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EGGesture: Entropy-Guided Vector Quantized Variational
AutoEncoder for Co-Speech Gesture Generation

Anonymous Authors

ABSTRACT
Co-Speech gesture generation encounters challenges with imbal-
anced, long-tailed gesture distributions. While recent methods typi-
cally address this by employing Vector Quantized Variational Au-
toencoder (VQ-VAE), encode gestures into a codebook and classify
codebook indices based on audio or text cues. However, due to the
imbalanced, the codebook classification tends to bias towards ma-
jority gestures, neglecting semantically rich minority gestures. To
address this, this paper proposes the Entropy-Guided Co-Speech
Gesture Generation (EGGesture). EGGesture leverages an Entropy-
Guided VQ-VAE to jointly optimizes the distribution of codebook
indices and adjusts loss weights for codebook index classification,
which consists of a) A differentiable approach for entropy com-
putation using Gumbel-Softmax and cosine similarity, facilitating
online codebook distribution optimization, and b) a strategy that
utilizes computed codebook entropy to collaboratively guide the
classification loss weighting. These designs enable the dynamic re-
finement of the codebook utilization, striking a balance between
the quality of the learned gesture representation and the accuracy
of the classification phase. Experiments on the Trinity and BEAT
datasets demonstrate EGGesture’s state-of-the-art performance both
qualitatively and quantitatively. The code and video are available.

CCS CONCEPTS
• Do Not Use This Code → Generate the Correct Terms for Your
Paper; Generate the Correct Terms for Your Paper; Generate the
Correct Terms for Your Paper; Generate the Correct Terms for Your
Paper.

KEYWORDS
Co-Speech Gesture Generation,Human Motion Generation,Animation

1 INTRODUCTION
Generating vivid co-speech gesture has garnered interest across
academia and industry, which is challenging as gesture motions are
suffer a imbalanced, long-tailed distribution. People often employ
a diverse range of semantically related gestures to elucidate textual
content. These semantically-rich gestures, although occurring in
limited proportions, are more expressive than common rhythmic
gestures, and cannot be directly modeled by end-to-end gesture
generation methods [11, 13, 41].
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1

Minority Gestures

Majority Gestures

Figure 1: Distribution of Codebook Indices. Top: Vanilla gesture
VQ-VAE illustrates an imbalanced distribution with 28% utilization
for a codebook of size 512, resulting in an audio-predicted gesture
bias towards majority classes. Bottom: Through entropy regular-
ization, our Entropy-Guided VQ-VAE method ensures maximized
utilization and a balanced distribution, yielding a classification result
that aligns closely with both majority and minority classes.

Recent works mitigate the impact of imbalance by employing
Vector Quantized Variational AutoEncoder (VQ-VAE) [35], demon-
strating improved gesture diversity. Approaches based on VQ-VAE
[2, 3, 39] synthesize gestures in two phases: first, a gesture code-
book is pretrained using vanilla motion VQ-VAE, followed by the
sequential classification of codebook indices using audio and text
cues. The advantage of VQ-VAE lies in its transformation of the
gesture regression problem into a classification one, normalizing the
penalization across various gesture classes, thereby boosting the re-
call of gestures from minority classes. However, as shown in Figure
1, there are two bottlenecks limiting the performance of VQ-VAE
based methods: the imbalanced distribution of codebook indices and
the suboptimal codebook utilization.

The imbalanced distribution of codebook indices. In the con-
text of co-speech gestures generation, our observations show that
the distribution of codebook indices remains similarly imbalanced
regardless of the codebook size (as shown in Figure 2). This kind of
distribution is expected when learning representations of imbalanced
gestures. However, it adversely impacts classification during the
subsequent phase.

The suboptimal codebook utilization. As shown in Figure 2,
an evident upper limit exists on the effective use of the codebook,
even when assigning a large codebook size, e.g., 10240, for co-
speech gesture generation. This suboptimal codebook utilization
results in the increase of codebook size doesn’t improve the gesture
representation learning and FID scores, i.e., clustering gestures into
more fine-grained tokens.

