wrong 

Schema Linking

Wrong Table

Wrong Column

Incorrect Dialect 

Function Usage

Incorrect Data 

Calculation

Incorrect 

Planning

Erroneous 

Data Analysis

Misunderstanding External Knowledge

Condition Filter Error

Syntax Error

Example of 

Gold SQL
Description

Some of the requested tables are incorrect or do 

not exist,or excessive tables are requested,or 

some ground truth tables are missing.

Some of the requested columns are incorrect or do 

not exist,or excessive columns are requested,or 

some ground truth columns are missing.

Join Error

Excessive Prompt Length

The JOIN condition selects the incorrect 

tables or columns.

WHERE 
code.coding[safe_offset(0)].display = 'Diabetes'
OR 
code.coding[safe_offset(0)].display = 'Hypertension'

WHERE
code.coding[OFFSET(0)].code 
IN ('44054006', '38341003')

The filtering conditions in the WHERE clause 

are incorrectly defined.

SELECT ...
FROM 
spider2-public-data.wide_world_importers.
sales_Invoices T1
JOIN 
spider2-public-data.wide_world_importers.
sales_InvoiceLines T2
ON T1.OrderID = T2.InvoiceID

SELECT ...     
FROM          
`spider2-public-
data.wide_world_importers.sales_InvoiceLines` AS INVL    
INNER JOIN 
`spider2-public-
data.wide_world_importers.sales_Invoices` AS INV            
ON INVL.InvoiceID = INV.InvoiceID

FROM spider2-public-
data.wide_world_importers.sales_Customers c 
JOIN spider2-public-
data.wide_world_importers.sales_Orders o 
ON c.CustomerID = o.CustomerID
JOIN spider2-public-
data.wide_world_importers.sales_Invoices i
ON c.CustomerID = i.CustomerID

FROM `spider2-public-data.wide_world_importers.sales_Customers` cu 
INNER JOIN `spider2-public-data.wide_world_importers.sales_Orders` o 
ON cu.CustomerID = o.CustomerID
INNER JOIN `spider2-public-data.wide_world_importers.sales_OrderLines` 
ol ON o.OrderID = ol.OrderID 
INNER JOIN `spider2-public-data.wide_world_importers.sales_Invoices` 
Inv 
ON ol.OrderID = Inv.OrderID ) Orders

WITH Yearly_Delivered_Orders AS (
SELECT strftime('%Y', 

order_purchase_timestamp) AS year,
...

WITH monthly_order_counts AS (
SELECT strftime('%Y', order_delivered_customer_date) AS Year

...

SELECT
...
(LAG(longitude, 1) OVER (ORDER BY iso_time
ASC) - longitude) AS lon_diff,
(LAG(latitude, 1) OVER (ORDER BY iso_time
ASC) - latitude) AS lat_diff
FROM hurricane_data

SELECT
...
ST_DISTANCE(geom, LAG(geom, 1) OVER (PARTITION BY sid ORDER BY 
iso_time ASC)) / 1000 AS dist
FROM hurricane_geometry

Refer to Fig. 7(b)

The model misinterprets external knowledge 

relevant to the question.
Refer to Fig. 25 

The input prompt exceeds the LLM’s maximum 

length, causing truncation and making the answer 

inaccessible.

The generated SQL query contains invalid syntax 

that prevents execution.

Refer to Fig. 7(a)

-

-

Incorrect or missing use of dialect-specific 

functions for string manipulation (e.g., CONCAT), 

date processing (e.g., DATE_TRUNC), or 

geographic data (e.g., ST_DISTANCE), etc.

Advanced data calculations fail to meet the intended 

outcomes, often due to errors in grouping, 

aggregation (e.g., AVG, SUM), window functions 

(e.g., PARTITION BY, NTILE), or formula 

application (e.g., CORR, STDDEV).

The gold SQL involves nested queries, intermediate 

result processing through CTEs, or set operations 

for merging sub-query results. The model either 

fails to recognize or misuses these elements.

