
SymNet 3.0: Exploiting Long-Range Influences in Learning
Generalized Neural Policies for Relational MDPs

Vishal Sharma*1 Daman Arora∗1 Mausam1 Parag Singla1

1Indian Institute of Technology Delhi {vishal.sharma, cs5180404, mausam, parags}@cse.iitd.ac.in

Abstract

We focus on the learning of generalized neural
policies for Relational Markov Decision Processes
(RMDPs) expressed in RDDL. Recent work first
converts the instances of a relational domain into
an instance graph, and then trains a Graph At-
tention Network (GAT) of fixed depth with pa-
rameters shared across instances to learn a state
representation, which can be decoded to get the
policy [Sharma et al., 2022]. Unfortunately, this ap-
proach struggles to learn policies that exploit long-
range dependencies – a fact we formally prove
in this paper. As a remedy, we first construct a
novel influence graph characterized by edges cap-
turing one-step influence (dependence) between
nodes based on the transition model. We then de-
fine influence distance between two nodes as the
shortest path between them in this graph – a feature
we exploit to represent long-range dependencies.
We show that our architecture, referred to as Sym-
bolic Influence Network (SYMNET3.0), with its
distance-based features, does not suffer from the
representational issues faced by earlier approaches.
Extensive experimentation demonstrates that we
are competitive with existing baselines on 12 stan-
dard IPPC domains, and perform significantly bet-
ter on six additional domains (including IPPC vari-
ants), designed to test a model’s capability in cap-
turing long-range dependencies. Further analysis
shows that SYMNET3.0 automatically learns to
focus on nodes that have key information for rep-
resenting policies that capture long-range depen-
dencies.

*Equal Contribution

1 INTRODUCTION

Recent work has shown the successful application of neural
models for the task of automated planning [Hafner et al.,
2018, Groshev et al., 2018]. Of particular interest are rela-
tional domains – which are characterized by objects, predi-
cates, and a first-order transition model. These are typically
represented in the form of a Relational Markov Decision
Process (RMDP) [Boutilier et al., 2001], where grounding
an RMDP with a set of objects results in a specific prob-
lem instance. A state is represented by an assignment to the
groundings of predicates, referred to as state variables. Mul-
tiple different languages have been proposed to represent
RMDPs, the popular ones being Relational Dynamic influ-
ence Diagram Language [Sanner, 2010] (RDDL) and Prob-
abilistic Planning Domain Definition Language [Younes
et al., 2005] (PPDDL), with our focus in this work being
the former 1. Given an RMDP expressed in RDDL, the goal
then is to learn a single generalized policy that is applicable
to any instance of the domain. Recent works [Garg et al.,
2019, 2020, Sharma et al., 2022] have made progress in
this direction, showing that it is possible to train a neural
model on smaller instances, which generalizes to (unseen)
instances from the same domain.

Existing approaches convert a given instance into an in-
stance graph where nodes represent object tuples 2, and
edges represent influence based on the transition model 3. A
Graph Attention Network (GAT) is used to compute node
embeddings in this graph, and the state embedding is typi-
cally computed as a combination of node embeddings along
with an aggregation function such as maxpool applied over
them. A decoder network takes the state representation and
gives a distribution over actions in the current state, result-
ing in a policy. Though this approach has met with initial
success, some important problems remain. The key one that

1other approaches using PPDDL are discussed in related work
2a tuple of objects appearing as argument of some predicate
3additional nodes and edges are created representing singleton

objects and their connections to object tuples that they are part of

Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:1921–1931.

we tackle in this paper is that of capturing long-range depen-
dencies. For instance, consider the problem of navigating in
a large grid where the objective is to reach a cell designated
as the goal starting from the current location of the agent.
Assume that each non-goal (non-agent) cell has an identical
set of features, and the node embeddings are learned using
a GAT with d layers. Then, consider the goal being in the
middle of the grid, and two different states s1 and s2, such
that robot is to the left of the goal in s1 and to the right in
s2 at a distance 2d+ 1. Then, ignoring any edge effects, the
score for any given action (say ’left’) will be identical in
the two states. This is because any node in the network has
view either of the robot or the goal, but not both. Further,
one can establish a one-to-one mapping between the node
embeddings in the resulting states, hence taking any aggre-
gate function which is permutation invariant will result in
identical state embeddings. Since the optimal actions in s1
and s2 are different, i.e., left and right respectively, there
is no way for the model to learn the optimal policy in this
case. We formally prove this deficiency for existing architec-
tures. Increasing GAT depth d is not a solution either, due to
blow-up in the number of parameters and other learnability
issues with long-distance message passing [Li et al., 2018,
Wu et al., 2020, Alon and Yahav, 2021].

