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Abstract

Traditional causal discovery methods often rely
on strong, untestable assumptions, which makes
them unreliable in real applications. In this context,
Large Language Models (LLMs) have emerged as
a promising alternative for extracting causal knowl-
edge from text-based metadata, which consolidates
domain expertise. However, LLMs tend to be un-
reliable and prone to hallucinations, necessitating
strategies that account for their limitations. One ef-
fective strategy is to use a consistency measure to
assess reliability. Additionally, most text metadata
does not clearly distinguish direct causal relation-
ships from indirect ones, further complicating the
discovery of a causal DAG. As a result, focusing on
causal orders, rather than causal DAGs, emerges as
a more practical and robust approach. We present
a new method to derive a class of acyclic tour-
naments, which represent plausible causal orders,
maximizing a consistency score derived from an
LLM. Our approach starts by calculating pairwise
consistency scores between variables, resulting in a
semi-complete partially directed graph that consol-
idates these scores into an abstraction of the maxi-
mally consistent causal orders. Using this structure,
we identify optimal acyclic tournaments, focus-
ing on those that maximize consistency across all
configurations. We subsequently show how both
the abstraction and the class of causal orders can
be used to estimate causal effects. We tested our
method on both well-established benchmarks, as
well as, real-world datasets from epidemiology and
public health. Our results demonstrate the effec-
tiveness of our approach in recovering the correct
causal order.

1 INTRODUCTION

Traditional causal discovery algorithms rely on observa-
tional data to uncover causal relationships. To do so, they
often rely on strong assumptions Spirtes et al. [2001], Gly-
mour et al. [2019], Peters et al. [2017], Assaad et al. [2022],
such as causal sufficiency and faithfulness. The recent rise
in popularity of Large Language Models (LLMs) offers a
new tool to discover causal models Long et al. [2023a,b],
Cohrs et al. [2023], Vashishtha et al. [2025], Kiciman et al.
[2024]. Indeed, unlike traditional causal discovery methods,
LLM-aided approaches operate on textual data —leveraging
pre-collected knowledge encoded in their training data.

Despite growing interest, initial attempts to extract reliable
causal information from LLMs have met limited success.
Indeed, LLMs have often been associated with ambiguous
and inconsistent replies when queried on causal relation-
ships Zečević et al. [2023]. Moreover, we can argue that
besides limited transfer of knowledge among different do-
mains, LLMs have limited capabilities when it comes to
uncovering new knowledge. To this end, most of their po-
tential is grounded in the training data, which can include
scientific literature and commonsense knowledge.

Most importantly, as underlined in Vashishtha et al. [2025],
in natural language, direct and indirect causes are often con-
flated, making them difficult to distinguish. This ambiguity
is evident in various domains such as philosophy, biology,
and epidemiology. For instance, we commonly assert that a
sedentary lifestyle causes type 2 diabetes, when in fact this
link is fully mediated by obesity Li et al. [2022]. More in
general, in natural language, causal relations are frequently
expressed as a simple relationship: "X causes Y " or "X
affects Y " or "X prevents Y ", etc. This oversimplification
obscures the complex web of direct and indirect influences,
including immediate "parents" and distant "ancestors" of a
causal pathway. Given that LLMs are often characterized
as "causal parrots" Zečević et al. [2023] —meaning that
they are just mimicking causal reasoning —we argue that
they are more effective for identifying causal orders rather
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than constructing correct causal Directed Acyclic Graphs
(DAGs) Vashishtha et al. [2025].

However, LLMs are notoriously unreliable, often produc-
ing hallucinated or inconsistent outputs. In this paper, we
propose to quantify the reliability of the LLM and use such
metric as a heuristic to identify classes of causal orders. The
reliability of the LLM is represented by the self-consistency
of the model when queried multiple times on pairwise causal
relationships. The consistencies are then used to identify
an abstraction, namely a Semi-Complete Partially Directed
Graph (SCPDG), representing a compression of all maxi-
mally consistent causal orders. We show that the SCPDG
can be transformed into a Maximally oriented Partially Di-
rected Acyclic Graph (MPDAG) Perkovic [2020] to identify
causal effects. Additionally, based on the SCPDG, we pro-
pose an exact method to derive all maximally consistent
causal orders. We show that the class of orders can be used
to estimate causal effects.

Unlike traditional causal discovery methods Spirtes et al.
[2001], Glymour et al. [2019], Peters et al. [2017], Assaad
et al. [2022], our approach does not rely on faithfulness,
or any other parametric assumptions, but rather only on
acyclicity and causal sufficiency. Additionally, we view the
LLM as a reasonably accurate knowledge base Zheng et al.
[2024].

Contributions

• We provide an effective algorithm to find a class of
causal orders maximally consistent with the knowl-
edge provided by LLMs. Such method is based on
a top-down search strategy that does not require any
parametric assumptions or faithfulness.

• We demonstrate how to derive an MPDAG from ab-
stractions of causal orders and how to identify causal
effects using both the MPDAG and the class of causal
orders.

• We offer a collection of realistic causal graphs from
scientific literature that have not been utilized as bench-
marks before.

The remainder of the paper is organized as follows: in Re-
lated Works, we review relevant literature related to LLM-
aided causal discovery; in Background, we provide some of
the basic notions used in the paper; the following section
presents the main contribution of the paper and details re-
garding the proposed method; the last two sections provide
a detailed description of experiments and discuss the results.
All the proofs of Propositions and Theorems are provided
in Appendix.

