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Abstract
In this work, we propose counterfactual data aug-
mentation methods, guided by knowledge of the
causal structure of the data, to simulate inter-
ventions on spurious features. Our main moti-
vation is classifying medical notes, and we use
these methods to learn more robust text classi-
fiers. In prediction problems where the label is
spuriously correlated with an attribute, and under
certain assumptions, we show that this strategy
is appropriate and can enjoy improved sample
complexity compared to importance re-weighting.
Pragmatically, we match examples using auxil-
iary data, based on diff-in-diff methodology, and
use a large language model (LLM) to represent
a conditional probability of text. Experiments
on learning caregiver-invariant predictors of clin-
ical diagnoses from medical narratives and on
semi-synthetic data, demonstrate that our method
improves out-of-distribution (OOD) accuracy.

1. Introduction
The reliance of Machine Learning models on spurious corre-
lations can compromise safety and degrade performance in
applications such as medical imaging (Zech et al., 2018; De-
Grave et al., 2021), text classification (McCoy et al., 2019),
and risk prediction systems (Caruana et al., 2015). Failures
occur under distribution shift (Quinonero-Candela et al.,
2008; Subbaswamy et al., 2019; Finlayson et al., 2021),
which may result from differences in data recording proto-
cols, shifts in the underlying population being monitored, or
the way the model is being used. In this paper, we focus on
text classification and explore how domain-informed use of
language models can help us avoid such failures.

Consider a scenario where we want to make robust predic-
tions about patients’ conditions, probability of readmission,
etc., using clinical narratives written in hospitals (Spyns,
1996; Zhou and Hripcsak, 2007). A common issue arises
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when patients with certain conditions are directed to specific
caregivers in the hospital. When we train a predictor on data
that exhibits a correlation between caregiver-specific style
and clinical outcomes, the predictor may unintentionally
rely on the style to make predictions. This leads to poor
OOD generalization on data from unseen hospitals, due to
changes in clinical practice (Finlayson et al., 2021).

In this work we develop causally-driven data augmentation
methods, that leverage auxiliary data (e.g., time, document
type, demographics) and domain knowledge (e.g. some
traits, like demographics, may affect the caregiver a patient
sees) to improve model robustness. Drawing on methods
for learning invariant and shift-stable models (Peters et al.,
2016; Magliacane et al., 2018; Arjovsky et al., 2019; Sub-
baswamy et al., 2019), and on the success of data augmenta-
tion in improving OOD generalization (Robey et al., 2021;
Yao et al., 2022; Gao et al., 2023; Kaushik et al., 2019), our
work lies at the intersection of these subfields (see short
review of related work in Appendix A).

Intuitively, generating versions of clinical narratives as if
they had been written by different caregivers (i.e. approxi-
mating counterfactual texts), de-correlates the writing style
from the patient condition we wish to predict. However,
it is difficult to achieve such data generation in practice
and problem-specific traits must be taken into account (Ko-
caoglu et al., 2018). We draw on common causal inference
methods to improve counterfactual estimation. While our
approach can be applied to many modalities of data, in this
work we focus on text classification and harness recent ad-
vances in LLMs. We present a formal setting motivating
counterfactual augmentation for OOD generalization (§2),
and our methods for counterfactual estimation (§3). Finally,
we present our main experimental results (§4).

2. Problem Setting
Consider a classification problem with L classes where the
label Y is spuriously correlated with a known attribute C (i.e.
the correlation may change arbitrarily at test time, denoted
by a red edge C↔Y in Figure 1). This setting has been used
previously to study learning with “shortcuts” (Makar et al.,
2022) and spurious correlations (Veitch et al., 2021).

In our medical notes example, C is the caregiver writing the
note and Y is the underlying condition we wish to diagnose.
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Figure 1: Predic-
tion problem with
a spuriously corre-
lated attribute.

We denote the number of caregivers
in our training data by K. For a
hypothesis h ∶ X → RL and distribu-
tion P , the expected accuracy is de-
noted byRℓ01

P (h) and expected loss
under a function ℓ ∶ RL × [L] → R
byRℓ

P (h). The data-generating pro-
cess is depicted by the causal model
in Figure 1, for our motivating exam-
ple of clinical notes classification X
is a vector representation of the clin-
ical note and X∗ is an unobserved
sufficient statistic, representing all
the relevant information about Y in
the note that is unaffected by the writing style of the care-
giver. Let us formally define this setting.

Definition 2.1. The set of distributions induced by interven-
tions on a causal model with structure in Figure 1 is

P = {P (X ∣X∗,C)P (X∗ ∣ Y )P (Y )P̃ (C ∣ Y ) ∶
P̃ (C ∣ Y = y) ∈∆K−1 ∀y ∈ [L]},

where all distributions other than P̃ (C ∣ Y ) are fixed. In
a prediction problem with a spuriously correlated attribute,
the learner is provided with a set {(xi, yi, ci)}Ni=1 sampled
i.i.d from Ptrain ∈ P . We assume that X∗ = e(X) almost
surely for some e ∶ Rd → Rd∗ .

In this problem, once X∗ is recovered no additional infor-
mation from X is needed to predict Y . In clinical note
classification, X∗ represents all the information in the note
about the patient conditions, unsullied by the writing style
of caretaker C. To obtain h∗(x) we will rely on risk mini-
mization w.r.t a distribution where Y and C are uncorrelated.
Consider the unconfounded distribution P� ∈ P given by
intervening on C, setting it independent of Y and uniformly
distributed, P̃ (C ∣ Y ) = Punif(C). An optimal classifier
under P� is min-max optimal in the following sense.

Lemma 2.2. For the prediction problem in Definition 2.1,
the Bayes optimal classifier under the unconfounded distri-
bution P� ∈ P where C is uniformly distributed and inde-
pendent of Y is h∗(x) = argmaxy∈[K] P�(Y = y ∣ X∗ =
e(x)). It is a minimizer of minh∶X→[L]maxP ∈P Rℓ01

P (h)
andRℓ01

P (h∗) =R
ℓ01
P�
(h∗) for all P ∈ P .

Hence we would like to minimize risk w.r.t P� and we can-
not do that directly via ERM since our training data is sam-
pled from Ptrain ≠ P�. Instead we consider risk minimization
over a dataset augmented with counterfactual instantiations
of training data under different values of C.

MinimizingRP� via Counterfactual Data Augmentation.
Returning to our motivating example, assume that we could
obtain the clinical notes that would have been written if each

patient had been seen by all possible caregivers c ∈ [K],
each writing their own version of the note xi(c). Given
these counterfactual clinical notes, we seek a hypothesis that
minimizes the average loss over all such possible scenarios.

Definition 2.3. Consider a prediction problem with a
spuriously-correlated attribute. For an example xi, we de-
note the counterfactual with attribute value c ∈ [K] as de-
rived from the corresponding causal model, by xi(c). For
estimates of the counterfactuals {x̂i(c)}i∈[N],c∈[K] and hy-
pothesis h ∈ H, the counterfactually augmented empirical
risk is R̂ℓ

aug(h) = (NK)−1∑i∈[N],c∈[K] ℓ (h (x̂i(c)) , yi).

We use approximate counterfactuals x̂i(c) in our definition
to highlight that in practice we cannot obtain a precise
estimate of xi(c). It is easy to show that in the ideal case
where x̂i(x) = xi(c), the expected loss Rℓ

aug(h) where
N → ∞, satisfies Rℓ

aug(h) = Rℓ
P�
(h) and the technique

minimizes risk under P�. Our main challenge is then to
derive effective approximations for counterfactuals such
as clinical notes under alternative writing styles.

3. Assumptions and Algorithms for Estimating
Counterfactuals

Perfectly capturing writing style is a strong assumption.
Even if we could perfectly model writing styles, we only
observe a limited set of variables - the actual notes x, out-
comes y, and assigned caregivers c. Other factors could
influence what each caregiver would write. To alleviate this,
we use auxiliary data M that is available during training,
but might not be available in deployment.