The above analysis raise one straightforward concept of potential
solutions: Balancing and maximizing the codebook’s utilization, to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Limitations of Vanilla Gesture VQ-VAE. When the codebook size increases, ranging from a mere 32 to a sizable 10240, the model
shows a noticeable plateau in effective utilization. Consistently, the distribution reveals an imbalance, irrespective of other parameters. These
interconnected limitations serve as barriers, impeding results improvements in gesture representation learning and FID.

enable a more fine-grained representation learning and a balanced
classification task. However, the implementations should be carefully
considered as:

i) Maximizing the codebook utilization, i.e., the number of ef-
fectively used indices, will benefit representation learning but also
increase the complexity of the classification task.

ii) Balancing the distribution of codebook indices, will improve
the classifier but adversely affect for the representation learning, as
the real-world gestures inherently follow an imbalanced distribution,
it’s theoretically advantageous for the VQ-VAE space to reflect this
original distribution, as discussed in [21].

iii) To the best of our knowledge, there exist few methods that
compel VQ-VAE to employ a broader range of the codebook during
its training phase. Calculating the utilization rate presents challenges
as the index operations are not differentiable.

These suggest a trade-off between the performance across dif-
ferent phases of VQ-VAE when attempting to both maximum and
balance the utilization. We hypothesize that there’s an optimal bal-
ance between utilization and distribution for each co-speech gesture
dataset, evaluated in terms of final generated gestures from speech
and text. Based on the above analysis. we propose an implementation
of the concept of balancing and maximizing, termed Entropy-Guided
VQ-VAE. This implementation optimizes both codebook utilization
and distribution in a differentiable, data-driven manner.

The EGGesture consists of three components: a) we employ the
entropy of codebook utilization probability to evaluate the utiliza-
tion of codebook. b) We compute entropy in a differentiable way
by combining cosine similarity with the Gumbel-Softmax function
[20]. This enables us to incorporate the codebook utilization prob-
ability as a regularization loss during training. c) We adopt a joint
training strategy for both codebook learning and classification. The
classification loss is weighted based on the computed entropy. This
strategy effectively addresses the trade-off of entropy optimization
by simultaneously minimum both reconstruction and classification
losses. Overall, our contributions are:

• We introduce the concept to balance and maximize codebook
utilization, addressing the bottleneck in VQ-VAE-based co-
speech gesture generation.

• We propose EGGesure, leveraging a differentiable approach
for entropy optimization of the codebook. This optimized
entropy collaboratively guides both the classification and
representation learning phases.

• Experimental results on two mocap gesture datasets, Trinity
and BEAT, demonstrate the state-of-the-art performance of
EGGesture both qualitatively and quantitatively.

2 RELATED WORK
2.1 Co-Speech Gesture generation
Pioneering deep-learning literature on Co-Speech gesture generation
primarily focused on generative model architectures. Initial efforts
revolved around end-to-end architectures, such as GRUs [10, 40],
enriched by the integration of GANs [11, 36], FLow [1, 16], VAE
[23, 29] or Diffifusion [37, 44]. Typically, these techniques decoded
gestures by regressing them onto joint rotations or offsets. Recent ad-
vanced methods are based on VQ-VAE, during this phase, Rhythmic
Gesticulator [2] first employed the VQ-VAE to encode the word-
level duration-normalized gestures, and then learned the mapping
from audio and text cues to clustered class indices. Concurrently,
Talkshow [39] leveraged the VQ-VAE architecture to achieve the
holistic gestures generation in two phases. QPGesture [38] com-
bined the VQ-VAE and learned motion phases to guide the gesture
generation. More recently, DGGesture [30] and GestureDiffuClip
[3] also set their baselines using a VQ-VAE based two phase training
framework. Different with the above methods, our method explic-
itly tackles the imbalanced distribution present in the VQ-VAE’s
codebook. Most close to our topic, DisCo[26] discovered that mo-
tions follow a long-tail distribution and suggested using motion
words to categorize these motions into rhythm and content codes. It
addressed the long-tail problem by employing motion word-based
clustering using positional distance, the accuracy of clustering by
motion words is compromised as it is based on positional distance,
leading to clusters that consider only adjacent or identical position-
level motion clips. Different with DisCo, our method innovatively
utilizes a neural-network-based clustering algorithm within a VQ-
VAE, enabling deeper and more distinct feature learning for motion
categorization, enhancing the overall generated gestures quality and
utilization of the codebooks.

