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Figure 1: Overview of HoloScene: From a single input video—along with visual cues such as
segmentation and monocular depth—HoloScene reconstructs a simulation-ready, interactive 3D
digital twin represented as a scene graph with complete geometry, physically plausible dynamics,
and realistic rendering. The resulting model enables a variety of downstream applications, including
real-time interactive gaming, 3D editing, immersive experience capture, and dynamic visual effects.

Abstract

Digitizing the physical world into accurate simulation-ready virtual environments1

offers significant opportunities in a variety of fields such as augmented and vir-2

tual reality, gaming, and robotics. However, current 3D reconstruction and scene-3

understanding methods commonly fall short in one or more critical aspects, such4

as geometry completeness, object interactivity, physical plausibility, photorealis-5

tic rendering, or realistic physical properties for reliable dynamic simulation. To6

address these limitations, we introduce HoloScene, a novel interactive 3D recon-7

struction framework that simultaneously achieves these requirements. HoloScene8

leverages a comprehensive interactive scene-graph representation, encoding object9

geometry, appearance, and physical properties alongside hierarchical and inter-10

object relationships. Reconstruction is formulated as an energy-based optimization11

problem, integrating observational data, physical constraints, and generative priors12

into a unified, coherent objective. Optimization is efficiently performed via a hybrid13

approach combining sampling-based exploration with gradient-based refinement.14

The resulting digital twins exhibit complete and precise geometry, physical stability,15

and realistic rendering from novel viewpoints. Evaluations conducted on multiple16

benchmark datasets demonstrate superior performance, while practical use-cases in17

interactive gaming and real-time digital-twin manipulation illustrate HoloScene’s18

broad applicability and effectiveness.19
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1 Introduction20

Imagine wanting, decades later, to revisit the home you live in and love today—how would you capture21

its memory? Photographs and videos record authentic details but lack immersion; 3D Gaussian splats22

or photogrammetry can be immersive, yet static chairs and tables feel lifeless. Ideally, we would23

digitize our environment into a fully interactive digital twin: complete, composable, photorealistic,24

and manipulable just like the real world. Our work takes a step toward this goal by enabling users to25

create in silico twins of their surroundings from a single video.26

Digitizing the physical world into a simulation-ready virtual environment offers immense oppor-27

tunities in augmented and virtual reality, gaming, and robotics. However, despite advances in 3D28

modeling and scene understanding, key challenges remain: capturing complete geometry and ap-29

pearance in occluded regions, inferring inter-object relationships, and ensuring physical plausibility30

and interactivity. Existing Real2Sim methods produce incomplete geometry [83, 43, 68] or unstable31

physics [73, 71]; existing amodal reconstruction focuses on single-image setting [81, 11], individual32

objects [72, 14, 37], neglects physical plausibility [47] or relies on asset retrieval [10] —sacrificing33

fidelity and practicality; and prior physically plausible reconstruction [46, 14] is limited to simple34

object–scene interactions or requires full observations.35

To address these gaps, we introduce HoloScene, an interactive 3D reconstruction framework that36

unifies geometry completeness, object completeness, physical plausibility, realistic rendering, and37

physical interaction. HoloScene represents a scene as an interactive scene graph encoding object38

geometry, appearance, and physical properties in a hierarchical structure. We cast scene-graph recov-39

ery from video as a structured energy-based optimization, integrating observational data, physical40

constraints, and generative priors into a single objective. To solve this challenging problem, we41

propose a novel divide-and-conquer strategy combining sampling-based tree-structured search with42

gradient-based refinement. The resulting scene models exhibit complete, accurate geometry; stable43

physical interactions; and realistic rendering from novel viewpoints.44

Experiments on three challenging benchmarks demonstrate superior geometry accuracy and physical45

plausibility, with rendering performance comparable to state-of-the-art amodal and physics-aware46

reconstruction methods. We further showcase HoloScene’s versatility through practical applications47

in interactive gaming, realistic video effects, and real-time digital-twin manipulation.48

