Under review as submission to TMLR

LLM-Based World Models Can Make Decisions Solely,
But Rigorous Evaluations are Needed

Anonymous authors
Paper under double-blind review

Abstract

World model emerges as a key module in decision making, where MuZero and Dreamer
achieve remarkable successes in complex tasks. Recent work leverages Large Language
Models (LLMs) as general world simulators to simulate the dynamics of the world due to
their generalizability. LLMs also serve as the world model for deliberative reasoning in
Reasoning via Planning (RAP) and Tree of Thought (ToT). However, the world model
is either evaluated as a general world simulator, or as a functional module of the agent,
i.e., predicting the transitions to assist the planning. This paper argues that LLM-based
world models can make decisions solely, but rigorous evaluations are needed. We
first present the two key observations to showcase how LLM-based world models can make
decisions solely, and then present the three key observations to demonstrate why current
evaluation framework of LLM-based world models is not sufficient. Then, we present our
suggested evaluation framework: policy verification, action proposal, and policy planning,
where the world model is used for decision making solely, and finally we leverage the 31
diverse environments from (Wang et al., 2023; 2024) and curate the rule-based policy of
each environment for diverse evaluations. The key findings include: i) GPT-4o significantly
outperforms GPT-40-mini on the three main tasks, especially for the tasks which require
the domain knowledge, e.g., scientific tasks, ii) the performance of the LLM-based world
models depends predominantly on their performance in key steps, while the total number
of steps required for task completion is not a reliable indicator of task difficulty, and iii) the
combination of world models’ functionalities for decision making brings unstability of the
performance and partially obscures the performance gap between strong and weak models.

1 Introduction

The remarkable achievements of MuZero (Schrittwieser et al., 2020) and Dreamer (Hafner et al., 2019;
2021; 2025a;b) have established world models (Ha & Schmidhuber, 2018) as fundamental components in
decision-making systems. World models serve as learned simulators that encode rich representations of
environment dynamics, enabling agents to predict future states conditioned on their actions. Rather than
learning direct policy mappings from observations to actions, world models learn the underlying transition
dynamics T'(s,a) — s’ and reward functions R(s,a), providing a compressed yet informative representation
of how the environment evolves. These models have demonstrated effectiveness across several key areas
with concrete achievements: i) Generalization to novel tasks. World models enable transfer learning by
capturing reusable environment dynamics (Byravan et al., 2020). For instance, agents trained with world
models can adapt to new task objectives without relearning dynamics (Robey et al., 2021), and demonstrate
robust performance across distribution shifts in robotics applications (Young et al., 2023). This capability
is particularly valuable when the cost of re-training from scratch is prohibitive. ii) Efficient planning. By
simulating possible futures in the learned model, agents can evaluate action sequences through "mental
simulation" rather than costly real-world interaction (Sekar et al., 2020; Hamrick et al., 2021). MuZero
leverages this capability to achieve superhuman performance in Go, chess, and Atari games by planning
over imagined trajectories (Schrittwieser et al., 2020). The ability to explore hypothetical scenarios without
environmental interaction dramatically improves sample efficiency and enables safer exploration in high-

Under review as submission to TMLR

risk domains. iii) Offline learning from fized datasets. World models have proven especially valuable in
offline reinforcement learning settings (Schrittwieser et al., 2021; Yu et al., 2020; 2021), where agents must
learn purely from pre-collected datasets without additional environment interaction. By learning accurate
dynamics models from historical data, agents can perform policy optimization in the model space, generating
synthetic rollouts to augment limited real data. This capability opens possibilities for training agents in
domains where online interaction is impractical or expensive, such as healthcare and autonomous driving.

Recent developments have extended world models beyond traditional reinforcement learning to interactive
simulation systems, demonstrating their potential as general-purpose world understanding engines. Notable
examples include the Genie series (Bruce et al., 2024; Parker-Holder et al., 2024; Ball et al., 2025), which
learns controllable world models from unlabeled video data and enables users to interact with generated
game-like environments through action inputs. Vista (Gao et al., 2024) extends this paradigm to autonomous
driving, learning world models that can simulate diverse driving scenarios and enable policy training in purely
synthetic environments. Additional systems such as MatrixGame (Zhang et al., 2025; He et al., 2025), which
generates playable game environments from natural language descriptions, and Hunyuan-GameCraft (Li
et al., 2025), which creates interactive 3D game worlds, further illustrate the expanding capabilities of world
models in interactive domains. These systems share a common theme: they learn predictive models of com-
plex, high-dimensional dynamics (visual observations, physics, agent interactions) and expose these models
through interactive interfaces. These advances point toward world models serving as foundational com-
ponents for artificial general intelligence systems with grounded understanding of world dynamics, moving
beyond narrow task-specific applications to general-purpose simulation and interaction.

Large Language Models (LLMs) have emerged as a promising approach to world modeling, leveraging their
broad knowledge acquired from large-scale text corpora. Building on their success in natural language
tasks (Brown et al., 2020; OpenAl, 2023), recent works explore LLMs as general world models that provide
environment knowledge for complex reasoning and decision-making tasks. The key hypothesis is that LLMs,
having been exposed to vast amounts of text describing how the world works, have internalized implicit
models of common-sense physics, social dynamics, and domain-specific knowledge (e.g., mathematics, sci-
ence, games). Through fine-tuning on environment interaction data, i.e., sequences of states, actions, and
outcomes, LLMs can predict action sequences across diverse tasks while maintaining their broad capabili-
ties (Xiang et al., 2023; Wang et al., 2024; Xie et al., 2024). For example, an LLM fine-tuned on household
task demonstrations can predict valid action sequences for cooking or cleaning tasks while retaining its
language understanding and reasoning abilities. LLMs serve as world models in both explicit and implicit
ways, depending on how the state prediction capability is utilized: i) Ezplicit world modeling. In approaches
like Reasoning via Planning (RAP) (Hao et al., 2023) and Reason for Future, Act for Now (RAFA) (Liu
et al., 2023), LLMs directly predict next states given current states and actions, functioning as explicit
transition models Tym(St, at) — S¢4+1. For instance, in BlocksWorld (Valmeekam et al., 2023), given a state
description like “Block A is on Block B, Block C is on the table” and an action “move Block A to Block
C,” the LLM predicts the resulting state: “Block A is on Block C, Block B is on the table, Block C is on
the table.” These predicted states are then used by planning algorithms (e.g., Monte Carlo Tree Search,
breadth-first search) to evaluate action sequences and select optimal plans. The explicit separation allows
for modular analysis of world model accuracy independent of planning algorithm performance. ii) Implicit
world modeling. In widely-used approaches like Tree of Thoughts (ToT) (Yao et al., 2023) and Graph of
Thoughts (GoT) (Besta et al., 2024), LLMs perform world modeling implicitly as part of their reasoning pro-
cess. Rather than explicitly outputting state descriptions, these methods have LLMs generate and evaluate
intermediate reasoning steps (“thoughts”) that implicitly represent states in a problem-solving trajectory.
For example, when solving a math problem, each thought represents a partial solution state, and the LLM
must implicitly model how different reasoning steps transition between these states. The LLM evaluates the
promise of each thought (analogous to value estimation in RL) to guide search through the solution space.
We provide a comprehensive review of related work in Section 6.

Despite these celebrating progress, the role of LLM-based world models in decision models is still unclear
for researchers. In this paper, we present a comprehensive view: LLM-based world models have the
potential to make decisions solely through the combination of policy verification and action
proposal capabilities, but rigorous evaluation frameworks are needed to assess this capability.

Under review as submission to TMLR

We first present the two key observations to showcase how LLM-based world models can make decisions, and
then present the three key observations to demonstrate why current evaluation framework of LLM-based
world models is not sufficient. Then, we present our suggested evaluation framework: i) policy verification:
verifying whether the policy can complete the task, ii) action proposal: proposing the top-K actions that
can potentially complete the task, and iii) policy planning: finding the policy solely with the combination
of the different functionalities, i.e., policy verification and action proposal. Finally, we leverage 31 diverse
environments from (Wang et al., 2023; 2024) with different tasks varying from daily tasks, e.g., washing
clothes, to scientific tasks, e.g., forging keys, and curate the rule-based policy for each environment for the
evaluation and conduct the comprehensive evaluation of the advanced LLMs, i.e., GPT-40 and GPT-40-mini,
on the environments for three tasks under various settings, which serves as a proof of concept for the suggested
evaluation framework. The key findings include: i) GPT-4o significantly outperforms GPT-40-mini on the
three main tasks, especially for the tasks which requires the domain knowledge, e.g., scientific tasks, ii)
the performance of the LLM-based world models depends predominantly on their performance in key steps,
while the total number of steps required for task completion is not a reliable indicator of task difficulty, and
iii) the combination of different functionalities of world models for decision making brings unstability of the
performance and partially obscures the performance gap between strong and weak models. We hope this
work can encourage researchers to rethink the evaluation of world models and further advance the research
of the world model field. Code can be access at: https://anonymous.4open.science/r/World_Models/.

2 Preliminaries

Markov Decision Process (MDP). A decision making problem is usually represented as a Markov
decision process (MDP) (Sutton & Barto, 2018), defined by the tuple (S, A, T, R,~), where S is the state
space, A is the action space, T : S x A — S is the transition dynamics, which specifies the next state s’
given the current state s and action a, R : S x A — R is the reward function, which specifies the agent’s
reward given the current state s and action a, and ~ is the discount factor. The agent’s policy is defined by
m : S X A — [0, 1], parameterized by 6, which takes the state s as the input and outputs the action a to be
executed. The objective of the agent is to learn an optimal policy 7* := argmax, Ex [>°,°,v'r¢|so] is the
expected return and sg is the initial state.

Large Language Models (LLMs). Large Language models (LLMs) learn from text data using unsuper-
vised learning. LLMs optimize the joint probabilities of variable-length symbol sequences as the product
of conditional probabilities by P(z) = [[;—, P(si|s1,..., i—1), where (s1,S2,...,8,) is the variable-length
sequence of symbols. With the billions of parameters and extensive training data, the vast amounts of
common knowledge encoded in LLMs lead to the remarkable generalization across various NLP tasks with
simple prompting and in-context learning, without task-specific fine-tuning (Touvron et al., 2023; OpenAl,
2023). Given the generalizability, LLMs present a promising foundation for general world models.

LLM-based World Models. The world model €2 is introduced to predict the dynamics of the environment,
thus supporting the decision making process. Specifically, the world model is trained or prompted to predict
the next state s’, the reward r, and the terminal function d, given the current state s and action a. The world
model can be one or multiple neural networks specially trained on the environments for the three prediction
tasks (Hafner et al., 2019; Schrittwieser et al., 2020), which cannot generalize across different environments.
Recent work leverages chain-of-thought (CoT) prompting (Xie et al., 2024), in-context learning (Wang et al.,
2024), retrieval-augmented generation (Yang et al., 2025), and fine-tuning methods (Xiang et al., 2023; Lin
et al., 2024) to transform LLMs to world models.

Scope of This Work. In this work, we intend to investigate the core roles of LLM-based world models in
decision making and design the comprehensive evaluation framework. Rather than evaluating world models
as general simulators or as components coupled with other modules, we propose three decoupled evaluation
tasks: policy verification, action proposal, and policy planning. We empirically evaluate GPT-40 and GPT-
4o-mini across 31 diverse text-based environments as a proof of concept to assess the reasonability of the
suggested evaluation framework.

https://anonymous.4open.science/r/World_Models/

Under review as submission to TMLR

3 LLM-Based World Models Can Make Decisions Solely

We present the two observations to illustrate how LLM-based world models can make decisions solely.

Observation 3.1: Selecting potential actions should be an important feature for world models.
Most of the previous works in world model focus on next state and reward prediction, and the action selection
is usually completed by the actors, i.e., the model trained for generate a single action for executing. We argue
that with more knowledge about the world, the world model may make a better selection of the potential
actions. Besides, selecting a set of potential actions, e.g., 10 potential actions, may significantly reduce the
difficulties of the tasks and improve the performance when combing with planning. World models can also
be viewed as game engines (Valevski et al., 2024), which have to provide potential actions to guide fresh
players to complete tasks, e.g., Red Dead Redemption 2 (Tan et al., 2024). Therefore, action proposal should
be considered for evaluation, which can be easily implemented for the LLM-based world models.