2 RELATED WORK

Causal Inference with Background Knowledge. The
use of expert knowledge in causal discovery has been a
long-standing research topic, aimed at integrating domain-
specific information to refine causal graphs. A notable first
attempt at integrating background knowledge into causal
representation has been made by Meek [1995], where a
set of rules —known as Meek rules —were proposed to
obtain maximally oriented Completed Partially Directed
Acyclic Graph (CPDAG), representing a MEC, based on
expert knowledge. These rules allow for the refinement of
the CPDAG by orienting edges while preserving the condi-
tional independence encoded in the graph and the acyclicity
constraint. More recently, Maathuis and Colombo [2015],
Perkovic et al. [2017], Perković et al. [2017], Perkovic
[2020], Venkateswaran and Perković [2024] propose gen-
eralizations of identifiability by adjustment to abstraction
of causal graphs, such as CPDAGs and Partially Directed
Acyclic Graphs (PDAGs) and maximal PDAGs.

LLMs in Causal Discovery In causal discovery, LLMs
are often viewed as expert, as they are trained on vast
amounts of text data, including scientific literature and com-
monsense knowledge. In this context, numerous works at-
tempted to integrate them to uncover causal DAGs Kici-
man et al. [2024], Long et al. [2023a], Cohrs et al. [2023],
Vashishtha et al. [2025], Jiralerspong et al. [2024]. However,
LLMs have been shown to be unreliable and untrustwor-
thy; their tendency to produce hallucinations is a notable
example of this issue. Indeed, they often referred to as im-
perfect experts Long et al. [2023a], Vashishtha et al. [2025].
Moreover, concerns regarding their capability to effectively
reason have been raised, as they might be just capturing
verbal patterns without actually learning the underlying rea-
soning Zečević et al. [2023]. To tackle this problem, most
of the approaches proposed quantify the reliability of these
models. As presented in Cohrs et al. [2025], there are two
primary approaches to this task: the first is to compute the
uncertainty of the LLM output using the probabilities as-
sociated to the tokens in the LLM’s response; the second
is to evaluate the consistency, i.e., the self-coherence, of
the LLM output when queried multiple times. All of the
LLM-aided causal discovery method start assuming to have
a textual description of the variables involved, provided by
a domain expert. In Cohrs et al. [2023], authors propose
an LLM informed variant of the PC algorithm. Specifically,
the PC algorithm is enhanced by incorporating LLMs to
detect conditional independencies among variables. How-
ever, this method retains all the assumptions of the PC al-
gorithm. In Long et al. [2023a], a pairwise prompt strategy
is proposed to complete the orientation of edges in a given
CPDAG. Each edge is associated to an uncertainty —based
on the probabilities assigned to the response tokens —, then
the Markov Equivalence Class (MEC) is refined through a



Bayesian optimization process. This method relies on the
assumption that a CPDAG is available, which is typically
obtained through a traditional causal discovery algorithm.
The pairwise prompt strategies, require a quadratic number
of queries with respect to the number of variables. A more
efficient approach to reduce the number of queries from
quadratic to linear has been proposed in Jiralerspong et al.
[2024]. Starting from a set of variables deemed as prime
causes, and provided explicitly by the LLM, the method
learns the causal DAG through a BFS search. The method
expands the causal DAG by identifying new variables that
are influenced by the visited nodes.

LLMs and Causal Orders In Vashishtha et al. [2025],
the authors propose a method to estimate causal orders
using LLMs. The intuition is that LLMs can be more
effective in identifying causal orders rather than full causal
DAGs, given the inherent ambiguity of causal relationships
in natural language. The method proposed estimates
the topological order and then applies of the backdoor
criterion Pearl [2009]. The LLM is asked to provide a
DAG for every triplet of variables, which allow to define
a majority for the orientation of the edges. This method
provide DAGs that are compatible with the causal order, but
do not guarantee to estimate true causal graph.

In this work, as in Vashishtha et al. [2025], we start from
the assumption that identifying causal orders rather than
full causal DAGs presents a more direct task for LLMs.
However, unlike Vashishtha et al. [2025], our approach fo-
cuses on: 1) using a pairwise prompt strategy to compute
the self-consistency of the LLM, 2) identify an abstraction
of the maximally consistent causal orders, namely a fully
connected semi-complete partially directed graph, which
can be used to obtain estimate of the causal effect, 3) further
refines the abstraction to obtain a class of causal orders max-
imally consistent with the knowledge provided by the LLM
—this class of causal orders can then be used to estimate the
causal effects.

3 BACKGROUND

Causal Graphs and Causal Orders A causal graph
G = (V,E) consists of a set of nodes V (or variables) and
a set of directed edges E. The existence of directed edge
between two nodes indicates that there is a direct causal
effect from Xi to Xj . Following standard causal assump-
tions Pearl [2009], Spirtes et al. [2001], we assume that G
is a DAG, referred to as a causal DAG; additionally, we
assume that all confounders are observed, i.e., causal suffi-
ciency holds. Whenever we want to estimate the the total
effect of a variable X on another variable Y , we denote
it as P (Y |do(X = x)). In this context, the presence of
confounding variables can lead to biased estimates of the

causal effect. To address this issue, we can use the backdoor
criterion, which provides a method for identifying sets of
variables that, when controlled for, allow us to estimate the
causal effect of X on Y without biasing the estimate Pearl
[2009]. The backdoor criterion is always satisfied if the
conditioning set Z contains all the parents of X .

In this paper, we assume that the causal DAG is unknown
and we rather focus on causal orders.

Definition 1 (Causal Order). Suppose a causal DAG G.
A causal order compatible with G is a bijective mapping
π : V 7→ {1, . . . , d} such that if Y is a descendant of X
then X ≻ Y , ∀X,Y ∈ V.

Most importantly, the backdoor criterion is always satisfied
for causal orders by conditioning on all the predecessors
of the treatment if there are no hidden confounders Pearl
[2009], Vashishtha et al. [2025].