As a remedy, we propose constructing a novel graph, re-
ferred to as the influence graph, whose nodes represent state
variables, and two nodes are connected by an edge if they
can influence each other in one step, based on the transition
model. Intuitively, the distance between two nodes in the
influence graph represents the minimum number of steps it
would take for the influence of one node to reach the other
via the transition dynamics of the model. The pairwise dis-
tances thus computed in the influence graph can be useful
features for capturing long-range dependencies. We show
that the addition of these distance-based features gives the
model the representational power to capture long-range de-
pendencies for a large class of problems. Our architecture
referred to as Symbolic Influence Network (SYMNET3.0)4,
builds on Sharma et al. 2022, and adds distance-based fea-
tures at every node in the instance graph to capture the
long-range dependencies. A multi-head attention is used for
learning to focus on relevant nodes based on these features
resulting in a distance-aware state representation, enabling
our model to capture long-range dependencies. The result-
ing state is then decoded to get the policy as before.

Similar to earlier works [Garg et al., 2020, Sharma et al.,
2022], we operate in the offline planning setting and train
SYMNET3.0 by imitation learning using the data gener-
ated from an online planner PROST [Keller and Eyerich,
2012]. Our extensive experimental evaluation shows that
(a) we are competitive with existing baselines on 12 IPPC
domains which do not necessarily require capturing long-

4The code for SYMNET3.0 and the RDDL instance generators
can be found at https://github.com/dair-iitd/symnet3

range dependencies for learning the optimal policy, and (b)
we are significantly better on 6 new domains (4 of them
being IPPC variants) specifically designed to test the ef-
ficacy of the models when long-range dependencies need
to be exploited for learning a good policy. Specifically, in
the latter case, SYMNET3.0 performs better than its closest
competitor SYMNET2.0 in all domains with a gain of 18%
relative performance in the aggregate metric. Further anal-
ysis reveals that the influence-layer of SYMNET3.0 learns
to focus attention on key nodes in the network central to
capture the long-term dependencies.

2 BACKGROUND

2.1 RELATIONAL MARKOV DECISION
PROCESSES USING RDDL

Relational Dynamic influence Diagram Language [Sanner,
2010] (RDDL) defines a first-order Relational Markov Deci-
sion Process (RMDP) in two parts, 1) a domain description
that represents the object types (C), state-fluent predicates
(SF), non-fluent predicates (NF), action predicates (A),
first-order transition functions (T) and first-order reward
functions (R); and 2) an instance description that represents
a specific instance of the domain by describing its ground
objects (O), initial state (s0), discount factor (γ) and horizon
(H). State-fluents are predicates that can change over time,
whereas, non-fluents are predicates whose values are fixed
for a given instance but can vary from instance to instance.
Together they form the set of state predicates (SP). Ground-
ing a predicate implies replacing each argument of the pred-
icate with an object-tuple having type-consistent objects.
Grounding state predicates forms a set of state-variables
(SPO), and grounding action predicates forms the set of
ground actions (AO). A state is defined as an assignment to
all state-variables, denoted by s ∈ PS(SPO), where PS is
the power set. We denote the set of object tuples appearing
in state-fluents as OSF . The set of object tuples for which
either a numeric non-fluent is defined or a true boolean
non-fluent is defined is denoted as ONF . Let Ar denote
the maximum arity of any Predicate in SP . Throughout
the paper, we denote any (state-fluent or non-fluent) ground
predicate P (u1, ...uk) as P (〈u〉) where 〈u〉 = 〈u1, ...uk〉 is
an object tuple.

Each instance has an underlying Dynamic Bayesian Net-
work (DBN) capturing its transition dynamics, which is a
bipartite graph with (i) a set of nodes for each state-variable
and each ground action at time t and (ii) a set of nodes for
each state-variable at time t+ 1 and a reward node. There
exists an edge from a node in the first node-set (i.e., at time
t) to a node in the second node-set (i.e., at time t+ 1) if the
value of the former affects the value of the later [Mausam
and Kolobov, 2012].