2 Related Works49

Method
Visual
Input

Real-time
Rendering

Amodal
3D Recon

Twin
Fidelity

Physics
Capacity

Physics
Optimization

ACDC [10] image ✓ ✓ ✗ ✗ ✗

Gen3DSR [11] image ✓ ✓ ✓✗ ✗ ✗

PhysComp [14] image ✗ ✓ ✓✗ Single Object Differentiable
CAST [81] image ✓ ✓ ✓✗ Scene Differentiable
NeRF [43] video ✗ ✗ ✗ ✗ ✗

BakedSDF [83] video ✗ ✗ ✓ ✗ ✗

ObjectSDF++ [71] video ✗ ✗ ✓ ✗ ✗

Video2Game [73] video ✓ ✗ ✓ Single Object ✗

PhyRecon [46] video ✗ ✓ ✓ Objects-Ground Differentiable
DP-Recon [47] video ✓ ✓ ✓ ✗ ✗

HoloScene (Ours) video ✓ ✓ ✓ Scene Diff & Sampling

Table 1: Comparison of Interactive 3D Scene Models.

Interactive 3D Scene Model50

Recent advances in 3D scene51

modeling [50, 88, 16, 5, 65] re-52

construct 3D scene from input53

images or videos, representing54

the scene as neural fields [44, 62,55

18, 59, 58, 24, 3, 4], signed dis-56

tance functions (SDF) [68, 82,57

49, 51, 83, 86, 28], and 3D Gaus-58

sians [22, 19, 87, 85]. While pro-59

ducing realistic renderings from60

novel views, these works cannot61

provide 3D assets that allow user interactions (e.g, move the chairs to different poses). Reconstruct-62

ing realistic and interactive environments from real images and videos remains challenging due63

to limited observation, occlusion, and physical reasoning. Some previous works reconstruct 3D64

objects from sparse viewpoints [37, 33, 75, 7, 39], and some estimate physical properties from visual65

observation [89, 14]. Nevertheless, these works focus on object-level tasks and cannot handle large66

and complex indoor scenes. PhyRecon [46] optimizes stable 3D scenes with differentiable physi-67

cal engines, but does not model inter-object interactions and realistic appearance. DP-Recon [47],68

Video2Game [73], Drawer [74] leverage generative prior [1, 53] and foundation models [56, 57] to69

reconstruct decomposed 3D scenes. However, these works can only produce limited components or70

lack physical stability. In this work, we propose to reason object interaction with the scene graph, and71

utilize generative priors and a novel sampling strategy to reconstruct the geometry and appearance of72

every component, constructing realistic, physically plausible, and interactable 3D environments.73
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Data-driven Simulation Simulation plays a pivotal role across robotics, self-driving, and content74

creation, but building high-fidelity virtual scenes remains costly, and the sim-to-real gap poses great75

challenges. To address this, data-driven simulation [2, 8, 38, 42, 60, 79] has emerged, enabling the76

modeling of physical dynamics [36, 27, 76, 20, 13, 21, 90], lighting conditions [31, 55, 30], and action-77

conditioned outcomes [20, 34, 6, 73, 21, 35, 74, 40], directly from real-world data. These methods78

have also been applied in robot learning [8, 42, 54, 78, 80, 79], LiDAR simulation [32, 42, 77, 79, 94,79

93], and interactive media [17, 73]. In robotics, related real-to-sim approaches [9, 10, 64, 67, 26, 41]80

reconstruct interactable environments from the real world for reproducible embodiment. However,81

they still lack physical realism. Recent works [46, 6, 92] leverage differentiable physics or priors82

in reconstruction, but they neglect complex inter-object relationships. The closest work to ours is83

CAST [81], which also targets physically plausible scene reconstruction. The key differences are:84

(1) CAST takes single image and relies heavily on generative models, which may cause noticeable85

inconsistencies with the observation. (2) CAST uses differentiable optimization without feedback86

from physical simulators, so physical stability might not be guaranteed. In contrast, HoloScene87

reconstructs scenes from videos to replicate observations and adopts sampling-based optimization88

with Isaac Sim [45] to ensure physical stability. We compare HoloScene with prior works in Tab. 1.89