Maximally Partially Directed Graphs (MPDAGs) It is
important to note that, in general, when causal sufficiency
holds and only observational data are available, the best one
can recover is a Complete Partially Directed Acyclic Graph
(CPDAG) Spirtes et al. [2001]. A CPDAG is a graph that rep-
resents the equivalence class of all DAGs that are Markov
equivalent to each other, meaning they encode the same
conditional independence relations. In the presence of back-
ground knowledge — for instance provided by an expert
— we can refine a CPDAG into an MPDAG Perkovic et al.
[2017] by incorporating the additional edge orientations and
then applying the Meek rules to propagate their implica-
tions. However, the backdoor criterion cannot be directly
applied to these abstraction, which include undirected edges;
to this end, the generalized backdoor criterion Maathuis and
Colombo [2015], Perkovic et al. [2017], allows us to identify
causal effects in CPDAGs.

Definition 2 (Generalized Backdoor Criterion). Let X , Y
be sets of variables in a CPDAG C. Then a set Z satisfies
the generalized backdoor criterion relative to (X,Y ) if:

1. Z does not contain possible descendants of X in C;

2. Z blocks all directed paths from X to Y in C.

The generalized backdoor criterion extends to MPDAGs
since they are enriched CPDAGs, in which all conditional
independencies are preserved, and the orientation of edges
is refined based on additional knowledge. If we can identify
a backdoor set then the total effect is identifiable and can be
estimated using the adjustment formula Pearl [2009]:

P (Y |do(X = x)) =
∑
z

P (Y |X = x, Z = z)P (Z = z) (1)

4 INCONSISTENT KNOWLEDGE BASE

The aim of this paper is to identify factual knowledge per-
meated in the LLMs from established literature regarding



causal relationships in a specific domain. This knowledge is
then used to identify causal orders maximally compatible
with the information provided by the LLM. In this context,
the LLM figures as a knowledge base Zheng et al. [2024]
who: 1) has access to a large body of knowledge and 2) may
provide incorrect responses, e.g., hallucinated. Measuring
uncertainty in LLMs is a well-established practice, which
aims at quantifying the reliability of the information pro-
vided by the model. In this paper, we use self-consistency
as a proxy of uncertainty. Consistency is an effective mea-
sure for assessing the reliability of the information provided
by LLMs; indeed, it has been shown to outperform other
uncertainty metrics, such as entropy, confidence elicitation
and token-level probabilities Manakul et al. [2023], Savage
et al. [2024]. Additionally, consistency has proven effective
in reducing hallucinations Ji et al. [2023].

Following the approach adopted in Long et al. [2023a], Ka-
davath et al. [2022], we assume to have a set of variables
X1, ..., Xd with a set of descriptive metadata associated
to each variable (i.e. a textual description of the variable),
µ1, ..., µd. The consistency is the degree of agreement of the
LLM when queried multiple times about the causal relation-
ship between two variables Xi and Xj with semantically
equivalent queries. The queries are generated by the LLM
itself, which is asked to rephrase a starting prompt, such as
"Is Xi a cause of Xj?", into a set of semantically equivalent
queries —more details on the prompts used in Appendix E.
To reduce the number of incorrect responses, we reduce the
possible answers to a Yes or a No. The consistency score
is then computed as the proportion of Yes responses to the
queries. Specifically, when an LLM is queried n times, the
consistency score for Xi → Xj is calculated as:

CXi→Xj
=

1

n

n∑
k=1

rk

,where rk is the response of the LLM to the k-th query, and
rk = 1 if the response is True, rk = 0 if False, and
rk = 0.5 in case of non-admissible answers. It is important
to note that CXi→Xj and CXj→Xi are computed indepen-
dently of each other. We can define the following notions of
consistency for an expert:

Definition 3. An expert is said to be consistent if, for ev-
ery pair of variables Xi and Xj , such that Xi ≻ Xj the
consistency score CXi→Xj ≥ CXj→Xi .

Definition 4. An expert is said to be strictly consistent if,
for every pair of variables Xi and Xj , such that Xi ≻ Xj

the consistency score CXi→Xj > CXj→Xi .

It follows that any strictly consistent expert is also consis-
tent.
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Figure 1: (a) A consistency matrix for a semi-complete par-
tially directed graph. The values in bold represent edges
maximizing consistency. (b) A semi-complete partially di-
rected graph.

5 MAXIMALLY CONSISTENT CAUSAL
ORDERS

Maximally Consistent Semi-Complete Partially Directed
Graphs. The consistency matrix can be leveraged to con-
struct a maximally consistent graph, S. Specifically, a di-
rected edge Xi → Xj is included in S if Ci→j ≥ Cj→i.
Note that this implies that when Ci→j = Cj→i an undi-
rected edge will be formed between Xi and Xj . Moreover,
S can contain cycles, since there is no explicit mechanisms
preventing them. A graph defined in this way is referred to
as a semi-complete partially directed graph.

Definition 5 (Semi-Complete Partially Directed Graphs
(SCPDG)). A semi-complete partially directed graph is
a dense graph where there is at least one arc, either directed
or undirected, between each pair of its vertices.

This graph represents an abstraction of the causal orders,
capturing the directed relationships between nodes without
committing to a fully resolved causal order or acyclic struc-
ture. By searching for such an abstraction as a starting point,
we can harness its structure to identify or constrain the set of
compatible causal orders. Moreover, we can show that the
based on the expert consistency the graph S is an MPDAG.

Proposition 1. The maximally consistent SCPDG, S , does
not contain directed cycles if the consistency matrix is pro-
vided by a consistent expert.

Corollary 1. The maximally consistent SCPDG, S, ob-
tained from a consistent expert and by applying all the Meek
rules is a MPDAG.

We should also note that the MPDAG obtained in such way
is dense, and allows to determine identifiability efficiently.