As an example, consider two caregivers c and c̃, where a note
xi was written by ci = c̃. We want to estimate what xi(c),
the note caregiver c would have written, might look like. To
this end we learn a model τc(⋅) that takes data and gener-
ates a note in caregiver c’s style. Now suppose caregiver c
usually sees patients with high blood pressure and always in-
cludes blood pressure values in notes, while c̃ rarely does. A
naive model x̂i(c) = τc(xi) learned only from c’s notes may
fill in false blood pressure information, conflating that with
c’s style. Including vitals data like blood pressure, typically
recorded in a patient’s health record, provides additional
context for our model. This extra information assists the
model in achieving more accurate estimates.

Using auxiliary data for counterfactual augmentation.
To make effective use of this data, we suggest that the input
to the model τc ∶ X ×M → X will include a baseline
text to be edited and auxiliary data m. Our main use of
m is to match units that are similar in their auxiliary data.
In our example these are things such as vitals and drug
prescriptions, and also includes the label y since we usually
would like to preserve it. We specify the construction of τc
in the following subsection.
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Algorithm 1 CATO

Input: Training set {(xi, yi, ci,mi)}Ni=1, Hypothe-
sis class H, Version ∈ {(A), (B)}, Optional pre-
treatment data {(xpre,i)}Ni=1.
if Version = (A) then

Get τc(m,x) with preprocess (A)
Get x̂i(c) = τc(xi,pre,mi) ∀i ∈ [N]

else
Get τc(m,x) with preprocess (B)
Get x̂i(c) = τc(xi,mi) ∀i ∈ [N]

end if
Return: haug ∈H that minimizes R̂ℓ

aug.

3.1. Implemented Methods

Our framework for estimating xi(c), CATO (Causal-
structure Driven Augmentations for Text OOD Generaliza-
tion), involves the use of an LLM to model the conditional
probability distribution of text. Counterfactuals are formed
by matching similar auxiliary data examples or manipulat-
ing texts’ vector representations, as described below.

Prompting with matched examples. Our first estimation
method in Algorithm 1(B) draws insights from matching
(Rosenbaum and Rubin, 1983). We construct a prompt for
an LLM, that given an original text x and a set of context
notes, asks the LLM to rewrite x in their style. Now given
text x with auxiliary data m that we wish to estimate with
counterfactual value c (i.e. writing style), τc(x,m) runs this
prompt with context notes whose auxiliary data is similar to
m and their attribute value equals the desired c.

Diff-in-diff estimation. The procedure we use for medical
note generation relies on additional structure involving panel
data (i.e. data collected over time intervals across several
individuals). A clinical narrative is usually consisted of sev-
eral notes taken over the course of a patient’s visit, each may
be written by a different caregiver. Prediction is made using
the release note from the hospital whose embedding consists
our features x. For simplicity let us consider a single note
xpre taken prior to x. Difference-in-difference (Card and
Krueger, 1993; Abadie, 2005; Angrist and Pischke, 2009)
estimation of causal effect is based on the parallel-trends, or
constant effect assumption that two units i, j with similar
pre-treatment conditions would have seen the same effect
had they been assigned the same treatment (in our case, the
caregiver). Hence we assume our auxiliary data m includes
cpre, the caregiver assigned pre-treatment.

Assumption 3.1 (constant effect). Let xi,pre be the pre-
treatment features for unit i, and assume mi includes the
pre-treatment attribute ci,pre. There exists a function ρ ∶
[K] ×M→ X such that xi(c) = xi,pre + ρ(c,mi).

Under this assumption, to calculate xi(c) we can use any
unit j for which mi = mj and has cj = c to estimate
ρ(c,mi) = xj−xpre,j . The resulting estimation procedure is

Pre-process CATO (A)

Assume: m includes the label y and pre-treatment at-
tribute cpre. We are given {xj,pre}Nj=1.
Set ρ(cj ,mj) = xj − xj,pre for j ∈ [N].
Return τc(x,m) ∶= xpre + ρ(c,m)

Pre-process CATO (B)

Assume: m includes the label y.
Return: prompt τc(x,m) that rewrites x in the style of
matching examples, i.e. {xj ∶ (mj , cj) = (m, c)}.

given in Algorithm 1(B) and illustrated in Appendix C.1.3.

3.2. Sample Complexity Comparison

Reasoning about counterfactuals with problem-specific do-
main knowledge is a considerable challenge, and a simple
alternative to that relies on less stringent assumptions in-
volves re-weighting the loss function (see e.g. Shimodaira
(2000); Makar et al. (2022)).

Reweighting baseline. Intuitively, re-weighting sam-
ples from the uncorrelated distribution P (Y,C) =
P (Y )P (C) by setting for each example i a weight wi =
Ptrain(Y = yi)Ptrain(C = ci)/Ptrain(Y = yi,C = ci)
and minimizing the weighted empirical risk R̂ℓ

w(h) =
1
m ∑i∈[m]wiℓ (h(xi), yi). It can be proved that at the limit
of infinite data the method learns a min-max optimal hy-
pothesis, as it also effectively minimizesRl

P�
(see (Makar

et al., 2022)). Hence it may seem like we do not stand to
gain much from using augmentations. However, by com-
bining results from Cortes et al. (2010) and a bound we
prove in Lemma B.2 (see Appendix B), we can reason about
the respective sample complexities of these methods. For
reweighting the sample complexity scales as (d2,train(Y,C) ⋅
N)−1/2, where d2,train is the exponent of the 2-Rényi diver-
gence which measures dependence between Y and C in the
training data. However for counterfactual data augmenta-
tion the scale is N−1/2 + d1 (Ptrain(τc(X,M)), P (X(c))),
where the total variation divergence d1(⋅, ⋅) measures how
well the augmentation τc estimates counterfactuals. We
gather that when the spurious correlation is strong, yet data
augmentation is accurate, our method may enjoy improved
performance. Please see Appendix B for details.

Additional baselines. Counterfactuals are not the only type
of causal knowledge that may be leveraged for learning
more stable models. Many data dependent penalty terms
have been proposed to impose conditional independence
constraints drawn from the causal structure of the problem.
Theory on these methods usually shows improved OOD
performance under infinite data (Arjovsky et al., 2019; Wald
et al., 2021; Puli et al., 2022; Veitch et al., 2021). Our
baselines include a method based on the Maximum-Mean
Discrepency (MMD) from Makar et al. (2022) who show
improved sample complexity under a linear hypothesis class.
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4. Experiments
We empirically study the following questions: (1) Can
CATO enhance OOD performance of downstream classi-
fiers? (2) Does it surpass the combination of reweighting
and invariance penalties? (3) Is it more effective than al-
ternative augmentation techniques, thus demonstrating the
usefulness of the causal graph? (4) How sensitive is CATO
to quality of counterfactuals?

See Appendix C for further details about the experiments.

Baselines. We compare CATO to several baselines:

• Observational - Baseline model trained on the original
data. PubMED BERT (Gu et al., 2021) for clinical
narratives, logistic regression for restaurant reviews.

• Reweighting - Baseline model with sample reweighting.
• MMD - Baseline model with an MMD penalty.
• Naive Augmentations - Baseline model on a dataset that

also includes augmentations, generated by prompting an
LLM to create more examples.

• Conditional Augmentations - Augmentations are gen-
erated by matching on auxiliary data and prompting an
LLM to create one example in the the style of the other.

4.1. Clinical Narratives

Data. We consider three representative clinical NLP tasks,
clinical condition prediction, note segmentation and demo-
graphic traits identification1, for which we have both ID
and OOD data. We utilize several electronic health records
(EHR), training on MIMIC-III (Johnson et al., 2016). and
i2b2 competitions as our held-out hospital datasets.