2.2 Vector Quantized Variational AutoEncoders
Vector Quantized Variational AutoEncoders (VQ-VAE) [35], was
first proposed in 2016. It has been gradually adopted by modern
deep learning models [42], particularly in the domain of image rep-
resentation learning [5]. VQ-VAE is designed to quantize the latent
space while facilitating partial gradient backward operations. Here,
each codebook entry is treated as a token or cluster that represents
the original features. Recent advancements in VQ-VAE encompass
hierarchical coarse-to-fine codebook learning [32], along with the
amalgamation of VQ-VAE tokens with masked representation learn-
ing [18, 24]. Moreover, while existing works [33, 34] utilize offline
codebook metrics for evaluating VQ-VAE performance, in contrast,
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Figure 3: Overview. EGGesture performs jointly differentiable optimization of gesture codebook learning and audio-to-codebook classification.
Top: Gesture motions are translated into latent vectors, matched to the closest codebook vector, with reconstruction through the decoder. Bottom:
Pre-trained audio and text features, derived from wav2vec and BERT, proceed through a transformer encoder and merge via channel-level
concatenation. Subsequent classification to codebook indices is managed by a transformer decoder. Middle: Codebook entropy, determined by
the cosine similarity between continuous and quantized latents alongside Gumbel Softmax, is maximized during training. The entropy guides
two optimizations: i) Balancing codebook distribution for refinement utilization and ii) Reweighting codebook indices to refine classification
loss for improved audio-to-motion classifications.

we propose an online optimization approach to maximize codebook
utilization.

2.3 Imblance Problem in Machine Learning
Addressing imbalances in machine learning has been widely studied
within image classification domains [7, 17, 22, 43]. Solutions are
typically categorized into either resampling or reweighting methods.
Resampling strategies, e.g., upsampling minority classes [14] or
downsampling majority ones [6], aim to achieve a balanced class
distribution. However, they face challenges when multiple classes
are intertwined within a single sample, e.g., distinct frames in video
sequences correspond to various classes. Reweighting methods offer
greater flexibility by assigning varied weights to different frames.
Moving beyond mere linear weighting, adaptive strategies e.g., focal
loss [25] can further mitigate the influence of imbalanced datasets.
However, in the context of VQ-VAE-based co-speech gesture gener-
ation, simply reweighing the data cannot effectively optimize code-
book utilization.

3 ENTROPY-GUIDED GESTURE
GENERATION

Our methodology builds upon the vanilla motion VQ-VAE, as shown
in Figure 3. It is divided into two modules: the codebook learning
module and the indices classification module. We first present a
prior of vanilla motion VQ-VAE. Following that, we detail our
entropy computation techniques and the entropy-guided approach for
codebook and classification learning. Overall the pipeline leverages
raw audio waves A, text T, seed gestures G𝑠𝑒𝑒𝑑 to produce full 6D
gestures rotations denoted as Ĝ. To maintain a consistent frame rate
with codebook tokens ẑ𝑔, we interpolate both the audio features F𝐴
and text features F𝑇 .

3.1 The Prior of Motion VQ-VAE
We begin by the training of vanilla gesture motion VQ-VAE. This
involves a gesture encoder E𝑔, a codebook C𝑔, and a gesture decoder
D𝑔. The codebook functions as a repository of learned parameters,
composed of integer indices i𝑔 and associated values ẑ𝑔. The gesture
encoder, E𝑔, first encodes the gesture into a latent vector z𝑔. Follow-
ing this, the distance between each latent vector and its affiliated
values is calculated via the distance function H . the index of the
closest ẑ𝑔 is determined through the argmin of distances, which is
non-differentiable,

i𝑔 = 𝑎𝑟𝑔𝑚𝑖𝑛(H (z𝑔, ẑ𝑔)), (1)

then we could sample the closest ẑ𝑔 with the index i𝑔, and the decoder
will leverage the latent ẑ𝑔 to reconstruct the gestures G.

Due to the non-differentiable argmin operation, the latent code
z𝑔 do not have gradients from the gesture reconstruction, where
reconstruction loss is given as,

𝑙rec = D𝑔 (ẑ𝑔) − G. (2)

To address this, VQ-VAE propagates the gradient from ẑ𝑔 to z𝑔 by
copying the gradient from the part where they coincide. Specifically,

ẑ𝑔 = z𝑔 + sp(ẑ𝑔 − z𝑔), (3)

where sp denotes the stop-gradient operation. The gradient of the
first element from the codebook 𝑎𝑔 will then be used to optimize the
encoder.