Order Invariant Nodes. The graph S allows both for
cycles and undirected edges. This implies the existence of
the limit cases in which a node is connected to the rest of
the graph only through undirected edges. These nodes are



order invariant with respect to the causal order, since they
can be placed in any position. Interestingly, this holds true
for any node defined as follows:

Definition 6. Let S be a maximally consistent SCPDG. We
say that a vertex X in S is order invariant if X has an
undirected edge between every other vertex in S.

These nodes do not provide additional information regarding
the causal order, and can prevent the identification of the
causal effects.

Maximally Consistent Acyclic Tournaments. The
SCPDG, S, captures the directed relationships between
nodes, but it does not necessarily represent a valid causal
order. To do so, we need to transform S into an acyclic
tournament.

Definition 7 (Acyclic tournament). An acyclic tournament
is a DAG with exactly one edge between each two vertices,
in one of the two possible directions.

An acyclic tournament provides a graphical representation
that fully encodes a unique causal order. Specifically, the
direction of the edge between any two nodes directly reflects
their relative position in the causal order. To establish a
connection between SCPDG and acyclic tournaments, we
introduce the concept of compatibility, formalized in the
following definition:

Definition 8 (Compatible Acyclic Tournament). Given a
SCPDG, S = (V,E), an acyclic tournament T is said to be
compatible with S if it can be derived from S by reversing
certain edges within each SCC of S , while leaving all other
edges unchanged.

To obtain a class of plausible causal order, we need to find
all maximally consistent acyclic tournaments compatible
with the SCPDG.

Definition 9 (Maximally consistent acyclic tournament
(MCAT) compatible with S). An acyclic tournament com-
patible with S is said to be maximally consistent if it maxi-
mize the consistency score relative to all other acyclic tour-
naments compatible with S.

Note that there might be multiples MCATs compatible with
S . To find them, we need to identify all acylic transformation
of S leading to a compatible MCAT. We identify two main
scenarios:: 1) S is a MCAT and maximally consistent by
construction. 2) we need to find the minimal set of edges to
reverse in S to eliminate all cycles while maximizing the
consistency score.

The minimal set of edges to remove from a graph to trans-
form it into an acyclic one is known as the Feedback Arc Set
(FAS). A FAS is a smallest set of directed edges in a graph
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Figure 2: (a) an illustration of a semi-complete directed
graph deprived of invariant nodes and (b) a compatible
acyclic tournament with maximal consistency score.

that when removed eliminates all cycles from it. However,
since we are searching for a tournament rather than just any
DAG, we require the resulting graph to remain fully con-
nected. As shown in Barthélemy et al. [1995], reversing all
edges in the FAS also results in an acyclic graph, and in our
case, an acyclic tournament. Moreover, in our context, we
are not merely interested in any acyclic transformation of
S, but rather the one that maximizes the consistency score.
Therefore, we focus on a weighted version of FAS, where
the goal is to find a FAS that maximizes the sum of the
weights associated to the edges. To this end, instead of con-
sidering consistencies scores as weights, we define a cost
score, Bi→j , for each edge, Xi → Xj , in S.

Bi→j = ξ − Ci→j + Cj→i.

where ξ is the total consistency score of S , calculated as the
sum of the consistency scores of all edges. In this context,
the cost score Bi→j represents the cost of reversing the edge
Xi → Xj in S . The goal is to find a FAS that maximizes the
total cost score, which is equivalent to maximizing the total
consistency score of the resulting acyclic tournament. To
find a FAS from S and the cost B, we use an exact solution,
denoted as ExactFAS based on an integer programming
formulation which is guaranteed to yield an optimal result.
However, since, finding a FAS is NP-complete, ExactFAS
can be too slow for very for large graphs. Nevertheless,
assuming that the true causal graph is acyclic, we expect the
graphs to be relatively small, allowing for efficient detection
of a FAS.

Finding All Maximally Consistent Acyclic Tournaments.
Obtaining the FAS maximizing the total cost score does
not guarantee to find all the MCATs compatible with S.
Indeed, there might be multiple MCATs compatible with
S. To this end, we proposed a method to find all the
maximal weighted acyclic tournaments given a matrix of
weights W , denoted as MATS (Maximal Weighted Acyclic
Tournaments Search). The intuition is to constrain the so-
lution space based on the previous solution of ExactFAS,
which is guaranteed to yield a maximal acyclic tournament.
More specifically, let A∗ be a solution obtained by the Exact-
FAS, meaning that a there is a maximally weighted acyclic



tournament, T = (V,ET ), such that ET = (ES A∗)∪A∗T .
We want to find all the acyclic tournaments T ′ = (V,E′

T )

such that E′
T = (ES A′) ∪ AT ′

and A′ ̸= A∗. This can be
obtained excluding subsets of edges F from the admissible
edges, such that F ∈ P(A∗). If the exclusion of F leads
to a suboptimal solution, i.e., of non-maximal score, then
we exclude from the search all the subsets containing F,
such that F ⊂ F′, since they all lead to suboptimal solutions
The process is repeated for every optimal solution of the
ExactFAS.

Theorem 1. The MATS algorithm is sound, complete and
terminates.

Proposition 2. If the consisntency matrix is provided by
a consistent expert, the MATS algorithm is guaranteed to
return a class of acyclic tournaments containing the true
causal order.

Proposition 3. If the consisntency matrix is provided by a
strictly consistent expert, the MATS algorithm is guaranteed
to return the true causal order.