Figure 24: Descriptions and examples for all error categories.

C.4 EXPERIMENTS COST

We summarize the average cost of API calls for each instance across different methods in Tab. 19.

C.5 CASE STUDY OF SPIDER-AGENT

In this section, we present the success and fail cases on Spider 2.0 using the o1-preview and Spider-
Agent framework.
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Question:

Gold SQL:

Predicted SQL:

WITH base_table AS (
-- pulls relevant columns from 
relevant dates
SELECT

event_name,
event_date,
...

FROM
`bigquery-public-

data.ga4_obfuscated_sample_ecom
merce.events_*`

WHERE
_table_suffix = '20210102' 

AND event_name IN ('page_view')
), 
unnested_events AS (
-- unnests event parameters to 
get to relevant keys and values

SELECT
...

MAX(CASE WHEN c.key = 
'page_title' THEN 
c.value.string_value END) AS 
page_title,

MAX(CASE WHEN c.key = 
'page_location' THEN 
c.value.string_value END) AS 
page_location

FROM 
base_table,
UNNEST (event_params) c

GROUP BY 1,2,3
),

Please find out what percentage of the page views on January 2, 2021, were for PDP type pages.

SELECT 
(COUNTIF(
event_dimensions.hostname LIKE '%+%' AND 
REGEXP_CONTAINS(SPLIT(event_dimensions.hostname, '/')[OFFSET(3)], 
r'Accessories|Apparel|Brands|Campus Collection|Drinkware|Electronics|Google
Redesign|Lifestyle|Nest|New 2015 Logo|Notebooks & Journals|Office|Shop by 
Brand|Small Goods|Stationery|Wearable')
) / COUNT(*)) * 100 
AS pdp_percentage
FROM 
bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_20210102 
WHERE event_name = 'page_view'
AND event_date = '20210102';

Predicted Result:

Gold Result:

unnested_events_categorised AS (
-- categorizing Page Titles into PDPs and PLPs
SELECT

*,
CASE WHEN 

ARRAY_LENGTH(SPLIT(page_location, '/')) >= 5
AND     
CONTAINS_SUBSTR(ARRAY_REVERSE(SPLIT(page_location, 
'/'))[SAFE_OFFSET(0)], '+') AND 

(LOWER(SPLIT(page_location, 
'/')[SAFE_OFFSET(4)]) IN    
('accessories','apparel','brands',...,'wearables')

OR LOWER(SPLIT(page_location, 
'/')[SAFE_OFFSET(3)]) IN                                            
('accessories','apparel','brands’,...,'wearables'))
THEN 'PDP'

WHEN 
NOT(CONTAINS_SUBSTR(ARRAY_REVERSE(SPLIT(page_locat
ion, '/'))[SAFE_OFFSET(0)], '+')) AND 
(LOWER(SPLIT(page_location, '/')[SAFE_OFFSET(4)]) 
IN                                         
('accessories','apparel','brands’,...,'wearables') 
OR LOWER(SPLIT(page_location, '/')[SAFE_OFFSET(3)]) 
IN 
('accessories','apparel','brands',...,'wearables') 
THEN 'PLP'
ELSE page_title
END AS page_title_adjusted

FROM 
unnested_events

)
SELECT (SELECT COUNT(*) FROM 
unnested_events_categorised WHERE 
page_title_adjusted='PDP') / (SELECT COUNT(*) FROM 
unnested_events_categorised)*100;

Refined Page Classification Criteria

Overview

To enhance our understanding of user engagement on our e-commerce platform, we 

differentiate between two types of pages based on the URL structure: Product Listing 

Pages (PLPs) and Product Detail Pages (PDPs). These classifications are crucial for 

analyzing user behavior and improving site navigation efficiency.

Product Listing Pages (PLPs)

PLPs are identified by specific characteristics in the URL:

•The first segment doesn’t contain a '+' sign, ensuring these are not detail views.