ID (MIMIC-III) OOD (i2b2-2010)
60

70

80

90

F
1

Observational
+ Reweighting

++ MMD
Naive Aug.
CATO (A)

Figure 2: Results (F1 averaged across 5 runs) for predicting
clinical conditions . CATO (A) outperforms on OOD data.

Clinical Condition Prediction. Clinical condition predic-
tion is a concept extraction task focused on medical concepts
in patient reports (Uzuner et al., 2011). Here we trained
PubMED BERT models on a subset of MIMIC-III, labelled

1See Appendix C for results on the demographic traits identifi-
cation and note segmentation.

using the same annotation guidelines as in i2b2-2010, the
OOD dataset the models are tested on. As can be seen in
the Figure 2, in the ID setting only the naive augmenta-
tions improve performance slightly. In the OOD setting, all
OOD methods help (reweighting, MMD, CATO (A)), but
our causally-motivated augmentation approach is substan-
tially better than the alternatives. On average (across 5 runs),
CATO (A) improves precision above the baseline by more
than 7% (absolute), and recall by more than 8%. The naive
augmentation approach improves over the vanilla PubMED
BERT model, but is outperformed by all OOD methods.

4.2. Restaurant Reviews

Data. We use the CEBaB dataset (Abraham et al., 2022),
which consists of short restaurant reviews and ratings from
OpenTable, including evaluations for food, service, noise,
ambiance, and an overall rating. We construct two experi-
mental settings: the original CeBAB dataset, and a modified
version, denoted as CeBAB-Spurious, where there’s a spuri-
ous correlation between training and deployment.

To construct CeBAB-Spurious, we leverage the availability
of both the original and perceived ratings for each review
in CeBAB. The original rating represents the reviewer’s ini-
tial thoughts when writing the review, while the perceived
rating indicates whether the review contains information
about various restaurant attributes (e.g., food, service, noise,
ambiance) and their associated sentiment. We utilize this
unique data structure to capture reviewers’ writing styles.
Some reviewers are concise and provide limited descrip-
tions, while others are more descriptive and include more
information. To incorporate this variability, we introduce a
new attribute called food-mention to signify the presence of
food-related information in a review. If the perceived food
rating is either negative or positive, we assign a value of 1
to the food-mention attribute; otherwise, it is set to 0. We
subsample the data such that there is a correlation of 0.72
between food-mention and the outcome.

Method CeBAB CeBAB-Spur.

Observational 0.85 0.64
Reweighting 0.84 0.68
Naive Aug. 0.80 0.62
Conditional Aug. 0.84 0.70
CATO (B) 0.84 0.75

Table 1: Accuracy on CeBAB and CeBAB-Spurious. CATO
(B) outperforms all baselines under a spurious correlation.

Results. As shown in Table 1, adding counterfactual aug-
mentations leads to better OOD generalization, while naive
data augmentation hurts model performance In line with
the sample complexity argument in Section 3, conditional
augmentation effectively doesn’t add new data and therefore
doesn’t improve model performance.

https://www.opentable.com/


220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Causal-structure Driven Augmentations

References
John R Zech, Marcus A Badgeley, Manway Liu, Anthony B

Costa, Joseph J Titano, and Eric Karl Oermann. Variable
generalization performance of a deep learning model to
detect pneumonia in chest radiographs: a cross-sectional
study. PLoS medicine, 15(11):e1002683, 2018.

Alex J DeGrave, Joseph D Janizek, and Su-In Lee. Ai
for radiographic covid-19 detection selects shortcuts over
signal. Nature Machine Intelligence, 3(7):610–619, 2021.

R Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. arXiv preprint
arXiv:1902.01007, 2019.

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch,
Marc Sturm, and Noemie Elhadad. Intelligible models
for healthcare: Predicting pneumonia risk and hospital
30-day readmission. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discov-
ery and data mining, pages 1721–1730, 2015.

Joaquin Quinonero-Candela, Masashi Sugiyama, Anton
Schwaighofer, and Neil D Lawrence. Dataset shift in
machine learning. Mit Press, 2008.

Adarsh Subbaswamy, Peter Schulam, and Suchi Saria. Pre-
venting failures due to dataset shift: Learning predictive
models that transport. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages
3118–3127. PMLR, 2019.

Samuel G Finlayson, Adarsh Subbaswamy, Karandeep
Singh, John Bowers, Annabel Kupke, Jonathan Zittrain,
Isaac S Kohane, and Suchi Saria. The clinician and
dataset shift in artificial intelligence. New England Jour-
nal of Medicine, 385(3):283–286, 2021.

Peter Spyns. Natural language processing in medicine: an
overview. Methods of information in medicine, 35(04/05):
285–301, 1996.

Li Zhou and George Hripcsak. Temporal reasoning with
medical data—a review with emphasis on medical natural
language processing. Journal of biomedical informatics,
40(2):183–202, 2007.
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Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David
Lopez-Paz. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

Alexander Robey, George J. Pappas, and Hamed Hassani.
Model-based domain generalization. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, edi-
tors, Neural Information Processing Systems (NeurIPS),
2021. URL https://openreview.net/forum?
id=JOxB9h40A-1.

Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin
Liang, James Zou, and Chelsea Finn. Improving out-
of-distribution robustness via selective augmentation. In
International Conference on Machine Learning, pages
25407–25437. PMLR, 2022.

Irena Gao, Shiori Sagawa, Pang Wei Koh, Tatsunori
Hashimoto, and Percy Liang. Out-of-domain ro-
bustness via targeted augmentations. arXiv preprint
arXiv:2302.11861, 2023.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lip-
ton. Learning the difference that makes a difference
with counterfactually-augmented data. arXiv preprint
arXiv:1909.12434, 2019.

Murat Kocaoglu, Christopher Snyder, Alexandros G. Di-
makis, and Sriram Vishwanath. CausalGAN: Learning
causal implicit generative models with adversarial train-
ing. In International Conference on Learning Represen-
tations, 2018. URL https://openreview.net/
forum?id=BJE-4xW0W.

Maggie Makar, Ben Packer, Dan Moldovan, Davis Blalock,
Yoni Halpern, and Alexander D’Amour. Causally moti-
vated shortcut removal using auxiliary labels. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 739–766. PMLR, 2022.

Victor Veitch, Alexander D’Amour, Steve Yadlowsky, and
Jacob Eisenstein. Counterfactual invariance to spurious
correlations in text classification. Neural Information
Processing Systems (NeurIPS), 34:16196–16208, 2021.

Paul R Rosenbaum and Donald B Rubin. The central role
of the propensity score in observational studies for causal
effects. Biometrika, 70(1):41–55, 1983.

David Card and Alan B Krueger. Minimum wages and
employment: A case study of the fast food industry in
new jersey and pennsylvania, 1993.

Alberto Abadie. Semiparametric difference-in-differences
estimators. The review of economic studies, 72(1):1–19,
2005.

https://openreview.net/forum?id=JOxB9h40A-1
https://openreview.net/forum?id=JOxB9h40A-1
https://openreview.net/forum?id=BJE-4xW0W
https://openreview.net/forum?id=BJE-4xW0W


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Causal-structure Driven Augmentations

Joshua D Angrist and Jörn-Steffen Pischke. Mostly harmless
econometrics: An empiricist’s companion. Princeton
university press, 2009.

Hidetoshi Shimodaira. Improving predictive inference under
covariate shift by weighting the log-likelihood function.
Journal of statistical planning and inference, 90(2):227–
244, 2000.

Corinna Cortes, Yishay Mansour, and Mehryar Mohri.
Learning bounds for importance weighting. In J. Laf-
ferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Cu-
lotta, editors, Neural Information Processing Systems
(NeurIPS), volume 23. Curran Associates, Inc., 2010.

Yoav Wald, Amir Feder, Daniel Greenfeld, and Uri Shalit.
On calibration and out-of-domain generalization. Neu-
ral Information Processing Systems (NeurIPS), 34:2215–
2227, 2021.