6 REASONING WITH CLASSES OF
CAUSAL ORDERS

Reasoning with Semi-Complete Partially Directed
Graphs. To reason with SCPDG, we rely on the gener-
alized backdoor criterion Maathuis and Colombo [2015],
which applies to MPDAGs Perković et al. [2017]. Follow-
ing the Corollary 3, if the maximally consistent SCPDG,
S, is derived from a consistent expert it will always be an
MPDAG. However, this does not hold in presence of incon-
sistent experts, where S may have a directed cycle. With-
out loss of generality, we can transform the SCPDG into a
MPDAG by: 1) substituting the directed edges contained in
a cycle with an undirected ones and 2) enforce the Meek
rules. It is important to note that since the graph is dense,
only the rule enforcing acyclicity will be applied, since there
are not colliders in the graph. Unfortunately, this transforma-
tion may lead to a loss of information.If we assume to have
only one treatment variable X and an outcome variable Y ,
we can still reason with the MPDAG Perkovic et al. [2017].
In this context, since the MPDAG is fully connected, the set
of parents of the treatment variable X is a valid adjustment
set, and it is equivalent to the backdoor set. Moreover, in this
paper we provide a simpler characterization of identifiability
for dense MPDAGs; indeed, every time an undirected edge
is related to the treatment variable X , it indicates that the
total effect is not identifiable by adjustment.

Proposition 4. Given a dense MPDAG and the treatment
variable X , the total effect is not identifiable, using (1), iff
there are no undirected edge related to X .

Corollary 2. Given a dense MPDAG, if it contains an in-
variant node, any causal effect between two variable X and
Y is not identifiable.

Reasoning with Acyclic Tournaments. Identification
over the dense MPDAG derived from the SCPDG might
not be possible in some cases, e.g., in the SCPDG the treat-
ment is part of a cycle. To address this, we can reason using
the the maximally consistent causal orders compatible with
S. Given an estimated causal order, if we assume that the
treatment X is sorted before the outcome Y , X ≻ Y , then
we can estimate the causal effect of X on Y adjusting for
any predecessor of the treatment X . Additionally, reasoning
over classes of causal orders allows us to provide uncer-
tainty over the estimation. Indeed, we can identify orders
with the same causal effect, i.e., if Z ≻ X ≻ M ≻ Y and
Z ≻ X ≻M′ ≻ Y are both in the class of MCATs compat-
ible with S, then their effect is the same. For every pair of
orders in the class for which the backdoor set is the same,
the causal effect of X on Y is the same. Additionally, this
allows us to weight the estimation based on the number of
orders that contain the same causal effect, which in turns
identifies a probability distribution over the causal effect of
X on Y .

7 EXPERIMENTAL RESULTS

The code1 is implemented in python 3.10. We relied
on multiple LLMs as inconsistent experts. More specif-
ically, results presented in Table 1 and 2 were obtained
using gpt-4.1-nano a fast and lightweight version of
gpt. However, the method is designed to be compatible
with many open-source LLMs, particularly those available
through the ollama platform—a library that facilitates the
management of multiple LLMs. Among these, we tested
our method on: mistral with 7 billion parameters.All
results pertaining to the use of mistral are available in
Appendix D. The implementation of graphs relies on the
igraph, a C++ library that offers an implementation of
ExactFAS —more details in Appendix C.

Baselines. Concerning LLM-aided approaches, we com-
pare to a state-of-the-art method for discovering causal
orders, proposed in [Vashishtha et al., 2025], which we
refer to as Triplets. Additionally, to provide a comprehen-
sive overview of the method’s potential, we compare to
more traditional causal discovery approaches. Specifically,
we conducted experiments using the PC algorithm with
Fisher’s conditional independence test2, and a linear ver-
sion of NOTEARS3. Finally, we present results from the
hybridization of MATS with the PC algorithm, where the
estimated orders are used to orient the edges in the graph’s
skeleton.

1Code will be made available upon publication
2https://github.com/py-why/causal-learn
3https://github.com/xunzheng/notears



Datasets We tested the method on 11 causal graphs, which
included a minimum of 3 nodes and a maximum of 8
nodes. Further details can be found in the Appendix C.
Among these, 2 are well-known causal DAGs included in the
bnlearn library, namely Asia Lauritzen and Spiegelhalter
[2018] and Cancer Korb and Nicholson [2004].Additionally,
we utilized 9 real-world causal graphs, primarily sourced
from scientific literature in the fields of epidemiology and
public health. These causal DAGs include Covid 1, Covid 2,
Covid 3 Griffith et al. [2020], Covid 4 Glemain et al. [2024],
Genetic Palmer et al. [2012], MSU Piccininni et al. [2023],
Neighborhood Chaix et al. [2009], Climate Guevara et al.
[2024], Supermarket Chaix et al. [2012]. Using real-world
benchmarks is essential to validate the effectiveness of our
method in practical scenarios. The benchmarks included
in the bnlearn library are widely recognized and com-
monly used for testing, which increases the likelihood that
the LLM has effectively learned the causal graph.

For data-driven methods, we generated synthetic data based
on the true causal DAG, which was also used to estimate
causal effects —more details in Appendix C.

Evaluation Classical metrics for evaluating the perfor-
mance of causal discovery methods include the Structural
Hamming Distance (SHD), which counts the modification
to transform the estimated in the graph into the true one.
However, traditional metrics are not as effective for eval-
uating the error on estimated causal orders. Indeed, there
can be multiple causal orders that are consistent with the
same causal DAG. To this end, we rely on a metric proposed
in Ruiz et al. [2022], Rolland et al. [2022], that measures
the number of parents sorted after children in the estimated
order —compared to the true DAG, G. Thus, for each node
Y ∈ V , a correct causal order assumes that for all parents
of Y , X ∈ Parent(Y ), X ≻ Y . The metric is then defined
as follows:

Dtop =
∑
u∈V

∑
v∈DescG(u)

1(v /∈ DescĜ (u))

where G is the true causal DAG and Ĝ is the estimated DAG
(for our method, the DAG is an acyclic tournament), and
E is the set of edges in G. To present results in Table 1 we
relied on both SHD and Dtop. It is worth noting that MATS
and PC output a class of graphs, rather than a single graph.
In such cases, we compute the average and standard error
across all graphs in the class.

