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Figure 1: Overview of HoloScene: From a single input video—along with visual cues such as
segmentation and monocular depth—HoloScene reconstructs a simulation-ready, interactive 3D
digital twin represented as a scene graph with complete geometry, physically plausible dynamics,
and realistic rendering. The resulting model enables a variety of downstream applications, including
real-time interactive gaming, 3D editing, immersive experience capture, and dynamic visual effects.

Abstract

Digitizing the physical world into accurate simulation-ready virtual environments
offers significant opportunities in a variety of fields such as augmented and vir-
tual reality, gaming, and robotics. However, current 3D reconstruction and scene-
understanding methods commonly fall short in one or more critical aspects, such
as geometry completeness, object interactivity, physical plausibility, photorealis-
tic rendering, or realistic physical properties for reliable dynamic simulation. To
address these limitations, we introduce HoloScene, a novel interactive 3D recon-
struction framework that simultaneously achieves these requirements. HoloScene
leverages a comprehensive interactive scene-graph representation, encoding object
geometry, appearance, and physical properties alongside hierarchical and inter-
object relationships. Reconstruction is formulated as an energy-based optimization
problem, integrating observational data, physical constraints, and generative priors
into a unified, coherent objective. Optimization is efficiently performed via a hybrid
approach combining sampling-based exploration with gradient-based refinement.
The resulting digital twins exhibit complete and precise geometry, physical stability,
and realistic rendering from novel viewpoints. Evaluations conducted on multiple
benchmark datasets demonstrate superior performance, while practical use-cases in
interactive gaming and real-time digital-twin manipulation illustrate HoloScene’s
broad applicability and effectiveness.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.
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1 Introduction

Imagine wanting, decades later, to revisit the home you live in and love today—how would you capture
its memory? Photographs and videos record authentic details but lack immersion; 3D Gaussian splats
or photogrammetry can be immersive, yet static chairs and tables feel lifeless. Ideally, we would
digitize our environment into a fully interactive digital twin: complete, composable, photorealistic,
and manipulable just like the real world. Our work takes a step toward this goal by enabling users to
create in silico twins of their surroundings from a single video.

Digitizing the physical world into a simulation-ready virtual environment offers immense oppor-
tunities in augmented and virtual reality, gaming, and robotics. However, despite advances in 3D
modeling and scene understanding, key challenges remain: capturing complete geometry and ap-
pearance in occluded regions, inferring inter-object relationships, and ensuring physical plausibility
and interactivity. Existing Real2Sim methods produce incomplete geometry [83}!43}|68]] or unstable
physics [[73}[71]]; existing amodal reconstruction focuses on single-image setting [81. [1 1], individual
objects 72} [14} 137], neglects physical plausibility [47] or relies on asset retrieval [[L0] —sacrificing
fidelity and practicality; and prior physically plausible reconstruction [46}|14] is limited to simple
object—scene interactions or requires full observations.

To address these gaps, we introduce HoloScene, an interactive 3D reconstruction framework that
unifies geometry completeness, object completeness, physical plausibility, realistic rendering, and
physical interaction. HoloScene represents a scene as an interactive scene graph encoding object
geometry, appearance, and physical properties in a hierarchical structure. We cast scene-graph recov-
ery from video as a structured energy-based optimization, integrating observational data, physical
constraints, and generative priors into a single objective. To solve this challenging problem, we
propose a novel divide-and-conquer strategy combining sampling-based tree-structured search with
gradient-based refinement. The resulting scene models exhibit complete, accurate geometry; stable
physical interactions; and realistic rendering from novel viewpoints.

Experiments on three challenging benchmarks demonstrate superior geometry accuracy and physical
plausibility, with rendering performance comparable to state-of-the-art amodal and physics-aware
reconstruction methods. We further showcase HoloScene’s versatility through practical applications
in interactive gaming, realistic video effects, and real-time digital-twin manipulation.

