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ABSTRACT

Deep learning-based approaches, particularly graph neural networks (GNNs),
have gained prominence in simulating flexible deformations and contacts of solids,
due to their ability to handle unstructured physical fields and nonlinear regression
on graph structures. However, existing GNNs commonly represent meshes with
graphs built solely from vertices and edges. These approaches tend to overlook
higher-dimensional spatial features, e.g. 2D facets and 3D cells, from the original
geometry. As aresult, it is challenging to accurately capture boundary representa-
tions and volumetric characteristics, though this information is critically important
for modeling contact interactions and internal physical quantity propagation, par-
ticularly under sparse mesh discretization. In this paper, we introduce MAVEN,
a mesh-aware volumetric encoding network for simulating 3D flexible deforma-
tion, which explicitly models geometric mesh elements of higher dimension to
achieve a more accurate and natural physical simulation. MAVEN establishes
learnable mappings among 3D cells, 2D facets, and vertices, enabling flexible mu-
tual transformations. Explicit geometric features are incorporated into the model
to alleviate the burden of implicitly learning geometric patterns. Experimental re-
sults show that MAVEN consistently achieves state-of-the-art performance across
established datasets and a novel metal stretch-bending task featuring large defor-
mations and prolonged contacts.

1 INTRODUCTION

Flexible deformation and contact of solids are prevalent across a wide range of real-world scenarios,
ranging from industrial manufacturing (Tao et al.,[2025a)), acronautical engineering (Phanden et al.|
2021)), to nuclear materials (Allen et al., [2012)). Accurate modeling of these behaviors and their
evolution significantly enhances the understanding of these scenarios. Although many classical
numerical solvers, such as Finite Element Methods (Dhatt et al.| |2012) and Material Point Methods
(Bardenhagen et al.| [2004), have been developed for solid systems, achieving the desired accuracy
incurs high computational costs, as they rely on fine meshes and small time steps due to low-order
approximations and the iterative solution of large linear systems. Recently, deep learning (DL)
has rapidly emerged as a powerful tool for efficient physical simulation, showing great potential,
particularly in molecular dynamics (Jumper et al., |2021)), fluid simulations (Li et al., |2020a)), and
structural solid deformations (Tao et al., 2025b)).

Among these DL-based solvers, graph neural networks (GNNs) have demonstrated superior per-
formance in the domain of solid deformation, due to their ability to handle dynamic unstructured
meshes and perform nonlinear regression on graphs (Sanchez-Gonzalez et al.,[2020;|Gao et al.| 2022
Gladstone et al., [2024). To handle irregular solution domains, existing GNN-based methods input
unstructured meshes, where the geometry is discretized into multiple connected simple cells using a
regular polyhedron (Figure [I(a)). GNNs abstract mesh vertices into graph nodes to capture internal
physical interactions, using edges defined by mesh connectivity, shown in Figure [I(b)] Inter-object
contact is typically detected via an interaction radius. Mesh edges serve as pathways for propagating
physical quantities, making the mesh structure and its associated graph a central representation of
the physical system.
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Figure 1: The physical state on the continuous material domain is discretized using structured
meshes. Node-based methods construct point-edge graphs from the mesh and apply GNN5s for com-
putation. However, such abstraction may overlook contact interactions. A more effective approach
should incorporate higher-dimensional geometric structures in the mesh, such as 3D cells and 2D
facets, which retain accurate geometric information after discretization.

Although GNNs are effective, their accuracy deteriorates on sparse meshes, which are commonly
used for computation efficiency concerns in practice (Allen et al, 2022). As illustrated in Figure
[I(d)] the distance between the points in GNN differs from the actual distance between surfaces,
and this deviation worsens under coarser mesh configurations. As a result, contact information may
be missing without an appropriate detection radius. Increasing the radius may help, but, with the
cost of computations, there are still no guarantees of complete and accurate contact information.
In addition, GNNs model internal propagation in approximating integral kernels
2024), which is based on positional vectors and physical variables. However, with coarse meshes,
nodes may not be sufficient to adequately sample neighborhood regions, hindering the accurate
construction of characteristics of the localized physical field.

These limitations are mainly due to node-based modeling by only using the vertices. These methods
represent meshes as graphs with edge features encoding distances, but existing approaches rely-
ing on topological representations often lose critical spatial features required for physical accuracy.
Crucially, in addition to the vertices, the mesh contains a much more comprehensive set of high-
dimensional geometric elements, that is, 2D facets and 3D cells, as illustrated in Figure
colored orange and yellow. Our idea is that such high-dimensional elements like 2D facets and 3D
cells elements could be incorporated to enable the model to better characterize geometric structures
within 3D continuous space. With this key incorporation, graph-based contact modeling can explic-
itly capture boundaries and contact as face-to-face geometries, making approaches more suitable for
precise simulations. Additionally, even though in the case of coarse mesh discretization, the model
might lead to inaccurate integral approximations based on discretely sampled vertices, volumetric
cells could compensate and maintain stable computations by retaining geometric continuity.

To fully exploit high-dimensional geometric elements in mesh-based neural networks, we design
a novel framework within an encoder—processor—decoder architecture that explicitly embeds cell
and facet elements into the model, thereby enhancing performance under sparse mesh conditions.
Technically, we propose MAVEN, a model based on Mesh-Aware Volumetric Encoding, in which we
construct explicit nodes for each geometric element in the mesh, including vertices, facets, and cells.
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During each processing step, the vertex information is encoded into higher-dimensional elements
using learnable position-aware aggregators. The internal interactions and external loads are then
handled at the cell level through facet nodes, allowing information to propagate through the mesh
via its higher-dimensional structures (cells, facets). This cell-facet co-design enables comprehensive
geometric modeling beyond node-based approaches. MAVEN achieves state-of-the-art performance
in extensive evaluations. The main contributions of this paper can be summarized as follows.