We compute the total effect based on the MPDAG derived
from a SCPDG and then use the estimated causal orders.
The estimation is performed through a linear regression on
the linear synthetic data and compared to the true total effect
with the Absolute Error (AE).

Results As shown in Table 1, the MATS algorithm consis-
tently outperforms all other methods, achieving the lowest

error across the majority of the benchmarks. In particular, in
7 out of the 11 datasets MATS recovers a class of causal or-
ders containing exclusively correct causal orders. Moreover,
when MATS is not the best-performing method, namely
in the Covid 3, MSU, and Supermarket causal graphs, the
error is still consistently low. The hybrid model combining
MATS and PC remains the best performing, on average,
closely followed by PC. It is worth noting that orienting
the edges of the skeleton based on the estimated orders can
lead to a conflation into a single causal DAG. In general,
the results obtained from data-driven methods are relative
to data generated assuming linearity. In contrast, text-based
methods do not require parametric assumptions to remain
consistent even in non-linear settings. Most interestingly,
the worst case of MATS is always better than the worst of
every other method.

In Table 2, we present the AE relative to the estimation
of the total effect. We evaluate the error separately based
on the MPDAG obtained from the SCPDG, as well as the
estimated causal orders. In general, we observe a low AE
for most cases concerning the estimation based on causal
orders. However, this is not the case for MPDAGs, where
the effect is not identifiable in most cases. Notably, the high-
est AE observed is consistent with errors in the estimation
of the causal orders —Covid 3, MSU, and Supermarket
benchmarks.

8 DISCUSSION

The method described in this paper offers an effective ap-
proach to using LLMs as a knowledge base for retrieving
classes of causal orders. This approach relies solely on tex-
tual descriptions of the variables and does not require obser-
vational data. A key insight behind the method is that natural
language often leaves causal mechanisms implicit. This im-
plies that some causal relationships may not be explicitly
stated in the text, yet the causal order remains intact.

We compared our methods with data-driven methods,
namely PC and NOTEARS, as well as a LLM-aided method
for causal order discovery Vashishtha et al. [2025]. The re-
sults point to the fact that our approach can provide accurate
estimation most of the time outperforming the other meth-
ods. Moreover, PC and NOTEARS have been applied to
data generated assuming linearity. In contrast, text-based
methods do not make parametric assumptions.

Memorization. A crucial aspect to take into account when
using LLMs in causal inference tasks is memorization. Mem-
orization refers to the ability of LLMs to recall specific
information from their training data Carlini et al. [2023].
Indeed, the scientific literature from which we derived the
benchmark graphs may have been part of the data used to
train the LLM. In this sense, we are actually looking for a
trade-off: on the one hand, we want an LLM that has en-



Data-Driven Text-Driven Text-Driven + Data-Driven

Dataset
PC NOTEARS Triplets MATS (Ours) MATS+PC (Ours)

Dtop SHD Dtop SHD Dtop Dtop SHD
Asia 1.5± 0.8 3.0± 1.7 2.0 2.0 7.0 0.0± 0.0 0.0± 0.0
Cancer 0.0± 0.0 0.0± 0.0 2.0 3.0 0.0 0.0± 0.0 0.0± 0.0
Climate 0.0± 0.0 1.0± 0.0 1.0 1.0 6.0 0.0± 0.0 1.0± 0.0
Covid 1 0.0± 0.0 0.0± 0.0 1.0 1.0 1.0 0.0± 0.0 0.0± 0.0
Covid 2 0.5± 0.5 1.0± 1.0 0.0 0.0 1.0 0.0± 0.0 0.0± 0.0
Covid 3 0.5± 0.5 1.0± 1.0 0.0 1.0 0.0 1.5± 0.5 3.0± 1.0
Covid 4 1.5± 0.5 3.0± 1.4 1.0 3.0 6.0 0.0± 0.0 0.0± 0.0
Genetic 0.0± 0.0 0.0± 0.0 3.0 4.0 5.0 0.0± 0.0 0.0± 0.0
MSU 1.0± 0.0 2.0± 0.0 2.0 4.0 0.0 2.0± 0.0 4.0± 0.0
Neighbor 2.5± 0.8 4.0± 1.7 2.0 4.0 5.0 1.0± 0.0 3.0± 0.0
Supermarket 4.0± 0.0 8.0± 1.0 2.0 6.0 10.0 3.0± 0.0 7.0± 0.0

Table 1: Dtop (↓) of the estimated causal orders. SHD (↓) of estimated causal graphs. The values in blue represent the best
performing method for each dataset.

Dataset MPDAGMATS Causal OrdersMATS Dtop

Asia - 0.0006± 0.0 0.0± 0.0
Cancer - 0.001± 0.0 0.0± 0.0
Climate - 0.035± 0.005 0.0± 0.0
Covid 1 0.013 0.013± 0.0 0.0± 0.0
Covid 2 0.0027 0.0027± 0.0 0.0± 0.0
Covid 3 - 0.09± 0.06 1.0± 0.5
Covid 4 0.042 0.042± 0.0 0.0± 0.0
Genetic 0.027 0.027± 0.0 0.0± 0.0
MSU - 0.15± 0.0 2.0± 0.0
Neighbor 0.0094 0.012± 0.002 1.0± 0.0
Supermarket - 0.62± 0.0 3.0± 0.0

Table 2: AE (↓) of total effect estimates for the MPDAG
and Causal Orders obtained by the MATS algorithm. If non
identifiable the value is set to ’-’. For reference, the last
column shows the Dtop of the estimated causal orders.

coded knowledge regarding a specific causal link; on the
other hand, we do not want the LLM to directly derive the
causal graph from its training data, as this would be a poor
generalization. Assessing if the LLM has memorized the
causal graph is a hard task. A naive attempt to evaluate if
the model has memorized the graph would be to ask directly.
In most cases, when we asked, the language model failed to
recognize the scientific papers from which the real-world
graphs were derived. However, it was aware of the graphs
included in the bnlearn library, but it could not specify
them. This does not guarantee that the LLM has not memo-
rized the causal graph, but it suggests that it is not directly
aware of it.