2 Related Works

Interactive 3D Scene Model

A Method Visual Real-time Amodal Twin Physics Physics
Recent advances in 3D scene etho Input | Rendering | 3D Recon | Fidelity Capacity Optimization
modeling [50, 88, 16, |5} 65]] re- ACDC (10 image v v x x P
. Gen3DSR [L1 image v v X X X
.ConStht 3D scene frOm lnPut PhysComp [14 image X v X Single Object Differentiable
]mages or V]dCOS, represe]’]t]ng CAST [81 image v v X Scene Differentiable
3 .
the scene as neural fields [44,62, Jel e | e | ) y y y :
1811591 158, 24, 3L 14]], signed dis-  ObjectsDF++ [71] | video x x v x x
: Video2Game [73 video 4 X 4 Single Object X
tance funCthnS (SDF) [68’ 82’ PhyRecon |46 video X v v Objects-Ground Differentiable
49,151,183 186, 28]], and 3D Gaus- DP-Recon [47 video v v v x x
sians [22, 19, 87, 85] Whlle pI'O- HoloScene (Ours) video v v v Scene Diff & Sampling

ducing realistic renderings from
novel views, these works cannot
provide 3D assets that allow user interactions (e.g, move the chairs to different poses). Reconstruct-
ing realistic and interactive environments from real images and videos remains challenging due
to limited observation, occlusion, and physical reasoning. Some previous works reconstruct 3D
objects from sparse viewpoints [37} 133,757, 139], and some estimate physical properties from visual
observation [89,|14]. Nevertheless, these works focus on object-level tasks and cannot handle large
and complex indoor scenes. PhyRecon [46] optimizes stable 3D scenes with differentiable physi-
cal engines, but does not model inter-object interactions and realistic appearance. DP-Recon [47]],
Video2Game [73]], Drawer [74] leverage generative prior [[1,153] and foundation models [56,57]] to
reconstruct decomposed 3D scenes. However, these works can only produce limited components or
lack physical stability. In this work, we propose to reason object interaction with the scene graph, and
utilize generative priors and a novel sampling strategy to reconstruct the geometry and appearance of
every component, constructing realistic, physically plausible, and interactable 3D environments.

Table 1: Comparison of Interactive 3D Scene Models.
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Data-driven Simulation Simulation plays a pivotal role across robotics, self-driving, and content
creation, but building high-fidelity virtual scenes remains costly, and the sim-to-real gap poses great
challenges. To address this, data-driven simulation [2} 838}, 142, |60} [79] has emerged, enabling the
modeling of physical dynamics [36,27,[76120,[13}[211/90], lighting conditions [3155,130]], and action-
conditioned outcomes [20, 134} 16} (73| 211,135, 74, 140], directly from real-world data. These methods
have also been applied in robot learning [8} 42} 54} (78180} [79], LiDAR simulation [32} 42 [77] 79,194
93|, and interactive media [[17, [73]]. In robotics, related real-to-sim approaches [9} 10l 164,167, 26, 4 1]]
reconstruct interactable environments from the real world for reproducible embodiment. However,
they still lack physical realism. Recent works [46} 6, 92] leverage differentiable physics or priors
in reconstruction, but they neglect complex inter-object relationships. The closest work to ours is
CAST [81], which also targets physically plausible scene reconstruction. The key differences are:
(1) CAST takes single image and relies heavily on generative models, which may cause noticeable
inconsistencies with the observation. (2) CAST uses differentiable optimization without feedback
from physical simulators, so physical stability might not be guaranteed. In contrast, HoloScene
reconstructs scenes from videos to replicate observations and adopts sampling-based optimization
with Isaac Sim [43] to ensure physical stability. We compare HoloScene with prior works in Tab. [I]

3 Method

Given the observations O = {O; }1_, which include the input video sequence {I;}, camera poses
{&,} (inferred or ground truth), and instance masks {M, } (inferred or ground truth), our goal is to
reconstruct a realistic, complete, and physically plausible digital twin of the input scene, yielding
interactive, sim-ready assets compatible with simulators and game engines, and which can be used
to generate novel visual content. To this end, we represent the scene as an interactive 3D scene
graph representation that encodes object geometry, appearance, physical properties, and hierarchical
inter-object relationships (Sec. [3.1). We combine observational evidence, generative priors for shape
completion, and physical simulation for stability to formulate scene-graph recovery as an energy min-
imization problem (Sec. [3.2). Finally, we propose an inference method that integrates sampling-based
tree search with differentiable optimization (Sec. [3.3). Fig[2] summarizes our approach.