Observation 3.2: Planning with world
models can find the policies solely. With
the prediction of the next states and the action
proposal, we can leverage planning methods or
search methods to find the policies. It is ob-
served that most state-of-the-art methods for
complex decision-making tasks, e.g., Chess or
Go, is based on the planning with an accu-
rate simulator (Silver et al., 2018; Monroe &
Chalmers, 2024) or the world model (Schrit-
twieser et al., 2020). Most works introduce the
critic (i.e., the value function) to evaluate the
actions immediately for efficient planning (Schrittwieser et al., 2020; Hao et al., 2023). We note that the
critic is not necessary for finding policies (as showed in Figure 1) and may also influence the performance.
Therefore, we argue that only the planning with the next state prediction and the action proposal is necessary
when incorporating the world model in decision making. This focused approach allows for better isolation
and evaluation of the world models and further highlight the importance of world models.

Q: Tam at sy, if I take the actions (a,, az),
can I complete the task?

WM: You are at sy, if you take a,, you will
transit to s,. At s,, if you take a3, you will
reach s3, which is the target state. So you
will complete the task.

Figure 1: An example to show that the critic is not neces-
sary. We can query all action sequences and let the world
model to determine whether the action sequence can com-
plete the task, which may be insufficient but still possible.

4 But Rigorous Evaluations are Needed

Observation 4.1: Prediction is important, but not

True Val asel Case?2
that important. An illustrative example is displayed in ue ue Case Case

Figure 2, which indicates that more accurate predictions 200

do not lead to correct decisions.! This phenomenon is 80 100 70
also observed in other decision making scenarios, e.g., fi-

nancial trading (Sun et al., 2023). The success of MuZero ﬂ
Unplugged (Schrittwieser et al., 2021) also demonstrate A B B B

that we can learn good policies from inaccurate world

models which are trained only with limited data. This Figure 2: Picking the action with higher value.
motivates us that the evaluation of the world models for The true value of A and B are 80 and 100, respec-
decision making should focus on the predictions which tively, therefore, B is the correct action. Case 1’s
relevant to the desired policy, rather than as general prediction 200 is worse than in Case 2’s prediction
world simulators. Besides, the decision making usually 70 (compared to the true value 80). However, in
involves multiple steps and the errors of the one-step Case 1 the most valuable action is B, which is also
predictions are accumulated when the number of steps the case in the true value setting. This shows that
increases. Therefore, the accuracy of the one-step pre- more accurate predictions (Case 2) do not always
dictions is not adequate for the evaluation of the world lead to correct decisions (Case 1).

model for decision making.

1The issue in Figure 2 can be elicited by various methods, e.g., rank prediction. This is just to illustrate the discrepancy
between prediction and decision, motivating us to reconsider the evaluation of the world model for decision making.

Under review as submission to TMLR

Observation 4.2: Not all state are created equal
for decision making. An illustrative example is dis-
played in Figure 3, where the agent needs to go through
a gridworld from start to goal while avoiding falling off a
cliff. In this example, the states in the red rectangle are
more important than the states in the blue rectangle, as
these red states are closer to the optimal path and the
blue states are rarely explored by the agent when learning
to complete the tasks. This observation is supported by
the fact that only a small portion of the state space will

Figure 3: Cliff Walking (Sutton & Barto, 2018).
The optimal path is marked as the red arrow.

be visited (Syisit < S) when computing the optimal policy, e.g., AlphaZero finds the super-human policy (Sil-
ver et al., 2018) by only exploring a small proportion (less than 1%) of the state space. This observation
suggests that world model evaluation should prioritize states that are critical for task completion.

Observation 4.3: Performance is usually coupled
with other modules. An illustrative example is dis-
played in Figure 4. The states in the red rectangle is
explored by MCTS, while the optimal node (marked as
the red star) is in the unexplored states in the blue rect-
angle. Therefore, even the world model can provide the
accurate predictions, the agent’s performance will be re-
stricted by the search algorithm. In model-based plan-
ning approaches like MuZero (Schrittwieser et al., 2020),
the world model’s performance cannot be isolated from
the search algorithm, e.g., MCTS, value network, and
policy network (Hafner et al., 2025a). When these com-
ponents are tightly integrated, it becomes difficult to de-
termine whether poor performance stems from an inac-
curate world model, suboptimal planning, or ineffective
value estimation. This coupling obscures our understand-
ing of the world model’s true capabilities and limitations.
To address this issue, the evaluation should decouple the
world models with other modules and design the tasks
which specifically test the world model’s functionalities.

*

Figure 4: Figure adpted from MuZero (Schrit-
twieser et al., 2020) to illustrate search process,
i.e., MCTS, in model-based planing.

5 Our Suggested Evaluation Framework and Experiment Results

In this section, we introduce our evaluation
framework and the experiment results. Specif-
ically, we will introduce the next state pre-
diction, the reward and terminal prediction.
Then, we will introduce how the world model
will be used to complete the considered three
main tasks, i.e., policy verification, action pro-
posal, and policy planning. We provide the
relationship between the three tasks and the
two kinds of predictions in Figure 5 for bet-
ter understanding of the rationale behind the
three tasks. We then introduce the environ-
ments and rule-based policies. Finally, we will
introduce each task, the evaluation protocols,

Next State
Prediction

Reward/Terminal
Prediction

Task I

Policy
Verification
Action
Proposal

Task IT

Task IIT

Figure 5: With the basic predictions, i.e., next state and re-
ward/terminal, the policy verification can be completed.
With policy verification and action proposal of the
world model, policy planning can be completed.

and the corresponding experimental results. Our experiments utilize GPT-40 and GPT-40-mini as the back-
bone LLM architectures for the world model.? To ensure reproducibility and minimize stochastic variance in

2Due to the limited budget, we do not take a full list of LLMs, e.g., Claude and Gemini, into consideration.

Under review as submission to TMLR

model outputs, we configure the temperature parameter to 0. All experimental results are averaged across
30 independent trials to handle environmental stochasticity and provide statistically robust metrics. Our
evaluation results should be interpreted as diagnostic assessments of specific capabilities under controlled
conditions to demonstrate the reasonability of the suggested evaluation framework, rather than measures of
general world modeling ability or readiness for deployment.

The world model considered in this work mainly follows the design in (Wang et al., 2024), where the
representation of the states includes the objects in the environments and their properties. The prompts to
the LLM, e.g., GPT-4o, also include the object rules, the action rules, and the score rules, which provides
the necessary knowledge of the environments for the LLM to make accurate predictions. For the next state
prediction, we ask the LLM to predict the state changes, i.e., the change of the objects’ properties, which
is demonstrated to be efficient for the prediction (Wang et al., 2024). With the predicted state changes, we
can recover the full state for further predictions. For the reward/terminal prediction, the LLM needs to
predict three features: i) gameScore: the reward received from the environment, ii) gameOver: whether the
task is terminated, and iii) gameWon: whether the task is successfully completed or not. For the rules used
for the prediction, we refer to (Wang et al., 2024) for more details and the code to generate the prompts is
also provided in Appendix C.1 for completeness.?

Environments. We leverage the 31 diverse environments from (Wang et al., 2023)* with different tasks
varying from daily tasks, e.g., washing clothes, to scientific tasks, e.g., forging keys. This task suite is more
related to the real physical world, including the physical objects, e.g., bulb and bathtub, and the iterations
with these physical objects, i.e., turn on the hot tap to improve the temperature of the water in the bathtub.
Compared with other widely used environments, such as the grid world, e.g., BabyAI (Chevalier-Boisvert
et al., 2019) and the web environments, e.g., MiniWob-++ (Shi et al., 2017), this task suite is more relevant
to the common knowledge encoded in the LLMs. A full descriptions of the environments is in Appendix B.1.

60
(%]
240
I
0 20
0,
= —

2 T o >0 0 U O o £ 0 oYy 9B Y U v DT S [OO

S 0 g 3 § D¢ 35 g5 9 o0 25 S o c £ oS c O

T O s 2 c © 2 3 8 0 £ 2 2 & 5 068 g O g

= 5 o o @ € 3 2 o T £ T Q &= & [] X~

Q 5 U nwn T < = ;fU_,_,C [T E ©

25 g s S °G 2% S5 EF = £ 38

=
8 7] 0-008 o]
()
Game

Figure 6: Number of steps to complete the tasks

Rule-based Policies. There are various randomness in the environments, including the specific tasks, e.g.,
the target color can be “orange”, “purple”, “green”, “black” in the paint task. However, for each task, only
a single playthrough is provided in (Wang et al., 2024), which is not enough for a comprehensive evaluation
of the world model for decision making. Therefore, we curate the rule-based policy for each environment
and verify the correctness for 200 runs. The scripts for the rule-based policies are provided in Appendix B.2,
which can help readers to understand the process to complete the tasks. We provide the statics of the

number of steps to complete the tasks for 200 runs in Figure 6.

5.1 Task I: Policy Verification

Task Description. Motivated by Observations 4.1 and 4.2, we propose policy verification, one of the
most straightforward tasks to evaluate the world models in terms of the multi-step predictions. The basic
idea of policy verification is given an action sequence, the world model need to prediction whether the
sequence can complete the task or not. The process for the policy verification is displayed in Algorithm 1.

3Due to the space constraints and the extreme length of the prompts, we cannot provide a complete example in the paper.
We will open-source all the codes for readers to replicate our results.

4We note that there are 32 environments in (Wang et al., 2023) and the dish-washing environment is used as the example
for the world model, which is excluded for fair evaluation.

5The names on the figure may differ from (Wang et al., 2023) for plotting. Please refer to Table 1 for correspondence.

Under review as submission to TMLR

=~ 1.0
in
N 0.8 gpt-4o
o ©0.6 gpt-4o-mini
] .
Q304
,‘-“\<0.2
— 0.0-
a 1.07
t-4
Jgo8| mwti
1 0.6 gpt-40-mini
2304
AU
5<0.2
=~ 0.0-
—~ 1.0
in
~ 20.8 gpt-4o
? g 0.6 gpt-4o0-mini
Q80.4
G<0'2
~ 0.0,
~ 1.0
S gos| =
I © 0.6 gpt-4o0-mini
2304
AU
S
e 2 B 0 >0 0 0 OF5 0 € 0 s 9t 00 U T £ T OV >0 E = > U o
SS9 EDBS T2 SESL O3S Eoc£D8cpo L 58P <
T2 52338 ESadLLsetcaLew X $ € 3 KCHS
2 e 5 c T E WG 2R S EED z E g 2 s
i 8 > 3 5§ o o ¢ o 2
o
Games

Figure 7: The accuracy of the world model to verify the correct policies

Specifically, given the environment env, the action sequence a with length N to verify and p denotes the
fraction of the action sequence for which the world model is responsible for verification/planning. We will
run the game for the first (1 —p)- N steps (Line 5 of Algorithm 1), and leverage the world model to continue
the last pN steps (Line 7 of Algorithm 1). The returned results ry,dy will be compared with the true
results from the environment to evaluate the world model.

Evaluation Protocol. Given the action sequence a generated by the rule-based policy, we leverage the
world model to verify the last p proportion of the policy, where p € {0.25,0.5,0.75,1.0}. We note that
when p = 1.0, the world model will verify the full action sequence with only the initial observation of the
environment. We say the verification of the policy is correct if all three features, i.e., gameScore, gameOver,
and gameWon, are correct. Our policy verification evaluation only tests correct (positive) policies. A
complete verification capability would also need to reject incorrect (negative) policies, which we do not test.
This means we measure “false negative rate” (incorrectly rejecting valid policies) but not “false positive
rate” (incorrectly accepting invalid policies). True utility for planning would require low rates on both.
Generating meaningful negative policies is challenging: random action sequences are trivially wrong, while
plausible-but-flawed policies require domain expertise to construct. We leave comprehensive negative policy
evaluation to future work, acknowledging this significantly limits claims about verification reliability for
search applications. Furthermore, there would also be other action sequences to finish the tasks, where we
cannot enumerate all policies to complete the tasks.

Evaluation Results. The policy verification results are displayed in Figure 7.5 We observe that GPT-40
outperform GPT-40-mini in most tasks and especially on the tasks which requires the domain knowledge, e.g.,
bandage, hang, and campfire. We also observe that with more steps of the verified policies, the performance
gap between GPT-40 and GPT-40-mini is increase. With larger proportion of the action sequences to verify,
i.e., p increase, the accuracy of the verification is decreased, which indicates that the accumulation of the
errors in the world model, either on the next state prediction or the reward prediction, will influence the
performance of the world model. This observation is consistent to the fact that the LLM may not perform well
in long-term decision making tasks. We also observe that more steps to complete the tasks do not necessarily
lead to the worse performance, which indicates that the domains of the tasks play a more important role
for the policy verification, i.e., for the tasks where the LLM has enough domain knowledge, e.g., conduct,
stone, weigh and photo (Wang et al., 2024), the task would be easy even when the number of steps is large.
We also provide the accuracy of the three prediction tasks separately in Appendix F, and we found that
both GPT-40 and GPT-40-mini performs worse for predicting gameScore, while performs much better for
predicting gameOver and gameWon. This indicates that the value prediction is more difficult for LLMs,

6Note that the result of the policy verification is either 0 or 1, so the error bar is not plotted.