Finally, an additional loss term is introduced to minimize the
discrepancy between the codebook value ẑ𝑔 and the encoded latent
z𝑔,

𝑙commit = (z𝑔 − sp(ẑ𝑔)) + 𝛽 (sp(z𝑔) − ẑ𝑔). (4)
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3.2 Differentiable Entropy Computation
The entropy is computed to evaluate the utilization of the codebook.
We calculate the similarity between the encoded latent z𝑔 and the
codebook latent ẑ𝑔, followed by the Gumbel softmax operation
for a soft assignment of latent z𝑔 to the corresponding ẑ𝑔. This is
represented as,

s = z𝑔 · ẑ𝑔, (5)
where · denotes the matrix multiplication. The probability, p, is given
by the Gumbel softmax function instead of the vanilla softmax to
simulate the uncertainty of codebook index during training,

p𝑖 =
exp((log(s𝑖 ) + n𝑖 )/𝜏)∑
𝑗 exp((log(s𝑗 ) + n𝑗 )/𝜏)

, (6)

where: p𝑖 is the resulting probability distribution, i.e., the "soft" one-
hot encoded representation, n𝑖 are i.i.d samples from the𝐺𝑢𝑚𝑏𝑒𝑙 (0, 1)
distribution, 𝜏 is the temperature parameter. As 𝜏 approaches 0, the
Gumbel softmax operation becomes the standard discrete softmax,
and as 𝜏 increases, the distribution becomes more uniform. Sampling
from the 𝐺𝑢𝑚𝑏𝑒𝑙 (0, 1) distribution can be done using the inverse
transform sampling,

n = − log(− log(u)), (7)

where u is a sample from the uniform distribution 𝑈 (0, 1).
The Cosine similarity and Gumbel softmax is differentiable, al-

lowing for gradient-based optimization. For each batch, the utiliza-
tion is calculated from the average probability for each class. Inspired
by batch normalization [19], a moving average of the utilization for
each class is maintained to ensure stable training. This is represented
as

p𝑡 = 𝛼 × sp(p𝑡−1) + (1 − 𝛼) × p𝑡 , (8)
subsequently, the entropy loss is calculated as,

𝑙𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
∑︁

p log(p). (9)

The entropy loss promotes an uniform probability indices distribu-
tion across the codebook, benefiting both the maximizing in utiliza-
tion and balancing the codebook indices distribution. According to
the mathematical theory, the entropy 𝐸 reaches its maximum value
when all 𝑝𝑡 are equal, i.e., 𝑝𝑡 = 1

𝑁
for all 𝑖. The 𝐸 is calculated

from a differentiable path by the cosine similarity 𝑠, the gradient
could be backward to adjust the weight of motion encoder for a more
balanced z𝑔).

3.3 Entropy-Guided Training
We then leverage class probability statistics for jointly training the
classifier. For a given training epoch 𝑒, we minimize the distance
between the predicted gesture index î𝑔,𝑒 (from audio and text) and
the real codebook index sp(i𝑔,𝑒 ). In addition to the vanilla negative
log likelihood (NLL) loss, the distance is reweighted based on the
inverse class-level probability, where w𝑘 = 1

p𝑘 . The classifier loss is
then given by,

𝑙cls =

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

− log(î𝑔) ·w𝑘 , (10)

where 𝑛 is the number of samples in each batch and 𝑘 is the size of
the codebook.

To mitigate the impact of the codebook indices randomness in
the early training epochs, we linearly combine the clustering-related
and classification-related terms. Our overall training objective is:

𝑙 =
𝑒

𝛾
𝑙cls +

𝛾

𝑒
(𝑙rec + 𝑙entripy + 𝑙commit), (11)

where 𝛾 are exponential set scaling factor.

3.4 Network Architectures.
Our pipeline integrates transformer-based pretrained audio and text
encoders, Wav2Vec2 [4] and BERT [8]. Their parameters are freezed
for faster training. Additionally, we refine audio and text features
through the implementation of dedicated transformer-based encoders
[8].

Inspired by the state-of-the-art motion VQ-VAE architecture in
TM2T [12], we adopt a 1D CNN based ResNet [15] architecture
to encode gestures into latent vectors with a quarter of the frame
rate. While gesture decoding is achieved via a combination of up-
sampling and 1D CNN layers. As a main component, a transformer
decoder is adopt as our sequential classifier. The decoder leverages
the positional embedding and seed codebook indices as inputs, and
employs the cross-attention operations on concatenated audio and
text features for the final motion indices classification.