3.1 Scene Representation

We represent the scene as an interactive 3D scene graph G = (1, €). Eachnode v; € V = {v;}¥,
represents either the background scene or one of the N objects present. A node v; = (g;, f;, pi, T:)
is comprised of geometry g;, appearance f;, physical properties p;, and dynamic states T;. Each
edge e, ; = (v;,V;) € &€ encodes an object—object relationship in G.

Geometry: We represent the geometry of each node v; in the scene with an instance-level neural SDF
gi(x;0): R3 — R, where x € R? is any point in space and 6 are learnable parameters. Additionally,
to facilitate physical simulation and efficient rendering, we maintain a mesh representation M; =
MarchingCube(g;) for each object, extracted from its SDF using the marching cubes algorithm.

Appearance: For each object v;, we encode appearance f; = (c;, oy, p;, 2;) as Gaussian splats,
enabling real-time, high-quality rendering. c;, a;, it;, 2; are color, opacity, mean, and covariance of
Gaussians, respectively. Gaussians capture finer detail than colored meshes but hinder consistency
between appearance, geometry, and simulation; following recent work [74]], we adopt a Gaussians-
on-Mesh (GoM) approach and attach each splat to its mesh to ensure alignment and enable physical
interactions. Given camera intrinsics K and extrinsics &£, we denote the splat-rendered RGB images,
masks, depth and normal maps as I, M, D, N = SplatRender(G; K, &).

Physics: Each object in our scene graph is modeled as a rigid body. Its physical parameters p; =
(my, K4, C;, ;) comprise mass m;, friction k; (resistance to sliding against other surfaces), damping
(; (energy dissipation during motion), and restitution r; (elasticity upon impact). These parameters
are used in downstream physical simulations to model the object’s response to external forces and its
interactions with other objects and the background scene.

Object States: All object intrinsic attributes above are defined in object-centric coordinates and
remain invariant under motion. To handle dynamic changes, we encode each object’s rigid body state
by a rigid transform T'; from its object-centric frame to the world frame. During static reconstruction,
T, is fixed; in dynamic simulation, it may vary over time. Let 7 = {T;}¥, denote the set of all
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Figure 2: Overview of HoloScene Optimization Stages: Given multiple posed images as well as
some visual cues (instance masks, monocular geometry priors), we first employ a gradient-based
optimization as the initialization. Then we adopt a generative sampling and tree search strategy along
the topology of the scene graph to obtain the complete geometry with physical plausibility. Finally,
the final fine-tuning over the scene further enhances the realism of the reconstructed scene.

object states, G5 the scene graph under those states, and G the scene graph under the static state
during reconstruction.

Object Relationships: Each edge e; ; links two nodes with one of three relationships: 1) support,
where v; rests in stable equilibrium on its unique parent v ,,(;) under gravity (each object has exactly
one such parent, so support edges form a tree in the static scene graph); 2) beside, where siblings
(pa(j) = pa(i)) have touching surfaces, causing occlusions without hierarchy or instability; and
3) collide, where contacts with nonzero momentum yield dynamic effects—ignored during static
reconstruction but employed in simulation. Note that the object relationship might change depending
on its dynamic status during simulation.

Interaction & Simulation: Our 3D scene graph’s distinguishing feature is its support for physical
interactions. Formally, at time #, given the dynamic scene graph G+ with current object states 7 as
well as an input action a’, the next states are computed as

T = sin(T", a% Grv), )

where Sim is a rigid-body physical simulator using the mesh { M} as collision geometry. Here, a’
can represent external inputs— forces, torques, or control actions—applied to the objects at time ¢.