Aahlad Manas Puli, Lily H Zhang, Eric Karl Oermann, and
Rajesh Ranganath. Out-of-distribution generalization in
the presence of nuisance-induced spurious correlations.
In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=12RoR2o32T.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng Gao,
and Hoifung Poon. Domain-specific language model pre-
training for biomedical natural language processing. ACM
Transactions on Computing for Healthcare (HEALTH), 3
(1):1–23, 2021.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H
Lehman, Mengling Feng, Mohammad Ghassemi, Ben-
jamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger G Mark. Mimic-iii, a freely accessible critical care
database. Scientific data, 3(1):1–9, 2016.
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Appendix

A. Related Work
Invariant and Shift-stable Learning. This paper contributes to the growing literature on invariant and shift-stable
learning, which tackles the problem of learning models that generalizes across different distributions or settings. Invariant
learning through feature pruning was pioneered by Peters et al. (2016), and has since been developed for variable selection
(Magliacane et al., 2018; Heinze-Deml et al., 2018) and representation learning (Li et al., 2018; Arjovsky et al., 2019;
Wald et al., 2021; Krueger et al., 2021; Puli et al., 2022; Makar et al., 2022; Jiang and Veitch, 2022). These methods have
been applied in a range of domains, including natural science (Peters et al., 2016; Magliacane et al., 2018; Heinze-Deml
et al., 2018), causal estimation (Shi et al., 2021; Yin et al., 2021), computer vision (Arjovsky et al., 2019; Krueger et al.,
2021), and NLP (Veitch et al., 2021; Feder et al., 2022a;b). However, recent studies have highlighted limitations in many
invariant learning approaches, particularly in achieving conditional independence (Kamath et al., 2021; Rosenfeld et al.,
2020; Guo et al., 2021; Wald et al., 2022). Others have investigated learning of stable models by leveraging causal methods
through techniques like graph-surgery (Subbaswamy et al., 2019; 2022), that come with generalization guarantees. Yet
others have explored the advantages of data augmentation (Kaushik et al., 2019; 2020). In this work, we combine the latter
two approaches to improve OOD generalization for text based classification.

Counterfactually Augmented Data. To learn invariant predictors, a popular and straightforward approach is data
augmentation: construct counterfactual instances, and incorporate them into the training data. These counterfactuals involve
perturbations to confounding factors (Garg et al., 2019), or to the label (Kaushik et al., 2019; 2020; Jha et al., 2020).
Counterfactual examples can be generated through manual editing, heuristic keyword replacement, or automated text
rewriting (Kaushik et al., 2019; Gardner et al., 2020; Shekhar et al., 2017; Garg et al., 2019; Feder et al., 2021; Zmigrod et al.,
2019; Riley et al., 2020; Wu et al., 2021; Mao et al., 2021). Manual editing is accurate but expensive, while keyword-based
methods can be limited in coverage and difficult to generalize across languages (Antoniak and Mimno, 2021). Generative
approaches offer a balance of fluency and coverage (Zhou and Wu, 2023). Counterfactual examples help address causal
inference’s missing data issues, but generating meaningful counterfactuals is challenging (Calderon et al., 2022). Our work
uses causal auxiliary data structure and LLMs to create plausible counterfactuals, enhancing OOD performance.

Clinical Notes. Clinical notes are the backbone of electronic health records, often containing vital information not observed
in other structured data Kreimeyer et al. (2017). Clinical NLP involves identifying this information, and standardized
datasets and competitions exist for this purpose (Uzuner, 2009; Savova et al., 2010; Jensen et al., 2012; Ford et al., 2016;
Zhu et al., 2018). Best performing approaches have leveraged transformer architectures both for token-level classification
tasks (Peng et al., 2019; Yadav and Bethard, 2019; Si et al., 2019; Lee et al., 2020), and for using complete clinical records
(Roussinov et al., 2022; Seinen et al., 2022). Recently, large language models (LLMs), similar to those we use to generate
counterfactual notes, were shown to have clear potential for improving clinical NLP systems (Singhal et al., 2022; Ayers
et al., 2023). In our experiments, we follow recent papers in clinical NLP addressing challenges of degraded performance
across different hospitals (Feder et al., 2022c; Zhang et al., 2022; Feder et al., 2020).

B. Proofs of Formal Claims
Notation. We will use random variables C,Y,M,X with images [K],Y = [L],M,X respectively in our probabilistic
causal models. For a function τc ∶ X ×M → X , and measure P over sets in X ×M, we denote by τc,∗P (X,M) the
pushforward measure (Tao, 2011, §1.4). τc(⋅) will be used to refer to the c-th coordinate of the output of a function
τ ∶ X ×M → XK . The notation H will be used for hypothesis classes where h ∶ X → Y for any h ∈ H. The 0 − 1 loss
ℓ01 ∶ Y ×Y → {0,1} is given by ℓ01(ŷ, y) = 1ŷ≠y . For a node V in a causal graph we will use pa(V ) for its causal parents.

For completeness we rewrite the definition of our data generating process from the main paper, this time adding the auxiliary
data M into our model.
Definition 2.1. Consider a probabilistic causal model with endogenous random variables X,X∗, Y,C,M taking on values
in X ,X ∗, [L], [K],M and exogenous independent random variables (Peters et al., 2017) NX ,NX∗,NY ,NC ,NM

, where the
induced graph is a DAG that satisfies the following,

• Y is d-separated from X by X∗,C,M and also by X∗,C.

• Y,X∗ are not descendants of C.
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An anti-causal prediction problem with a spuriously-correlated attribute is a set of distributionsP obtained by all interventions
on C that replaces the distribution of exogenous noise NC , mechanism fC(pa(C),NC) with another mechanism (i.e. a
measurable function f̃(pa(C),NC)), or sets a fixed value (i.e. do(C = c)). Under the settings of this problem, a learner is
provided with a set {(xi, yi, ci)}Ni=1 sampled i.i.d from Ptrain ∈ P .

We denote by P� ∈ P the distribution obtained by intervening on C and setting it to a uniform distribution, i.e.
P�(X,X∗, Y,C,M) =K−1∑c∈[K] P (Y,X,X∗,M ∣ do(C = c)). Note that the problem described by Figure 1 and Defini-
tion 2.1 of the main paper is a special case of this setting where M is discarded, and P� coincides with setting P̃ (C ∣ Y ) to
a uniform distribution.

Recall our assumption about perfect recovery of X∗.
Assumption B.1. For an anti-causal prediction problem with a spuriously correlated attribute, we assume that X∗ = e(X)
a.e. for some e ∶ X → X ∗.

Under these conditions h(x) = argmaxy∈[L] P�(Y = y ∣X = x) is an optimal risk-invariant predictor as described below.
Lemma 2.2. For the prediction problem in Definition 2.1, the Bayes optimal classifier under the unconfounded distribution
P� ∈ P where C is uniformly distributed and independent of Y is h∗(x) = argmaxy∈[K] P�(Y = y ∣ X∗ = e(x)). It is a
minimizer of minh∶X→[L]maxP ∈P Rℓ01

P (h) andRℓ01
P (h∗) =R

ℓ01
P�
(h∗) for all P ∈ P .

Proof. Assume Ptrain ∈ P is the distribution from which our training data is obtained. We will show that any hypothesis
satisfying h(X) = g ○ e(X) for some g ∶ X ∗ → Y (i.e. that only depends on X∗) achieves the same risk over all P ∈ P . To
this end note that for such a hypothesis we have,

Rℓ01
Ptrain
(h) = ∫ ℓ01(h(X), Y )Ptrain(X ∣ Y,C,X∗,M)Ptrain(Y,C,X∗,M)dX∗dXdY dCdM

= ∫ ℓ01(g ○ e(X), Y )Ptrain(X ∣ C,X∗,M)Ptrain(Y,C,X∗,M)dX∗dXdY dCdM

= ∫ ℓ01(g(X∗), Y )Ptrain(X ∣ C,X∗,M)Ptrain(Y,C,X∗,M)dX∗dXdY dCdM

= ∫ ℓ01(g(X∗), Y )Ptrain(X∗, Y )dX∗dY

= ∫ ℓ01(g(X∗), Y )P (X∗, Y )dX∗dY .