* We propose a paradigm that explicitly incorporates high-dimensional geometric elements
into the simulation of 3D solid systems. This approach enables the model to capture precise
geometric information and maintain stability under sparse discretization conditions.

* We design MAVEN, a model based on mesh-aware volumetric encoding that captures high-
dimensional geometries by explicitly modeling both cell and facet elements. MAVEN fa-
cilitates data transformation between elements through carefully designed transformation
functions, and propagates information over a cell-facet graph using a modified two-stage
message passing process.

* We compare MAVEN with state-of-the-art methods on public elastic deformation datasets
and a metal bending problem, with elastic-plastic deformations and a coarse mesh. The
experimental results demonstrate that MAVEN outperforms baselines in solid deformation
with an acceptable computational efficiency.

2 RELATED WORK

2.1 LEARNING PHYSICAL SYSTEMS WITH GNNS

Recently, the application of Graph Neural Networks (GNNs) for simulating flexible dynamics has
emerged as a promising research direction (Sanchez-Gonzalez et al.L[2020; Han et al., 2022a; Shlomi1
et al., |2020; |Gao et al) 2022). As a baseline and essential method, MGN (Pfaff et al., 2020) rep-
resents meshes as graphs by treating vertices as nodes and using connectivity and proximity-based
edges, within and across objects. It adopts an Encoder-Processor-Decoder architecture, encoding
relative positions as implicit geometric features and learning dynamics via message passing. Later
studies primarily aim to improve message passing through more expressive architectures (Dwivedi
& Bresson, [2020; |[Shao et al.|, 2022; |[Han et al., 2022b)), use hierarchical graphs to propagate infor-
mation in various ranges (Cao et al., 2023 [Fortunato et al., 2022;|Grigorev et al., |2023)), and adopt a
hybrid design that integrates both approaches (Yu et al.}2023)). Since these methods model physical
features only on vertices, we refer to them as node-based GNN approaches.

However, graph-based models often neglect essential high-dimensional geometry, particularly in
sparse meshes common in real-world scenarios. For inter-object contact, true interactions occur
between surfaces, yet node-based GNNs approximate them via vertex distances, causing errors when
contact regions extend beyond vertex discretization (Allen et al.,[2022). For intra-object dynamics,
some studies (Li et al., 2024} 2020b)) interpret message passing as an approximation of a local kernel
function that performs discrete integration over information from neighboring graph nodes. In the
sparse condition, meshes provide too few nodes to capture local geometry. Consequently, critical
quantities such as volume and surface area are poorly estimated, and these errors propagate through
message passing, leading to significant deviations in predictions.

2.2 GEOMETRIC ELEMENTS IN PHYSICAL SIMULATION

These limitations stem from node-based modeling that relies solely on mesh vertices, overlooking
the rich set of high-dimensional geometric elements inherently present in the mesh. Mesh represen-
tations also include 3D cell structures that accurately capture geometric partitioning in the continu-
ous domain, and 2D facet structures that define boundaries between regions and encode inter-object
contact information. These elements contribute to more stable computations, particularly under
sparse mesh conditions. For example, classical numerical methods (Reddy, [1993; Bardenhagen
et al., |2004)) describe physical quantities within volumetric elements by defining a family of shape
functions (Zienkiewicz & Taylor, [2005) that interpolate physical qualities throughout the cell, and
contact penalty terms are imposed on the integrals over the boundary facets. Based on this modeling
approach, numerical methods can maintain controlled errors even under sparse mesh conditions.
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A limited number of studies have focused on incorporating high-dimensional geometric information
into DL-based physical simulations to improve computational accuracy. PHYMPGN (Zeng et al.,
20235)) follows discrete Laplace-Beltrami operators (Reuter et al.,[2009), using face areas and cosine
values of neighboring triangles for a single vertex as a broadcast operator between node pairs. This
operator is limited to 2D settings and presents significant challenges when extending to 3D mesh
domains. FIGNet (Allen et al.| 2022; |Lopez-Guevara et al., [2024) constructs face-to-face edges to
capture contact relationships. Although effective for rigid bodies, these methods still face significant
challenges in modeling internal propagation and dynamic deformations within 3D solids. To address
this, we propose a novel DL-based architecture for 3D dynamic deformation simulation that intrin-
sically integrates high-dimensional geometric structures with hierarchical feature representations.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

The evolution of a Lagrangian system is initiated by an initial material domain €, together with a
field function U(0, z) that defines the initial physical quantities, such as displacement, velocity, and
pressure, at each material point z. At each time ¢ € [0,7], we focus on the current physical state
U(t, x) of every point x € €y. To enable discrete computation, the initial material domain Qg is
partitioned, without overlap or omission, into a set of regular tetrahedra (or hexahedra) cells C, which
collectively form the mesh. The collection of vertices and surface facets from these regular regions
defines the set of vertex ) and the set of facets F of the mesh, respectively. Physical field information
u! at time ¢ is stored at each vertex v; € V to approximate the continuous domain, allowing the
state of any point of material to be estimated by interpolation from the values at the vertices of the
corresponding cell. The exact shape of each cell and facet at any given time is determined by the
current state of deformation of its vertices. Excessive distortion or even fracture may occur as a
result. In this work, we primarily consider scenarios in which the mesh does not undergo severe
distortion, which aligns with the assumptions commonly made in industrial simulation settings.

The simulation trajectory of a physical system originates from an initial physical field u® gov-
erned by a discretization mesh M = {C,F,V}. The input of variable-time external forces
{fo,fAt,...,fKAt} acting on the vertices drives the progression of the dynamic state, gen-

erating the sequence of physical evolution {u®, u®f..., u2*} in discretization evolution time

0, At, ..., KAt = T. The objective of the simulator is to predict next physical state u(*tD4¢ from
a history of previous states. In this paper, we consider {u?, u(F=DAt kAL FEALL aq input states.
The rollout trajectory can be obtained by applying the simulator to the last prediction iteratively.