4 EXPERIMENTS
4.1 Settings
4.1.1 Datasets. We evaluate our method on two benchmark motion-
captured gesture datasets: Trinity [9] and BEAT [27]. Trinity pro-
vides 244 minutes of motion-captured gestures from a single male
actor, encompassing diverse conversational topics such as hobbies
and sports. BEAT offers around 76 hours gestures from 30 speakers,
we use the English subset of BEAT2, which moshed the skeleton
level data into the SMPLX [31], facilitating consistent mesh-level
visualizations. We leverage the speaker-2’s data from BEAT2, in-
cluding 4 hours speech and conversational data.

4.1.2 Baselines. We benchmark our approach against a com-
prehensive set of both seminal and state-of-the-art methods on
the Trinity and BEAT datasets. Our comparison includes methods
speech2gestures [11], audio2gestures [23], moglow [1], trimodal
[40], disco [26], camn [27], ha2g[28], qpgesture [38], and talkshow
[39]. Using publicly available codes, we reproduce results for camn,
ha2g, qpgesture, and talkshow on Trinity. Specifically, we adapt the
camn method by excluding the emotional, speaker ID, and facial
encoder modules due to the absence of corresponding modalities in
Trinity. We reproduce the performance of disco, ha2g, and talkshow
on BEAT. For the remaining terms, we reference objective scores
directly from their papers.

4.1.3 Parameter settings. Our training procedure utilizes the
Adam optimizer with an initial learning rate of 3e-4 and decaysit with
rate 10 in epoch 100 for totally 120 epochs. Data is downsampled to
15fps, with training and testing performed on 20s clips, resulting in
300 frames for transformer encoding and decoding processes. Hy-
perparameters 𝛼 , 𝛽, 𝛾 were determined empirically for both Trinity
and BEAT datasets via grid search with 0.95, 0.1, 500. The reported
model configurations use a codebook of size 512, where a common
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Trinity BEAT
FID ↓ Beat Alignment ↑ L1 Diversity ↑ FID ↓ Beat Alignment ↑ L1 Diversity ↑

Speech2Gesture [11] 39.79 0.3056 305.7 36.74 0.3561 397.8
MoGlow [1] 52.04 0.1806 315.0 38.41 0.2698 419.2
Audio2Gestures [23] 38.70 0.2618 359.8 30.96 0.3122 508.9
DisCo [26] 34.66 0.2485 371.1 27.64 0.3097 511.6
HA2G [28] 31.67 0.2965 369.9 19.24 0.3411 475.4
CaMN [27] 47.77 0.2294 323.7 12.44 0.2963 439.0
Talkshow [39] 26.13 0.3466 432.0 10.16 0.4017 555.1
QPGesture [38] 24.37 0.3502 426.5 8.63 0.4094 579.5
EGGesture (Ours) 18.19 0.3528 474.1 5.74 0.4117 617.2

Table 1: Evaluation on Trinity and BEAT Datasets. EGGesture outperforms previous state-of-the-art algorithms on the FID, diversity, and
alignment metrics, demonstrating that EGGesture generates more diverse gestures without sacrificing audio-gesture synchrony. Due to the
uncertainty in the training results of the generative models, we train the given models five times and report their average scores.

FID ↓ Previous SOTA Improvement
Audio2Gesture [23] 38.70 39.79 +2.74%
DisCo [26] 34.66 38.70 +10.44%
HA2G [28] 31.67 38.70 +18.17%
QPGesture [38] 24.37 31.67 +23.05%
TalkShow [39] 26.13 31.67 +17.49%
Average - - +14.38%
EGGesture (Ours) 18.19 24.37 +25.35%

Table 2: Comparison of Improvement on BEAT. Compared to pre-
vious works, our method actually has a clear margin of improvement
in the term of FID. c.f. Table below, previous methods achieved an
average improvement of 14.38%, whereas our achieves 25.35%.

choice in motion VQ-VAE codebook sizes typically range between
512 and 1024. The vector length of each codebook vectors is set to
256. Training is conducted with a batch size of 128 on Nvidia V100
GPUs.