•The fourth or fifth segment must contain one of the following category names, 

indicating a broader category or collection page rather than a specific product focus:

• Accessories

• Apparel

• Brands

• Campus Collection

• Drinkware

• Electronics

• Google Redesign

• Lifestyle

Product Detail Pages (PDPs)

PDPs, which focus on individual products, are marked by:

•The URL must be divided into at least five segments.

•The presence of a '+' sign in the first segment, a common marker for detailed 

product pages.

•The fourth or fifth segment must also include one of the specified category 

names, ensuring that the detail being viewed pertains to one of the recognized 

product categories:

• Accessories

• …

• Wearables

External Knowledge:

• Nest

• New 2015 Logo

• Notebooks & Journals

• Office

• Shop by Brand

• Small Goods

• Stationery

• Wearables

Figure 25: An example of Misunderstanding External Knowledge. The error in predicted SQL
stems from the failure to correctly interpret the external knowledge provided for classifying PDP
and PLP pages. While the predicted SQL uses a simple pattern-matching approach with regular
expressions, it overlooks key aspects of the classification rules, such as the specific URL structure
and the position of a ’+’ sign, which indicates the misunderstanding when trying to leverage the
external knowledge.
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Fig. 26 shows a success case of google patents data. The Spider-Agent receives feedback from
executed queries, allowing it to iteratively refine SQL queries until it achieves a bug-free result.
Automated iterative debugging is one of the key advantages of Spider-Agent.

Fig. 27 shows a success case where Spider-Agent successfully solves a DBT project example. It
first explores the codebase and database, locates where the code needs to be added, writes two
SQL scripts, debugs, and runs the DBT command, ultimately completing the data transformation
successfully.

Fig. 28 shows a failure case where the agent fails to explore the codebase and locate key information
about monthly recurring revenue, resulting in an incorrect SQL query.

Fig. 29 presents a failure case where the model reads the document but fails to transform the complex
document strings into an accurate SQL query.

Fig. 30 illustrates a failure where the model cannot comprehend the database format with nested
columns, leading to multiple unsuccessful attempts at writing the correct code.

Success case 1: about patents analysis

### 17 Steps

Action 0: Bash(code=“ls”)
Action 1: Bash(code=“cat README.md”)
Action 2: BQ GET TABLES(database name=“patents-public-data”, dataset name=“patents”,
save path=“dataset metadata.csv”)
Action 3: BQ GET TABLE INFO(database name=“patents-public-data”, dataset name=“patents”, ta-
ble=“publications”, save path=“publication info.csv”)
Action 4: BQ EXEC SQL(sql query=. . . , is save=False)
Observation-4: Error occurred while fetching data: 400 No matching signature for function DATE Argu-
ment types: INT64 Signature: DATE(TIMESTAMP, [STRING]) Argument 1: Unable to coerce type INT64
to expected type TIMESTAMP
Thought-4: The error indicates that I’m trying to use the DATE function on an INT64 field, which is
invalid. The date fields in the dataset are stored as integers in YYYYMMDD format. I need to convert these
integer date fields to DATE using the PARSE DATE function. I’ll update my SQL query to properly parse
the dates and include the condition for published applications.
. . . . . .
Action-14: BQ EXEC SQL(sql query=. . . , is save=“/workspace/result.csv”)
Observation-14: Error occurred while fetching data: 400 No matching signature for function DATE Argu-
ment types: INT64 Signature: DATE(TIMESTAMP, [STRING]) Argument 1: Unable to coerce type INT64
to expected type TIMESTAMP
Action-15: BQ EXEC SQL(sql query=. . . , is save=“/workspace/result.csv”)
Observation-15: Now that the results are saved to /workspace/result.csv.
Action-16: Terminate(output=“result.csv”)

Figure 26: Success case 1. After multiple rounds of SQL writing and repeated debugging, the correct
answer was obtained.
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Success case 2