3.2 MODEL OVERVIEW

The overall architecture of MAVEN is illustrated in Figure [2] with the widely adopted “encoder-
processor-decoder” framework (Battaglia et al., 2018 [Pfaff et al.,2020). Unlike node-based models,
MAVEN additionally models each element in the cell set {C} and facet set {7} as individual nodes
participating in message passing, thus enhancing the ability to capture high-dimensional geometric
information. First, MAVEN performs feature extraction for all node types. The cell and facet nodes
are initialized with their geometric characteristics, such as 3D volume, surface area, as well as 2D
area and perimeter, while the vertex nodes retain their physical quantities as input features. Sub-
sequently, we employ a stack of processors to model physical interactions within and across solid
objects. In each processor, the cell and facet nodes update their geometric representations from the
nearby vertex nodes via a position-sensitive geometric aggregator. A modified two-stage message
passing is then applied to propagate information during a cell-facet graph constructed by the relative
geometric relationships between elements. Finally, a disaggregation operation distributes the aggre-
gated features back to the vertex nodes, generating smooth intermediate results. The final processor
output is subsequently mapped back to the original domain to produce the predicted results.

In MAVEN, the cell and facet focus primarily on diverse features. The facet is a pivotal hub for
information exchange, where external forces, object contacts, and the propagation of internal phys-
ical quantities converge. The diverse information is integrated and subsequently transmitted back to
their respective cells. (Allen et al.,[2022)) shows that faces can capture contact information more ef-
fectively, which node-based models might otherwise neglect under sparse conditions. The cells fully
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Figure 2: The overall structure of MAVEN. MAVEN follows an encoder—processor—decoder
pipeline: it extracts geometric and physical features for vertices, cells, and facets, updates them
through position-aware geometric aggregation and refined cell-facet message passing, and finally
disaggregates the processed features back to vertices to produce smooth predictions.

characterize the geometric and volumetric properties of the 3D continuum domains. The adoption of
volumetric features of adjacent cells as propagation coefficients for vertices significantly enhances
the performance of 2D tasks (Zeng et al.,|2025), motivating our design of the cell-facet propagation
framework, ensuring comprehensive geometric information within the model.

Next, we elaborate on each key component of MAVEN. For convenience, in the following descrip-
tion we denote A as the feature fusion operator that integrates multiple features into a single repre-
sentation, implemented via multilayer perceptrons (MLP) in practice. Various A are distinguished
using the subscript and superscript notation.

3.3 ENCODER: GEOMETRY-INFORMED FEATURE ENCODING

The MAVEN encoder constructs feature representations for the cell, facet, and vertex nodes while
also processing external force conditions and inter-facet contact relationships.

Vertex node encoder For a given vertex node v; € V and its associated physical field quantities
u? , we apply standard GNN practices to encode quantities into a high-dimensional latent space to
derive the vertex node feature hgi:

Vi

hO, = AY(ul,) )

Cell and facet node encoder Since cells and facets do not possess direct input features, we consider
computing their representations from high-dimensional geometric properties. Inspired by the clas-
sical finite-volume method (Eymard et al., 2000), we posit that both the internal volume and surface
area of a region are critical geometric descriptors. Accordingly, we use volume and total surface
area as initial geometric features for each cell, while area and perimeter are used to characterize
facet nodes. In addition, we incorporate the initial geometric attributes of each element to enhance
the model’s awareness of high-dimensional geometric variations over time. Let Q(c;), X(¢;) be the
volume and surface area of cell ¢;, and «(f;), A(f;) be the area and perimeter of facet f;, MAVEN
generates cell and facet features h., and hy, as follows:

he, = A°(Q(ch), 2(ch), ), B(D)), by, = AT (alf)), A, al f7), A7) 2

Here, allh? , h.,, and h 1, are projected to the same latent dimension, which is set to 128 in practice.

v;?

Facet-to-facet features Instead of constructing edges between vertices, MAVEN establishes contact
connections directly between the interacting facets. We improve on (Allen et al.,|2022) by applying
a simplified Bounding Volume Hierarchy algorithm (Clark, [1976) to detect all pairs of faces within
a collision radius r. For two contacting facets fs and f,., the translation equivariant vectors of each
face edge include: (1) the relative displacement between the center points df, = p, — ps on the



Under review as a conference paper at ICLR 2026

two faces, (2) the vertices spanning vectors from one face to relative to the center point on another
face df = X5, — Ps> d” = X,, — Pr, and (3) the normal unit vectors of the face of the sender and
receiver faces ng, n,.. MAVEN generates face-to-face features hy _, 7 as:

hfsaf,,. = AFH]:([de, [dg}sg' Efs» [di]rjefw ns, nr]) (3)

External force features External forces are defined as scripted motions for specific surface vertices,
which means that their next-step positions x*! are explicitly provided in the current step. We define
the external force feature for each node h;i_ as its relative displacement to the next time step, and
introduce a flag to indicate whether the node is scripted.

1 t+1 _ ot if us i ivted
h = {[ Xph —xy, ], if v; is scripte “

0, if v; is not scripted

In practice, scripted motions are typically applied over entire surface regions rather than isolated
vertices, making it essential to impose constraints at the surface level. Therefore, we define scripted
features on each facet hi by concatenating motion-related features of all its associated vertex nodes.

hSi = As(concatvje fi (hf)) o)

To ensure translational and permutation invariance, we sort the vertices of each facet by their dis-
tances to the facet centroid, thereby enforcing a unique representation.