4.1.4 Metrics. We utilize three objective evaluation metrics: FID
(Fréchet Inception Distance) [40], BA (Beat Alignment) [28], and
L1Div (L1 Diversity) [23]. FID computes the distance between two
distributions based on the discrepancy in their means and covari-
ances,

FID(g, ĝ) =
𝜇𝑟 − 𝜇𝑝

2 + Tr
(
Σ𝑟 + Σ𝑝 − 2

(
Σ𝑟Σ𝑝

)1/2)
, (12)

where 𝜇𝑟 and Σ𝑟 are the first and second moments of the latent
features distribution 𝑧𝑟 of real gestures g, and 𝜇𝑝 and Σ𝑝 are the first
and second moment of the latent features distribution 𝑧𝑝 of generated
gestures ĝ. We pretrained a CNN-based gesture autoencoder on both
the BEAT and Trinity datasets. BA quantifies the alignment between
gesture and audio beats. Gesture beats are determined from the local
minima of the gesture curve, while audio beats are discerned using
onset detection,

BA = 1
𝐺

∑
𝑏𝐺 ∈𝐺 exp

(
−min𝑏𝐴 ∈𝐴 ∥𝑏𝐺−𝑏𝐴 ∥2

2𝜎2

)
, (13)

where 𝐺,𝐴 is the set of gesture beat and audio beat, respectively.
The final score is the average beat alignment across all joints. L1Div
calculates the average L1 distance between two randomly chosen

4

Figure 4: User Study Results. We calculate the win rate for evalua-
tion (in percentage). Our method shows higher participants’ overall
preference, and also outperforms state-of-the-art methods in diver-
sity. The error bar is calculated by standard deviation. Pre., BA, Div.
are Preference, Beat Alignment and Diversity, respectively.

gesture sequences of equal length within a specified group.

𝐿1𝑑𝑖𝑣 = 1
2𝑁 (𝑁−1)

∑𝑁
𝑡=1

∑𝑁
𝑗=1

𝑟 𝑖𝑡 − 𝑟
𝑗
𝑡


1
, (14)

where 𝑟𝑡 is the rotation of joints in frame 𝑡 , prior works have set this
group size to 40, we follow this in our evaluations.

4.2 Quantitatively Results
In Table 1 and Table 2, we present objective evaluation metrics for
both the Trinity and BEAT datasets. Results show our approach out-
performs pervious state-of-the-art methods in terms of FID, BA, and
Diversity metrics, establishing a new state-of-the-art performance.
Notably, our method demonstrates a more pronounced improvement
in Diversity and FID compared to Beat Alignment. This is attributed
to the enhanced recall of minority classes, which facilitates the gen-
eration of more diverse gestures and achieves a distribution closer to

1Video results are available in supplementary materials.
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Figure 5: Subjective Comparisons. Each sub-figure samples the generated gestures from BEAT dataset speaker-2, our method generates more
diverse and semantic-related gestures, e.g., the hands are raised up when expressing the word better.1

the ground truth. Additionally, we observed that all VQ-VAE-based
methods consistently perform better in terms of FID and Diversity
metrics.

4.3 Qualitatively Results
In Figure 5, we present detailed visualization of the synthesized
gesture sequences. Compared to previous approaches, our method
produces more diversified gestures that aptly align with the textual
content. Our approach could generate longer motions more than
20s (the training length of transformer), for example, to handle
audio from 21 to 40 seconds, the transformer takes as input both
the predicted motion in 20s as seed pose and the audio and textual
features from 21 to 40s, as shown in video results.

We further conduct a user study, assessing three distinct dimen-
sions: Preference, Beat Alignment, and Diversity.

• Preference: This mertic encompasses (i) the physical correct-
ness of the results, which assesses issues such as jitters and
artifacts (e.g., hands blending into incorrect angles), and (ii)

the semantic relevancy between the audio content and ges-
tures. For instance, the phrase "a huge ball" should correspond
with an open-arm gesture to ensure realism.

• Beat Alignment: Evaluation under this mertic focuses on
the synchronization of the gesture’s rhythm with the audio’s
rhythm. For example, as the speaker utters "that is," the cor-
responding hand movement should commence with the word
"that" and conclude before "is" is pronounced, demonstrating
effective beat alignment.

• Diversity: This metric assesses the variety of gesture classes
within a 10-second sequence, similar to the approach in re-
lated works such as Audio2Gestures [23] and DisCo [26].
A sequence repeating a single, semantically aligned motion
is considered realistic but lacking in diversity. Conversely, a
sequence incorporating various types of content-rich motions
is categorized as having high diversity.

Before the test, participants are required to: (i) read and watch an
instructional video explaining the evaluation metrics; (ii) evaluate
five test videos and submit their results; (iii) take a screening process
where submissions from participants with a random-like win rate are
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Figure 6: Usage Ratio of Codebook. we show both the codebook
usage ratio and FID Comparision for baseline and our method, note
that baseline use a fixed codebook raito for stage-two.

filtered out. Then in each test, participants evaluate a pair of synthe-
sized gestures and are expected to select the winner across the each
of three metrics. Gestures sequences are 10-20s, with a total of 60
sequences sampled (10 from the Trinity-trained model and 50 from
BEAT, encompassing 5 different speakers) for every model, which
are totally 600 comparisons. In the user study, we report a subset of
baselines based on their performance rank, specifically: DisCo[26],
HA2G[28], TalkShow[39], QPGesture[38], and our EGGesture.