3.2 Problem Formulation

Our framework takes input observations O of a static scene and recovers the scene graph G = (V, £).
The resulting scene graph must (i) explain the observations well; (ii) be geometrically complete and
plausible; and (iii) reflect the scene’s static, physically stable nature. To this end, we cast the problem
as a structured energy-minimization problem:

Hgn Ergb (Iv g) + Emask(Ma g) + Emono(Da g) + Ecomp(g) + Egeo(g) + Ephysics(g) . (2)

observation terms regularization terms

For simplicity, we omit the hyperparameter linear weights for each term. Next, we discuss each
energy term.
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Observation Terms: The observation terms quantify the discrepancy between the reconstructed
3D scene and the input observations. Let I,,M;, D, N; = SplatRender(G; K, &,) denote the
rendered RGB image, instance mask, depth map, and normal map at camera pose &,. We then define
three energy terms: the RGB energy E,.,(Z,G) =), £MSE(L, I;) + Lipips (it, I;), where I, is
the ground-truth color image and the loss combines MSE and LPIPS losses [91]; the mask energy
Frnask(M,G) = >, CE(Mt,Mt), where CE is cross-entropy and M; is either a given labeled
mask [[61}84]] or one inferred via segmentation tracking [23]]; and the monocular geometry energy
FErono(D,G) =3, ||Nt - N¢|I3 + Enorm(f)t, D;), where N; and D; are monocular normal and
depth priors and Lo,y is the scale- and shift-invariant L2 loss [86]].

Regularization Terms: Because videos only partially observe a 3D scene, optimizing observations
alone cannot yield a complete, plausible, and physically valid reconstruction; we therefore impose
generative, geometric, and physical priors as regularizers to enable fully interactive 3D scenes.

The completeness energy E...,, encourages complete reconstruction of each object’s shape despite
the partial observations. Inspired by generative image-to-3D methods [37]], for each object i we syn-
thesize virtual observations O; = {Z;, D;, M;, N;} by “shooting” it from multiple virtual viewpoints
with a pretrained multi-view diffusion model Wonder3D [37]]. Unlike the single object setting for
most image-to-3D works, because our complex scenes often feature inter-object occlusions (e.g., a
sofa covered by a blanket), we first inpaint occluded regions using LaMa [63]] before generating these
views. Given the synthesized observations, we define the completeness energy as

Ecomp = Z(Emask(ii7 {V’L}) + Ergb (Mza {Vz}) + Emono(bia {V1}))v (3)
where g, Enono, Emask are the observation losses defined similarly in our observation terms,
although they are measured at virtual viewpoints here.

The geometry energy ., ensures geometry compatibility between each object, such that their
geometry does not intersect with each other:

Egeo(g) = Z (Epenefsdf(gi; g) + Epeneimesh(gi; g)) . (4)
The SDF-penetration term Epene_sdf = Y xR, Dk max (0, —gi(x) — gi(x)) ensures no two
object SDFs overlap, where R(i) = {x € R3| argminy, gi(x) = i} is the set of points belong to
instance ¢. Intuitively, if x lies in instance ¢, then for any other instance k, gi(x) > —g;(x) must
hold to prevent intersections. Similarly, each object’s mesh should not intersect with any other object

mesh. This can be measured by measuring whether intersecting two meshes resulting empty set or
not: Epene mesh = 1(inter(M,;, M;) # 0).

Finally, it is important to ensure that our recovered digital twin of the scene is simulatable; hence,
physical plausibility is crucial. To this end, we introduce physics energy, which measures physical
plausibility via two terms:

Ephysics = FEgtable + Etouch = Diff (T, Sim(’T, Agravity ; g)) + Z diSt(Mi; M]) . ©)
(i,5)€€

The stable term Egpapie(G) = Diff (T, Sim(7, agravity; G )) quantifies translational and rotational
deviations of each object, with Dif£(7,7") = 3_,([trans(T; ' T})| + |rad(T; ' T})|) and Sim is
the forward physical simulator step as defined in Eq. E]; alow Egap1e indicates static equilibrium under
gravity, i.e. scene remains static in the simulator. The touch term Etqycn = Z( ij)EE dist(M;, M)

encourages each supporting pair (i, j) to make contact, dist is the Chamfer distance between meshes.