Limitations. The MATS algorithm has several limitations
that should be taken into account. First, the accuracy of the
estimation strongly relies on the consistency of the LLM. In
the presence of an inconsistent expert, we cannot guaran-
tee the correctness of the class of orders retrieved. Second,
the computational complexity of the method can increase

significantly with larger graphs. This is primarily due to the
calculation of the consistency matrix, which has a quadratic
complexity in relation to the number of nodes, and the Ex-
actFAS algorithm, which is an NP-hard problem.

Future Works. Extensions of this work will focus on re-
ducing computational complexity. Efficiently computing
the consistency matrix could be achieved by parallelizing
the queries to the LLM for a specific causal link. Further-
more, we did not explore the use of chain-of-thought based
LLMs Wei et al. [2023], which could potentially improve
the accuracy of the method. In situations where a collection
of documents relevant to a specific domain is available, we
can enhance the reliability of the knowledge base by using
Retrieval-Augmented Generation (RAG) Lewis et al. [2020].
This approach enables the retrieval of pertinent information
from a document corpus to effectively answer questions.
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A PROOFS

Proposition 5. The maximally consistent semi-complete partially directed graph S does not contain directed cycles if the
consistency matrix is provided by a consistent expert.

Proof. If the expert is consistent, all orientation in S preserve the true causal order, thus it cannot introduce be directed
cycles.

Corollary 3. The maximally consistent semi-complete partially directed graph S obtained from a consistent expert and by
applying all the orientation rules is a MPDAG.

Proof. The proof follows from Proposition 5. If the expert is consistent, the maximally consistent semi-complete partially
directed graph S does not contain directed cycles. Additionally, since the graph is fully connected, there cannot be unshielded
colliders. Thus, all orientation rules can be applied and the resulting graph is a MPDAG.

Theorem 2. The MATS algorithm is sound, complete and terminates.

Proof. We define the following notation in reference to Algorithm 1:

• maxScore is the maximal consistency score; thus, given a maximally consistent acyclic tournament T = (V,ET ):

maxScore =
∑

(i,j)∈ET

W [i, j]

• The method ExactFAS returns a FAS of a directed graph G, which is a set of edges that can be reversed to make
G acyclic and of maximal weight. If applied to a maximally consistent semi-complete partially directed graph S, it
returns a set Ai for S with respect to the consistency matrix W . If Ai is optimal, meaning that leads to a maximally
consistent acyclic tournament, then it holds that:

Ti = (V, (ES \ Ai) ∪ AT
i )

where AT
i is the transpose of Ai.

score(Ti) = maxScore

Soundness. Every tournament T in Results is a maximally consistent acyclic tournament.

• Initialization: The algorithm starts by computing the maximally consistent semi-complete partially directed graph S .
Then, it computes a FAS A0 of S with respect to the consistency matrix W . By definition of ExactFAS, a FAS A0 is
a set of edges that can be reversed to transform S into a maximally weighted acyclic tournament, T 0; the tournament is
then added to Results and the maximal consistency score maxScore is computed.
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• Iteration: At every iteration, we compute a FAS of the semi-complete partially directed graph S with respect to
the consistency matrix W ′ in which some edges have been excluded from the solution space. a FAS A is computed
by ExactFAS(ES ,W

′). The acyclic tournament TA and its score are then computed. If the score of TA is equal to
maxScore, it is maximally consistent, thus it is added to Results.

Completeness. Every maximally consistent acyclic tournament T is in Results.

The solution space is explored by exclusion. The idea is that any maximally consistent solution is unique, thus removing
from the solution space subsets of optimal FAS will force ExactFAS to search for other maximally consistent solutions.
This is achieved by iterating over the power set of the the otimal FAS, contained in maximalFAS. To exclude a set of edges
F from the admissible solutions we set the cost of reversing edges in F to −∞, making them suboptimal by construction. So
we can build W ′ as a copy of W where W [j, i] = −∞ for every edge (i, j) ∈ F. If there is another maximally consistent
solution, A′, such that F ̸⊂ A′, then it will be found in the next iteration of the algorithm by ExactFAS(S,W ′). We define
F as the union of subsets of optimal solutions, Ai ∈ maximalFAS.

F = F0 ∪ F1 ∪ . . . ∪ Fk

where Fi ⊂ Ai. Given an undiscovered a set F of forbidden edges:

• F = ∅, which corresponds to the case where the algorithm has not yet explored any subset of the optimal FAS. The
algorithm will compute the first FAS A0 and add it to Results.

• F ̸= ∅, meaning that the algorithm has already explored some subsets of the optimal FAS. In this case, the algorithm
will compute a FAS Ai that is either: 1) optimal, meaning that it is a maximally consistent acyclic tournament, or
2) suboptimal, meaning that it is not a maximally consistent acyclic tournament. In the first case, Ai will be added
to Results; moreover, we will add to the Queue the combinatorial union between F all the subsets of Ai, which
represents a tigheter constraint on the admissible solutions. Eventually this will lead to the discovery of a new maximally
consistent acyclic tournament.

Termination. The MATS algorithm terminates.

MATS sistematically explores the power set of the optimal FAS, which is finite. Thus, the algorithm will eventually terminate.
Additionally, the algorithms adopts a caching mechanism to avoid exploring the same subsets multiple times. Also, any set
leading to suboptimal solution allows to identify sets of edges that can be excluded from the search space. Indeed, any set
containing a subset of edges that leads to a suboptimal solution will not be explored.

Proposition 6. If the consisntency matrix is provided by a consistent expert, the MATS algorithm is guaranteed to return a
class of acyclic tournaments containing the true causal order.