3.4 PROCESSOR

All features extracted by the encoders are fed into a processor module composed of L stacked
layers. In the [-th layer, the processor takes the vertex features of the previous layer hl\; 1 and
applies a geometric aggregator to incorporate the vertex information into the facet and cell nodes to
generate geometric features hlC and hL,. Two-stage message passing is used to propagate physical
information across high-dimensional elements, where messages are first exchanged on facets and
subsequently to cells. Finally, an inverse disaggregation decoder maps the updated cell-level features
back to the vertex nodes for residual updates, producing spatially smooth features h{,“ over domain.

Geometric Aggregator Since vertex features are updated through the processor, it implies that the
features of the cells and facets must also be updated. We update the features of each element by
aggregating the features of all vertices that it contains. A straightforward approach is to concate-
nate the initial features with those of all associated vertices, followed by an aggregation operation.
However, since each element contains a relatively large number of vertices (e.g., eight vertices in
a hexahedron), this approach results in significant computational overhead. Another approach is
to average the features of all vertices, following the conventional GNN. However, this leads to se-
vere homogenization of features between vertices and overlooks the relative geometric relationships
between the nodes in their corresponding cells.

Inspired by the shape function (Reddyl [1993)) in numerical solvers, which describes physical fields
in a cell using local coordinates, MAVEN constructs aggregation coefficients from each vertex to the
element based on the local coordinate system of the element. These coefficients are shared across

all processor layers. Let C_ici,vj denote the position vector from the center of the cell ¢; to vertices

v; € ¢4, similar to d fu,0,- Based on the local coordinate system, we employ an MLP to generate a
centered normalized vertex aggregation weight a., »,, € R for each cell.

Qe wos -+ -3 Qe vge_, = MLP ( concat (dciﬂ,)) {vo, ..., VK 1} represents ¢;  (6)
ve{voy,...,vK -1}

Similarly, coefficients a¢, v, - - -, @y, v, _, for each facet f; can be derived, where K and M denote

the number of associated vertices for each cell and facet, respectively. The coefficients obtained are

then utilized to perform weighted aggregation for element feature update. We also sort the vertices

within each cell to ensure permutation invariance.

hlci = Alv_w(hcz'v Z acl',vhi;% hé‘i = Ay_ﬂ:(hfw Z afi’vhfj) (7

vE{vo,...,vK -1} v€{vo,...,unpr—1}
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Message passing on cell-facet graph After extracting features, we construct a bipartite cell-facet
graph G = (Vo = {C, F}, E¢) to explicitly capture the topological and geometric relationships
between volumetric elements and their boundary interfaces. The E¢ contains all pairs (c;, f;) for
f; € ci. MAVEN performs two distinct message passing steps, each dedicated to the facet and cell
nodes, respectively. In the first stage, information is aggregated through facet nodes, which serve as
“edges’, bridging not only adjacent cells but also mediating interactions between external forces or
contacts and the internal dynamics of the object. Inter-object contact interactions are represented on
the facet level, where information from all face-to-face edges is aggregated. To incorporate context
from adjacent cells, we similarly employ a learnable aggregation scheme with ay, ;.

h;i_)}-’l = Z -A]:_)}—(hfs%fm hlfs)a hz]:J = A?f(hsu h;:_ﬂ:’la hliv Z afi,théJ)
f’r f1 (Cjafi)eEG
®)
In the second stage of message passing, each cell aggregates information from its associated facets.
A similar strategy is adopted, employing symmetric aggregation coefficients a, r;, = ay, ; to com-
bine messages from multiple surfaces.

h Ot = APC(L, D ae by )
(ci,fj)€EG

Geometric Disaggregator Finally, the high-dimensional geometric information encoded in each
cell is retransmitted to its associated vertex nodes using the same symmetric aggregation coefficients
Qy;,c; = Qc; ;- A residual connection is applied to update the vertex features. This disaggregation
at the vertex level facilitates a boundary-aware averaging of cell-level information, contributing to
globally smooth predictions across the domain.
h V= APV, Y a0 h ), BTN =hl +hV! 4 FEN(R, +hVh  (10)
Vi €C;

where FFN(+) represents the feed-forward network used in the Transformer (Vaswani et al., 2017).
The next layer uses h%j“l as the input vertex features.

3.5 DECODER AND UPDATER

Our model decodes the features of vertices hL using an MLP decoder to predict the velocity it
and the physical quantities &/ for the next state The next position 2**! is estimated by first-order
integration Z/*+! = 1 4 gt

Training Loss We use the one-step MSE loss as a training objective. Since other physical quantities
may be included, MSE in flexible dynamics is calculated as follows:

1
L= ||:Z?t+1 7i’t+1|‘2

t+1 —6t+1||2 (11)
i

+ olle

VI

3.6 DISCUSSION

Here, we briefly discuss how MAVEN differs from existing approaches.

Compared to classical FEM methods, MAVEN learns complex, nonlinear physical behaviors di-
rectly from data, avoiding the hand-crafted constitutive models required in FEM. It generalizes
across varying geometries and boundary conditions, enabling faster inference and improved scala-
bility for large-scale simulations.

Compared to basic DL methods such as MGN, MAVEN propagates physical information through
high-dimensional geometric elements, including cells and facets. This approach introduces a small
amount of additional overhead. However, it enables MAVEN to accurately capture geometric infor-
mation, which enhances the model’s awareness of local neighborhoods and significantly improves
its stability under sparse meshing conditions.

Compared to hierarchical approaches, MAVEN focuses mainly on accurately capturing local
geometric details. Although hierarchical methods are effective at modeling long-range interactions,
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they offer limited benefits for precise geometric representation. Moreover, MAVEN can be readily
extended to graphs after pooling through an automatic mesh, which we leave for future work.