3.3 Inference

Optimizing the scene graph from Sec. [3.2)is challenging because it mixes discrete variables (graph
topology, object—object relations) with continuous ones (neural SDFs, Gaussians, and physical
parameters) and includes non-differentiable terms like physical stability. We therefore use a four-stage
divide-and-conquer approach: first, infer topology via large foundation models; then, recover initial
geometry and appearance by minimizing the observation terms; next, refine shapes and physical
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Figure 3: Qualitative Comparisons on Object Geometry and Appearance Reconstruction: Our
method delivers superior reconstructions by smoothly inpainting occluded regions with LaMa and
completing invisible back-facing geometry with Wonder3D. Unlike baselines, our approach eliminates
object interpenetration, ensuring physical stability during simulation.

parameters by minimizing the geometry and physics terms through generative sampling combined
with structured tree search; and finally, fine-tune appearance by re-minimizing observation terms.
This yields a fully plausible, interactive 3D scene (Fig. [2).

Stage 0: Scene Graph Edges: Our framework infers the topology of the scene-graph G from
observations O, where edges £ encode support relations in a tree rooted at v (the background, e.g.,
the room). We build this tree recursively using a VLM: at each step, we overlay the masks of already
registered instances (annotated with their IDs) as a visual prompt, then ask the VLM to identify and
register one new unseen instance and infer its physical relationship to the objects already in the tree.
Starting from v in the first frame, we repeat until all observed instances have been added to the tree.

Stage 1: Gradient-based Optimization: After obtaining the scene-graph topology, we optimize
each node’s appearance a; and geometry g; to match the observations O via gradient-based optimiza-
tion. Specifically, we minimize the observation terms plus SDF-penetration regularization through
differentiable volume rendering—similar to neural SDF methods [70, 29]—to obtain per-instance
SDFs g;. Additionally, we recover small objects by balancing training samples across all instances.
We then extract initial meshes M, via marching cubes and refine each object’s Gaussians f; via
splat rendering and RGB rendering, mask, and monocular geometry losses, yielding our dual scene
representation per each instance [13]].

Stage 2: Sampling-based Optimization: The Stage 1 scene model supports freeview rendering
and accurate visible-region geometry but remains incomplete, non—physical, and non—interactive.
Directly minimizing Ecomplete, Ephysics> and Egeo, however, is challenging due to complex high-
order interactions (e.g., multi-object physical interaction), intrinsic multi-modality (invisible regions
admit multiple solutions), and non-differentiable components (e.g., mesh intersections, physics
simulations). To address this, we adopt an approach that combines the diverse proposal capability of
generative sampling with the combinatorial optimization strength of tree search to minimize our
structured objective.

Generative sampling: We begin by sampling diverse, complete shapes for each instance: we prompt
Wonder3D’s multi-diffusion model with real-world observations and generate virtual views Z; from
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Figure 4: Qualitative Comparisons on Physical Simulation: We compare geometry layouts and
appearance before and after physical simulation, with the table geometry reconstructions highlighted
in inset figures. HoloScene’s complete, non-interpenetrating geometry remains stable in physics
simulators, unlike baseline methods. Our Gaussian on mesh delivers high-quality, real-time rendering
throughout the simulation process.

various viewpoints. Thanks to its generative nature, resampling multiple times with different seeds
yields diverse virtual observations even from the same viewpoints. Then, for each virtual observation,
we minimize E.nm;, independently, producing a diverse set of 3D shape candidates per object.