The first line writes down the expected risk explicitly, the second removes conditioning on Y in the distribution on X since
we assumed Y is d-separated from X by C,X∗,M . In the third line we make it explicit that h depends on X∗ alone, then
we integrate out X,C,M . On the last line we remove the subscript train to denote that this distribution in fixed across P ∈ P
as we assumed that X∗, Y are non-descendants of C (and members of P are obtained by interventions on C). Now for any
P ∈ P we may repeat this derivation for Rl01

P̃
(h) and we will obtain the same term (since P (X∗, Y ) are fixed regardless of

the intervention applied in P , as we just argued), and we may conclude Rℓ01
Ptrain
(h) = Rℓ01

P̃
(h).

Next to show that the Bayes optimal classifier over P� is the min-max optimal classifier w.r.t P . Consider the interventional
distribution where C is set to some fixed value c ∈ [K], i.e. P (X,X∗, Y ∣ do(C = c)). Under the graph we obtain from this
intervention, Y is d-separated from X given X∗. Hence,

P (Y ∣X = x, do(C = c)) = ∫
X∗

P (Y ∣X∗,X = x, do(C = c))P (X∗ ∣X = x, do(C = c))dX∗

= P (Y ∣X∗ = e(x),X = x, do(C = c))
= P (Y ∣X∗ = e(x), do(C = c)),

where the first equality holds since X∗ = e(X) and the second from d-separation. Hence the Bayes optimal classifier under
P (Y,X ∣ do(C = c)) is h∗(x) = g ○ e(x) = argmaxy∈[L] P (Y = y ∣ e(x), do(C = c)). As argued earlier, since Y,X∗ are
non-descendants of C, it holds that P (Y ∣ e(X), do(C = c)) is fixed across all c ∈ [K]. Hence h∗(x) is the Bayes optimal
classifier for all such interventional distributions and also for P�(X,Y ) = 1

K ∑c∈[K] P (X,Y ∣ do(C = c)), and from our
earlier discussion it is risk-invariant, i.e. Rℓ01

P�
(h∗) = Rℓ01

P (h∗) for all P ∈ P , which also means maxp∈P Rℓ01
P (h∗) =

Rℓ01
P�
(h∗). It is the min-max optimal classifier w.r.t P since any h ≠ h∗ will have maxp∈P Rℓ01

P (h) ≥ R
ℓ01
P�
(h) ≥ Rℓ01

P�
(h∗).
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Next we turn to prove a bound on sample complexity of counterfactual data augmentations. In the following lemma,
d1(τc,∗(Ptrain(X,M)) ∣ P (X(c))) is a distance between the true distribution over counterfactual instances P (X(c)) and
our augmented data τc,∗(Ptrain(X,M)).2 Divergences other than total-variation can be used, resulting in tighter bounds, see
e.g. Ben-David et al. (2010).

Lemma B.2. Consider an anti-causal prediction problem with a spuriously-correlated attribute (Definition 2.1), a mea-
surable function τ ∶ X ×M → XK , and let d1(P,Q) denote the total variation distance between two distributions P,Q.
Further let λaug = [Rℓ01

aug(h∗) +Rℓ01
P�
(h∗)], where h∗ is the optimal hypothesis w.r.t Rℓ01

P�
. For any h ∈ H and δ ∈ (0.5,1),

with probability at least 1 − δ over the draw of the training set,

Rℓ01
P�
(h) ≤ R̂ℓ01

aug(h) +
√

log(1/δ)
N

+K−1⋅ ∑
c∈[K]

d1 (τc,∗ (Ptrain(X,M)) , P (X(c))) + λaug. (1)

Proof. Our first step is to show that for any hypothesis h ∈ H, if our augmentation process is exact in the sense that
τc(X,M) = X(c) a.e., then the expected risk (i.e. risk taken over an infinitely large sample) on the augmented data
coincides with that over the unconfounded distribution P�(X,Y ) = Punif(C)P (X,Y ∣ do(C)).

Rℓ01
aug(h) = EPtrain(C,Y,M,X)

⎡⎢⎢⎢⎢⎣
K−1 ∑

c∈[K]

ℓ01(h (τc(X,M)) , Y )
⎤⎥⎥⎥⎥⎦

=K−1 ∑
c∈[K]

EPtrain(C,Y,M,X)[ℓ01(h (X(c)) , Y )]

=K−1 ∑
c∈[K]

EPtrain(C,Y,X)[ℓ01(h (X(c)) , Y (c))]

=K−1 ∑
c∈[K]

EP (Y,X ∣do(C=c))[ℓ01(h (X) , Y )]

=Rℓ01
P�
(h). (2)

To boundRℓ01
aug(h)−R̂ℓ01

aug(h) we note that {xi, yi,mi}Ni=1 are i.i.d samples from a joint distribution, where we may consider
the loss on each example as K−1∑c∈[K] ℓ01(h(τc(xi,mi), yi)), then by standard results using the Hoeffding inequality,
e.g. Mohri et al. (2018, Corollary 2.11), we get that for δ ∈ (0.5,1),

Rℓ01
aug(h) ≤ R̂ℓ01

aug(h) +
√

log(1/δ)
N

. (3)

Finally, to obtain our result consider any c ∈ [C]. Denote

Rℓ01
aug,c(h) ∶= EPtrain(Y,M,X)[ℓ01(h(τc(X,M))Y )],
Rℓ01

P�,c
(h) ∶= EP (Y,X ∣do(C=c))[ℓ01(h(X), Y )],

and for h∗ denote Rℓ01
aug,c(h,h∗) ∶= EPtrain(M,X)[ℓ01(h(τc(X,M)), h∗(τc(X,M)))] and respectively for Rℓ01

P�,c
(h,h∗) ∶=

EP�(X)[ℓ01 (h(X(c))), h∗(X(c)))]. The rest of our derivation is along the lines of Ben-David et al. (2010, Theorem 2).
We use the distance

dH∆H(τc,∗Ptrain(X,M), P (X(c))) = 2 sup
g∈H∆H

∣Ptrain(g(τc(X,M)) = 1) − P (g(X(c)) = 1)∣ ,

where H∆H = {g(x) = 1h(x)≠h′(x) ∣ h,h′ ∈ H} is a set of binary hypotheses, i.e. functions that mark disagreements
between hypotheses in H. It is easy to see that dH∆H lower bounds d1 which takes the supremum w.r.t all measurable
subsets for the two measures, since the sets of inputs where h(x) = 1 are contained in those subsets. Also from (Ben-David
et al., 2010, Lemma 3) we have that for any hypotheses h,h′ ∈H it holds that

∣Rl01
aug,c(h,h′) −Rl01

P�,c
(h,h′)∣ ≤ 1

2
dH∆H (τc,∗Ptrain(X,M), P (X(c))) .