Figure 4 shows that most methods yield similar results in terms
of beat alignment. This may be due to the inherent challenge for
human evaluators to accurately gauge the congruence between mo-
tion and audio beat alignment. Overall, EGGesture perform a higher
preference and diversity (semantic alignment) win rates.

5 ABLATIONS
5.1 Comparison with Reweighting Baselines
We start our ablation study by comparing against a straightforward
baseline: retaining the vanilla VQ-VAE’s clustering phase while only
reweighting the classification phase. Table 3 presents results from
five reweighting strategies: log, sqrt, linear, square, and exponent of
the inverse class probabilities. Notices that our EGGesture actually
follow a linear reweighting setting. When comparing our EGGesture
with the traditional baseline, it becomes evident that linear reweight-
ing is the optimal approach, mitigating the effects of an imbalanced
codebook indices distribution.

Moreover, as shown in Figure 6, in contrast to the baseline method
that maintains a stable codebook usage ratio, the implementation
of entropy loss progressively converge towards a higher codebook
usage rate. This approach significantly outperforms conventional
clustering methods, highlighting the benefits of achieving a balanced
distribution and enhanced codebook utilization.

We report the ablation of the comparison between proposed
EGGesture and EGGesture without classification reweighing, as
shown in Table 4, the result demonstrates that only optimizing the
distribution of gesture motion codebook to a balanced distribution
will increase the difficulty of classfication (audio to gesture code-
book index) stage, leading a limited improvment compared with the
vanilla gesture VQ-VAE (FID 10.38).

FID ↓ Beat Alignment ↑ L1 Diversity ↑
Baseline 10.38 0.4124 542.9
log𝑥 10.19 0.4107 552.4√

𝑥 9.82 0.4064 559.6
𝑥 9.48 0.4087 573.4
𝑥2 11.72 0.3769 531.1
𝑒𝑥 13.64 0.3319 487.6

EGGesture 5.74 0.4117 617.2
Table 3: Evaluation of Reweighting Strategies on BEAT. We
report the baseline (Vanilla Gesture VQ-VAE) against five distinct
reweighting strategies, with ’x’ indicating the weight transition from
majority to minority classes. Results show linear reweighting is the
most effective, and a performance decline is observed with excessive
weighting on minority classes, e.g., the 𝑒𝑥 weights. Overall, our
EGGesture outperform reweighting-only methods as it optimizing
both clustering and reweighting phases.

FID ↓ Beat Alignment ↑ L1 Diversity ↑
EGGesture 5.74 0.4117 617.2
w/o classification reweighing 8.11 0.4037 571.0

Table 4: Ablation of Classification Reweighing. Results indicate
removing the classification reweighing for the audio to gesture map-
ping stage, i.e., gesture index classfication based on audio and text
cues. The model will struggle to achieve a lower FID as the increase-
ment of used codebook entries.

5.2 Effectiveness of Joint Training
We then evaluate the effects of removing the joint clustering and
classification training, as shown in Table 5. Only optimizing the
clustering phase to enforce equal probability and keep the 100%
codebook usage detrimentally impacts reconstruction performance,
suggesting a sub-optimal learned latent representation. This in turn
compromises the quality of synthesized gestures. However, when
classification and reconstruction are jointly trained, the model ef-
fectively balances between these two objectives, leading to better
performance.

5.3 Effectiveness of Gumbel Softmax
As shown in Table 5, the utilization of Gumbel softmax assignment
provides an enhancement to our model’s performance. Nonetheless,
there’s a pronounced sensitivity in the choice of𝛾 . Using the standard
softmax leads to a fast convergence of the classification loss, often
culminating in less-than-ideal results. Conversely, employing the
Gumbel softmax infuses noise into the true index, increasing the
classification difficulty and consequently leading to a more stable
convergence.