3 Method90

Given the observations O = {Ot}Tt=0, which include the input video sequence {It}, camera poses91

{ξt} (inferred or ground truth), and instance masks {Mt} (inferred or ground truth), our goal is to92

reconstruct a realistic, complete, and physically plausible digital twin of the input scene, yielding93

interactive, sim-ready assets compatible with simulators and game engines, and which can be used94

to generate novel visual content. To this end, we represent the scene as an interactive 3D scene95

graph representation that encodes object geometry, appearance, physical properties, and hierarchical96

inter-object relationships (Sec. 3.1). We combine observational evidence, generative priors for shape97

completion, and physical simulation for stability to formulate scene-graph recovery as an energy min-98

imization problem (Sec. 3.2). Finally, we propose an inference method that integrates sampling-based99

tree search with differentiable optimization (Sec. 3.3). Fig.2 summarizes our approach.100

3.1 Scene Representation101

We represent the scene as an interactive 3D scene graph G = (V, E). Each node vi ∈ V = {vi}Ni=0102

represents either the background scene or one of the N objects present. A node vi = (gi, fi,pi,Ti)103

is comprised of geometry gi, appearance fi, physical properties pi, and dynamic states Ti. Each104

edge ei,j = (vi,vj) ∈ E encodes an object–object relationship in G.105

Geometry: We represent the geometry of each node vi in the scene with an instance-level neural SDF106

gi(x; θ) : R3 → R, where x ∈ R3 is any point in space and θ are learnable parameters. Additionally,107

to facilitate physical simulation and efficient rendering, we maintain a mesh representation Mi =108

MarchingCube(gi) for each object, extracted from its SDF using the marching cubes algorithm.109

Appearance: For each object vi, we encode appearance fi = (ci, αi,µi,Σi) as Gaussian splats,110

enabling real-time, high-quality rendering. ci, αi,µi,Σi are color, opacity, mean, and covariance of111

Gaussians, respectively. Gaussians capture finer detail than colored meshes but hinder consistency112

between appearance, geometry, and simulation; following recent work [74], we adopt a Gaussians-113

on-Mesh (GoM) approach and attach each splat to its mesh to ensure alignment and enable physical114

interactions. Given camera intrinsics K and extrinsics ξ, we denote the splat-rendered RGB images,115

masks, depth and normal maps as I,M,D,N = SplatRender(G; K, ξ).116

Physics: Each object in our scene graph is modeled as a rigid body. Its physical parameters pi =117

(mi, κi, ζi, ri) comprise mass mi, friction κi (resistance to sliding against other surfaces), damping118

ζi (energy dissipation during motion), and restitution ri (elasticity upon impact). These parameters119

are used in downstream physical simulations to model the object’s response to external forces and its120

interactions with other objects and the background scene.121

Object States: All object intrinsic attributes above are defined in object-centric coordinates and122

remain invariant under motion. To handle dynamic changes, we encode each object’s rigid body state123

by a rigid transform Ti from its object-centric frame to the world frame. During static reconstruction,124

Ti is fixed; in dynamic simulation, it may vary over time. Let T = {Ti}Ni=0 denote the set of all125
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Figure 2: Overview of HoloScene Optimization Stages: Given multiple posed images as well as
some visual cues (instance masks, monocular geometry priors), we first employ a gradient-based
optimization as the initialization. Then we adopt a generative sampling and tree search strategy along
the topology of the scene graph to obtain the complete geometry with physical plausibility. Finally,
the final fine-tuning over the scene further enhances the realism of the reconstructed scene.

object states, GT the scene graph under those states, and G the scene graph under the static state126

during reconstruction.127

Object Relationships: Each edge ei,j links two nodes with one of three relationships: 1) support,128

where vi rests in stable equilibrium on its unique parent vpa(i) under gravity (each object has exactly129

one such parent, so support edges form a tree in the static scene graph); 2) beside, where siblings130

(pa(j) = pa(i)) have touching surfaces, causing occlusions without hierarchy or instability; and131