2The notation τc,∗(⋅) denotes the pushforward measure. We note that in our implementation τc is data dependent and we ignore this
dependence to enable a simple analysis.
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Then following the proof in Ben-David et al. (2010, Theorem 2), where the first and third inequalities will rely on the
triangle inequality for classification errors (Crammer et al., 2008), we may get:

Rℓ01
P�,c
(h) ≤Rℓ01

P�,c
(h∗) +Rℓ01

P�,c
(h,h∗)

≤Rℓ01
P�,c
(h∗) +Rℓ01

aug,c(h,h∗) + [Rℓ01
P�,c
(h,h∗) −Rℓ01

aug,c(h,h∗)]

≤Rℓ01
P�,c
(h∗) +Rℓ01

aug,c(h,h∗) +
1

2
dH∆H (τc,∗Ptrain(X,M), P (X(c)))

≤Rℓ01
aug,c(h) +Rℓ01

P�,c
(h∗) +Rℓ01

aug,c(h∗) +
1

2
dH∆H (τc,∗Ptrain(X,M), P (X(c)))

=Rℓ01
aug,c(h) +Rℓ01

P�,c
(h∗) +Rℓ01

aug,c(h∗) +
1

2
dH∆H (τc,∗Ptrain(X,M), P (X(c)))

Finally, we note thatRℓ01
P�
(h) =K−1∑c∈[K]Rℓ01

P�,c
(h) and similarly we have thatRℓ01

aug(h) =K−1∑c∈[K]Rℓ01
aug,c(h), hence

applying the above inequality for all c ∈ [K] and averaging we get:

Rℓ01
P�
(h) ≤Rℓ01

aug(h) +
1

2
K−1 ∑

c∈[K]

dH∆H (τc,∗Ptrain(X,M), P (X(c))) + λaug

≤Rℓ01
aug(h) +K−1 ∑

c∈[K]

d1 (τc,∗Ptrain(X,M), P (X(c))) + λaug.

Combining with Equation (3) we get the desired result.

Sample Complexity of Importance Reweighting. Recall that re-weighting sets for each example i a weight wi = Ptrain(Y =
yi)Ptrain(C = ci)/Ptrain(Y = yi,C = ci) and minimizes the weighted empirical risk:

R̂ℓ
w(h) =

1

m
∑

i∈[m]

wiℓ (h(xi), yi).

It can be proved that at the limit of infinite data the method learns a min-max optimal hypothesis, as it also effectively
minimizes Rl

P�
(see (Makar et al., 2022)). Hence augmentations may not seem advantageous for identifying the correct

hypothesis. However, reweighting can require a larger sample to identify the correct hypothesis, particularly when Y and C
are highly correlated.3

To make this statement precise, we can apply the bounds from Cortes et al. (2010) and compare them with an up-
per bound that we will derive for our method in Lemma B.2. To this end, let us consider the exponent of the
Rényi divergence as a measure of dependence between Y and C in the training data. The divergence is given by
dα,train (Y,C) = [∑y∈[L],c∈[K] P

α
train(Y = y,C = c)/Pα−1

train (Y = y)Pα−1
train (C = c)]

1
α−1 , and we may derive the following bound

for a hypothesis h ∈H and any δ ∈ [0,1]:

R̂ℓ
w(h) ≤Rℓ

P�(h) +
√

2d2,train (Y,C) ⋅ log(1/δ)
N

+ d∞,train(Y,C)
N

. (4)

A complementary lower bound on R̂l
w(h) can also be derived based on results in Cortes et al. (2010). Comparing this

to Equation (1), as we generate better counterfactuals the term d1 (τc,∗ (Ptrain(X,M)) , P (X(c))) decreases and also
Rℓ01

aug(h) becomes similar to Rℓ01
P�
(h) (see Equation (2)), hence the bound scales with N−

1
2 , resulting in a gain of factor

d2,train(Y,C) over the upper bound on R̂ℓ01
w (h) in Equation (4). We also show this through simulations in Appendix C.3.

C. Experimental Details
We provide here further details about the experimental setup, the datasets we use, hyperparameters chosen for training the
models, and data splits. We also include additional experiments that were omitted from the main paper for brevity, including
experiments on demographic traits and note segmentation in clinical narratives, and experiments on synthetic data.

3We remark that other works discuss the potential benefits of data augmentation for identification in other problem settings, e.g. (Wang
and Veitch, 2022, Thm. 9) and (Gao et al., 2023).
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Input (x) Label (y) ID Data OOD Data Spurious Feature (c) auxiliary data (m)

Clinical Narratives
Condition Prediction

MIMIC-III
i2b2-2010

Caregiver ID
Medications,
Lab Results,
Vitals

Note Segmentation partner data
Demographic Traits i2b2-2006

Restaurant Reviews Restaurant Rating CEBaB CeBAB-
Spurious

Food-mention Service, Noise,
Ambiance, Food

Synthetic Data {0,1} Gaussians {0,⋯,7} –

Table 2: Description of all our tasks and their corresponding experimental setup.

C.1. Clinical Narratives

C.1.1. DATA

We describe here the MIMIC-III i2b2-2006 and i2b2-2010 datasets.

MIMIC-III. The MIMIC-III (Medical Information Mart for Intensive Care III) dataset is a large, publicly available
database containing detailed and anonymized health-related data associated with over 40,000 patients who stayed in critical
care units at the Beth Israel Deaconess Medical Center in Boston, Massachusetts between 2001 and 2012. MIMIC-III
is a rich resource for researchers in various fields, such as medicine, data science, artificial intelligence, and healthcare
analytics. The dataset contains a diverse range of data types, including demographics, vital signs, laboratory test results,
medications, and clinical notes. The dataset contains over 2 million clinical notes contributed by over 3,500 distinct
healthcare professionals, including doctors, nurses, and other clinicians, with an average of 571 notes per author.

The notes in the MIMIC-III dataset come in various types, reflecting the diverse aspects of patient care and documentation
in the intensive care setting. Some of the most common note types include:

• Nursing/Progress notes: These are daily notes written by nurses or other care providers, documenting the patient’s
progress, condition, and care provided.

• Radiology reports: Reports written by radiologists after interpreting medical imaging studies (e.g., X-rays, MRIs, CT
scans).

• ECG reports: Reports documenting the interpretation of electrocardiogram results.

• Discharge summaries: Comprehensive summaries written by physicians when a patient is discharged from the hospital,
outlining the patient’s hospital course, treatments, and follow-up instructions.

• Physician consult notes: Notes written by specialists when consulted by the primary care team to provide their expert
opinion on specific medical issues.

• Pharmacy notes: Notes documenting medication-related information, including dosing, administration, and potential
drug interactions.

• Social work notes: Notes related to the patient’s psychosocial status, including social and family support, living
arrangements, and other relevant factors.

i2b2-2006. The i2b2 (Informatics for Integrating Biology and the Bedside) initiative is a collaborative effort that aims
to develop new methods and tools for biomedical research. It focuses on the development of a scalable computational
infrastructure that can be used to accelerate the translation of basic research findings into clinical applications. As part of
this effort, i2b2 has hosted several shared tasks and challenges related to natural language processing and machine learning
in healthcare.

In 2006, the first i2b2 challenge, known as the i2b2-2006 challenge, was conducted, focusing on the identification of obesity
and its comorbidities in discharge summaries. The dataset provided for the challenge contained 694 de-identified discharge
summaries, which were randomly selected from the Research Patient Data Registry (RPDR) at Partners HealthCare. The
dataset was divided into a training set of 514 discharge summaries and a test set of 180 discharge summaries. It is important
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to mention that the i2b2-2006 dataset is relatively small compared to the MIMIC-III dataset and does not provide detailed
information about the number of distinct authors or the average number of notes per author.

However, the discharge summaries typically include various sections such as patient demographics, admission and discharge
dates, admission diagnoses, hospital course, procedures, medications, and follow-up plans. These summaries are generally
written by physicians at the time of patient discharge, providing an overview of the patient’s medical condition, treatment
received, and overall hospital stay.

i2b2-2010. The i2b2-2010 challenge, also known as the i2b2/VA challenge, was a shared task organized by the i2b2
(Informatics for Integrating Biology and the Bedside) initiative in collaboration with the US Department of Veterans Affairs
(VA). The challenge aimed to encourage the development of natural language processing (NLP) and machine learning
techniques for extracting medical concepts from clinical narratives. Specifically, the i2b2-2010 challenge focused on the
identification of medical problems, tests, and treatments from free-text clinical records.