Under review as submission to TMLR

which is consistent the observations from other works. During the experiments, both models frequently
returned empty dictionaries, suggesting they may fail to properly follow the instructions.

Takeaways

o Policy verification evaluates multi-step prediction accuracy by verifying whether action sequences can
complete tasks, addressing the limitations of single-step prediction evaluation

o Performance degrades with more verified steps, i.e., error accumulation in long-horizon predictions

e GPT-4o0 significantly outperforms GPT-40-mini, especially on tasks requiring domain knowledge

o Task difficulty depends more on domain knowledge required than the total number of completion steps

Algorithm 1 Policy Verification Algorithm 2 Policy Planning
1: Given the env, the action sequence a to verify 1: Given the env, the action sequence a with N =
with N = len(a), p the proportion of a to verify, len(a), p the proportion of a for planning, the
the world model Q world model , the planning sequence a’ = ||
2: s9 = env() 2: fort € {1,2,...,(1—p)- N} do
3: forte€{1,2,...,N — 1} do 3: S441,7 = env(ay),a’.append(ay)
4: ift<(1—p)- N then 4: end for
5: St+1,7t, dy = env(ay) 5. fort € {(1—-p)N,...,(1+p)N} do
6: else 6: ar = Q(st)
7: St41,Tt, dy = Q(s¢, ar) 7. Si41,Te,de = Q(st, at), 0’ .append(ay)
8: end if 8: if d; then break
9: end for 9: end for
10: return ry,dy 10: return a’

5.2 Task Il: Action Proposal

Task Description. The action proposal is a novel task for world model, based on Observations 3.1 and
4.2. Basically, we will ask the world model to recommend top-K actions that can potentially complete the
task. Specifically, we follow the representation of the state in the next state prediction, with the additional
information: i) the examples of actions, and ii) the previous actions. The previous actions can help the LLMs
to understand the game progress. The code to LLM for the action proposal is displayed in Appendix C.2. One
key issue for the action proposal is that the action generated by the world model may not be valid for the game
at the current state. Therefore, given the predicted action a’ and the set of possible actions to be executed
at the current state A’, we leverage the text-embedding model, i.e., text-embedding-3-small (OpenAl,
2022) to query the most similar actions with the cosine similarity, i.e., a* = arg max{emb(a’,a),Va € A’}.

Evaluation Protocol. The action proposal requires the world model to generate the top-K potential
actions to complete the tasks, where K € {1,2,3,5,10}. Specifically, given the action sequence a generated
by the rule-based policies”, we will let the world model to generate the potential actions with the states
along with the path of a to complete the task. We say the action proposal is correct if the actions in a
in the generated actions by the world model. The results of the accuracy are averaged over the steps over
the action sequence and 30 runs of each environment. The action sequence a generated by the rule-based
policy is not the only sequence to complete the task and we cannot enumerate all possible actions which
can lead to the completion of the task. We note that the number of available actions in the environments is
usually larger than 500, which brings difficulties to the RL methods for training and indicates the necessity
to generate potential actions to facilitate the learning.

Evaluation Results. The action proposal results are displayed in Figure 8. Overall, GPT-40 consistently
outperforms GPT-4o-mini across different tasks and different values of K. With the increase of the number
of steps to complete the tasks, where more analysis of the previous actions is needed to understand the
game progress, GPT-40 maintains the better accuracy, while GPT-40-mini shows a substantial drop of the
accuracy. The performance gap between the two models is generally increased when the number of steps to

TWe note that there may be more than one policy to complete the task. However, we cannot enumerate all possible policies
and we view this evaluation as the lower bound performance of the model in action proposal.

Under review as submission to TMLR

:5‘0.8 B gpt-4o
Il © @ == gpt-4o0-mini
©£8<0.2
0.0-
1.0
’N‘aols s gpt-4o Il
I ©0.6 B gpt-4o0-mini
304
8102
0.0"
1.0 £
35‘0.8 m gpt-4o
I ©0p{ == gpt-4o0-mini
<304
L©<0.2
0.0-
1.0 T e
35‘0.8 m gpt-4o
I ©0p{ == gpt-4o0-mini
<304
5202
0.0-
— 1.0 T ==
Saols m gpt-4o ||
I 0.6 B gpt-4o0-mini
x3o04
§<0.2
0.0° £ 3 9 >0 0 9 5 ¥ £ 0 a5 9 Y P UL DT £ FG DU XQ E ST ™D
_ogg‘smmcggsuwcDJEOC.:_QUE_L_)>J6NO§C_E
T2 5ep2 38 fESa3dseETcERLe T X T 23 ° & =
955 c ogwmaéa*r-u’ggu_w EES c o o a
=] 8 > 32 S 2 o0 8 9] 2
Games

Figure 8: The accuracy of the world model to generate the potential actions

complete the tasks increase. When K = 10, the accuracy of the action proposal for GPT-4o is very high in
most tasks. With approximately 800 possible actions available at each time step, the results demonstrate that
GPT-4o effectively identifies and selects relevant actions while filtering out irrelevant ones. This capability
shows promising potential for successful task completion. Furthermore, we still observe that both models
obtain lower values in the tasks requiring the domain knowledge, i.e., blood and conduct, which is consistent
to the observation in (Wang et al., 2024) that LLMs, e.g., GPT-4, is more likely to make errors when scientific
knowledge is needed. We also provide the step accuracy of the action proposal in Appendix G to illustrate
the prediction of the relevant actions along with the steps. We observe that there are some key steps that
has extremely low accuracies, which indicates that the critical steps significantly influences the difficulties of
the tasks, rather than the number of steps to complete the tasks, which differs from the traditional RL. We
also observe that both GPT-40 and GPT-40-mini can generate wrong actions even when the action rules are
given, especially for the environments where the domain scientific knowledge is needed, e.g., ‘space-walk’.

Takeaways

e Action proposal evaluates the world model’s ability to generate potential actions that can lead to task
completion, going beyond traditional state and reward prediction

e Performance improves substantially when proposing more candidate actions

o Critical steps with extremely low accuracy indicate that specific decision points drive task difficulty
more than overall step count, which differs from the traditional decision making

5.3 Task Ill: Policy Planning

Task Description. The policy planning task is motivated by Observations 3.2 and 4.3, which combines
the policy verification and the action proposal (as displayed in Figure 5). The process of policy planning is
displayed in Algorithm 2. Specifically, we execute the actions in the given a on the environment for (1 —p) N
steps (Line 3 in Algorithm 2) and then plan for 2pN® steps, i.e., {(1 — p)N,..., (1 + p)N} with the world
model (Line 7 in Algorithm 2), where both the action to execute and the state transitions are generated
by the world model. The returned action sequence a’ will be evaluated in the environment to verify the

8The budget 2pN allows a safety factor of 2 to accommodate potential backtracking or dead-ends in the generated policy.
In practice, the loop terminates early when the world model predicts task completion.

Under review as submission to TMLR

gpt-4o0
gpt-4o-mini

0.25)

(a) (p

gpt-40
gpt-4o-mini

0.5)

Success Rate Success Rate Success Rate Success Rate

OO0 O0OrO0000O0rRO0000OrO0000R

oNbDOO®MOONDMOWMOONDOIOWMOONDO®®O

(b) (o

gpt-4o0
gpt-4o-mini

0.75)
il

(c) (p

< == gpt-4o
'ﬁ' BN gpt-4o0-mini
S
=
z
2 59 0 >0 0 0 o5 0 S 0 oy ad 0o uT L g OO0 >0 E = >0 0
S 6 g3 g oOCc S g5 v @S Y Eoc ol oS> S oy c e
© O $ 3 80 &8 & 2 2 © 0 £ E 3T o8 g ey 2O Ao X s ¢
Q_—5w-og-c_cgg.oo_;'a_c'ca.:“ [X v € & = <
Sl 2 S E v iEeRSEEDW ;Eg c o a9
] © > o © o
n I} © 2
Ke) o]
Games

Figure 9: The success rate of the world model to complete the tasks

correctness. Only top-1 action is generated in Algorithm 2 for illustration. When more actions are generated,
we need to enumerate all possible outcomes or leverage search methods, which will be tackled in future work.

Evaluation Protocol. The policy planning is based on the policy verification and the action proposal, as
showed in Algorithm 2. Similar to the policy verification, we let p € {0.25,0.5,0.75,1.0} to vary the number
of steps for the planning. We only consider the case with K = 1, i.e., the world model only generates the
top-1 action with the given states. Finally, we evaluate the planned policy @’ in the environment to verify
the correctness. We note that when K = 1, no advanced search method is needed, while when K > 1, we
cannot enumerate all possible outcomes for larger steps, e.g., 10. Besides, a critic is also needed to choose
among the outcomes for verifying in the environments. Therefore, we only consider the case with K = 1 and
leave the case K > 1 into future work.

Evaluation Results. The policy planning results are displayed in Figure 9, where GPT-40 and GPT-40-
mini achieve comparable performance for the tasks with less steps and smaller values of p, e.g., 0.25 and GPT-
40 generally achieve better results in tasks with more steps. When the value of p increases, the performance
is generally decreasing. With the coupling of the policy verification and action proposal, we observe more
unstabilities of the performances of models over tasks and settings. This indicates the necessity of decoupling
the functionalities of the world model for the evaluation. Similar to the model-based RL (Schrittwieser et al.,
2020), where introducing the world model may bring the training unstabilities, we need to be carefully to
apply the LLM-based world models to the decision making due to the inherent complexity. During the
experiments, we also observe the format errors of the outputs from both models, which may interrupt the
running of the experiments. The frequency of these failures depends on the environments, where the ‘hang-
painting’, ‘space-walk’, and ‘make-campfire’ are the three environments we experiences most of the failures.
Therefore, with the interaction of the different functionalities of the world model, the system is more unstable.

Takeaways

e Policy planning demonstrates that world models can make decisions solely by combining policy verifi-
cation and action proposal without requiring separate critic modules

e Performance becomes more unstable when coupling multiple world model functionalities, partially ob-
scuring performance gaps between strong and weak models

5.4 Summary

The three evaluation tasks work together to validate our framework: Policy verification (Task I) confirms
that world models can assess multi-step consequences, addressing Observations 4.1 and 4.2. Action proposal

10

Under review as submission to TMLR

(Task IT) demonstrates capability to identify promising actions, addressing Observation 3.1. Policy planning
(Task III) shows these capabilities can be combined for autonomous decision making without separate actors,
addressing Observation 3.2, though with increased instability as suggested by Observation 4.3. Together,
these results support our position that LLM-based world models can make decisions solely, while highlighting
the importance of decoupled evaluation to understand component capabilities and failure modes. We believe
these results validate the reasonability of the suggested evaluation framework and illuminate future research
directions for understanding LLM-based world models in decision-making holistically.

6 Related Work

World Models in Decision Making. World models are actively explored by researchers to further improve
the agent’s performance and the sample efficiency (Ha & Schmidhuber, 2018; Janner et al., 2019; Hafner
et al., 2019; Schrittwieser et al., 2020). Dreamer (Hafner et al., 2019; 2025b;a) is a practical model-based
reinforcement learning algorithm that introduces the belief over states as a part of the input to the model-free
DRL algorithm used. Trajectory Transformer (Janner et al., 2021) trains the transformer to prediction the
next state and action as a sequence modeling problem for continuous robot control. MuZero (Schrittwieser
et al., 2020) is a remarkable success of model-based RL, which learns the world model and conduct the
planning in the latent space. MuZero achieves the superior performances over other model-based and model-
free RL methods. The world models trained in these methods are problem-specific and cannot be generalized
to other problems, which motivates researchers to seek to more generalizable world models, e.g., LLMs as
world models. The world model with LLM in (Xiang et al., 2023) is trained to gain the environment
knowledge, while maintaining other capabilities of the LLMs. Dynalang (Lin et al., 2024) proposes the
multimodal world model to unify videos and texts for future predictions in decision making.