A sequence of works [Bajpai et al., 2018, Garg et al., 2019,

1922

2020, Sharma et al., 2022] learns generalized neural policies
for RDDL RMDPs. All these works have their limitations:
Torpido [Bajpai et al., 2018] can not transfer across instance
size, TrapsNet [Garg et al., 2019] only handles domains
with limited state and action predicate arities, and Sym-
Net [Garg et al., 2020] ignores most non-fluents leading to
generalization limitations. We build on the most recent of
these, SYMNET2.0 [Sharma et al., 2022], that improves on
SymNet (described in the next section).

2.2 SYMNET2.0

Instance-Graph(s): SYMNET2.0 converts a given instance
into a set of graphs each referred to as an instance-graph,
each having two types of nodes, (i) singleton object nodes:
for each object o ∈ O, a node o is added to all graphs. (ii)
object-tuple nodes: for each unique object-tuple, i.e., for
each 〈u〉 ∈ OSF ∪ONF , a node 〈u〉 is added to all graphs.
We will use n to denote a node corresponding to either an
object or an object-tuple. There are three types of graphs that
capture different types of interactions among state-variables
via edges that are created as follows,

1. DBN-based graph (Gd): An edge is added between
nodes 〈u〉 and 〈v〉 if there is a state-fluent P (〈u〉) that
affects another state-fluent Q(〈v〉).

2. Action-based graphs ({Ga1, ..., Ga|A|}): An edge is
added to graph Gai between nodes 〈u〉 and 〈v〉 if there
is a state-fluent P (〈u〉) that affects another state-fluent
Q(〈v〉) via action ai.

3. Position-based graphs ({Gp1, ..., Gp|Ar|}): A bidirec-
tional edge is added between a singleton object node
o and an object tuple node 〈u〉, in the graph Gpi, if o
comes at position i of object tuple 〈u〉.

Node features: SYMNET2.0 adds node features in each
graph as (i) For each predicate P (〈u〉) ∈ SF ∪NF , a fea-
ture is added to node 〈u〉. (ii) For each unparameterized
predicate Q ∈ SF ∪ NF , a feature is added to all nodes.
(iii) For each node, a one-hot encoding representing the type
of the node is added. For object-tuple 〈u〉 = 〈u1, ..., uk〉,
type(〈u〉) = (type(u1), ..., type(uk)). The values for fea-
tures corresponding to SF and NF come from the current
state and the RDDL descriptions, respectively.

Node Embeddings: Next, SYMNET2.0 computes node
embeddings for each of these graphs by using a Graph At-
tention Network (GAT) [Veličković et al., 2018]. Each graph
is passed through an independent GAT with fixed neighbor-
hood size. The node embeddings from each graph are then
merged into a single node embedding as ∀v ∈ V, ne(v) =
concat(neGd

[v], ..., neGp|Ar| [v]), where V is the set of all
nodes. To capture the complete state, a global embedding
is also computed as ge = maxpoolv∈V (ne[v]). The set
of node embeddings, along with the global embeddings,
represent the state-representation.

Next, a set of action decoders is created for each action type,
denoted by {AD1, ..., AD|A|}. For a global action ac and
for a ground action ac(〈o〉), where o = (o1, ..., ok), that
affects a set of state-variables Pa(〈o〉), the score is given as,

score(a(o)) =ADtype(a)

(
ne[o1], ..., ne[ok], ge,

maxpoolP∈Pa(〈o〉)(ne[args(P)])
)

(1)

score(ac) =ADtype(ac)(ge) (2)

Here, args(P) returns the arguments of predicate P . The
scores of all actions are then normalized to get a policy. For
training, imitation learning is used where the data is gener-
ated using the state-of-the-art online planner PROST [Keller
and Eyerich, 2012].

3 TECHNICAL CONTRIBUTIONS

The organization of this section is as follows. We first high-
light the deficiencies of SYMNET2.0 in representing long-
range dependencies. We then present the architecture for
SYMNET3.0 which addresses these limitations by incorpo-
rating the notion of distance-based features.

3.1 LIMITATIONS OF SYMNET2.0

We note that SYMNET2.0 uses fixed depth GAT, each node
can only access information in its immediate neighborhood
and ignores the information beyond its field of view. The
only way to have information access beyond the field of view
is through global embedding. However, SYMNET2.0’s max
pool-based global embedding is a commutative operation
that ignores the structure of the graph. Hence, if we swap
node embeddings of any two nodes, SYMNET2.0 will not be
able to identify this change leading to sub-optimal policies.
Next, we will explain this formally.