3) collide, where contacts with nonzero momentum yield dynamic effects—ignored during static132

reconstruction but employed in simulation. Note that the object relationship might change depending133

on its dynamic status during simulation.134

Interaction & Simulation: Our 3D scene graph’s distinguishing feature is its support for physical135

interactions. Formally, at time t, given the dynamic scene graph GT t with current object states T t as136

well as an input action at, the next states are computed as137

T t+1 = Sim(T t,at;GT t), (1)

where Sim is a rigid-body physical simulator using the mesh {Mi} as collision geometry. Here, at138

can represent external inputs— forces, torques, or control actions—applied to the objects at time t.139

3.2 Problem Formulation140

Our framework takes input observations O of a static scene and recovers the scene graph G = (V, E).141

The resulting scene graph must (i) explain the observations well; (ii) be geometrically complete and142

plausible; and (iii) reflect the scene’s static, physically stable nature. To this end, we cast the problem143

as a structured energy-minimization problem:144

min
G

Ergb(I,G) + Emask(M,G) + Emono(D,G)︸ ︷︷ ︸
observation terms

+Ecomp(G) + Egeo(G) + Ephysics(G)︸ ︷︷ ︸
regularization terms

. (2)

For simplicity, we omit the hyperparameter linear weights for each term. Next, we discuss each145

energy term.146
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Observation Terms: The observation terms quantify the discrepancy between the reconstructed147

3D scene and the input observations. Let Ît, M̂t, D̂t, N̂t = SplatRender(G;K, ξt) denote the148

rendered RGB image, instance mask, depth map, and normal map at camera pose ξt. We then define149

three energy terms: the RGB energy Ergb(I,G) =
∑

t LMSE(Ît, It) + LLPIPS(Ît, It), where It is150

the ground-truth color image and the loss combines MSE and LPIPS losses [91]; the mask energy151

Emask(M,G) =
∑

t CE(M̂t,Mt), where CE is cross-entropy and Mt is either a given labeled152

mask [61, 84] or one inferred via segmentation tracking [23]; and the monocular geometry energy153

Emono(D,G) =
∑

t ∥N̂t −Nt∥22 + Lnorm(D̂t,Dt), where Nt and Dt are monocular normal and154

depth priors and Lnorm is the scale- and shift-invariant L2 loss [86].155

Regularization Terms: Because videos only partially observe a 3D scene, optimizing observations156

alone cannot yield a complete, plausible, and physically valid reconstruction; we therefore impose157

generative, geometric, and physical priors as regularizers to enable fully interactive 3D scenes.158

The completeness energy Ecomp encourages complete reconstruction of each object’s shape despite159

the partial observations. Inspired by generative image-to-3D methods [37], for each object i we syn-160

thesize virtual observations Õi = {Ĩi, D̃i,M̃i, Ñi} by “shooting” it from multiple virtual viewpoints161

with a pretrained multi-view diffusion model Wonder3D [37]. Unlike the single object setting for162

most image-to-3D works, because our complex scenes often feature inter-object occlusions (e.g., a163

sofa covered by a blanket), we first inpaint occluded regions using LaMa [63] before generating these164

views. Given the synthesized observations, we define the completeness energy as165

Ecomp =
∑
i

(
Emask(Ĩi, {vi}) + Ergb(M̃i, {vi}) + Emono(D̃i, {vi})

)
, (3)

where Ergb, Emono, Emask are the observation losses defined similarly in our observation terms,166

although they are measured at virtual viewpoints here.167

The geometry energy Egeo ensures geometry compatibility between each object, such that their168

geometry does not intersect with each other:169

Egeo(G) =
∑
i

(Epene_sdf(gi;G) + Epene_mesh(gi;G)) . (4)

The SDF-penetration term Epene_sdf =
∑

x∈Ri

∑
k ̸=i max

(
0, −gk(x) − gi(x)