LLMs as World Simulators. World simulators are developed to model the dynamics of the world (Bruce
et al., 2024). LLMs serve as the world simulator due to their generalizability across tasks. Specifically, The
LLMs (i.e., GPT-3.5 and GPT-4) is evaluated to predict the state transitions, the game progress and scores
with the given object, action, and score rules, where these rules are demonstrated to be crucial to the world
model predictions (Wang et al., 2024). The world models with LLMs in (Xie et al., 2024) need to additionally
identify the valid actions. Recently, the Genie series (Bruce et al., 2024; Parker-Holder et al., 2024; Ball
et al., 2025) learns controllable world models from unlabeled video data and enables users to interact with
generated game-like environments through action inputs, followed by MatrixGame (Zhang et al., 2025; He
et al., 2025) and GameCraft (Li et al., 2025). These work demonstrate the (multimodal) LLMs’ potential to
serve as general world simulators. We move a step further to ask the world model to propose the potential
actions to complete the tasks. Both methods focus on next state prediction, which may be not suitable for
the evaluation of world models for decision making.

LLM-based World Models for Decision Making. The concept of world model also be explored in
the deliberation reasoning of LLMs. Specifically, Reasoning via Planning (RAP) (Hao et al., 2023) leverage
the planning methods (e.g., Monte Carlo Tree Search (MCTS)) with the world model with LLMs for plan
generation and math reasoning, where LLMs need to predict the next state and the reward to guide the search.
Tree of Thought (ToT) (Yao et al., 2023) implicitly leverage the LLMs as the world model to predict the next
state and the reward for the search over different thoughts. Reason for future, act for now (RAFA) (Liu et al.,
2023) combine the planning and reflection with the world model for complex reasoning tasks. Recent work
considers LLM-based world models for web agents (Chae et al., 2025; Gu et al., 2024), game agents (Hafner
et al., 2025Db), and even autonomous driving (Liao et al., 2025). However, these methods do not focus on the
evaluation of world models, and several interdependent modules are coupled for completing the task.

7 Discussions

Are (LLM-based) World Models Necessary? Despite the success of MuZero (Schrittwieser et al., 2020)
and Dreamer (Hafner et al., 2025a;b), world models remain relatively unpopular in the research community.
The main barriers are the added complexity of training separate world models and their lack of general-
izability. Although LLM-based world models offer improved generalization capabilities, most current LLM

11

Under review as submission to TMLR

agents operate without them. This raises an important question: are (LLM-based) world models nec-
essary? We argue that world models will become critical components of LLM agents for several compelling
reasons. First, as agents are deployed in real-world scenarios where actions carry significant consequences,
e.g., high-stake scenarios, world models enable essential counterfactual reasoning and outcome prediction
prior to execution. This capability allows agents to simulate potential consequences without incurring the
costs and risks of trial-and-error in physical environments. Second, world models enhance interpretability by
explicitly modeling future states and outcomes, thereby making agent behavior more auditable and trans-
parent to human stakeholders. Third, world models facilitate sample-efficient learning by enabling agents to
plan and refine strategies through internal simulation rather than requiring extensive real-world interaction.
Most critically, world models will play an essential role in safety assurance and governance, serving as a
foundational safeguard in the development of safe artificial general intelligence (AGI). As we advance toward
increasingly autonomous and complicated Al systems, the capacity to accurately model and reason about
environmental dynamics and action consequences becomes not merely with better performance, but also
necessary for responsible Al deployment in the real world.

Limitations. There are several limitations of the current framework. i) Our framework relies on rule-based
policies as ground truth, which represents only one valid solution path per task. Real-world decision making
often admits multiple valid strategies. This single-path assumption may penalize world models that propose
alternative but potentially successful approaches, leading to underestimation of their true capabilities. ii) For
policy planning, we only evaluate K = 1 due to computational constraints. This limitation prevents us from
assessing the world model to maintain consistency across multiple predicted trajectories, which is important
for tree search methods. Extending to K>1 with tree search is important future work to better demonstrate
full planning capabilities. iii) While we argue that decoupling evaluation of world model functionalities is
critical, this approach may miss important interactions between components. The performance degradation
in policy planning suggests that integrated evaluation still provides valuable insights. iv) Due to the limited
budget, we only conduct the experiments on two widely used models. Our claims should be interpreted as
applying to the tested models, and validation across diverse model families (including open-source models
like Qwen-72B, Llama-70B, and closed models like Claude and Gemini) remains important future work.

Conclusion. In this work, we argue that LLM-based world models can make decisions solely through the
combination of policy verification and action proposal capabilities, but require rigorous, decoupled evalu-
ation to understand their true strengths and limitations. Our proposed bottom-up evaluation framework,
i.e., policy verification, action proposal, and policy planning tasks, enables systematic assessment across
31 diverse environments spanning daily and scientific domains. Key findings reveal that: i) GPT-4o signifi-
cantly outperforms GPT-4o0-mini, particularly on domain knowledge-intensive tasks, ii) performance depends
predominantly on critical steps rather than total step count, and iii) integrating multiple world model func-
tionalities introduces instability that obscures capability differences between models. While our framework
has limitations—including reliance on single-path ground truth policies and restricted evaluation of multi-
action planning—it establishes a foundation for systematic world model assessment that shifts focus from
general simulation accuracy to decision-oriented performance. As LLM-based agents advance toward deploy-
ment in high-stakes real-world scenarios, our evaluation framework becomes essential for ensuring their safe
and effective operation in complex decision-making tasks.

References

Phil Ball, Jakob Bauer, et al. Genie 3: A new frontier for world models, 2025. URL https://deepmind.
google/blog/genie-3-a-new-frontier-for-world-models/.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts: Solving elaborate
problems with large language models. In AAAI pp. 17682-17690, 2024.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
In NeurIPS, pp. 1877-1901, 2020.

12

https://deepmind.google/blog/genie-3-a-new-frontier-for-world-models/
https://deepmind.google/blog/genie-3-a-new-frontier-for-world-models/

Under review as submission to TMLR

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes, Matthew
Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative interactive environments.
In ICML, 2024.

Arunkumar Byravan, Jost Tobias Springenberg, Abbas Abdolmaleki, Roland Hafner, Michael Neunert,
Thomas Lampe, Noah Siegel, Nicolas Heess, and Martin Riedmiller. Imagined value gradients: Model-
based policy optimization with tranferable latent dynamics models. In CoRL, pp. 566-589. PMLR, 2020.

Hyungjoo Chae, Namyoung Kim, Kai Tzu iunn Ong, Minju Gwak, Gwanwoo Song, Jihoon Kim, Sunghwan
Kim, Dongha Lee, and Jinyoung Yeo. Web agents with world models: Learning and leveraging environment
dynamics in web navigation. In ICLR, 2025.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: reinforcement learning via sequence modeling. In

NeurIPS, pp. 15084-15097, 2021.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. BabyAl: First steps towards grounded language learning with a human in
the loop. In ICLR, 2019.

Shenyuan Gao, Jiazhi Yang, Li Chen, Kashyap Chitta, Yihang Qiu, Andreas Geiger, Jun Zhang, and
Hongyang Li. Vista: A generalizable driving world model with high fidelity and versatile controllabil-
ity. arXiv preprint arXiv:2405.17398, 2024.

Nicolas Gontier, Pau Rodriguez, Issam Laradji, David Vazquez, and Christopher Pal. Language decision
transformers with exponential tilt for interactive text environments. arXiw preprint arXiv:2302.05507,
2023.

Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu Gou, Tianci Xue, Cheng Chang, Sanjari Srivastava,
Yanan Xie, Peng Qi, et al. Is your LLM secretly a world model of the internet? model-based planning for
web agents. arXiv preprint arXiv:2411.06559, 2024.

David Ha and Jirgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In ICLR, 2019.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari with discrete
world models. In ICLR, 2021.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks through
world models. Nature, pp. 1-7, 2025a.

Danijar Hafner, Wilson Yan, and Timothy Lillicrap. Training agents inside of scalable world models. arXiv
preprint arXiv:2509.24527, 2025b.

Jessica B Hamrick, Abram L. Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims Witherspoon,
Thomas Anthony, Lars Holger Buesing, Petar Velickovi¢, and Theophane Weber. On the role of planning
in model-based deep reinforcement learning. In ICLR, 2021.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. arXiv preprint arXiw:2305.14992, 2023.

Xianglong He, Chunli Peng, Zexiang Liu, Boyang Wang, Yifan Zhang, Qi Cui, Fei Kang, Biao Jiang, Mengyin
An, Yangyang Ren, et al. Matrix-game 2.0: An open-source, real-time, and streaming interactive world
model. arXiv preprint arXiv:2508.13009, 2025.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. arXiv preprint arXiv:1906.08253, 2019.

13

Under review as submission to TMLR

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling
problem. In NeurIPS, 2021.

Jiaqgi Li, Junshu Tang, Zhiyong Xu, Longhuang Wu, Yuan Zhou, Shuai Shao, Tianbao Yu, Zhiguo Cao, and
Qinglin Lu. Hunyuan-GameCraft: High-dynamic interactive game video generation with hybrid history
condition. arXiv preprint arXiv:2506.17201, 2025.

Bencheng Liao, Shaoyu Chen, Haoran Yin, Bo Jiang, Cheng Wang, Sixu Yan, Xinbang Zhang, Xiangyu Li,
Ying Zhang, Qian Zhang, et al. Diffusiondrive: Truncated diffusion model for end-to-end autonomous
driving. In CVPR, pp. 12037-12047, 2025.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan. Learning
to model the world with language. In ICML, 2024.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Reason for
future, act for now: A principled framework for autonomous llm agents with provable sample efficiency.
arXiv preprint arXiv:2309.17582, 2023.

Daniel Monroe and Philip A Chalmers. Mastering chess with a transformer model. arXiv preprint
arXiv:2409.12272, 2024.

OpenAl. New and improved embedding model, 2022. URL https://openai.com/index/
new-and-improved-embedding-model/.

OpenAl. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Jack Parker-Holder, Stephen Spencer, et al. Genie 2: A large-scale foundation world model, 2024. URL
https://deepmind.google/blog/genie-2-a-large-scale-foundation-world-model/.

Alexander Robey, George J Pappas, and Hamed Hassani. Model-based domain generalization. In NeurIPS,
pp. 20210-20229, 2021.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering Atari, Go, chess and
shogi by planning with a learned model. Nature, 588(7839):604-609, 2020.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, loannis Antonoglou,
and David Silver. Online and offline reinforcement learning by planning with a learned model. In NeurIPS,
pp. 27580-27591, 2021.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak. Plan-
ning to explore via self-supervised world models. In ICML, pp. 8583-8592, 2020.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An open-
domain platform for web-based agents. In ICML, pp. 3135-3144, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419):1140-1144, 2018.

Shuo Sun, Rundong Wang, and Bo An. Reinforcement learning for quantitative trading. ACM Transactions
on Intelligent Systems and Technology, 14(3):1-29, 2023.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Junpeng Yue,
Jiechuan Jiang, Yewen Li, Ruyi An, Molei Qin, Chuqiao Zong, Longtao Zheng, Yujie Wu, Xiaoqgiang Chai,
Yifei Bi, Tianbao Xie, Pengjie Gu, Xiyun Li, Ceyao Zhang, Long Tian, Chaojie Wang, Xinrun Wang,
Borje F. Karlsson, Bo An, Shuicheng Yan, and Zongqing Lu. Cradle: Empowering foundation agents
towards general computer control. arXiv preprint arXiv:2403.03186, 2024.

14

https://openai.com/index/new-and-improved-embedding-model/
https://openai.com/index/new-and-improved-embedding-model/
https://deepmind.google/blog/genie-2-a-large-scale-foundation-world-model/

Under review as submission to TMLR

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time game
engines. arXiv preprint arXiv:2408.14837, 2024.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati.
PlanBench: An extensible benchmark for evaluating large language models on planning and reasoning
about change. In Proceedings of the 37th International Conference on Neural Information Processing
Systems, pp. 38975—-38987, 2023.

Ruoyao Wang, Graham Todd, Xingdi Yuan, Ziang Xiao, Marc-Alexandre Coté, and Peter Jansen. Byte-
Sized32: A corpus and challenge task for generating task-specific world models expressed as text games.
In EMNLP, 2023.

Ruoyao Wang, Graham Todd, Ziang Xiao, Xingdi Yuan, Marc-Alexandre Co6té, Peter Clark, and Peter
Jansen. Can language models serve as text-based world simulators? arXiv preprint arXiv:2406.06485,
2024.

Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang, Zichao Yang, and Zhiting Hu. Language mod-
els meet world models: Embodied experiences enhance language models. arXiv preprint arXiv:2305.10626,
2023.

Kaige Xie, Ian Yang, John Gunerli, and Mark Riedl. Making large language models into world models with
precondition and effect knowledge. arXiv preprint arXiv:2409.12278, 2024.

Chang Yang, Xinrun Wang, Qinggang Zhang, Qi Jiang, and Xiao Huang. Efficient integration of external
knowledge to llm-based world models via retrieval-augmented generation and reinforcement learning. In
Findings of EMNLP, pp. 9484-9501, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: deliberate problem solving with large language models. In NeurIPS, pp. 11809-11822,
2023.

Kenny Young, Aditya Ramesh, Louis Kirsch, and Jiirgen Schmidhuber. The benefits of model-based gener-
alization in reinforcement learning. In ICML, pp. 40254-40276, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. MOPO: Model-based offline policy optimization. In NeurIPS, pp. 14129-14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn. COMBO:
conservative offine model-based policy optimization. In NeurIPS, pp. 28954-28967, 2021.

Yifan Zhang, Chunli Peng, Boyang Wang, Puyi Wang, Qingcheng Zhu, Fei Kang, Biao Jiang, Zedong
Gao, Eric Li, Yang Liu, et al. Matrix-game: Interactive world foundation model. arXiv preprint
arXiv:2506.18701, 2025.

A Frequently Asked Questions (FAQs)

A.1 Why World Models and Why World Models with LLMs?

i) Generalization to novel tasks: World models have demonstrated impressive transfer learning abilities (Byra-
van et al., 2020), allowing agents to adapt to previously unseen scenarios by leveraging their learned un-
derstanding of world dynamics. This generalization capacity is particularly valuable in robotics and control
applications where agents must handle diverse situations (Robey et al., 2021; Young et al., 2023). ii) Efficient
planning: The predictive capabilities of world models enable the sophisticated planning algorithms without

15

Under review as submission to TMLR

any online interactions (Sekar et al., 2020; Hamrick et al., 2021; Schrittwieser et al., 2020). By simulat-
ing possible futures, agents can evaluate different action sequences and select optimal strategies without
requiring actual interaction with the environment. This “imagination” or “mental simulation” capability
dramatically improves sample efficiency and safety in decision-making. iii) Offline learning: World models
have proven especially valuable in offline reinforcement learning settings (Schrittwieser et al., 2021; Yu et al.,
2020; 2021), where agents must learn from pre-collected datasets without direct environment interaction.
The ability to learn accurate dynamics models from historical data has opened new possibilities for training
agents in scenarios where online interaction is impractical or costly.

A.2 More Justifications of the Proposed Tasks

In this section, we will provide a mode detailed justification of the three tasks proposed in this work.

Policy Verification. Policy verification can be viewed as a generalization of the next state prediction.
Instead of focusing on the accuracy of the one-step prediction about the next states and the reward/terminal
prediction, which is considered in most previous works, policy verification may accumulate the multi-step
predictions and judging whether the given policy can complete the task or not. This task is more relevant
to the world model for decision making, as if the world model can verify any given policy correctly, with the
enough number of sampling of the policy, i.e., action sequences, we can complete the task in the end.

Action Proposal. As observing in the ToT (Yao et al., 2023), generating useful thoughts is critical which
can significantly improve the performance. However, with multiple thoughts generated, we have to select one
to executed. We can test these thoughts in the environments, however, this is not always doable. Therefore,
building a world model is the straightforward way to do this. On the other hand, action proposal is necessary
for the world model as the game engine to guide the fresh players to complete the game. With increasing
the number of recommend actions, the difficulty of the action proposal is decreased. However, this task is
not considered in the previous work for the world model. We believe that this task should be an important
task to evaluate the world model for decision making.

Policy Planning. Policy planning is a combination of policy verification and action proposal. Conceptu-
ally, if the world model performs well on both tasks, we can obtain the policy with world model only and no
actor is needed. This can help us to understand the world model through decoupling the world model with
any other modules. Besides, this planning task is consistent with the System 2 thinking, i.e., with more time
for the planning, the world model may find better policies.

A.3 The Objectives of This Paper

The primary objective of this paper is proposing the new evaluation tasks for the evaluation of the world
models with LLMs for decision making.

e Evaluating world model for decision making is difficult, given that the decision making tasks usually
involves multiple steps of the predictions. Therefore, the one-step prediction tasks considered in
most previous works is not suitable.

o Instead of treating the world models as world simulators or supporting modules for the actors, we
identify that the world model can solve the tasks solely with the combination of the policy verification
and action proposal. Therefore, the world model should be researched with the same importance.

o World models have traditionally been evaluated through a top-down approach, where complex sys-
tems are constructed to complete tasks, constraining analysis to high-level observations. By exam-
ining fundamental capabilities like policy verification and action proposal, we propose a bottom-up
evaluation that enables more systematic and granular assessment of world models.

16

Under review as submission to TMLR

A.4 Selection of Backbone LLMs

e We need to evaluate the three novel tasks over 31 environments, and each with 30 runs, we roughly
use 3000 dollars for all the experiments for GPT-40 and GPT-40-mini. Due to the limited budget,
we cannot afford to test on Claude and Gemini.

e For the open-sourced models, we test on some open-sourced models, e.g., Qwen 7B, and find that
current open-sourced models still cannot generate the responses with correct formats, i.e., JSON.
This brings difficulties for the evaluation.

A.5 Comparison with Decision Transformer and Trajectory Transformer

Decision transformer (DT) (Chen et al., 2021) trains the transformer to predict the action conditional on
the experiences and the target reward or the goal. Language DT (LDT) (Gontier et al., 2023) extends DT to
consider the text-based games and include the state prediction in the training as an auxiliary tasks. However,
during the inference, i.e., decision making, the model still generates the action directly, which is not based
on the world model because the state prediction is only used for training and not for acting.

Trajectory Transformer (TT) (Janner et al., 2021) also consider the decision making problem as a sequence
modeling problem, where the transformer is trained to predict the state, the action and the reward. Compared
with DT, TT is more related to the world model, where the state and reward prediction is used to generating
actions and the search methods, e.g., beam search, is used. However, only the continuous robot control is
considered in TT (Janner et al.; 2021) and the trained TT model is domain and problem specific, which
cannot generalize to other problems.

Recently, LLMs provide a promising way to build the general world model and the world model with LLMs
emerge as a novel research field. However, most of these work focus on the single-step prediction and a
comprehensive evaluate is needed. This work is inspired by TT and extends the insights from TT to the
world model with LLMs for text-based games. Specifically, we consider the policy verification, the action
proposal and the policy planning tasks, where the TT combines these tasks to generate the actions and only
investigate the performance for the decision. Instead of only considering the performance of the decision
makings, our three tasks provide a bottom-up analysis of the world model for decision making.

A.6 Broader Impact Statement

This work contributes an evaluation methodology for LLM-based world models towards Al safety and re-
sponsible development. Rigorous evaluation frameworks help prevent insecure deployment of vulnerable
systems in high-stakes scenarios. However, we acknowledge potential dual-use concerns: improved world
models could enhance autonomous agent capabilities, which could be misused for harmful automation. We
emphasize that our work is evaluation-oriented and that substantial research on safety, robustness, and value
alignment remains necessary before deploying world-model-based agents in real-world applications.

A.7 Code and Dataset Availability

We will release all the code and datasets upon the paper acceptance. The anonymous code can be access at:
https://anonymous.4open.science/r/World_Models/.

17

https://anonymous.4open.science/r/World_Models/

Under review as submission to TMLR

B Environments

B.1

Introduction of Tasks

There are 32 environment in (Wang et al., 2023) and dish-washing is selected as the example in the prompt,
which is excluded for fair evaluation. Specifically, the environments can be categorized into two domains:

e Daily-life tasks, including use-bandage, hang-painting, sunburn, sweep-floor, bath-tub-water-

temperature, make-campfire, refrigerate-food, cooking, take-photo, plant-tree, boil-water, and wash-
clothes. For these tasks, the world model need to have the common knowledge about the procedure
of completing these tasks, e.g.. first collecting the dirty clothes, then put them into the washing
machine, then use the detergent and turn on the washing machine for the wash-clothes task.

Scientific tasks, including mix-paint, blood-type, thermometer, clean-energy, lit-lightbulb, scale-
weigh, multimeter, volume, space-walk, volume-container, conductivity, volume-stone, bird-life-
cycle, balance-scale-weigh, metal-detector, make-ice-cubes, forge-key and inclined-plan. These tasks
requires the scientific knowledge to complete the tasks, e.g., the world model need to know that the
friction may decrease the speed of a block sliding down of the plane for the inclined-plane. Then, the
world model need to generate build a micro-simulation to compare the frictions of the two planes.

B.2 Code for Demo Actions Generation

Only one playthrough of the game is provided in (Wang et al., 2024), which is not enough due to the
randomness in the environments. Therefore, we curate the rule-based policy for each environment. Note
that due to the randomness of the environments, e.g., the target color in the mix-paint task, the generated
action sequences are different for different instantances of the same environment.

Code Sample 1: mix-paint

def get_demo_actions(self):

target_color = self.useful_info [0] [0]
paint_names = self.useful_info[1]

color_dict = {
"red": (1, 0, 0),

"orange": ["red", "yellow"],
"yellow": (0, 1, 0),
"green": ["yellow", "blue"],
"blue": (0, 0, 1),
"purple": ["red", "blue"],
"black": ["red", "yellow", "blue"],
}
paint_names_to_idx = {}
for paint_idx, paint_name in enumerate (paint_names):
paint_names_to_idx [paint_name] = paint_idx
color_mix_plan = color_dict[target_color]
demo_actions = []
to_idx = -1

for color_idx, color_mix in enumerate(color_mix_plan):
if color_idx ==
to_idx = paint_names_to_idx[color_mix]
continue
demo_actions.append (
"pour {} paint (ID: {}) in cup {} (ID: {})".format(
color_mix,
2 * (paint_names_to_idx[color_mix] + 1) + 1,
to_idx,
2 % (to_idx + 1),
)
)
demo_actions.append("mix cup {} (ID: {})".format(to_idx, 2 * (to_idx + 1)))

18

Under review as submission to TMLR

return demo_actions

Code Sample 2: blood-type

def get_demo_actions(self):
useful_info = self.useful_infol[1]

return [

"give Type {} {} blood (ID: 3) to patient (ID: 2)".format(

useful_info [0], useful_infol[1]

),
"take Type {} {} blood (ID: 3)".format(useful_info[0], useful_info[1]),
"give Type {} {} blood (ID: 3) to patient (ID: 2)".format (

useful_info [0], useful_infol[1]

P

Code Sample 3: thermometer

def get_demo_actions(self):
demo_actions = [
"take thermometer (ID: 4)",
"use thermometer (ID: 4) on water (ID: 3)",
"answer {} Celsius degree".format(self.water_temperature),
]

return demo_actions

Code Sample 4: clean-energy

def get_demo_actions(self):
demo_actions = []
change_station = {
"sun": "solar farm",
"water": "hydroelectric power station",
"wind": "wind farm",

for region in self.regions:
demo_actions.append(
"change {} to {}".format (
region.name, change_station[region.properties["resource"]]

)

return demo_actions

Code Sample 5: lit-lightbulb

def get_demo_actions(self):
return [
"connect light bulb (ID: 2) terminall to red wire (ID: 3) terminall",
"connect red wire (ID: 3) terminal2 to battery (ID: 6) anode",
"connect battery (ID: 6) cathode to black wire (ID: 4) terminall",
"connect black wire (ID: 4) terminal2 to light bulb (ID: 2) terminal2",

Code Sample 6: scale-weigh

def get_demo_actions(self):
demo_actions = [
"take {}".format(self.useful_info[0].name),
"put {} on {}".format(self.useful_info[0].name, self.useful_info[1].name),
"look",
"answer {}g".format(self.target_weight),

return demo_actions

19

Under review as submission to TMLR

Code Sample 7: use-bandage

def get_demo_actions(self):

demo_actions = [
"open bandage box (ID: 8)",
"look",

"take bandage (ID: 9)",
]
return demo_actions + [

"put bandage (ID: 9) on {} (ID: 3)".format(self.useful_info[0])
]