Compared to PhyMPGN, which depends on the cotangent Laplacian for local geometric, MAVEN
avoids the inherent limitations of Laplacian-based operators in 3D, where no symmetric, local, and
linearly accurate purely geometric Laplacian exists (Wardetzky et al.,2007). By explicitly modeling
high-dimensional geometric elements and constructing operators through message passing, MAVEN
provides a more flexible geometric framework, better suited for 3D Lagrangian formulations, and
can naturally adapt to other physical settings such as 3D Eulerian formulations.

Compared to FIGNet, which is tailored for rigid-body contact and lacks mechanisms for modeling
volumetric physical propagation, MAVEN explicitly represents cells and performs message passing
over higher-dimensional geometric elements. This allows MAVEN to capture intra-object dynamics
with much higher fidelity, especially under sparse mesh. In our experiments, we treat FIGNet as
an ablated variant using only facet-level information, while MAVEN’s joint use of facets and cells
yields better accuracy, underscoring the importance of modeling internal geometric structure.

4 EXPERIMENTS

Datasets To evaluate the efficiency of MAVEN, we test our model on datasets with different com-
plexity in 3D solid simulation. The deforming plate (DP) (Pfaff et al., |2020) and cavity grasping
(CG) (Linkerhigner et al., [2023)) are typical public datasets for the autoregressive elasticity task.
The DP dataset contains relatively dense tetrahedral meshes, while the CG data set has coarser
meshes. To further explore plastic scenarios, we establish a Metal Bending dataset (MBD) inspired
by (Clausen et al.l 2000) in real-world manufacturing, representing a class of solid deformation
involving elastoplastic deformation, large displacements, and very coarse hexahedral meshes. In
addition to target geometry, we also predict attendant physical quantities in experiments, including
inner stress (Stress) and equivalent plastic strain (PEEQ). The rollout steps for all datasets are re-
stricted to between 75 and 125 for a consistent comparison. We briefly present the motion process
of the dataset in figure[3] See Appendix [B]for more details.

Bending
* Forming —_—

(a) Cavity Grasping (b) Deforming Plate (c) Metal Bending
Figure 3: Visual description of the dataset.

Baselines We comprehensively compare MAVEN against baselines with node-based graph simula-
tors. These include classical node-based models MGN (Pfaff et al., [2020) and Graph Transformer
(GT) (Yun et al., 2019), as well as hierarchical models HCMT (Yu et al., 2023) and HOOD (Grig-
orev et al.,|2023). To further distinguish the functions between the cell and the facet elements, we
adapt FIGNet (Allen et al.,|2022) to propagate internal physical quantities through the vertices. The
specific settings of the models are provided in Appendix [D}

4.1 EXPERIMENTAL RESULTS

Rollout Results Table |I| shows the rollout results of all models, demonstrating that MAVEN
consistently outperforms state-of-the-art methods to predict all physical quantities. From fine-
grained to coarse meshes, MAVEN achieves incremental average improvements of 3.41%, 13.07%,
and 18.13% across the three datasets, respectively. This indicates that explicitly capturing high-
dimensional geometric features is beneficial for physical simulation and becomes even more critical
under sparser mesh conditions. In the MBD dataset, geometry-based methods (FIGNet, MAVEN)
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Table 1: Rollout results(-x103) for MAVEN and other baselines, with 50-step rollouts and full-
sequence rollouts. Our results are derived by averaging the root mean square error (RMSE) values
computed across all intermediate steps and test datasets.

CG DP MBD
Pos Pos Stress Pos Stress PEEQ
50 6.382039 14.01:0087 24,495,364+793284 686.197051  12508.072392.56  0.24+0.045

Model Rollout

MGN ALL  16.89:049 23.65:0.19 30,623,890+457,279 2012.16+299.60 9737.58+28761 1.45+0.060
GT 50 6.15:037 14.72:030 24,384,076+915030 678.87+39.99 10368.29+1737.58 0.41+0.060
ALL  16.69:062 26.77+052 32,171,330+224721 1406.61272.84 14255.72+120351 2.07+0.083
HCMT 50 6.142029 14.46x047 22,335,358+663289 851.86x5223 17940.56x2662.00 0.45:0.010
ALL 16.87x024 24.94+076 30,317,188+457279 2003.30+77.71 11539.27:83480 1.30z0.16
HOOD 50 6.9620083 14.27:032 23,474,653+259,738 623.57+2347  11739.02+98237 0.3720.078
ALL  18.84z085 24.01x030 30,941,529+683204 1762.4123592 8352.52:48260 1.5620.093
FIGNet 50 6.2620086 14.74:018 23,926,010:93458 515.17267.13  5583.71x106030 0.22+0.12
ALL  17.59:051 26.51x023 31,491,198+237542 1030.57x1590 5402.31+805.40  1.09z052
MAVEN 50  5.21:000s6 13.78:017 21,657,348:170228 276.73:4446  4901.56:46.06  0.20=0.068
ALL 15.41:0.11 23.41:032 27,907,490:158020 810.4212408  4776.72:71.20 1.01:0.024

Improv. 13.07% 1.33% 5.49% 33.82% 11.90% 8.67%

significantly outperform node-based approaches. In addition, the cell-element-aware architecture
enables MAVEN to better capture variations in three-dimensional volumes compared to FIGNet.

Visualization Figure [] presents the visualization results. Compared with other methods, MAVEN
adopts a cell-based propagation approach, allowing physical contact information to be transmitted
more effectively throughout the entire deformable body. As a result, MAVEN achieves lower errors
even in regions that are far from the deformation part. At the same time, the use of facet-based
contact detection allows MAVEN and FIGNet to maintain stable contact even under particularly
coarse meshes. More visualization results and analyses can be found in Appendix [F]

Ground Truth Step 0,50,104 Geometry (MAVEN) 60,80,104 Geometry (GT) 60,80,104

0 1.092E-01

Ground Truth Step 0,50,99 Geometry (MAVEN) 50,75,99 Geometry (FIG) 50,75,99

0 4104

Figure 4: Visualization of error maps. The first and second rows respectively show sample visual-
izations from cavity grasping and metal bending datasets.