### 20 Steps

. . . . . .
Action 3: Bash(code=“ls models/salesforce”)
Action 4: Bash(code=“cat models/salesforce/salesforce.yml”)
Action 5: Bash(code=“cat models/salesforce/salesforce manager performance.sql”)
Action 6: Bash(code=“ls models/salesforce/intermediate”)
Action 7: Bash(code=“cat models/salesforce/intermediate/int salesforce opportunity aggregation by owner.sql”)
Action 8: LOCAL DB SQL(file path=“salesforce.duckdb”, command=“SHOW TABLES;”, out-
put=“direct”)
Action 9: LOCAL DB SQL(file path=“salesforce.duckdb”, command=“SHOW TABLES;”, out-
put=“direct”)
Action 10: CreateFile(filepath=models/salesforce/salesforce daily sales activity.sql’:date spine as (se-
lectdate day as activity . . . )
Action 11: Bash(code=“dbt run”)
Observation 11: I noticed warnings during ‘dbt run‘ indicating that ‘salesforce daily activity‘ is not found.
Since we don’t have a model named ‘salesforce daily activity‘, I should remove references to it from
‘salesforce.yml‘. Additionally, I need to add the new model ‘salesforce daily sales activity‘ to ‘sales-
force.yml‘ with appropriate descriptions
. . . . . .
Action 15: LOCAL DB SQL(file path=“salesforce.duckdb”, command=“SELECT * FROM sales-
force daily sales activity LIMIT 5;”, output=d̈irect)̈
. . . . . .
Action 18: Bash(code=“dbt run”)
Action 19: Terminate(output=“salesforce.duckdb”)

Figure 27: Success Case 2.After multiple rounds of file and DBT operations, the data transformation
task has been successfully resolved.
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Failure case 1

Action 1: Bash(code=“ls -R”)
Action 2: Bash(code=“cat models/customer churn month.yml”)
Action 3: Bash(code=“cat models/customer churn month.sql”)
Action 4: EditFile(filepath=“models/customer churn month.sql”):
. . . . . .
Action 5:Bash(code=“cat models/mrr.yml”)
Action 6:Bash(code=“cat models/mrr.sql”)
Action 7:EditFile(filepath=“models/mrr.sql”):
with unioned as (

select * from {{ ref(’customer_revenue_by_month’) }}
union all
select * from {{ ref(’customer_churn_month’) }}

),

lagged_values as (
select

*,
coalesce(

lag(is_active) over (partition by customer_id order by date_month), false
) as previous_month_is_active,
coalesce( lag(mrr) over (partition by customer_id order by date_month), 0
) as previous_month_mrr

from unioned
)

select
date_month, customer_id, mrr, is_active,
case

when previous_month_is_active = false and is_active = true then ’New Business’
when previous_month_is_active = true and is_active = true and mrr_change > 0 then ’Expansion’
when previous_month_is_active = true and is_active = true and mrr_change < 0 then ’Contraction’
when previous_month_is_active = true and is_active = false then ’Churn’
when previous_month_is_active = true and is_active = true and mrr_change = 0 then ’Renewal’
when previous_month_is_active = false and is_active = false then ’Resurrection’
else ’Other’

end as change_category
from lagged_values

Action 8: Bash(code=“dbt run”)
Action 9: LOCAL DB SQL(file path=“mrr.duckdb”, command=“SELECT * FROM mrr LIMIT 5”, out-
put=“direct”)

Figure 28: Failure case 1. Reasonable data transformation process, but did not follow our predefined
category type.
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Failure case 2

Action 1: Bash(code=“ls -R”)
Action 2: Bash(code=“cat README.md ga4 page category.md”)
Action 3: BQ GET TABLES(database name=“bigquery-public-data”,
dataset name=“ga4 obfuscated sample ecommerce”,save path=“dataset metadata.csv”)
Action 4: Bash(code=“cat dataset metadata.csv”)
Action 5: BQ GET TABLE INFO(database name=“bigquery-public-data”,dataset name=
“ga4 obfuscated sample ecommerce”, table=“events 20210109”, save path=“ga4 info.csv”)