Code Sample 8: hang-painting

def get_demo_actions(self):
demo_actions = [

"take nail (ID: 7)",

"take hammer (ID: 6)",

"hammer nail (ID: 7) on {} with hammer (ID: 6)".format (

self .target_wall.name

) g
"take {}".format(self.target_picture.name),
"hang {} on nail (ID: 7)".format(self.target_picture.name),

return demo_actions

Code Sample 9: multimeter

def get_demo_actions(self):
demo_actions = [
"set multimeter (ID: 2) to resistance mode",

"connect multimeter (ID: 2) terminall to resistor {} (ID: 3) terminall".format(

self.target_resistor_id

),

"connect multimeter (ID: 2) terminal2 to resistor {} (ID: 3) terminal2".format (

self.target_resistor_id
) g
"look",
"answer {} ohm".format(self.target_resistance),

return demo_actions

Code Sample 10: volume

def get_demo_actions(self):
demo_actions = [

"take {}".format(self.useful_info[1].name),

"measure the length of the {} with the {}".format(
self .useful_info [0] .name, self.useful_info[1].name

) g

"measure the width of the {} with the {}".format(
self .useful_info [0] .name, self.useful_infol[1].name

),

"measure the height of the {} with the {}".format(
self .useful_info [0] .name, self.useful_infol[1].name

) g

"answer {} cubic cm".format(self.target_box_volume),

return demo_actions

Code Sample 11: sunburn

def get_demo_actions(self):

20

Under review as submission to TMLR

return [
"use sunscreen (ID: 4)",
"move to beach (ID: 3)",
"look",
"take ball (ID: 8)",
"move to house (ID: 2)",
"put ball (ID: 8) in box (ID: 5)",

Code Sample 12: space-walk

def get_demo_actions(self):
return [

"put on space suit (ID: 7)",
"open inner door (ID: 5)",
"move to airlock (ID: 3)",
"look",
"close inner door (ID: 5)",
"open outer door (ID: 6)",
"move to outer space (ID: 4)",

Code Sample 13: sweep-floor

def get_demo_actions(self):
sweep_actions = []
for garbage in self.useful_info:
sweep_actions.append(
"sweep {} to dustpan (ID: 3) with broom (ID: 2)".format(garbage.name)
)

demo_actions = (
["take broom (ID: 2)", "take dustpan (ID: 3)"]
+ sweep_actions
+ [
"open garbage can (ID: 4)",
"dump dustpan (ID: 3) to garbage can (ID: 4)",

return demo_actions

Code Sample 14: volume-container

def get_demo_actions(self):
demo_actions = [
"take {}".format(self.useful_info[0O].name),
"put {} in sink (ID: 2)".format(self.useful_info [0].name),
"turn on sink (ID: 2)",
"turn off sink (ID: 2)",
"take {}".format(self.useful_info[0].name),
"pour water in {} into {}".format(
self.useful_info [0] .name, self.useful_info[1].name
) g
"look",
"answer {} mL".format(self.target_water_container_volume),

return demo_actions

Code Sample 15: bath-tub-water-temperature

def get_demo_actions(self):

water_temp = self.useful_info [0]

21

Under review as submission to TMLR

cooling = [
"turn on cold tap (ID: 5)",
"turn off cold tap (ID: 5)",

"use thermometer (ID: 6) on water (ID: 3)",
]
hotting = [

"turn on hot tap (ID: 4)",

"turn off hot tap (ID: 4)",

"use thermometer (ID: 6) on water (ID: 3)",

if water_temp > 40:
cooling_times =
water_actions =

(water_temp - 35) // b
cooling * cooling_times

35:
(40 - water_temp) // 5
hotting * hotting_times

elif water_temp <
hotting_times =
water_actions

else:
water_actions = []
demo_actions = (
[
"take thermometer (ID: 6)",
"use thermometer (ID: 6) on water (ID:
1

+ water_actions
+ ["bath"]

return demo_actions

3)n,

Code Sample 16: conductivity

def get_demo_actions(self):
demo_actions = [
"connect light bulb (ID: 2) terminall to red wire (ID: 3) terminall",
"connect red wire (ID: 3) terminal2 to battery (ID: 6) anode",
"connect battery (ID: 6) cathode to black wire (ID: 4) terminall",
"connect black wire (ID: 4) terminal2 to fork (ID: 7) terminall",
"connect fork (ID: 7) terminal2 to blue wire (ID: 5) terminall",
"connect blue wire (ID: 5) terminal2 to light bulb (ID: 2) terminal2",
"look",
"take fork (ID: 7)",
]
if self.useful_info[0]:
return demo_actions + ["put fork (ID: 7) in red box (ID: 8)"]
else:
return demo_actions + ["put fork (ID: 7) in black box (ID: 9)"]
Code Sample 17: make-campfire
def get_demo_actions(self):

return [

"take axe (ID: 4)",

"use axe (ID: 4) on tree (ID: 5)",

"look",

"use axe (ID: 4) on chopped down tree (ID:
"look",

"take firewood (ID: 5)",

"put firewood (ID: 5) in fire pit (ID: 2)",

"take match (ID:
"use match (ID:

3",

3) on firewood (ID: 5)",

5",

22

Under review as submission to TMLR

Code Sample 18: refrigerate-food

def get_demo_actions(self):
take_objects = []

put_objects = []

for food in self.useful_info:
take_objects.append("take {}".format(food.name))
put_objects.append("put {} in fridge (ID: 2)".format(food.name))

demo_actions = (
take_objects
+ ["open fridge (ID: 2)"]
+ put_objects

+ [
"close fridge (ID: 2)",
"look",
"look",
"look",
]

return demo_actions

Code Sample 19: volume-stone

def get_demo_actions(self):
demo_actions = [

"take measuring cup (ID: 4)",
"put measuring cup (ID: 4) in sink (ID: 2)",
"turn on sink (ID: 2)",
"turn off sink (ID: 2)",
"take measuring cup (ID: 4)",
"examine measuring cup (ID: 4)",
"take stone (ID: 3)",
"put stone (ID: 3) in measuring cup (ID: 4)",
"examine measuring cup (ID: 4)",
"answer {}".format(self.answer_volume),

return demo_actions

Code Sample 20: bird-life-cycle

def get_demo_actions(self):
return [

"sit on egg",
"sit on egg"
"sit on egg",
"sit on egg",
"sit on egg",
"feed young bird",
"feed young bird",
"feed young bird",
"feed young bird",
"feed young bird",

Code Sample 21: balance-scale-weigh

def get_demo_actions(self):
weight_list = [1, 1, 2, 5, 10]
weight_list_index = [False] * 5

def _find_combination():
remaining = self.cube_weight

23

Under review as submission to TMLR

using 10

if remaining >= 10:
weight_list_index[-1] = True
remaining -= 10

using 5

if remaining >= 5:
weight_list_index[-2] = True
remaining -= 5

using 2

if remaining >= 2:
weight_list_index[-3] = True
remaining -= 2

if remaining > O:
if remaining == 1
weight_list_index [0]
== 92

= True

if remaining :
weight_list_index [0] = True
weight_list_index [1] = True

_find_combination ()

weight_actions = []
for idx, weight_list_idx in enumerate(weight_list_index):
if weight_list_idx:
weight_actions += [
"take {}".format (self.useful_info[idx].name),
"put {} in right side of the balance scale (ID: 4)".format(
self.useful_info[idx].name

)
"look",
]
demo_actions = (
L
"take cube (ID: 10)",
"put cube (ID: 10) in left side of the balance scale (ID: 3)",
]

+ weight_actions
+ ["answer {}g".format(self.cube_weight)]

return demo_actions

Code Sample 22: metal-detector

def get_demo_actions (self):

agent_init_position = self.useful_info [0]
targe_position = self.useful_info[1]
direction = (
targe_position[0] - agent_init_position[0],
targe_position[1] - agent_init_position[1],
)

h_dir_list = (
["south"] * direction [0]
if direction[0] > O
else ["north"] * (-direction[0])

)
v_dir_list = (
["east"] * direction[1] if direction[1] > O else ["west"] * (-direction[1])
)
dir_list = h_dir_list + v_dir_1list

self.random.shuffle(dir_1list)

24

Under review as submission to TMLR

detect_actions = [
"detect with metal detector (ID: 15)",

]

for dir_step in dir_1list:
detect_actions.append("move {}".format(dir_step))
detect_actions.append("detect with metal detector (ID: 15)")

demo_actions = (
["take metal detector (ID: 15)", "take shovel (ID: 16)"]
+ detect_actions
+ ["look", "dig with shovel (ID: 16)", "look", "take metal case (ID: 11)"]

return demo_actions

Code Sample 23: cooking

def get_demo_actions(self):
cooking_actions = [

1

for cooking_item in self.receipt:
operations = self.receipt[cooking_item]
cooking_actions += ["take {}".format(cooking_item.name)]
for operation in operations:
if operation in ["slice", "dice", "chop"l:
cooking_actions += [
"{} {} with {}".format (
operation, cooking_item.name, self.useful_info["knife"].name

]
if operation in ["fry"]:
cooking_actions += [
"cook {} in {}".format (
cooking_item.name, self.useful_info["stove"].name

1
if operation in ["roast"]:
cooking_actions += [
"cook {} in {}".format (
cooking_item.name, self.useful_info["oven"].name

)
]
demo_actions = (
[
"take {}".format(self.useful_info["cook_book"].name),
"read {}".format(self.useful_info["cook_book"].name),
"take {}".format(self.useful_info["knife"].name),
]
+ cooking_actions
+ [
"prepare meal",
]

return demo_actions

Code Sample 24: make-ice-cubes

def get_demo_actions(self):
return [
"open freezer (ID: 2)",
"examine freezer (ID: 2)",
"take ice cube tray (ID: 3)",
"put ice cube tray (ID: 3) in sink (ID: 4)",
"turn on sink (ID: 4)",

25

Under review as submission to TMLR

"turn off sink (ID: 4)",

"take ice cube tray (ID: 3)",

"put ice cube tray (ID: 3) in freezer (ID: 2)",
"close freezer (ID: 2)",

"ook",
“look",
"look",

Code Sample 25: balance-scale-heaviest

def get_demo_actions(self):

demo_actions = [
"take {}".format(self.useful_info[0][0].name),
"put {} in left side of the balance scale (ID: 3)".format (
self .useful_info [0] [0] . name
) g
"take {}".format(self.useful_info[1][0].name),
"put {} in right side of the balance scale (ID: 4)".format(
self.useful_info [1][0] .name
) g
"look",

if len(self.useful_info) == 2:
if self.useful_info[0][1] > self.useful_infol[1][1]:
left is heavier

demo_actions.append("take {}".format(self.useful_info [0][0].name))
demo_actions.append(
"put {} in {}".format(
self .useful_info [0] [0] .name, self.answer_box.name
)
)
return demo_actions
elif self.useful_info[0][1] < self.useful_infol[1][1]:
right is heavier
demo_actions.append("take {}".format(self.useful_info[1][0].name))
demo_actions.append(
"put {} in {}".format(
self .useful_info[1][0] .name, self.answer_box.name
)
)
return demo_actions
else:
demo_actions.append("take {}".format(self.useful_info[0][0].name))
demo_actions.append (
"put {} in {}".format (
self.useful_info [0] [0] .name, self.answer_box.name

)

demo_actions.append("take {}".format(self.useful_info[1][0].name))
demo_actions.append (
"put {} in {}".format (
self.useful_info [1] [0] .name, self.answer_box.name
)
)

return demo_actions

on_scale = [0, 1]
for i in range (2, len(self.useful_info)):
if self.useful_infolon_scale[0]][1] > self.useful_infol[on_scale[1]]1[1]:
demo_actions += [
"take {}".format (self.useful_infol[on_scale[1]1][0].name),
"take {}".format(self.useful_infol[i][0].name),
"put {} in right side of the balance scale (ID: 4)".format(

26

Under review as submission to TMLR

self.useful_info[i] [0].name

) o
"look",
1
on_scale[1] = i
else:

demo_actions += [
"take {}".format (self.useful_infol[on_scale[0]][0].name),
"take {}".format(self.useful_info[i][0].name),
"put {} in left side of the balance scale (ID: 3)".format(
self .useful_info[i] [0].name