4.2 ABLATION STUDY

We validate two key components in our model, specifically, the aggregators that explicitly compute
geometric features, and the feature aggregation method based on local geometric coordinates. We
conducted systematic ablation studies on the MBD and CG to evaluate the contributions of different
component models, testing three models: 1) Our full model; 2) Model A, which replaces geometric-
based aggregation coefficients with a degree-averaging approach, is used to validate the effectiveness
of our geometric aggregation strategy based on local coordinate systems; 3) Model B that replaces
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geometric input features of 3D cells and facets with zero padding, is used to assess the importance of
explicitly computing geometric features; and 4) Model C, which removes explicit modeling of cell
and facet nodes by averaging their precomputed geometric features onto neighboring vertex nodes
and propagating them through standard message passing, is used to evaluate the role of explicitly
representing higher-dimensional geometric elements.

Model Rollout <O MBD
Pos Pos Stress
our 50 521 27673 4901.56
US ALL 1541 81042 4776.72
50 626 40279 5302.67
Model A~ 1y 1745 92671 6683.94
50 541 39140 6839.26
Model B \y 1 15033 165231 6680.39
Modelc 50 605 63271 980255

ALL 17.08 1680.20 10375.86

Table 2: Ablation results on CG and MBD.

Table [d.2] shows the averaged error results in the test datasets. We observe that replacing geometry-
aware aggregation with simple averaging (Model A) performs significantly worse on the generally
sparse CG dataset. This indicates that such sparsity requires capturing detailed intra-element geom-
etry to surpass standard node-based methods. Similarly, omitting explicit geometric features (Model
B) leads to severe degradation on the highly sparse MBD dataset. This suggests that in extremely
sparse settings, traditional GNNSs struggle to infer local geometric structure implicitly and therefore
fail to accurately capture the underlying geometric topology. For Model C, which does not explicitly
model high-dimensional geometric elements, its performance on both datasets is close to traditional
node-based methods. This suggests that adding geometric features alone, without modeling higher-
dimensional topology, is insufficient for nodes to fully capture surrounding geometric structure.

These ablation results collectively demonstrate the effectiveness and necessity of MAVEN’s de-
sign choices, including the explicit modeling of higher-dimensional geometric elements, the explicit
computation of geometric features, and the use of geometry-aware aggregation for message updates.

5 CONCLUSION AND FUTURE WORK

We propose MAVEN, an architecture that models mesh geometry with high-dimensional features
and learnable aggregation to simulate 3D solid contact and deformation on coarse meshes, outper-
forming baselines in physical propagation and contact representation. Remaining challenges in-
clude stabilizing meshes against excessive distortion and extending the approach to arbitrary-
dimensional meshes, which define directions for future work.
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A ALGORITHMIC DETAILS OF MAVEN

For completeness of the model, this chapter elaborates on the algorithmic details of MAVEN.

Generating face-to-face edges To accelerate the construction of facet-facet edge sets, we employ
a coarse-grained bounding box approach where each facet F; is enclosed by an axis-aligned min-
imum bounding rectangle (AAMBR) [a7"", 2" **] x [y, yi"®*] x [, 2], We perform
per-dimension intersection tests on the X, y, and z axes, then combine the results through logical
AND to determine the final intersection relationship, with the single-dimension intersection algo-

rithm detailed in Algorithm [T}

Algorithm 1: Detecting 1-D intersection of segments

Input: segments set S = {[z7" 2]}, a detect radius ¢

Output: detected intersection pairs I = {(4, §)|(¢, j) is within radius €}

initialization:] = 0, S’ = {[z7" — ¢, 2% 4+ ¢]}, A=0,B =10

generate events:events = {(z7" 0,4) (2%, 2,4) } U{ (2" — ¢, 1,4) U2 + ¢, 3,1)}
sort all event tuples in ascending order;

for (z,type,id) in events do

if type == 0 then

A= AJ{id}
Tl e < By
end
if type == 1 then
B = B J{id}
I =1{(z,id)|x € A}
end
if type == 2 then
| A=A\ {id}
end
if type == 3 then
| B=B\/{id}
end
end
return I;
B DATASET

Deformation
——

von mises stress [MPa]
von mises stress [MPa)

0 1600 3600 6400 10000 14400
400 1600 3600 6400 10000 14400

Figure 5: Description of Deforming Plate from (Pfaff et al.||2020).

Deforming Plate Dataset This dataset contains 1,200 3D dynamic simulations of
a hyperelastic deformable plate pressed by a rigid solid (Fig[3). Each sample records the geometry
of the plate and the internal stress, with an average of 1,271 points per simulation. In our setup, we
unroll this dataset with a step size of 100 iterations to maintain consistent sequence lengths across all

13
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datasets. Following the protocol of the original article, we split the data into 1,000 training samples,
100 validation samples, and 100 test samples.

Cavity Grasping (Linkerhdgner et al., 2023) The dataset comprises a three-dimensional dynamic
simulation of deformable cavities subjected to gripping by a rigid gripper (Fig. [f)), containing a total
of 840 samples. The gripper is modeled as two rigid bodies, corresponding to its two jaws, which
undergo motion in opposing directions. The deformable objects are cone-shaped cavities generated
with randomly assigned radii in the range [50, 87.5]. Their material properties are specified as
elastic, with Poisson’s ratios drawn cyclically from the set -0.9, 0.0, 0.49. This dataset, primarily
designed for autoregressive modeling tasks, provides temporal trajectories over 105 simulation steps.
Each sample contains 1,386 points. Following the strategy of the original article, 600 samples are
used for training, 120 for validation and 120 for testing.