)
ensures no two170

object SDFs overlap, where R(i) = {x ∈ R3| argmink gk(x) = i} is the set of points belong to171

instance i. Intuitively, if x lies in instance i, then for any other instance k, gk(x) ≥ −gi(x) must172

hold to prevent intersections. Similarly, each object’s mesh should not intersect with any other object173

mesh. This can be measured by measuring whether intersecting two meshes resulting empty set or174

not: Epene_mesh = 1(inter(Mi,Mj) ̸= ∅).175

Finally, it is important to ensure that our recovered digital twin of the scene is simulatable; hence,176

physical plausibility is crucial. To this end, we introduce physics energy, which measures physical177

plausibility via two terms:178

Ephysics = Estable + Etouch = Diff
(
T , Sim(T ,agravity;G)

)
+

∑
(i,j)∈E

dist(Mi,Mj) . (5)

The stable term Estable(G) = Diff
(
T , Sim(T ,agravity;G)

)
quantifies translational and rotational179

deviations of each object, with Diff(T , T ′) =
∑

i(|trans(T
−1
i T′

i)|+ |rad(T−1
i T′

i)|) and Sim is180

the forward physical simulator step as defined in Eq. 1; a low Estable indicates static equilibrium under181

gravity, i.e. scene remains static in the simulator. The touch term Etouch =
∑

(i,j)∈E dist(Mi,Mj)182

encourages each supporting pair (i, j) to make contact, dist is the Chamfer distance between meshes.183

3.3 Inference184

Optimizing the scene graph from Sec. 3.2 is challenging because it mixes discrete variables (graph185

topology, object–object relations) with continuous ones (neural SDFs, Gaussians, and physical186

parameters) and includes non-differentiable terms like physical stability. We therefore use a four-stage187

divide-and-conquer approach: first, infer topology via large foundation models; then, recover initial188

geometry and appearance by minimizing the observation terms; next, refine shapes and physical189
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Figure 3: Qualitative Comparisons on Object Geometry and Appearance Reconstruction: Our
method delivers superior reconstructions by smoothly inpainting occluded regions with LaMa and
completing invisible back-facing geometry with Wonder3D. Unlike baselines, our approach eliminates
object interpenetration, ensuring physical stability during simulation.

parameters by minimizing the geometry and physics terms through generative sampling combined190

with structured tree search; and finally, fine-tune appearance by re-minimizing observation terms.191

This yields a fully plausible, interactive 3D scene (Fig. 2).192

Stage 0: Scene Graph Edges: Our framework infers the topology of the scene-graph G from193

observations O, where edges E encode support relations in a tree rooted at v0 (the background, e.g.,194

the room). We build this tree recursively using a VLM: at each step, we overlay the masks of already195

registered instances (annotated with their IDs) as a visual prompt, then ask the VLM to identify and196

register one new unseen instance and infer its physical relationship to the objects already in the tree.197

Starting from v0 in the first frame, we repeat until all observed instances have been added to the tree.198

Stage 1: Gradient-based Optimization: After obtaining the scene-graph topology, we optimize199

each node’s appearance ai and geometry gi to match the observations O via gradient-based optimiza-200

tion. Specifically, we minimize the observation terms plus SDF-penetration regularization through201

differentiable volume rendering—similar to neural SDF methods [71, 70, 29]—to obtain per-instance202

SDFs gi. Additionally, we recover small objects by balancing training samples across all instances.203

We then extract initial meshes Mi via marching cubes and refine each object’s Gaussians fi via204

splat rendering and RGB rendering, mask, and monocular geometry losses, yielding our dual scene205

representation per each instance [15].206

Stage 2: Sampling-based Optimization: The Stage 1 scene model supports freeview rendering207

and accurate visible-region geometry but remains incomplete, non–physical, and non–interactive.208

Directly minimizing Ecomplete, Ephysics, and Egeo, however, is challenging due to complex high-209

order interactions (e.g., multi-object physical interaction), intrinsic multi-modality (invisible regions210

admit multiple solutions), and non-differentiable components (e.g., mesh intersections, physics211

simulations). To address this, we adopt an approach that combines the diverse proposal capability of212

generative sampling with the combinatorial optimization strength of tree search to minimize our213

structured objective.214

Generative sampling: We begin by sampling diverse, complete shapes for each instance: we prompt215