Theorem 1. Let G be an instance graph with two nodes n1
and n2 representing object-tuples of state-variables, having
identical 2d hop neighborhoods. Let s1 be some state where
n1 and n2 are distinct nodes having node features f1 and
f2, respectively, such that f1 6= f2. Let s2 be another state
where the node features of n1 and n2 are swapped with each
other, and the remaining node features are same as in s1.
Let the state-representation (set of node embeddings and
maxpool global embedding) be computed by using a GAT
of fixed-depth d. Then, the state-representations of s1 and
s2 will be the same and we refer to s1 and s2 as symmetric
states with respect to nodes n1 and n2.

Proof (Sketch). Only the nodes in the d hop neighborhood
of n1 and n2 notice the swap, and as their neighborhoods
are identical, there is a one-to-one correspondence between
node embeddings before and after the swap. Node embed-
dings of all nodes outside the d hop neighborhood of n1

1923

and n2 will be unchanged. Next, a commutative function
like maxpool will return the same value before and after
the swap. Hence the set of node-embeddings and global
embedding that formulate the state-representations remains
unchanged.

Theorem 2. In reference to Theorem 1, let there be two sin-
gleton nodes oi and o′i whose features have been swapped in
symmetric states s1, s2. Let ac1 = AC(o1, ...oi, ..., ok) be
an action applicable in s1 and ac2 = AC(o1, ..., o

′
i, ..., ok)

be an action applicable in s2, that differ only in the argu-
ments oi and o′i. Further, if Pac1 \ {oi} = Pac2 \ {o′i}, then,
the action score assigned by SYMNET2.0 to ac1 and ac2
will be the same.

Proof (Sketch). As node-embeddings of oi and o′i are the
same, the action scores for ac1 and ac2 will be the same.

Corollary 1. The action score assigned by SYMNET2.0 to
any global action is the same in both s1 and s2.

Proof (Sketch). The score for a global action (Eqn. 2) is a
function of only ge, and as from Theorem 1 ge is the same
for s1 and s2; hence the score will remain the same.

Theorem 1 and Corollary 1 imply that, when all actions are
unparameterized, SYMNET2.0 can not represent policies
that need to differently treat states s1 and s2 that are identi-
cal to each other, except for the features of n1 and n2 being
swapped with each other in s1 and s2.

Example: Consider the deterministic Navigation domain
where a robot has to locate a goal in a 2D-grid (say
23 × 23) with no obstacles. Let the Boolean predicate
robot_at(x,y) denote whether the robot is at location
(x, y) or not (See supplement for the RDDL domain descip-
tion). Let us assume SYMNET2.0 uses GATs with depth 2.
Let the goal be at location lg = (10, 10). Consider a state s1
that has the robot at location l1 = (5, 10) and another state
s2 where the robot is at location l2 = (15, 10). In either of
these states, no node in the network has a view of both the
goal and the agent location. Further, it is easy to see due to
symmetry, there is one to one correspondence between node
embeddings in s1 to the node embeddings in s2, resulting
in identical global embeddings computed via maxpool. The
above theorems state that SYMNET2.0 considers both s1
and s2 as the same and hence, results in decoding of the
identical action in both these states. In other words, it has
no way to represent the optimal policy, which corresponds
to taking ’move right’ action in s1 and ’move left’ action in
s2.

3.2 SYMNET3.0: INCORPORATING INFLUENCE

We next present our model Symbolic Influence Network
(SYMNET3.0), which addresses some of the issues faced by

SYMNET2.0. Intuitively, SYMNET2.0 fails to represent cer-
tain desirable policies since its view is limited by the depth
of the underlying GAT. Two nodes that are more than 2d
distance away, with d being the depth of GAT, do not share
any neighborhood and hence, have no way to propagate
relevant information to each other. Further, maxpool being
a permutation invariant operation has no way to capture the
relative ordering of nodes in the network. A combination of
these issues results in the learning of sub-optimal policies. A
natural way to address this would be to simply increase the
depth of the GAT. But unfortunately, this leads to blow-up
in the number of parameters, potentially causing overfit-
ting. Another approach would be to consider a GAT with
parameters tied across layers [Palm et al., 2018] but that still
requires passing messages for a long distance, potentially
resulting in learnability issues as observed by Zambetta and
Thangarajah [2022].

Motivated by these shortcomings, we take a different ap-
proach and ask the following question: "Since we have full
knowledge of the transition model, is there a way to apriori
encode some information in the network which would break
the symmetry of states which should actually be different
from each other?" Presumably doing so would also help us
in learning policies which can discriminate between such
similar looking states based on a fixed depth GAT. One way
to encode such information would be to capture the distance
between two nodes in a graph, where the nodes represent
state variables (predicates), and edges represent transitions
from one state variable to another, via an action. We note
that this may not be possible to do it on the original instance
graph, due to presence of a larger number of additional
nodes (e.g., singletons) making it too dense, and unsuitable
for capturing such a notion of distance.