The dataset provided for the i2b2-2010 challenge contained 826 de-identified clinical records, which were sourced from
three different institutions: Partners HealthCare, the University of Pittsburgh Medical Center (UPMC), and the VA. The
dataset was divided into a training set of 349 records and a test set of 477 records.

Similar to the i2b2-2006 challenge, the i2b2-2010 dataset is relatively small compared to the MIMIC-III dataset and does
not provide detailed information about the number of distinct authors or the average number of notes per author. The clinical
records in the dataset are composed of diverse note types, such as discharge summaries, progress notes, radiology reports,
and pathology reports, contributed by physicians, nurses, and other healthcare professionals.

While the dataset does not provide specific information about the number of distinct authors, the fact that the notes were
contributed by different types of healthcare professionals across multiple institutions increases the dataset’s diversity, making
it more representative of real-world clinical settings.

C.1.2. PUBMED BERT

In our clinical narratives experiments, we use PubMED BERT (Gu et al., 2021), a variant of of the original BERT model
(Devlin et al., 2018), as our vanilla model. That is, all of the baselines and CATO all use it either for embedding clinical text
or for predicting conditions, demographic traits and note segments.

PubMED BERT is a BERT-based (Bidirectional Encoder Representations from Transformers) model that has been pre-
trained specifically on biomedical and scientific text data (Gu et al., 2021). The model leverages the BERT architecture,
which is a transformer-based deep learning model that has gained significant attention in natural language processing (NLP)
for its state-of-the-art performance across a wide range of tasks.

PubMED BERT is pre-trained on a large corpus of approximately 14 million biomedical abstracts from the PubMed database,
which is a comprehensive repository of biomedical literature. By pre-training the model on domain-specific data, PubMED
BERT is expected to have a better understanding of biomedical concepts, terminology, and language patterns compared to
general domain models like BERT-base and BERT-large (Devlin et al., 2018).

The main advantage of using PubMED BERT for biomedical text mining tasks is its domain-specific knowledge, which can
lead to improved performance and more accurate results when fine-tuned on various downstream tasks, such as named entity
recognition, relation extraction, document classification, and question answering. Since PubMED BERT is pre-trained on a
large corpus of biomedical text, it is better suited to capturing the unique language patterns, complex terminology, and the
relationships between entities in the biomedical domain.

Hyperparameters for Fine-Tuning PubMED BERT on MIMIC-III. In our study, we leveraged a pre-trained PubMED
BERT model and fine-tuned it on the MIMIC-III dataset. During pre-training, the model employed masked language
modeling and next sentence prediction objectives. The architecture consisted of 12 layers, 768 hidden units, and 12 attention
heads. For task-specific optimization, we used the following hyperparameters: a 3e − 5 learning rate with a linear warmup
during the initial 10% of training steps, a batch size of 32, a maximum sequence length of 512 tokens, and a dropout rate
of 0.1. The AdamW optimizer was applied with a 0.01 weight decay and a 1.0 gradient clipping threshold. To prevent
overfitting, early stopping was based on validation loss and used a 3-epoch patience. The fine-tuning process ran for up to
20 epochs, unless early stopping criteria were met sooner.
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The fine-tuning process was executed on a high-performance computing cluster with multiple NVIDIA Tesla V100 GPUs,
each equipped with 32 GB of memory, using the PyTorch deep learning framework (Paszke et al., 2019). The dataset was
preprocessed and tokenized using the HuggingFace Transformers library (Wolf et al., 2019).

C.1.3. GENERATING NOTES FROM COUNTERFACTUAL CAREGIVERS.

To generate augmentations, we select caregivers with multiple patients and notes for more than one patient. For each
caregiver-patient pair where both their last progress note and discharge summary were written by that caregiver4, we match
them to similar patients having the same initial caregiver but a different one for their discharge summary. In matching, we
select patients with similar medications and lab results (denoted as patient’s auxiliary data m in Table 2). We then generate
counterfactual discharge summaries for matched patients using Algorithm 1(A) and train the model using original data and
generated counterfactuals.

Figure 3: Generating counterfactual notes for patients with Algorithm 1(A).

C.1.4. Demographic Traits DETECTION

Demographic Traits detection is the task of identifying residual private information in the clinical note, after removing
the known identifier types (names, ages, dates, addresses, ID’s, etc.) (Feder et al., 2020). We train all models on a
subset of MIMIC-III and test on i2b2-2006. Table 3 presents our results. While performance gains from the Causal
Augmentation approach are not as large as in the other clinical NLP tasks, its is still the best method in terms of F1 score on
out-of-distribution examples.

ID (MIMIC-III) OOD (i2b2-2006)

P R F1 P R F1

PubMED BERT 80.61 78.12 79.34 53.32 90.1 66.92
+ Re-Weighting 81.31 78.57 79.92 56.75 91.38 70.02
++ MMD 80.68 78.84 79.75 56.19 91.49 69.62
Naive Aug. 81.45 79.35 80.39 52.9 89.58 66.52
Causal Aug. 80.65 78.84 79.73 59.76 90.16 71.88

Table 3: Results (averaged across 5 runs) for predicting demographic traits from the text narratives on in-distribution and
out-of-distribution data.

C.1.5. Note Segmentation

In this task, models need to recognize sections in free-form clinical notes (Pomares-Quimbaya et al., 2019). Given that
section headers vary between hospitals, the models must discern sections based solely on the note content, excluding headers.
As can be seen in Figure 4, similarly to clinical condition prediction, the diff-in-diff approach to augmentations (CATO

4During a patient’s stay, progress notes capture its current state. When leaving the hospital, a discharge summary is written.
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(A)) substantially improved OOD performance, and as expected does not help ID. The naive augmentations are the best
performing method ID, but is again outperformed by all other methods OOD.

ID (MIMIC-III) OOD (Private Held-Out)
60

70

80

90

F
1

Note Segmentation

Observational + Reweighting ++ MMD Naive Aug. CATO (A)

Figure 4: Results (F1 averaged across 5 runs) for clinical note segmentation from the text narratives. CATO (A) outperforms
all baselines on OOD data.

C.2. Restaurant Reviews

Data. We use the CEBaB dataset (Abraham et al., 2022), which consists of short restaurant reviews and ratings from
OpenTable, including evaluations for food, service, noise, ambiance, and an overall rating. For our experiments, we used the
train-exclusive split of the dataset, which contains 1,755 examples.

To analyze the data, we transformed the overall rating into a binary outcome. The original rating scale ranges from 1 to 5, and
we classified a rating of 3 or higher as 1, and anything below as 0. We utilized a bag-of-words model with CountVectorizer
and fitted logistic regression models from the sklearn library (Pedregosa et al., 2011).

To investigate these questions, we construct two experimental settings: the original CeBAB dataset, and a modified version,
denoted as CeBAB-Spurious, where there’s a spurious correlation between training and deployment.

The data is randomly split into a training set with 1,000 examples and a test set with 755 examples. We explore two data
augmentation schemes:

1. Naive data augmentation: This approach involves randomly selecting two reviews from the dataset and prompting
GPT-4 (OpenAI, 2023) to rewrite one restaurant review in the style of the other. By applying the naive augmentation,
we obtain an additional 1,000 training examples.

2. Conditional data augmentation : We match the ratings and sub-ratings in the reviews to create pairs. We then prompt
GPT-4 to rewrite one review to match the style of the other. Because not all pairs have matches in this case, the
conditional data augmentation generates 926 augmentations. See Appendix C for details of the prompt.

Generating reviews with counterfactual food mentions. Following the counterfactual generation procedure in Algo-
rithm 1, we generate counterfactual restaurant reviews conditional on food rating and overall rating. For each review, we
first find a set of matched examples. We then select the subset that has different food-mention attribute and prompt GPT-4 to
rewrite. This results in 2,537 augmentations. The counterfactual augmentation should capture what the reviews should
look like had a reviewer been more/less concise. Following Algorithm 1, we generate counterfactual restaurant reviews
conditional on food and overall ratings. We find matched examples for each review, select those with different food-mentions,
and prompt a GPT-4 to rewrite them, reflecting how the reviews would appear if the reviewer was more/less concise.