Wonder3D’s multi-diffusion model with real-world observations and generate virtual views Ĩi from216
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Figure 4: Qualitative Comparisons on Physical Simulation: We compare geometry layouts and
appearance before and after physical simulation, with the table geometry reconstructions highlighted
in inset figures. HoloScene’s complete, non-interpenetrating geometry remains stable in physics
simulators, unlike baseline methods. Our Gaussian on mesh delivers high-quality, real-time rendering
throughout the simulation process.

various viewpoints. Thanks to its generative nature, resampling multiple times with different seeds217

yields diverse virtual observations even from the same viewpoints. Then, for each virtual observation,218

we minimize Ecomp independently, producing a diverse set of 3D shape candidates per object.219

Structured tree search: We have generated multiple complete shape samples per instance that all fit220

the observations, but it remains unclear which combination is most physically plausible. Exhaustively221

evaluating every combination is impractical, since the physical-plausibility energy Ephysics entails a222

high-order combinatorial optimization. To address this, we perform a tree search over our generative223

samples. Starting at the root node, we traverse each node in breadth-first order; at each active node224

(object), we evaluate Ephysics for all samples and retain the sample with the lowest energy among225

those evaluated. We then adjust its state and physical parameters to enforce stability and prevent226

interpenetration (see details in the supplementary material).227

Remark: The key novelty and advantage of the proposed inference algorithm is the combination of228

generative sampling with a structured tree search for amodal, physically plausible reconstruction.229

Unlike scene-level amodal methods [10] that rely on asset retrieval, our sampling is asset-free and230

generates input consistent, diverse shape hypotheses. Unlike prior simulation-verification methods [47,231

46], which only enforces object–ground consistency, our tree search ensures global stability along232

every support chain. By driving a non-differentiable simulator (e.g., IsaacSim) end-to-end, we233

eliminate any reconstruction-to-deployment gap.234

Stage 3: Gradient-based Refinement Since Stage 2 adjusts object states, physical parameters,235

and shape, it is necessary to further refine the Gaussians attached to the surface to ensure a complete236

and realistic appearance. To this end, we fine-tune Gaussians for all objects using splat rendering by237

minimizing the observation terms via gradient descent. This yields our final scene graph.238

4 Experiments239

Dataset: We conduct the experiments across multiple datasets: 7 scenes from Replica [61], 6240

scenes from Scannet++ [84], 2 scenes from iGibson [25], and one self-captured scene. The Replica241

and Scannet++ datasets cover diverse indoor structures and lighting conditions, and the iGibson242

dataset offers complete geometry of every object, allowing per-object reconstruction evaluation.243

Instance masks are provided by dataset annotations or estimated with SAM [23].244

Metrics: We evaluate geometry quality with Chamfer Distance (CD), F-Score (F1), and Normal245

Consistency (NC) [86], and assess rendering quality using PSNR, SSIM, and LPIPS. For physical246

evaluation, we adopt consistent physical parameters, put all scene components in the Isaac Sim [45],247

and measure stability with translation/rotation changes when gravity is applied. The stability ratio248
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Method
Geometry Rendering Physics

CD↓ F1↑ NC↑ PSNR↑ SSIM↑ LPIPS↓ Real OR% ↑ Stable Stable
Time (Ground) % ↑ (All) % ↑

Sc
en

e

R
ep

lic
a ObjSDF++ 6.72 64.36 88.53 29.12 0.851 0.355 ✗ 98.6 78.3 39.4

PhyRecon 4.52 71.07 92.06 23.19 0.764 0.434 ✗ 77.5 56.5 5.6
DP-Recon 3.45 87.66 94.23 22.10 0.728 0.420 ✓ 56.3 21.7 8.5
Ours 4.05 83.21 92.21 27.82 0.849 0.304 ✓ 100.0 95.7 81.7