Structured tree search: We have generated multiple complete shape samples per instance that all fit
the observations, but it remains unclear which combination is most physically plausible. Exhaustively
evaluating every combination is impractical, since the physical-plausibility energy Eppysics entails a
high-order combinatorial optimization. To address this, we perform a tree search over our generative
samples. Starting at the root node, we traverse each node in breadth-first order; at each active node
(object), we evaluate Fppysics for all samples and retain the sample with the lowest energy among
those evaluated. We then adjust its state and physical parameters to enforce stability and prevent
interpenetration (see details in the supplementary material).

Remark: The key novelty and advantage of the proposed inference algorithm is the combination of
generative sampling with a structured tree search for amodal, physically plausible reconstruction.
Unlike scene-level amodal methods [10] that rely on asset retrieval, our sampling is asset-free and
generates input consistent, diverse shape hypotheses. Unlike prior simulation-verification methods [47,
146]], which only enforces object—ground consistency, our tree search ensures global stability along
every support chain. By driving a non-differentiable simulator (e.g., IsaacSim) end-to-end, we
eliminate any reconstruction-to-deployment gap.

Stage 3: Gradient-based Refinement Since Stage 2 adjusts object states, physical parameters,
and shape, it is necessary to further refine the Gaussians attached to the surface to ensure a complete
and realistic appearance. To this end, we fine-tune Gaussians for all objects using splat rendering by
minimizing the observation terms via gradient descent. This yields our final scene graph.

4 Experiments

Dataset: We conduct the experiments across multiple datasets: 7 scenes from Replica [61], 6
scenes from Scannet++ [84]], 2 scenes from iGibson [23]], and one self-captured scene. The Replica
and Scannet++ datasets cover diverse indoor structures and lighting conditions, and the iGibson
dataset offers complete geometry of every object, allowing per-object reconstruction evaluation.
Instance masks are provided by dataset annotations or estimated with SAM [23].

Metrics: We evaluate geometry quality with Chamfer Distance (CD), F-Score (F1), and Normal
Consistency (NC) [86]], and assess rendering quality using PSNR, SSIM, and LPIPS. For physical
evaluation, we adopt consistent physical parameters, put all scene components in the Isaac Sim [45],
and measure stability with translation/rotation changes when gravity is applied. The stability ratio
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Table 2: Quantitative Results on Scene Reconstruction: HoloScene’s generative sampling and
scene graph-based tree search produce the most physically plausible reconstructions while preserving
high-quality geometry and supporting real-time and realistic rendering. We highlight the best and
second-best methods with distinct colors. For rendering quality, we only compare with DP-Recon’s
texture mesh-based rendering since ObjSDF++ and PhyRecon lack real-time rendering capabilities.

is calculated as: Stable % = %, where instances are identified as stable if changes are

under a certain threshold. We also report the object reconstruction ratio: OR% =
indicating the completeness of whole scenes.

#Reconstructed Instances
#All Instances ’

Baselines: We evaluate our framework against SOTA approaches in instance-aware amodal 3D
scene reconstruction. ObjectSDF++ uses per-instance SDF for scene representation. PhyRecon
[46] extends instance-aware scene reconstruction by incorporating a differentiable physical loss to
optimize unstable objects. However, it only handles object—ground interactions and does not support
hierarchical or inter—object relationships. DP-Recon [47] incorporates diffusion Score Distillation
Sampling (SDS) [53]] for amodal sparse-view reconstruction. However, it does not handle inter-object
occlusions. All three methods use instance-level SDFs, so the SDF values of different instances
might interfere with one another. We adopt their open-source codes and adapt them for the testing
benchmarks. Please refer to the supplementary material for more implementation details.