In the navigation example, this kind of graph would capture
the underlying grid structure, since robot can move in either
direction in one step via the transition model. This means
that if the model is given access to this distance information
as a feature, it could represent policies not earlier repre-
sentable by SYMNET2.0, e.g., in our navigation domain,
it is better to move in the direction, which minimizes the
distance to the goal. In general, some other complicated
function of the distance could also be learned, as we show in
our experiments. Next, we formally introduce the notion of
influence distance followed by changes to the SYMNET2.0
architecture to exploit the distance-based features.

3.2.1 Influence Graph and Influence Distance

To succinctly represent the influence among state-variables
of a given instance I , we define an influence graph IG as
follows: (a) There is a node for each state-variable P (〈u〉)
in IG, and (b) There is a directed edge (P (〈u〉), Q(〈v〉))
if state-variable P (〈u〉) affects the state-variable Q(〈v〉) in
the following time step based on the transition model in the

1924

Figure 1: Figure shows the three-step process of SYMNET3.0 for policy prediction. The instance graph and influence graph
are representative of the Navigation domain (See supplement for domain description). The instance graph has nodes for
object-tuples ((xi, xj), (yi, yj), (xi, yj), xi, yi) and the influence graph has nodes for predicates (R(xi, yj) denoting the
robot_at predicate). In the case of SYMNET2.0, only instance-graph is present.

DBN. Intuitively, the influence graph removes the notion
of time from the nodes present in the DBN and captures
dependencies among the state-variables. In the Navigation
domain, it will have nodes for robot_at state-variables
and edges for each neighboring cell (see Fig 1)

Definition 1. Given an Influence Graph IG, we define influ-
ence distance between two nodes n1, n2 ∈ IG, as the length
of the shortest path from n1 to n2 in IG.

Note that a distance of k between nodes P (〈u〉) and Q(〈v〉)
implies that it takes at least k time steps for state-variable
P (〈u〉) to influence state-variable Q(〈v〉). Since the influ-
ence distance is computed in the influence graph, which
is based on the transition model, in general, it will be the
distance between two nodes in a directed graph. Next, we
describe how this influence distance is incorporated in the
SYMNET3.0 architecture to learn the desirable policies.

3.2.2 SYMNET3.0 Architecture

We use the same instance graph as used in SYMNET2.0
i.e., it has the same set of nodes, edges, and input features,
modulo one important distinction. As SYMNET2.0 has mul-
tiple adjacencies in its instance graph, on large instances,
the memory requirements become too high, leading to an
out-of-memory error. As a simple remedy, we use a single
adjacency (in both SYMNET2.0 and SYMNET3.0), but with
edge-types where each edge-type represents the original ad-
jacency it comes from. Therefore, there will be 1+|A|+|Ar|
edge types corresponding to all the original instance graphs.

To compute node-embeddings in SYMNET3.0, we use a
three-step process (Figure 1), (i) Compute initial node-
embeddings using a fixed-depth pre-process GAT, (ii) com-
pute influence distance among nodes and incorporate it

as a feature in instance graph, and (iii) combine initial
node-embeddings and distance feature to get final node-
embeddings using a fixed-depth post-process GAT. We pro-
vide the details below.

Pre-Processing: The information about an object-tuple is
provided either as state fluents or non-fluents or both. In the
instance graph, the non-fluent based nodes are connected
to singleton nodes which are in turn connected to the state
fluent based nodes; hence to collate the information on the
state variable nodes, we need an initial message-passing
step. To compute the initial node-embeddings (ne), we use
a single Graph Attention Network [Veličković et al., 2018]
called pre-process GAT (GATpre) that can incorporate edge
types as,

αh
ij = softmaxNi

(LRelu(aT [Wh
1 fi||Wh

1 fj ||Wh
2 eij]))

ne[i] = ||Hh=1

∑
j∈Ni

αh
ijW

h
3 fj (3)

Here, fi andNi denote the features and one-hop neighbours
of node i. eij is the one-hot encoding of each edge type. H
and || denote the number of attention heads and concate-
nation operators, respectively. In our experiments, we use
GATpre of depth 2 as this is the minimum number of mes-
sage passing steps required for information from non-fluent
nodes to reach the state fluent nodes.