Sc
an

ne
t+

+ ObjSDF++ 25.20 70.71 87.15 27.46 0.887 0.292 ✗ 96.5 81.6 28.2
PhyRecon 31.16 39.57 82.28 22.32 0.791 0.432 ✗ 92.9 67.3 9.4
DP-Recon 22.96 65.48 87.13 21.44 0.715 0.466 ✓ 90.6 20.0 9.4
Ours 21.93 63.11 88.09 25.88 0.873 0.268 ✓ 100.0 93.9 70.6

iG
ib

so
n ObjSDF++ 12.33 38.64 83.74 29.60 0.891 0.299 ✗ 65.0 44.2 36.1

PhyRecon 11.27 45.49 83.85 27.40 0.860 0.333 ✗ 62.9 45.3 5.2
DP-Recon 30.31 21.89 70.81 21.94 0.728 0.432 ✓ 74.2 16.3 4.1
Ours 12.00 34.15 82.91 25.88 0.854 0.301 ✓ 100.0 74.4 71.1

O
bj

ec
t

iG
ib

so
n ObjSDF++ 3.52 79.03 75.30 11.03 0.571 0.134 ✗ 65.0 44.2 36.1

PhyRecon 5.47 70.71 71.89 8.92 0.609 0.250 ✗ 62.9 45.3 5.2
DP-Recon 5.81 61.31 70.61 13.90 0.770 0.301 ✓ 74.2 16.3 4.1
Ours 3.17 81.31 78.13 16.55 0.863 0.185 ✓ 100.0 74.4 71.1

Table 2: Quantitative Results on Scene Reconstruction: HoloScene’s generative sampling and
scene graph-based tree search produce the most physically plausible reconstructions while preserving
high-quality geometry and supporting real-time and realistic rendering. We highlight the best and
second-best methods with distinct colors. For rendering quality, we only compare with DP-Recon’s
texture mesh-based rendering since ObjSDF++ and PhyRecon lack real-time rendering capabilities.

is calculated as: Stable % = #Stable Instances
#All Instances , where instances are identified as stable if changes are249

under a certain threshold. We also report the object reconstruction ratio: OR% = #Reconstructed Instances
#All Instances ,250

indicating the completeness of whole scenes.251

Baselines: We evaluate our framework against SOTA approaches in instance-aware amodal 3D252

scene reconstruction. ObjectSDF++ [71] uses per-instance SDF for scene representation. PhyRecon253

[46] extends instance-aware scene reconstruction by incorporating a differentiable physical loss to254

optimize unstable objects. However, it only handles object–ground interactions and does not support255

hierarchical or inter–object relationships. DP-Recon [47] incorporates diffusion Score Distillation256

Sampling (SDS) [53] for amodal sparse-view reconstruction. However, it does not handle inter-object257

occlusions. All three methods use instance-level SDFs, so the SDF values of different instances258

might interfere with one another. We adopt their open-source codes and adapt them for the testing259

benchmarks. Please refer to the supplementary material for more implementation details.260

4.1 Experimental Results261

Scene-level evaluations: We first evaluate the reconstruction at the scene level. In Tab. 2, we262

compare our framework with the three baselines across Replica, Scannet++. and iGibson dataset, with263

qualitative results shown in Fig. 3 and Fig. 4. Our method achieves the best physical reconstruction re-264

sults in terms of both object reconstruction ratio and stable object ratio, while maintaining comparable265

scene-level reconstruction quality in geometry and appearance. Unlike baselines [71, 46, 48] where266

small objects often disappear due to SDF interference from larger adjacent objects, our framework267

benefits from balancing training samples across all instances during the optimization stage 1, recover-268

ing all instances in the scenes. PhyRecon assumes that all objects rest directly on the ground, which269

damages geometry when objects are supported by other objects. DP-Recon prioritizes completeness270

via SDS over physical stability, failing to adequately address object interpenetration. In contrast, our271

sampling-based optimization and completion approach yields the most physically stable results.272

Object-level evaluations: We evaluate object-level reconstruction using the iGibson dataset,273

which provides complete ground truth geometry and appearance for each object. This evaluation is274

especially challenging as it tests the reconstruction of occluded regions that models never observe.275