Figure 6: Description of Cavity Grasping from (Linkerhégner et al.| 2023)

Metal Bending Dataset To rigorously validate the capability of MAVEN, we designed an industri-
ally inspired test scenario featuring large deformations, coarse mesh discretization, and elastoplastic
material behavior. This configuration mimics challenging real-world engineering applications such
as metal-forming processes (Clausen et al.| [2000), where computational methods must simultane-
ously handle geometric nonlinearity, material nonlinearity, and under-resolved meshes while main-
taining physical accuracy and numerical stability. The results are calculated by ABAQUS software
(Abaqus}, 2011)).

ssssss

Strech
—

Bending
—

+1:500e+01
+0.0006+00

Figure 7: Description of Metal Bending.

Yield Stress

0.000 0005 0010 0015 0020 0025 0030 Plastic Strain 0.00 0.10 0.20 0.30 0.40 0.50

(a) (b)

Figure 8: (a) True Stress-Strain Curve of Aluminum Profile. (b) Exemplar Motion Trajectory for
Clamp Mechanism.

As illustrated in Fig. [7] this scenario involves clamping a straight aluminum profile using a special-
ized device, where the profile is first stretched beyond its elastic limit to induce plastic yielding, and
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then progressively pressed against a curved steel die through controlled displacement; the resulting
compressive contact forces generate permanent plastic deformation to achieve the prescribed target
geometry. The straight metal component is modeled as a slender component of size 2x 12 x 200mm3
to accurately replicate field conditions. For discretization, we employ a 1 x 3 x 5mm?> mesh grid
throughout the component. The material properties are configured as measured aluminum profile
characteristics, with a Poisson’s ratio of 0.37, Young’s modulus of 69,000, and the true stress-strain
curve depicted in Fig. [8(a). The 3D rigid die geometry is determined by its cross-sectional profile
and a characteristic guiding curve. To ensure continuous contact between the aluminum workpiece
and the die during bending operations, this guiding curve must maintain convexity and smoothness.
We construct the curve by combining two circular arcs lying in the XY and XZ planes, respectively,

each defining principal curvatures, and then synthesizing them into a composite spatial curve. In
the ellipse i—z + g—j = 1(a > b > 0) with a focal point at (¢,0), we employ three distinct uni-
form distributions to control the morphology of the die, which are £ ~ 2/[0.1,0.3], £ ~ /[0.1, 0.3]
and a ~ U[170,190](unit:mm). The clamping tool’s motion trajectory is generated by applying a
classical evolute algorithm along the characteristic curve (see Figb) for an illustrative example).
The dataset contains an average of 1163 nodes per sample, with rollout lengths varying between 75
and 125 timestep. We generated a total of 1000 trajectories, divided into 800 for training, 100 for

validation, and 100 for testing.

C METRICS

In our autoregressive framework, consistent with the baseline methods under comparison, we em-
ploy the Root Mean Square Error (RMSE) as the evaluation metric. Given the predicted physical
quantity g; and ground truth value y; of current NV vertices, the RMSE is calculated as:

/1,
RMSE = 5”% —yil]? (12)

For positions, we take the distance between two points as the sole comparative physical quantity. To
evaluate the performance across multiple trajectories and frames, we report the final error metric as
the average value computed over all frames for each individual trajectory:

M T;
Zi:l Ej:l RMSE; ;
M
2im L

The number of trajectories is denoted by M, where T; represents the length (number of timesteps)
of each individual trajectory.

ERROR =

(13)

D IMPLEMENTATION

Model Hyperparameters To ensure a fair comparison, all models were evaluated under similar
parameter budgets and computational costs, with detailed configurations provided in Table[3] Due
to the larger parameter count per block in MAVEN and FIGNet, these models employed fewer
propagation layers. For HCMT and HOOD, while the optimal hierarchy layer count originally
reported was 5 layers on the deforming plate dataset, we reduced it to 3 layers in our implementation
because the hierarchical partitioning algorithm failed to correctly subdivide new meshes beyond the
fifth layer. For all datasets, we adopted a uniform batch size of 8 in all experiments.

Training Implementation All models were uniformly trained in 1M steps. We used Adam opti-
mizer (Kingma, [2014), with a learning rate decreasing from 10~% to 10~° . All experiments were
conducted using a single RTX 3090 24GB GPU and repeated three times for the calculation of the
standard deviation. All models were trained using Mean Squared Error (MSE) as the loss function,
where each physical quantity was first normalized via Gaussian standardization and then summed
directly to compute the final loss. This standardized approach ensured a fair and controlled compar-
ison to objectively assess the relative performance of each method.

Dataset Input and Detect Parameter The inputs and outputs of each dataset, as well as the cor-
responding node-based contact detection radius ry and face-based contact detection radius rp, are
shown in Table E} To ensure fairness, the node-based model and our model are able to detect nearly
the same number of contact edges.
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Table 3: Key hyperparameters and parameter numbers of models.

| Deforming Plate | Metal Bending | Cavity Grasping |

HIDDENS [128, 128] [128, 128] [128, 128]
MGN LAYERS 15 15 15
| |PARAMETERS(M)|  3.85M | 38M |  38M |
HIDDENS (144, 144] (144, 144] (144, 144]
HCMT LAYERS 1243 6+9 10+5
| PARAMETERS(M) 3.24M 3.24M 3.11M
HIDDENS [96, 96] [96, 96] [96, 96]
FIGNet LAYERS 15 15 15
| |PARAMETERS(M)|  3.08M | 348M |  305M |
HIDDENS [128, 128] [128, 128] [128, 128]
HOOD LAYERS 1243 649 1045
| PARAMETERS(M) 3.56M 3.16M 3.47M
HIDDENS [128, 128] [128, 128] [128, 128]
GT LAYERS 15 15 15
| |PARAMETERS(M)|  3.64M | 36IM | 35M |
HIDDENS [96, 96] [96, 96] [96, 96]
MAVEN LAYERS 15 15 15
| PARAMETERS(M) | 3.11M 3.15M 3.08M

Table 4: Model input, output and contact detection parameters for dataset. .S denotes stress, and P
denotes PEEQ.