Proof. We assume that the ground truth graph G = (V,E) is a causal DAG. We have that an edge in the maximally consistent
semi-complete partially directed graph, S, is oriented if and only if the consistency score CXi→Xj > CXj→Xi and that
Xi ≻G Xj . If not, the edge is undirected. In this context, the only cycles that can be present in S are those that are not
oriented, meaning that they are composed only of undirected edges.

Corollary 4. If the consistency matrix is provided by a strictly consistent expert, the MATS algorithm is guaranteed to
return the true causal order.

Proof. The proof follows from Proposition 6. A strictly consistent expert guarantees that for every pair of variables Xi and
Xj , such that Xi ≻ Xj , it holds that CXi→Xj

> CXj→Xi
. Meaning that the maximally consistent semi-complete partially

directed graph S is an acyclic tournament since there cannot be undirected edges.



B ALGORITHMS

Algorithm 1 Maximally Weighted Acyclic Tournaments Search (MATS)
Input: V, variables; W , weights
Output: Results, a set of maximally weighted acyclic tournaments

1: S ← MAXIMALLYWEIGHTEDGRAPH(V,W )
2: (V,ES)← S
3: A← EXACTFAS(ES ,W ) ▷ Find feedback arc set
4: ET ← (ES \ A) ∪ AT

5: maxScore←
∑

(i,j)∈ET
W [i, j]

6: Queue← P(A) ▷ Power set of A
7: maximalFAS ← {A}
8: Results← {ET }
9: Cache← ∅

10: while Queue ̸= ∅ do
11: F← POP(Queue)
12: Cache← Cache ∪ F
13: W ′ ← COPY(W )
14: for (i, j) ∈ F do
15: W ′[j, i]← −∞
16: A← EXACTFAS(ES ,W

′)
17: ET ← (ES \ A) ∪ AT

18: newScore←
∑

(i,j)∈ET
W [i, j]

19: if newScore = maxScore and A /∈ maximalFAS then
20: maximalFAS ← maximalFAS ∪ {A}
21: Results← Results ∪ {ET }
22: for F′ ∈ P(A) do
23: if F′ ∪ F /∈ Cache and F′ ∪ F /∈ Queue then
24: PUSH(Queue, F′ ∪ F)
25: else
26: for F′ ∈ Queue do
27: if F ⊂ F′ then
28: REMOVE(Queue, F′)
29: Cache← Cache ∪ {F′}
30: return Results

C IMPLEMENTATION DETAILS

Efficient FAS Computation. The implementation of the ExactFAS algorithm is based on a method implemented in the
igraph library. This library is implemented in C, thus providing an efficient implementation of the algorithm. However,
the solution to the FAS is computed on the whole graph rather than its strongly connected components (SCCs). To address
this, we implemented a preprocessing step that identifies the SCCs of the semi-complete partially directed graph S. The
ExactFAS algorithm is then applied to each SCC separately, and the results are combined to obtain the final acycluc
transformation.

Undirected Edges. To reduce computational time, undirected edges are handled separately. Before applying Algorithm 1,
all undirected edges are removed from the graph S. After generating a class of acyclic tournaments, each undirected edge
is reintroduced as a directed one, oriented in one of its possible directions, as long as it doesn’t create new cycles. Since
undirected edges contribute equally to consistency, their orientation does not change the consistency score of the maximal
acyclic tournament, but reduces the size of the SCCs processed by ExactFAS.



Data Generation. For each node x in the DAG,

x = fx(Parents(x)) + ϵx,

where Parents(x) is the set of parents of x in the graph, fx is a linear function, and ϵx is sampled from a Gaussian
distribution.

Dataset Nodes Edges
Asia Lauritzen and Spiegelhalter [2018] 8 8
Cancer Korb and Nicholson [2004] 5 4
Climate Guevara et al. [2024] 8 8
Covid 1 Griffith et al. [2020] 3 2
Covid 2 Griffith et al. [2020] 4 5
Covid 3 Griffith et al. [2020] 4 3
Covid 4 Glemain et al. [2024] 4 6
Genetic Palmer et al. [2012] 6 5
MSU Piccininni et al. [2023] 5 6
Neighborhood Chaix et al. [2009] 5 8
Supermarket Chaix et al. [2012] 7 12

Table 3: Datasets used in the experiments.

D ADDITIONAL RESULTS

Dataset gpt-4.1-nano mistral:7b
Asia 0.0± 0.0 2.0± 0.0
Cancer 0.0± 0.0 1.0± 0.0
Climate 0.0± 0.0 1.0± 0.0
Covid 1 0.0± 0.0 1.0± 0.0
Covid 2 0.0± 0.0 0.0± 0.0
Covid 3 1.5± 0.5 2.5± 0.5
Covid 4 0.0± 0.0 0.0± 0.0
Genetic 0.0± 0.0 0.0± 0.0
MSU 2.0± 0.0 2.0± 0.0
Neighbor 1.0± 0.0 3.0± 0.0
Supermarket 3.0± 0.0 3.0± 0.0

Table 4: Dtop (↓) of causal orders by the MATS algorithm using differnt LLMs. The values in blue represent the best
performing method for each dataset.

E PROMPTS

You are an expert in the field of {field}.
The task is to provide causal relationships between the variables.
Keep your answers concise and to the point.
Does {vari} causes {varj}?
(A) Yes
(B) No
The answer is:

Table 5: Prompt used to query the LLM for causal relationships.



Provide me with {n_rephrase} rephrased versions of
the following sentence: {sentence}
The rephrased sentences should preserve the semantic meaning,
even if absurd, of the original one.
The answers should be in the following format:
1. rephrased sentence 1
2. rephrased sentence 2
3. rephrased sentence 3

Table 6: Prompt used to query the LLM for rephrasing.
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