Our evaluation compares reconstructed geometry directly with ground truth and renders 6 viewpoints276

around each object to assess appearance quality. Results in Tab. 2 demonstrate that our method277

outperforms all baselines in reconstructing invisible and occluded regions, validating our framework’s278

effectiveness in completing objects beyond directly observed surfaces.279
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Level Dataset TexMesh Physical Scene CD↓ F1↑ NC↑ PSNR↑ SSIM↑ LPIPS↓ OR% ↑ Stable
/ GoM Energy Graph (All) % ↑

Scene Replica

TexMesh ✗ ✗ 3.50 88.00 92.30 26.45 0.810 0.329 100.0 43.7
GoM ✗ ✗ 3.50 88.00 92.30 28.30 0.845 0.349 100.0 43.7
GoM ✓ ✗ 4.32 80.19 92.10 27.14 0.839 0.334 100.0 69.0
GoM ✓ ✓ 4.05 83.21 92.21 27.82 0.849 0.304 100.0 81.7

Object iGibson GoM ✗ ✗ 4.20 79.22 76.96 13.74 0.735 0.204 100.0 41.2
GoM ✓ ✓ 3.17 81.31 78.13 16.55 0.863 0.185 100.0 71.1

Table 3: Ablation Study on Model Design: We observe improved physical stability and object-level
reconstruction with the help of generative priors, physical energy, and scene graph representation,
and there is a trade-off between scene-level reconstruction and instance-level physical stability.

Ablation study: Our ablation study (Tab. 3) reveals the contribution of each component. Switching280

from textured mesh to Gaussian rendering improves visual quality, while adding physics energy281

with generative priors enhances physical stability. The scene graph inter-object relationships further282

improve physics performance by better reconstructing occluded regions, especially those from283

support relationships. However, we identify a trade-off between scene-level reconstruction accuracy284

and physical stability, where optimizing for physical plausibility may occasionally compromise285

pixel-alignment with original observations.286

4.2 Interactive Environment Applications287

Real-Time Interactive Game With our reconstructed environment, we can create a real-time288

interactive game with Unreal Engine [12]. As Fig. 1 shows, we build a third-person game with the289

reconstructed texture meshes. The objects could be physically rearranged in the game world, and the290

game agent could also interact with the scene through realistic physics.291

Interactive 3D Editing In our simulation environment, we could also achieve high-quality inter-292

active 3D editing by moving the object Gaussians with its underlying physical mesh geometry. In293

Fig. 1, we demonstrate this by changing the location and orientation of the interactable chair.294

Immersive Experience Recording We show our interactable reconstructed 3D objects with im-295

mersive experience recording. Given a static RGB video of a person manipulating an object, we296

aim to recover the object’s 6D pose and resimulate its motion in a virtual 3D scene. We recover the297

camera pose with VGGT [66], adjust the predicted depth [52] to align with the virtual scene, and298

adopt FoundationPose [69] for object tracking with our reconstructed 3D object for model-based 6D299

pose estimation. As shown in Fig. 1, we enable consistent replay of real-world interactions in virtual300

scenes while accurately recovering the object’s pose from visual input.301

Figure 5: Dynamic VFX Results. We augment the
inferred interactive 3D scene with various visual ef-
fects such as dropping objects, adding animations,
and fires.

Dynamic Visual Effects To enhance im-302

mersion, we augment the scene with dynamic303

visual effects, including rigid body simulations,304

character animations, and particle effects. We305

adopt visual effects from AutoVFX [17] to306

overlay virtual content and shadows onto the307

image. As Fig. 5 shows, we produce effects that308

blend naturally with the scene.309

310

5 Conclusion & Limitation311

We presented HoloScene, a novel interactive 3D modeling framework that uses scene graphs and312

energy-based optimization to reconstruct environments with realistic appearance, complete geometry,313

and interactive physical plausibility, achieving superior real-time rendering, geometric accuracy, and314

stable simulation. Limitations: HoloScene currently only handles videos of static indoor scenes;315

dynamic scenes and large outdoor environments remain challenging. Future work will focus on316

relightable reconstruction and extending support to articulated and deformable objects.317
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