5.4 Impact of Codebook Size
As shown in Figure 7, experiments with various codebook sizes
reveal that EGGesture can improve performance as the codebook size
increases, transcending the performance constraints observed with
the vanilla VQ-VAE. Objective metrics indicate a consistent decrease
in FID (lower better) when increasing the codebook size from 512
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FID ↓ Beat Alignment ↑ L1 Diversity ↑
Full EGGesture 5.74 0.4117 617.2
w/o joint-training 22.64 0.3093 461.3
w/o gumbel softmax 7.12 0.4130 592.4

Table 5: Ablation of Joint Training and Gumbel Softmax. Results
indicate removing the joint training for clustering and classification,
the model will struggle to convergence. Furthermore, removing the
Gumbel Softmax also leads to decreased performance, as the model
tends to converge to incorrect classes in the early stages of training.
Results are evaluated on BEAT.

Finetune FID ↓ Beat Alignment ↑ L1 Diversity ↑
BERT 6.78 0.4110 589.9
BERT (Ours) ✓ 5.74 0.4117 617.2
CLIP 7.31 0.4124 603.4
CLIP ✓ 5.91 0.4110 619.3
FastText 6.51 0.4136 569.0
FastText ✓ 5.85 0.4121 617.6
Custom TCN ✓ 5.77 0.4131 610.8

Table 6: Comparison of Different Text Encoders. Our experiments
report six types of config of text encoders, results demonstrate that
finetune the encoder or not is more important than the type of pre-
trained encoder, and even with a customed TCN without pretraining,
we could get similar results.

to 2048 and further to 10240. Subjectively, when visualizing the
reconstructions from vanilla VQ-VAE, our EG-VQVAE, and the
ground truth, there are more detailed gestures for EG-VQVAE, e.g.,
more accurate spatial positioning. This implies that EG-VQVAE
could capture more fine-gained gesture representations.

5.5 Other Pretrained Audio and Text Encoders
We also experimented with a variety of pre-trained audio and text
encoders. We first found the finetuned wav2vec2 performance is
similar to a customized TCN[40] with a FID 5.83. This indicates that
the gradients passed back to the audio encoders might be minimal,
leading to only marginal adjustments to the pre-trained encoders. But
in this paper, we keep the same setting, i.e., leveraging the wav2vec2,
with previous baseline [39] for a healthy comparison.

Besides, for the text, our experiments also did not reveal any
significant performance advantages when varying the text encoder.
Results in Table 6 demonstrate that finetune the encoder or not is
more important than the type of pre-trained encoder, and even with
a customed TCN without pretraining, we could get similar results.

5.6 Other Network Architectures
Compared to other methods, the improvement of performance from
our proposed EGGesture is agnoistic with the selection of network
architectures for the audio, text encoder and motion decoder. We
report a comparison of Transformer-based and LSTM-based EGGes-
ture, which replaces the audio, text encoder and audio to motion
cross-attention to LSTM. The results are shown in Table 7, EG-
gestures’ performance is suboptimal when the network architecture
is LSTM as the given the same training time, e.g., 7 hours for 100
epochs, the LSTM-based encodes could only be trained within 34
frames, and the Transformer-based encoders could be trained in 300
frames.

Architecture FID ↓ Beat Alignment ↑ L1 Diversity ↑
Baseline Transformer 10.38 0.4124 542.9
with EGGesture Transformer 5.74 0.4117 617.2
Baseline LSTM 12.77 0.4093 533.3
with EGGesture LSTM 7.16 0.4089 603.1

Table 7: Comparison of Different Network Architectures. we
conduct the experimetns on both Transformer-based and LSTM-
based encoders for audio, text and motion. The results show that
the concept of entropy calculation and optimization for VQVAE’s
codebook, is architecture-agnostic and could lead the performance
improvement on both Transformer and LSTM-based pipelines.
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Figure 7: Impact of Codebook Size. Contrary to the vanilla gesture
VQ-VAE, EGGesture continues to benefit from an increase in code-
book size. Results demonstrate a increasement in codebook size will
have an improvement on FID; subjective visualization further shows
our method can capture more refined motion representations. e.g.
raising the same hand as the groundtruth. FID results are evaluated
on BEAT with fixed latent vector length 256.

6 CONCLUSION
In this paper, we address the problem of imbalanced co-speech
gesture generation by introducing EGGesture, a framework that
synchronously optimizes the codebook learning and classification
phases. EGGesture integrates a differentiable entropy regularization,
employing this entropy for reweighting during the classification
phase. This approach propels us to achieve state-of-the-art results in
the domain. In the future, we will explore the distribution of vector
utilization across different dimensions, allowing us to delve deeper
into the constraints of motion VQ-VAEs.
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