‘ Dataset ‘ Input ‘ Output ‘ rw ‘ re ‘noise ‘
: ot t—1 gt t+1 _ .t gt+l _ gt
(et s M 7 [3 . . .
| Deforming Plate | type;, xf —z!~", Sf | ! zt, S! S 10.03]0.010.003 |
. . ot i1 t+1 _ _t
7y g i 5 i i . B .
‘ Cavity Grasping ‘ type;, x; — x ‘ x z; ‘ 0.1 ‘ 0.05 ‘ 0.01 ‘

| Metal Bending | type;, «f — z{~', S}, P} |ai™! —af, ST —SE, PIY —Pf 1 [ 03] 01 |

E MODEL EFFICIENCY

We briefly discuss the computational efficiency of MAVEN. Table[5|shows the runtime performance
of various baselines on two datasets. The computational overhead of MAVEN primarily stems
from geometric feature computation and inter-node mapping operations, particularly on hexahedral
meshes. However, MAVEN still achieves an efficiency improvement of 2922.66% over the Abaqus
simulators (712.44ms per step) in the metal bending dataset.

Table 5: The inference time per step(ms) for each model on three dataset
Dataset MAVEN MGN FIGNet HCMT HOOD GT
CG 2548 1837 24.15 5505 5137 22.02

DP 4827 39.73 43.08 6494 5728 54.83
MBD 2357 1742 17.08 43.68 3645 2234

F VISUALIZATION

Fig. 9] and [T0| present the complete visualization results for each dataset. It is worth noting that in
the Metal Bending dataset, message-passing-based methods MGN and HOOD exhibit severe mesh
distortions, especially at contact regions. In contrast, graph-attention-based methods HCMT and GT
better preserve mesh shapes, though their overall structures become distorted. However, all of these
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Figure 9: Visualization of distance error map on Cavity Grasping.

methods suffer from severe interpenetration issues, as further illustrated in the rollout animations
provided in the Supplementary Material. We believe that this phenomenon arises because individual
nodes cannot accurately identify their intended contact regions. Enlarging the detection radius intro-
duces many irrelevant points into the contact set, which, to some extent, is also exacerbated by the
large discrepancies in mesh lengths across the x, y, and z axes. More specifically, near the fixed end,
the mesh exhibits severe interpenetration. Closer to the moving end, the deformable body is heavily
constrained by the lower rigid body, preventing it from generating the correct motion and causing it
to stagnate. This indicates that facet-based contact detection is of critical importance when dealing
with sparse meshes.

Geometry (GT) 50,75,99 Geometry (HCMT) 50,75,99

Ground Truth Step 0,50,99 Geometry (MAVEN) 50,75,99 Geometry (FIG) 50,75,99

Fs

%

Geometry (MGN) 50,75,99 Geometry (HOOD) 50,75,99

Figure 10: Visualization of distance error map on Metal Bending dataset. Gray indicates that the
error at this location exceeds the given error upper bound.
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G LIMITATION AND FUTURE WORK

In this section, we briefly discuss the limitations of MAVEN and outline several promising directions
for future work.

The dependence on mesh quality. Since MAVEN explicitly models cell-level information, the ge-
ometric quality of the initial mesh can substantially affect its performance. This behavior resembles
that of traditional numerical methods (e.g., FEM, FVM) rather than node-based GNN models. In
our experiments on the Cavity Grasping dataset, we compared meshes generated by a basic triangu-
lation procedure with those produced by a higher-quality meshing algorithm. The results show that
MAVEN’s performance degrades markedly when operating on low-quality meshes. However, most
existing deep learning datasets do not provide their original mesh discretizations, and meshes recon-
structed from point clouds typically exhibit very low geometric quality. Consequently, generating
more datasets with high-quality meshes, as well as reducing sensitivity to mesh quality, constitutes
an important direction for our future work.

Support long-range interaction. While MAVEN is fundamentally designed as a local operator
that explicitly leverages high-dimensional geometric structures (facets and cells), it does not yet na-
tively capture long-range interactions. Existing graph pooling strategies (e.g., KNN clustering, BFS
grouping, global slicing) can, in principle, be directly applied to MAVEN cell-facet graph to expand
the receptive field. However, these methods often introduce significant computational overhead
and offer limited benefit in modeling a global high-dimensional geometric structure. Developing
a geometry-aware hierarchical extension that supports efficient long-range information propagation
therefore represents an important direction for future work.

Extend to boarder range of systems. MAVEN is designed primarily for elastoplastic solid sim-
ulation on arbitrary 3D volumetric meshes, where explicit modeling of facets and cells provides
high geometric fidelity. Although MAVEN can be adapted to thin-shell or surface-based geometries
through appropriate redefinition of geometric features, and can extend to Eulerian formulations us-
ing fixed meshes and standard boundary-condition encodings, these adaptations require additional
geometry-aware considerations and suitable datasets. Extending MAVEN into a unified framework
capable of supporting surface-based systems, thin-shell structures, and Eulerian physical simulations
on sparse and irregular 3D meshes remains an important direction for future work.

H STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We declare that LLMs are mainly used in this paper to improve the clarity and fluency of the text, and
to a limited extent for code generation in technically mature modules, in order to reduce unnecessary
repetitive work.
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