)
"look" s
1
on_scale[0] = i
max_weight = 0

if self.useful_infol[on_scale[0]][1] > self.useful_infol[on_scale[1]][1]:
demo_actions.append("take {}".format(self.useful_info[on_scale[0]][0].name))
demo_actions.append (
"put {} in {}".format(
self .useful_infol[on_scale[0]][0].name, self.answer_box.name
)
)
max_weight = self.useful_info[on_scale[0]][1]
else:
demo_actions.append("take {}".format(self.useful_infol[on_scale[1]1]1[0].name))
demo_actions.append(
"put {} in {}".format(
self .useful_info[on_scale[1]][0].name, self.answer_box.name
)
)

max_weight = self.useful_info[on_scale[1]][1]

for cube, cube_mass in self.useful_info:
if cube_mass == max_weight:
demo_actions += [
"take {}".format (cube.name),
"put {} in {}".format (cube.name, self.answer_box.name),

return demo_actions

Code Sample 26: take-photo

def get_demo_actions(self):
speed = self.camera.properties["current_shutter_speed"]
iso = self.camera.properties["current_iso"]
aperture = self.camera.properties["current_aperture"]

target_aperture = self.useful_info [0]
target_speed = self.useful_info [1]
target_iso = self.useful_info [2]

adjust_actions = [
"focus {}".format(self.target_food.name),
]
if target_aperture > aperture:
adjust_actions += ["rotate aperture clockwise"] * (
target_aperture - aperture
)
elif target_aperture < aperture:
adjust_actions += ["rotate aperture anticlockwise"] * (
-target_aperture + aperture
)
else:
pass
if target_speed > speed:
adjust_actions += ["rotate shutter speed clockwise"] * (

27

Under review as submission to TMLR

target_speed - speed
)
elif target_speed < speed:

adjust_actions += ["rotate shutter speed anticlockwise"] * (

-target_speed + speed
)
else:
pass
if target_iso > iso:

adjust_actions += ["rotate iso clockwise"] * (target_iso - iso)

elif target_iso < iso:

adjust_actions += ["rotate iso anticlockwise"] * (-target_iso + iso)

else:
pass

demo_actions = ["take camera (ID: 2)"] + adjust_actions + ["press

return demo_actions

shutter"]

Code Sample 27: plant-tree

def get_demo_actions(self):
return [

"take shovel (ID: 2)",
"dig with shovel (ID: 2)",
"take tree (ID: 8)",
"look",
"put tree (ID: 8) in hole (ID: 9)",
"inventory",
"put soil (ID: 10) in hole (ID: 9)",
"take jug (ID: 7)",
"put jug (ID: 7) in sink (ID: 5)",
"turn on sink (ID: 5)",
"turn off sink (ID: 5)",
"take jug (ID: 7)",

"pour water in jug (ID: 7) into soil (ID: 10)",

Code Sample 28: boil-water

def get_demo_actions(self):
return [

"take pot (ID: 4)",
"put pot (ID: 4) in sink (ID: 3)",
"examine sink (ID: 3)",
"turn on sink (ID: 3)",
"examine sink (ID: 3)",
"turn off sink (ID: 3)",
"take pot (ID: 4)",
"look",
"put pot (ID: 4) on stove (ID: 2)",
"examine stove (ID: 2)",
"turn on stove (ID: 2)",
"examine stove (ID: 2)",
"examine stove (ID: 2)",
"examine stove (ID: 2)",

Code Sample 29: forge-key

def get_demo_actions(self):
demo_actions = [
"take copper ingot (ID: 4)",
"put copper ingot (ID: 4) in foundry (ID: 3)",
"turn on foundry (ID: 3)",
"lOOk",
"look“,

28

Under review as submission to TMLR

"look",

"look",

"look",

"look",

"pour copper (liquid) (ID: 4) into key mold (ID: 6)",
"look",

"look",

"take copper key (ID: 4)",

"open door (ID: 5) with copper key (ID: 4)",

return demo_actions

Code Sample 30: inclined-plane

def get_demo_actions(self):
look_table = {

0.5: ["look"] * 5,
1: ["look"] * 5,
1.5: ["look"] * 5,
2: ["look"] * 5,

}

al = self.useful_info[0][0]
a2 = self.useful_info [0][1]
al_look = look_table[al]
a2_look = look_tablel[aZ2]

demo_actions = (
[
"take stopwatch (ID: 5)",
"take block (ID: 4)",
"put block (ID: 4) on inclined plane 1 (ID: 2)",
"activate stopwatch (ID: 5)",

1

+ al_look

+ [
"deactivate stopwatch (ID: 5)",
"examine stopwatch (ID: 5)",
"reset stopwatch (ID: 5)",
"take block (ID: 4)",
"put block (ID: 4) on inclined plane 2 (ID: 3)",
"activate stopwatch (ID: 5)",

1

+ a2_look

+ [
"deactivate stopwatch (ID: 5)",
"examine stopwatch (ID: 5)",

1

)
if al > a2:

return demo_actions + ["focus on inclined plane 2 (ID: 3)"]
else:

return demo_actions + ["focus on inclined plane 1 (ID: 2)"]

Code Sample 31: wash-clothes

def get_demo_actions(self):
washing, drying, busketing = []1, [1, []

for cloth in self.dirty_clothes:
washing += [

"take {}".format(cloth.name),
"put {} in washing machine (ID: 2)".format(cloth.name),

drying += [

29

Under review as submission to TMLR

"take {}".format(cloth.name),
"put {} in dryer (ID: 3)".format(cloth.name),

busketing += [
"take {}".format(cloth.name),
"put {} in basket (ID: 12)".format(cloth.name),

for cloth in self.clean_clothes:
busketing += [
"take {}".format(cloth.name),
"put {} in basket (ID: 12)".format(cloth.name),

]
demo_actions = (
[
"open washing machine (ID: 2)",
]
+ washing
+ [
"use bottle of detergent (ID: 4) on washing machine (ID:
"close washing machine (ID: 2)",
"turn on washing machine (ID: 2)",
"wait",
"look",
"look",
"open washing machine (ID: 2)",
"open dryer (ID: 3)",
]
+ drying
+ [
"close dryer (ID: 3)",
"turn on dryer (ID: 3)",
"wait",
"look",
"look",
"open dryer (ID: 3)",
"take skirt (ID: 5)",
]
+ busketing

return demo_actions

2)",

B.3 Analysis of Demo Actions

Figure 10 displays the numbers of steps of the generated rule-based policies for environments to complete
the tasks. We note that the number of steps may vary due to the randomness in the environments. For
example, in mix paint, if the target color is black, 3 steps are needed, and other colors may only require 2

steps.
60
(%]
240
]
n 20
0,
o = Al o —=
8 e BRSPS EEY BT SELLEREE 2P
T ©O &£ g & u ™ © 2 © 0o £ £ Y © 0 0 g 9 g
a5 o 2 Y o £ EZ2 2 az 3 £ 7T 2 8 9]
s 2 ¢ 2 S Ewi RS EED = E 3
prv] © > o © (o}
0 o o
o] o (o]
Game

Figure 10: Steps to complete the tasks

30

Under review as submission to TMLR

Table 1: Environments (Wang et al., 2024)

Environments

Task Description

mix-paint (paint)
blood-type (blood)

thermometer (thermo)

clean-energy (energy)

lit-lightbulb (bulb)
scale-weigh (scale)
use-bandage (bandage)

hang-painting (hang)
multimeter (multi)
volume (volume)

sunburn (sunburn)

space-walk (space)
sweep-floor (sweep)

volume-container
tainer)

bath-tub-water-
temperature (bathtub)

conductivity (conduct)

make-campfire (campfire)

refrigerate-food (fridge)
volume-stone (stone)
bird-life-cycle (bird)
balance-scale-weigh
(weigh)

metal-detector (metal)

cooking (cooking)
make-ice-cubes (ice)
balance-scale-heaviest
(heavy)

take-photo (photo)
plant-tree (plant)

boil-water (boil)
forge-key (key)

inclined-plane (plane)

wash-clothes (washing)

(con-

Your task is to use chemistry to create black paint.

Your task is to give a correct type of blood to the patient.
Your task is to figure out the temperature of the water in
the pot.

Your task is to change all fossil-fuel power stations to use
renewable energy while keeping the same capacity.

Your task is to lit the light bulb.

Your task is to figure out the weight of the apple.

Your task is to put bandages on any cuts.

Your task is to hang the picture of a girl (ID: 11) on the
back wall (ID: 5).

Your task is to figure out the resistance of the resistor 0.
Your task is to figure out the volume of the green box.

It is a summer noon. The sky is clear. Your task is to take
a ball from the beach and put it in the box in the house.
Protect yourself from sunburn!

Your task is to conduct a space walk.

Your task is to clean the garbage on the ground to the
garbage can.

Your task is to figure out the volume of the glass.

Your task is to make the temperature of the water in the
bath tub to 35 - 40 Celsius degree by adding water from
the taps. When you are done, take the action "bath".
Your task is to figure out if the fork is conductive or not.
If the fork is conductive, put it in the red box. Otherwise,
put it in the black box.

Your task is to make a fire in the fire pit.

Your task is to prevent the foods from spoiling.

Your task is to figure out the volume of the stone.

Your task is to hatch the egg and raise the baby bird.
Your task is to figure out the weight of the cube. Use the
answer action to give your answer.

Your task is to find the buried metal case on the beach. You
win the game by putting the metal case in your inventory.
Your task is to prepare a meal following the instructions of
the cook book.

Your task is to make ice cubes.

Your task is to put all heaviest cubes into the box.

Your task is to take a nice picture of orange (ID: 4), using
a camera with shutter speed of 1/2, aperture of 16, and iso
of 1600.

Your task is to plant the tree and water it.

Your task is to boil water.

Your task is to forge a key to open the door.

Here are two inclined planes with the same angle. Your
task is figure out which of the two inclined planes has the
most friction. Focus on the inclined plane with the most
friction after your experiment.

Your task is to wash the dirty clothes and dry them.

31

Under review as submission to TMLR

C Prompts for World Model

C.1 Prompt for Next State and Reward/Terminal Predictions

Code Sample 32: Code for Prompts of Generating Potential Actions.

prompt = (

"You are a simulator of a text game. Read the task description of a text game.

"Given the current game state in JSON,

"you need to decide the new game state after taking an action including the game

score.\n"
)
prompt += (
"Your response should be in the JSON format. "

"It should have three keys: ’modified’, ’removed’, and ’score’. "

"The ’modified’ key stores a list of all the object states that are added or

changed after taking the action. "
"Keep it an empty list if no object is added or modified.
"The ’removed’ key stores a list of uuids of the objects that are removed.
"Keep it an empty list if no object is removed. "
"The ’score’ key stores a JSON with three keys: "
"’score’, ’gameOver’, and ’gameWon’. "
"’score’ stores the current game score, "
"’gameOver’ stores a bool value on whether the game is over, "
and ’gameWon’ stores a bool value on whether the game is won. \n"

last_action = "" if len(self.last_actions) == 0 else self.last_actions[-1]
max_UUID = importlib.import_module(self.game_name).UUID
if current_state is None:

current_state = get_state(self.game, last_action, max_UUID, self.game_name)
current_state_for_prompt = make_game_state(current_state)
max_uuid = current_state["max_UUID"]

else:
print ("use the predicted state")

current_state_for_prompt = current_state
max_uuid = len(current_state["game_state"])

start adding examples
example_prompt = self.build_examples ()
prompt += example_prompt
end of adding examples

Task
prompt += "Here is the game that you need to simulate:\n"
prompt += "Task Description:\n"

prompt += f"{self.task_desc}\n"

load rules

obj_desc = preprocess_obj_desc(self.obj_rules[self.game_name])
action_desc = self.action_rules[self.game_name]

score_desc = self.score_rules([self.game_name]

prompt += "Here are the descriptions of all game objects properties:\n"

prompt += obj_desc.strip()

prompt += "\n"

prompt += "Here are the descriptions of all game actions:\n"
prompt += action_desc.strip()

prompt += "\n"

prompt += "Here is a description of the game score function:\n"
prompt += score_desc.strip()

prompt += "\n"

data_state, data_UUID_base, data_action = None, None, None
prompt += "Here is the game state:\n"

prompt += f"{current_state_for_prompt}\n"

prompt += "\n"

32

Under review as submission to TMLR

prompt += f"The current game UUID base is {max_uuidl}\n"
prompt += f"The action to take is:\n{actionl}\n"

Code Sample 33: The Predicted Next State and Reward/Terminal in lit-lightbulb (bulb) environment.