WITH pdp_pages AS (
SELECT
event_params.value.string_value AS page_location

FROM
‘bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_20210102‘,
UNNEST(event_params) AS event_params

WHERE
event_name = ’page_view’
AND event_params.key = ’page_location’
AND REGEXP_CONTAINS(event_params.value.string_value, r’

\/[ˆ\/]+\/[ˆ\/]+\/[ˆ\/]+\/[ˆ\/]+\/[ˆ\/]*\+[ˆ\/]*\/’)
AND REGEXP_CONTAINS(event_params.value.string_value, r’\/(Accessories|Apparel|Brands|Campus Collection|

Drinkware|Electronics|Google Redesign|Lifestyle|Nest|New 2015 Logo|Notebooks & Journals|Office|
Shop by Brand|Small Goods|Stationery|Wearables)\/’)

),
total_page_views AS (
SELECT
COUNT(*) AS total_views

FROM
‘bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_20210102‘

WHERE
event_name = ’page_view’

)
SELECT
(SELECT COUNT(*) FROM pdp_pages) * 100.0 / total_page_views.total_views AS pdp_percentage

FROM
total_page_views

. . . . . .
Action 9: Terminate(output=“result.csv”)

Figure 29: Failure case 2. Cannot ground the complex document into SQL.

Failure case 3

Action 1: Bash(code=“ls -R”)
Action 2: BQ GET TABLES(database name=“bigquery-public-data”,
dataset name=“ga4 obfuscated sample ecommerce”,save path=“dataset metadata.csv”)
Action 3: Bash(code=“cat dataset metadata.csv”)
Action 4: BQ GET TABLE INFO(database name=“bigquery-public-data”,dataset name=
“ga4 obfuscated sample ecommerce”, table=“events 20210109”, save path=“ga4 info.csv”)

SELECT
event_timestamp,
event_params.key,
event_params.value.string_value AS page_location

FROM
‘bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_20210128‘,
UNNEST(event_params) AS event_params

WHERE
user_id = ’1362228’
AND event_date = ’20210128’

ORDER BY
event_timestamp

. . . . . .
Action 9: Terminate(output=“result.csv”)

Figure 30: Failure case 3. Cannot understand the complex nested schema.
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C.6 PROMPTS OF SPIDER-AGENT

Following the ReAct (Yao et al., 2022) prompting framework, which guides models in breaking
down complex problems into manageable steps through an iterative chain of reasoning (Reasoning),
action (Action), and observation (Observation) phases, where the current state is observed after each
action before proceeding to the next step of reasoning, we build the Spider-Agent. Below, we will
introduce the system messages and actions used within this framework.

System Prompt

System Prompt

You are a data scientist proficient in database, SQL and DBT Project. You are starting in the {work dir}
directory, which contains all the data needed for your tasks. You can only use the actions provided in the
action space to solve the task.

### [Action space]: {action prompts}

### [Notice]
1. First, run “ls‘ to check the current folder for files. If there are other markdown files, read them as they
may contain useful information.
2. Examine the database schema folder, you fully understand the structure schema of the database.
3. Use appropriate SQL execution action to run queries.
4. Be prepared to write multiple SQL queries to find the correct answer. If an error occurs, revisit the
database information and previous queries to adjust your SQL accordingly.
5. Ensure the results are valid. If the result.csv file is empty or only contains a header, the SQL query is
incorrect. The final result should be either saved as a CSV or directly provided as a text answer, not an
intermediate step or SQL statement.
6. After completing the task, verify the output data against the definitions. For dbt projects, after writing the
SQL, run dbt run to update the database and confirm the new data models meet the YAML file definitions.

### [Response format]
For each task input, your response should contain:
1. One analysis of the task and the current environment, reasoning to determine the next action (prefix
“Thought: ”).
2. One action string in the ACTION SPACE (prefix “Action: ”).

### [Example interaction]
Observation: ...(the output of last actions, as provided by the environment and the code output, you don’t
need to generate it)
Thought: ...
Action: ...