Prompt Example.

https://www.opentable.com/
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helper_prompt = """
you are a very helpful, diligent, and intelligent language model assistant,
your task to generate counterfactual restaurant reviews,
that is what the restaurant review would be if it is given a different rating.
You will be given an original restaurant review and a comparator review
Your task is to rewrite the original review, such that it will have the same
review score as the comparator review.
The rating is with respect to ambiance, food, noise, and service.
---- EXAMPLE INPUT - START -----

original_review: [],
original_ratings: [
rating_ambiance: score,
rating_food: score,
rating_noise: score,
rating_service: score
]

compare_reviews:[]
compare_ratings:[
rating_ambiance: score,
rating_food: score,
rating_noise: score,
rating_service: score
]

---- EXAMPLE INPUT - END -----
ANSWER FORMAT:
{
original_review: [],
original_score: [],
rewrite_review: [],
}

"""

C.3. Synthetic Data

To test sensitivity of CATO to quality of counterfactuals (Q#4), we generate synthetic data for a binary classification problem
where K = 8 (cardinality of C). We sample P̃ (C ∣ Y ) to simulate varying degrees of the spurious correlation. Then we
draw x = [x∗,xspu] from a Gaussian distribution,

xi = [
x∗i

xspu,i
] ∼ N ([µyi

µci
] , [σ

2Id∗ 0
0 σ2

spuIdc

]) .

In this case x̂i(c) is obtained by adding µc − µci to xspu,i. To corrupt our augmentation, we instead add ξi (µc − µci) where
ξi is drawn from a truncated Gaussian centered at λ ∈ (0,1). We train models with a fixed sample size (in the appendix we
also examine varying sample sizes and additional types of corruption) and evaluate the trained models’ accuracy on P� to
examine the interplay between spurious correlation strength (measured by mutual information I(Y ;C)), and counterfactual
augmentation quality. As can be seen in Figure 5, corruptions degrade performance under stronger spurious correlations,
though a strong corruption is required for reweighting to become preferable.

We study a binary classification problem where K = 8 (cardinality of C), and sample P̃ (C ∣ Y ) to simulate varying degrees
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Figure 5: OOD accuracy (1 −Rl01
P�
(h)) and Y,C correlation strength (I(Y ;C)). Even with substantial corruption (λ = 0.2)

and strong correlation, augmentations outperform baselines.

of the spurious correlation (specifically, we draw ). Then we draw x = [x∗,xspu] from a Gaussian distribution,

xi = [
x∗i

xspu,i
] ∼ N ([µyi

µci
] , [σ

2Id∗ 0
0 σ2

spuIdc

]) .

In our simulations, we set d∗ = 10, dspu = 300 and σ2
spu = 0.05, σ = 0.01d∗ to make the max-margin classifiers depend on

the spurious features. The parameters µyi , µci are drawn uniformly from a sphere of norm 1/3 and 60, respectively. For the
corruptions of augmentations where we add ξi(µc −µci), the ξi variables are drawn from a truncated Gaussian centered at λ
with standard deviation 0.1.
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Figure 6: OOD accuracy (1 −Rl01
P�
(h)) for growing size of i.i.d training set N . We run 15 repetitions where P̃ (C ∣ Y ) are

drawn randomly with correlation strength I(Y ;C) = 0.743 ± 0.019. With large amounts of data, the reweighting method
approaches optimal performance and may outperform solutions based on corrupted data augmentation (e.g. it surpasses the
more heavily corrupted data augmentation with λ = 0.2).

For the results in Figure 5 we set the number of training examples N at 600 and the distributions P̃ (C ∣ Y ) are sampled such
that for each interval of size 0.05 between 0 and 0.9 for the values of I(Y ;C), we draw 30 instances within that interval. In
Figure 6 we give results for another experiment where we plot curves for reweighting, ERM and corrupted augmentation
under several values of N under a strong spurious correlation. We draw values for P̃ (C ∣ Y ) such that that I(Y ;C) is
in [0.7,0.8] (mean 0.743 and standard deviation 0.019 with 15 repetitions). Considering the bounds in Equation (4) and
the one in Lemma B.2, we expect that as N grows the reweighting method will approach optimal accuracy, while the
augmentation methods will incur some bias due to the imperfect approximation of counterfactuals. In Figure 6 we see that
the augmentation based methods begin to plateau, while the reweighting method gains larger improvement from the growing
N , and outperforms the more heavily corrupted augmentation method (λ = 0.2) with a large enough training set. The best
possible mean accuracy in this simulation is 0.934 (as we gather from training a classifier from x∗ alone), the best accuracy
obtained by the methods in the figure is 0.849 (Aug. λ = 0.3 with N = 1999).
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Causal-structure Driven Augmentations

D. Synthetic Note Examples
While it is not possible to share real notes from the MIMIC-III or any of the i2b2 datasets, we can share how a typical
note might look like by generating synthetic notes with LLMs. Here, we generate a synthetic note using GPT-4, and then
generate a counterfactual note using our prompt:

Discharge Summary Note
Dr. Jane Doe
March 29, 2023
Patient Name: John Doe
Admission Date: March 25, 2023
Discharge Date: March 29, 2023
Diagnosis: Pneumonia
History of Present Illness: Mr. Doe is a 58-year-old male with a past medical history of hypertension who presented
to the emergency department with a 3-day history of fever, cough, and shortness of breath. Chest X-ray showed
bilateral infiltrates, and he was admitted for treatment of community-acquired pneumonia.
Hospital Course: The patient was started on intravenous antibiotics and supplemental oxygen. Over the course of
his hospitalization, his oxygen requirements decreased, and his fever and cough resolved. He was able to tolerate a
regular diet and was mobilized with physical therapy.
Consultations: Infectious disease was consulted, and the patient’s antibiotics were adjusted based on culture results.
Discharge Medications:

1. Levofloxacin 750mg daily for 10 days

2. Acetaminophen 650mg every 6 hours as needed for fever or pain

3. Albuterol inhaler 2 puffs every 4 hours as needed for shortness of breath

Follow-up: The patient was instructed to follow up with his primary care physician in 1 week for a repeat chest
X-ray and evaluation of his symptoms.
Discharge Instructions:

1. Finish the entire course of antibiotics as prescribed.

2. Use the albuterol inhaler as needed for shortness of breath.

3. Rest and avoid strenuous activity until cleared by your doctor.

4. Follow up with your primary care physician in 1 week.

Discharge Condition: The patient was discharged in stable condition with improved symptoms.

Here’s a counterfactual discharge summary note written by a doctor with a different writing style:
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Patient Name: John Doe
Admission Date: March 25, 2023
Discharge Date: March 29, 2023
Diagnosis: Pneumonia
HPI: John is a middle-aged man who came in with a fever and cough that he’s had for three days. He was diagnosed
with pneumonia and admitted.
Hospital Course: John was given antibiotics and oxygen. He slowly got better and was able to eat normally and
move around more. He saw an infectious disease specialist who adjusted his treatment.
Consultations: Infectious disease saw John and changed his medicine.
Discharge Medications:

1. Levofloxacin 750mg once a day for 10 days

2. Acetaminophen 650mg every 6 hours as needed for fever or pain

3. Albuterol inhaler 2 puffs every 4 hours as needed for shortness of breath

Follow-up: Follow up with PCP in 1 week.
Discharge Instructions:

1. Finish your antibiotics.

2. Use the inhaler if you need it.

3. Rest and avoid heavy activity until you feel better.

4. Follow up with your doctor next week.

Discharge Condition: Stable, going home.

As can be seen from these examples, the counterfactual note is much more concise and to-the-point than the original
example. The language used is more direct and less descriptive, and there is less detail provided about the patient’s course of
treatment.