{’game_state’: [{’name’: ’room (ID: 1)’, ’uuid’: 1, ’type’: ’World’, ’properties’: {’
isContainer’: True, ’isMoveable’: True, ’isOpenable’: False, ’isOpen’: True, ’
containerPrefix’: ’in’}, ’contains’: [’agent (ID: 0)’, ’light bulb (ID: 2)°’, ’red wire (
ID: 3)’, ’black wire (ID: 4)’, ’blue wire (ID: 5)’, ’battery (ID: 6)’]}, {’name’: ’agent

(ID: 0)’, ’uuid’: 0, ’type’: ’Agent’, ’properties’: {’isContainer’: True, ’isMoveable’:
True, ’isOpenable’: False, ’isOpen’: True, ’containerPrefix’: ’in’}, ’contains’: []1}, {
’name’: ’light bulb (ID: 2)’, ’uuid’: 2, ’type’: ’LightBulb’, ’properties’: {’
isContainer’: False, ’isMoveable’: True, ’is_electrical_object’: True, ’conductive’:
True, ’connects’: {’terminall’: [3, ’terminall’], ’terminal2’: [None, Nonel}, ’on’:
Falsel}, ’contains’: []}, {’name’: ’red wire (ID: 3)’, ’uuid’: 3, ’type’: ’Wire’, °’
properties’: {’isContainer’: False, ’isMoveable’: True, ’is_electrical_object’: True,
conductive’: True, ’connects’: {’terminall’: [2, ’terminall’], ’terminal2’: [None, None
1}, ’is_wire’: True}, ’contains’: []}, {’name’: ’black wire (ID: 4)’, ’uuid’: 4, ’type’:
’Wire’, ’properties’: {’isContainer’: False, ’isMoveable’: True, ’is_electrical_object’

True, ’conductive’: True, ’connects’: {’terminall’: (None, None), ’terminal2’: (None,
None)}, ’is_wire’: Truel}, ’contains’: []}, {’name’: ’blue wire (ID: 5)°’, ’uuid’: 5, ’
type’: ’Wire’, ’properties’: {’isContainer’: False, ’isMoveable’: True, °’
is_electrical_object’: True, ’conductive’: True, ’connects’: {’terminall’: (None, Nome),
>terminal2’: (None, None)}, ’is_wire’: Truel}, ’contains’: []}, {’name’: ’battery (ID:
6)’, ’uuid’: 6, ’type’: ’Battery’, ’properties’: {’isContainer’: False, ’isMoveable’:
True, ’is_electrical_object’: True, ’conductive’: True, ’connects’: {’cathode’: (Nomne,
None), ’anode’: (None, None)l}}, ’contains’: []J}]}, {’score’: 0, ’gameOver’: False, °’
gameWon’: False}

bl

C.2 Prompts of Generating Potential Actions.

Code Sample 34: Code for Prompts of Generating Potential Actions.

prompt = (
"You are a simulator of a text game.
"Read the task description and the descriptions of all game actions of a text

n

game . "

"Given the current game state in JSON, and the previous actions that lead to the
current game state, "
"you need to decide the most {} actions

"that can help to complete the task step by step at the current state.\n".format

k

)
prompt += (
"Each of your action should in one phrase with one verb and the objects it

operates on. "
"Examples of actions includes:\n"
"move south" + " ,\n"
"detect with metal detector (ID: 15)" + ", \n"
"dig with shovel (ID: 16)" + ",\n"
"open freezer (ID: 2)" + ", \n"
"put ice cube tray (ID: 3) in sink (ID: 4)" + ",\n"
"dice patato (ID: 2) with knife (ID: 8)" + " ,\n"
"give Type 0 negative blood (ID: 3) to patient (ID: 2)" + " ,\n"
"read cook book (ID: 7)" + ".\n"

prompt += (

"Your response should be in the JSON format. "

"It should have one key: ’avail_actions’, which includes the 1list of the
recommended actions. \n"
)
last_action = "" if len(self.last_actions) == 0 else self.last_actions[-1]

33

Under review as submission to TMLR

max_UUID = importlib.import_module(self.game_name).UUID
if current_state is None:

current_state = get_state(self.game, last_action, max_UUID, self.game_name)
current_state_for_prompt = make_game_state(current_state)
max_uuid = current_state["max_UUID"]

else:

print ("use the predicted state")

current_state_for_prompt = current_state
max_uuid = len(current_state["game_state"])

start adding examples

example_prompt = self.build_examples ()

prompt += example_prompt

end of adding examples

Task

prompt += "Here is the game that you need to simulate:\n"
prompt += "Task Description:\n"

prompt += f"{self.task_descl}\n"

load rules

obj_desc = preprocess_obj_desc(self.obj_rules[self.game_name])
action_desc = self.action_rules[self.game_name]

score_desc = self.score_rules[self.game_name]

prompt += "Here are the descriptions of all game objects properties:\n"

prompt += obj_desc.strip()

prompt += "\n"

prompt += "Here are the descriptions of all game actions:\n"
prompt += action_desc.strip()

prompt += "\n"

prompt += "Here is a description of the game score function:\n"
prompt += score_desc.strip()

prompt += "\n"

data_state, data_UUID_base, data_action = None, None, None
prompt += "Here is the game state:\n"

prompt += f"{current_state_for_promptl}\n"

prompt += "\n"

prompt += f"The current game UUID base is {max_uuidl}\n"

if len(self.last_actions) == 0:
prompt += "There is no previous actions.
else:
prompt += "The previous actions {}:\n".format (
"is" if len(self.last_actions) == 1 else "are"

)
for action in self.last_actions:
prompt += action + "\n"

Code Sample 35: The Generated Actions of make-ice-cubes (ice) environment.

{’avail_actions’: [’open freezer (ID: 2)°’, ’take ice cube tray (ID: 3) from freezer (ID: 2)°
, ’put ice cube tray (ID: 3) in sink (ID: 4)’, ’turn on sink (ID: 4)°’, ’take ice cube
tray (ID: 3) from sink (ID: 4)°’, ’put ice cube tray (ID: 3) in freezer (ID: 2)’, ’close
freezer (ID: 2)’, ’wait for ice to form’, ’open freezer (ID: 2)’, ’check ice cube tray (

ID: 3) for ice’l}

34

Under review as submission to TMLR

D Action Matching

We provide a detailed explanation of the action matching process:

e Embedding model: We use OpenAl’s text-embedding-3-small for the matching of actions.

o Candidate set A’ formation: At each state s;, the game engine exposes the full set of valid actions
through its getValidActions() interface. This set typically contains 500-800 actions depending on the
environment and the current state. We enumerate all valid actions returned by the environment at the
current state to form A’. We have added this clarification to the revised manuscript.

e Threshold and tie-breaking: We do not apply any similarity threshold. we always select the action with
the highest cosine similarity. In cases of exact ties (which are extremely rare in practice due to the
continuous nature of embedding vectors), we select the first action in the enumeration order. We have
added this specification to the revised paper.

E Format Error Handling

As noted in the main context, we observe that format errors occasionally occur during evaluation. To
mitigate this, we rerun the experiments to ensure robustness. Since we primarily evaluate closed-source
models, our ability to intervene at the decoding or post-processing level is inherently limited. Nevertheless,
these occasional format errors do not affect our overall conclusions. Moreover, as large language models
continue to evolve, their instruction-following capabilities are expected to improve steadily, and such format
errors should become increasingly rare in future iterations.

35

Under review as submission to TMLR

F Accuracy of Policy Verification

We provide the accuracy of the policy verification regarding the three criteria, i.e., score, gameWon and
gameOver. We note that the performance on gameWon and gameOver predictions are far better than the
prediction of score.

~ 1.0
‘u\}. 0.8 gpt-40
? T 0.6 gpt-40-mini
Q3 0.4
Gy
a 1.0¢
) > .81 gpt-40
? E 0.6 gpt-4o-mini
23 0.4
5 < 0.2
~ 0.0-
~ 1.07
M >0.8] == gpt-do
? © 0.6 gpt-4o-mini
=
Q 0 0.4
)
~< 0.2
O
— 0.0-
~ 1.07
< 20.81 gpt-40
T © 0.6 gpt-4o-mini
23 0.4
§< 8(2)
@
c
5
c
<]
(9]
Games
Figure 11: The accuracy of the world model to verify the correct policies on score
~ 1.0
& >0.8{ == opt-do
i’ © 0.6 gpt-4o-mini
=
Q 0 0.4
~ U
76< 0.2
~ 0.0-
= 1.0
- >0.81 gpt-40
? E 0.6 gpt-4o-mini
23 0.41
5< 0.2
~ 0.0-
a 1.0
~ 50.8’ m gpt-4o0
(S] 0.6 == gpt-40-mini
13 0.4
Q © 0.44
— U
~< 0.24
< 0.0
s 1.0
) > (0.8{ ™ gpt-4o
T 50.6’ mmm gpt-4o0-mini
Y § 0.4
§< 8(2)

paint

& 2
=

ks g

c €

@©

3 S

container

Games

Figure 12: The accuracy of the world model to verify the correct policies on gameOver

36

Under review as submission to TMLR

£
2
o
<
4
o
o

mm gpt-4o0

I gpt-4o0
Bl gpt-40-mini

B gpt-4o0
s gpt-4o0-mini

QrUYANCeeRYI NS
“0occococHoo0oooH

Aoeundoy
(520=0) (e)

Aoeindoy
(5'0=0) (q)

£

3

o O

A

Lot

Q Q

oo
SEERRE
[eNoNoNoNe]
Aoeindoy

(52'0=0) (9)

1.0

0.81

0.64
4
2
0

Adeundoy
(0'T=0) (p)

Games

Figure 13: The accuracy of the world model to verify the correct policies on gameWon

37

Under review as submission to TMLR

G Step Accuracy of Action Proposal

We also provide the accuracy of each steps for the action proposal tasks. We observe for most of the task,
there is some key steps that the world model has low accuracy for the action proposal, which brings difficulties
for the world model to complete the tasks.

1.0 1.0 ——
—_—m=2
0.8 0.8 — m=3
—m=5
0.6 0.6 — m=10

— m=10

0 1 2
thermo energy

[1.0
—_—m=2
— m=3 0.8
—m=5
— m=10 0.6
0.4 m=1

— m=2
— m=3
— m=5
— m=10

0.2

0.0

2
volume

— m=10
0.0 0 2 4 . 0 10
sunburn container bathtub
1.0{ — o1 1.0 1.0 1.0 1.0{————
— m=2
0.8{ — m=3 0.8 0.8 0.8 0.8
— m=5
0.6 —— m=10 0.6 0.6 0.6 0.6
0.4 0.4 I 0.4 0.4 ol ea Mol
— m=3 —m=3 — m=3
0.2 0.2 — m=5 0.2 0.2 — m=5 021 — m=5
[m=10 — m=10 — m=10 — m=10
0.0 0.0 ¥ 0.0 = 0.0 0.0
0 5 0.0 25 5.0 0 5 0 5] 5
conduct campfire fridge

1.0

0.8

0.6

0.4

— m=5
— m=10
'
0 10
cooking

photo

washing

Figure 14: Step correctness of the action proposal of GPT-40-mini

38

Under review as submission to TMLR

1.0 1.0 — — 1.0
0.8 0.8 0.8
0.6 0.6
— m=1
0.4 041 _ -2
— m=3
0.2 021 — m=5
— m=10
0-0% 1 0-0% 1 2
paint blood thermo

— m=10
0 1 0.0 0 2 4
scale bandage hang volume

1.0 1.0
0.8 0.8
0.6 0.6

—m=1 — m=1
041 175 041 7,

— m=3 — m=3
0.2 — m=5 0.21 — m=5

— m=10 — m=10
0.0 0 2 4 0.0 0 2

sunburn space sweep

5
conduct

fridge

photo

20 40
washing

Figure 15: Step correctness of the action proposal of GPT-40

39

	Introduction
	Preliminaries
	LLM-Based World Models Can Make Decisions Solely
	But Rigorous Evaluations are Needed
	Our Suggested Evaluation Framework and Experiment Results
	Task I: Policy Verification
	Task II: Action Proposal
	Task III: Policy Planning
	Summary

	Related Work
	Discussions
	Frequently Asked Questions (FAQs)
	Why World Models and Why World Models with LLMs?
	More Justifications of the Proposed Tasks
	The Objectives of This Paper
	Selection of Backbone LLMs
	Comparison with Decision Transformer and Trajectory Transformer
	Broader Impact Statement
	Code and Dataset Availability

	Environments
	Introduction of Tasks
	Code for Demo Actions Generation
	Analysis of Demo Actions

	Prompts for World Model
	Prompt for Next State and Reward/Terminal Predictions
	Prompts of Generating Potential Actions.

	Action Matching
	Format Error Handling
	Accuracy of Policy Verification
	Step Accuracy of Action Proposal