### [Task]: {Task}

Action Space Prompt

Bash

## Bash Action
* Signature: Bash(code=“shell command”)
* Description: This action string will execute a valid shell command in the code field. Only non-interactive
commands are supported. Commands like ”vim” and viewing images directly (e.g., using “display”) are
not allowed.
* Example: Bash(code=“ls -l”)

CreateFile

## CreateFile Action
* Signature: CreateFile(code=“shell command‘)
* Description: This action string will execute a valid shell command in the ‘code‘ field. Only non-interactive
commands are supported. Commands like “vim‘ and viewing images directly (e.g., using “display‘) are not
allowed.
* Example: CreateFile(code=“ls -l”)
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EditFile

## EditFile
* Signature: EditFile(filepath=“path/to/file”):
‘‘‘
File content
‘‘‘
* Description: This action will overwrite the file specified in the filepath field with the content wrapped in
paired symbols. Normally, you need to read the file before deciding to use EditFile to modify it.
* Example: EditFile(filepath=“hello world.py”):
‘‘‘
print(“Hello, world!”)
‘‘‘

BIGQUERY EXEC SQL

## BIGQUERY EXEC SQL
* Signature: BIGQUERY EXEC SQL(sql query=“SELECT * FROM your table”, is save=True,
save path=“/workspace/output file.csv”)
* Description: Executes a SQL query on Google Cloud BigQuery. If “is save‘ is True, the results are saved
to a specified CSV file; otherwise, results are printed. If you estimate that the number of returned rows is
small, you can set is save=False, to directly view the results. If you estimate that the number of returned
rows is large, be sure to set is save = True. The ‘save path‘ CSV must be under the ‘/workspace‘ directory.
* Examples:
- Example1: BIGQUERY EXEC SQL(sql query=“SELECT count(*) FROM sales”, is save=False)
- Example2: BIGQUERY EXEC SQL(sql query=“SELECT user id, sum(purchases) FROM transactions
GROUP BY user id”, is save=True, save path=“/workspace/result.csv”)

GET TABLES

## GET TABLES
* Signature: GET TABLES(database name=“your database name”, dataset name=“your dataset name”,
save path=“path/to/output file.csv”)
* Description: Executes a query to fetch all table names and their corresponding DDL from the specified
dataset in Google Cloud BigQuery. The results are saved to the specified CSV file.
- The BigQuery id of a table is usually in the form of database name.dataset name.table name. This action
mainly focuses on the tables under dataset name.
* Examples:
- Example1: GET TABLES(database name=“bigquery-public-data”, dataset name=“new york”,
save path=“dataset metadata.csv”)

GET TABLES INFO

## GET TABLE INFO Action
* Signature:
GET TABLE INFO(database name=“your database name”, dataset name=“your dataset name”, ta-
ble=“table name”, save path=“path/to/output file.csv”)
* Description: Executes a query to fetch all column information (field path, data type, and description) from
the specified table in the dataset in Google Cloud BigQuery. The results are saved to the specified CSV file.
- The BigQuery id of a table is usually in the form of database name.dataset name.table name.
* Examples:
- Example1: GET TABLE INFO(database name=“bigquery-public-data”, dataset name=“samples”, ta-
ble=“shakespeare”, save path=“shakespeare info.csv”)

SAMPLE ROWS

## SAMPLE ROWS Action
* Signature:
SAMPLE ROWS(database name=“your database name”, dataset name=“your dataset name”, ta-
ble=“table name”, save path=“path/to/output file.csv”)
* Description: Executes a query to fetch all column information (field path, data type, and description) from
the specified table in the dataset in Google Cloud BigQuery. The results are saved to the specified CSV file.
- The BigQuery id of a table is usually in the form of database name.dataset name.table name.
* Examples:
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- Example1: SAMPLE ROWS(database name=“bigquery-public-data”, dataset name=“samples”, ta-
ble=“shakespeare”, save path=“shakespeare info.csv”)
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