4.1 Experimental Results

Scene-level evaluations: ~ We first evaluate the reconstruction at the scene level. In Tab. 2 we
compare our framework with the three baselines across Replica, Scannet++. and iGibson dataset, with
qualitative results shown in Fig.[3|and Fig.[d Our method achieves the best physical reconstruction re-
sults in terms of both object reconstruction ratio and stable object ratio, while maintaining comparable
scene-level reconstruction quality in geometry and appearance. Unlike baselines where
small objects often disappear due to SDF interference from larger adjacent objects, our framework
benefits from balancing training samples across all instances during the optimization stage 1, recover-
ing all instances in the scenes. PhyRecon assumes that all objects rest directly on the ground, which
damages geometry when objects are supported by other objects. DP-Recon prioritizes completeness
via SDS over physical stability, failing to adequately address object interpenetration. In contrast, our
sampling-based optimization and completion approach yields the most physically stable results.

Object-level evaluations: We evaluate object-level reconstruction using the iGibson dataset,
which provides complete ground truth geometry and appearance for each object. This evaluation is
especially challenging as it tests the reconstruction of occluded regions that models never observe.
Our evaluation compares reconstructed geometry directly with ground truth and renders 6 viewpoints
around each object to assess appearance quality. Results in Tab. [2] demonstrate that our method
outperforms all baselines in reconstructing invisible and occluded regions, validating our framework’s
effectiveness in completing objects beyond directly observed surfaces.
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Obiect  iGibson GoM X X 420 7922 7696 13.74 0.735 0.204 100.0 41.2

) GoM v v 100.0 7RI

Table 3: Ablation Study on Model Design: We observe improved physical stability and object-level
reconstruction with the help of generative priors, physical energy, and scene graph representation,
and there is a trade-off between scene-level reconstruction and instance-level physical stability.

Ablation study:  Our ablation study (Tab. [3) reveals the contribution of each component. Switching
from textured mesh to Gaussian rendering improves visual quality, while adding physics energy
with generative priors enhances physical stability. The scene graph inter-object relationships further
improve physics performance by better reconstructing occluded regions, especially those from
support relationships. However, we identify a trade-off between scene-level reconstruction accuracy
and physical stability, where optimizing for physical plausibility may occasionally compromise
pixel-alignment with original observations.

4.2 Interactive Environment Applications

Real-Time Interactive Game With our reconstructed environment, we can create a real-time
interactive game with Unreal Engine [12]. As Fig.[I]shows, we build a third-person game with the
reconstructed texture meshes. The objects could be physically rearranged in the game world, and the
game agent could also interact with the scene through realistic physics.

Interactive 3D Editing In our simulation environment, we could also achieve high-quality inter-
active 3D editing by moving the object Gaussians with its underlying physical mesh geometry. In
Fig.[I] we demonstrate this by changing the location and orientation of the interactable chair.

Immersive Experience Recording We show our interactable reconstructed 3D objects with im-
mersive experience recording. Given a static RGB video of a person manipulating an object, we
aim to recover the object’s 6D pose and resimulate its motion in a virtual 3D scene. We recover the
camera pose with VGGT [66]], adjust the predicted depth [52] to align with the virtual scene, and
adopt FoundationPose [69] for object tracking with our reconstructed 3D object for model-based 6D
pose estimation. As shown in Fig.[T} we enable consistent replay of real-world interactions in virtual
scenes while accurately recovering the object’s pose from visual input.

Dynamic Visual Effects To enhance im-
mersion, we augment the scene with dynamic
visual effects, including rigid body simulations, 3
character animations, and particle effects. We EiE = =

adopt visual effects from AutoVFX [17] to Figure 5: Dynamic VFX Results. We augment the
overlay virtual content and shadows onto the inferred interactive 3D scene with various visual ef-
image. As Fig. [5]shows, we produce effects that fects such as dropping objects, adding animations,
blend naturally with the scene. and fires.

5 Conclusion & Limitation

We presented HoloScene, a novel interactive 3D modeling framework that uses scene graphs and
energy-based optimization to reconstruct environments with realistic appearance, complete geometry,
and interactive physical plausibility, achieving superior real-time rendering, geometric accuracy, and
stable simulation. Limitations: HoloScene currently only handles videos of static indoor scenes;
dynamic scenes and large outdoor environments remain challenging. Future work will focus on
relightable reconstruction and extending support to articulated and deformable objects.
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