Incorporating Influence: Since the influence-distance is
defined over state-variables, whereas each node in the in-
stance graph is either an object or an object-tuple, we have to
first define a mapping from the influence-distance to nodes
of instance graph, which is followed by computation of
distance feature based influence-embeddings (see below).

1. For two nodes i, j ∈ OSF in the instance graph, we define
dij as the minimum influence distance between any two

1925

state-variables mapped to these nodes. We normalize dij by
dividing it by the maximum value of dij for that instance.
Note that computation of dij is a static process, done once
for each instance. Then, we introduce a novel layer called
influence-layer, with the goal of capturing the notion of the
distance of each node from other nodes (like the goal node
in the navigation domain). Since we do not know which
nodes are relevant, we use an attention mechanism to figure
this out. The influence-embeddings (ie) are thus computed
as, ∀i, j ∈ OSF

βh
ij = softmaxOSF

(LRelu(aT [Uh
1 ne[i]||Uh

1 ne[j]||Uh
2 dij]))

∀i ∈ OSF , ie[i] = ||Hh=1

∑
j∈OSF

βh
ij dij (4)

2. For any other remaining node k in the instance graph,
ie[k] = ||Hh=10.

Intuitively, in equation block 4, each state-variable object-
tuple node i assigns a weight βh

ij based on the information
on i and j, and how far away they are in the influence space.
Further, to diversify the long-range information localiza-
tion, we encourage our attention heads to assign different
weights to different nodes. For this, during training, we add
a loss term that maximizes the KL divergence between at-
tention scores (βh

ij) of any two random attention heads of a
randomly sampled node i ∈ OSF .

State-Representation: We update the node-embeddings
using influence-embeddings and a post-process GAT as,
ne[i] = GATpost(ne[i] || ie[i]) and compute a global em-
bedding as ge = maxpooli∈V ne[i]. The use of distance
features provides nodes in SYMNET3.0 with the capability
to focus on some key nodes and learn node-embeddings
that break the symmetry induced by fixed-depth GAT as in
SYMNET2.0.

Action Decoding: Similar to SYMNET2.0, we compute ac-
tion scores using a set of action decoders {AD1, ...AD|A|},
and take softmax over all scores to get the policy.

3.3 REPRESENTABILITY

Theorem 3. SYMNET3.0 can represent all policies that
SYMNET2.0 can represent.

Proof (Sketch). SYMNET3.0 subsumes SYMNET2.0 as
each node can write an 0 vector as its influence-embedding,
rendering the weights that process ie inactive, thus reducing
SYMNET3.0 to SYMNET2.0.

Theorem 4. For a node n in the influence graph, let L(n, k)
denote the multi-set of node features of nodes that are ex-
actly k hops away from node n in the influence graph. In
reference to theorem 1, given the features of nodes n1 and
n2, if there exists a k > 0 such that L(n1, k) 6= L(n2, k),

then, given a sufficiently powerful attention function SYM-
NET3.0 has the power to learn the parameters that break
the symmetry induced between s1 and s2 which have the
features of nodes n1 and n2 swapped. [see Supplement for
a proof sketch]

Theorem 5. In reference to Theorem 4, let there be
two singleton nodes oi and o′i whose features have been
swapped in states s1 and s2, making these states symmet-
ric to each other with respect to oi and o′i. Let ac1 =
AC(o1, ...oi, ..., ok) be an action applicable in s1 and
ac2 = AC(o1, ..., o

′
i, ..., ok) be an action applicable in

s2, that differ only in the arguments oi and o′i. Further,
if Pac1 \ {oi} = Pac2 \ {o′i}, then, SYMNET3.0 has the
power to assign different action scores to ac1 and ac2.

Proof (Sketch). From theorem 4 SYMNET3.0 can learn dif-
ferent node-embeddings of oi and o′i thus having the power
to give different action scores for ac1 and ac2.

4 EXPERIMENTS

We design our experiments for answering three research
questions. (i) How well does SYMNET3.0 handle the long-
range influence problem in comparison to SYMNET2.0?
(ii) How do these models compare on domains that do not
have long-range dependences? (iii) Can we identify SYM-
NET3.0’s strengths and limitations?

4.1 EXPERIMENTAL SETUP

Previous works [Garg et al., 2020, Sharma et al., 2022] have
experimented with twelve IPPC 2011 and 2014 domains.
Our preliminary analyses indicated that most of those do-
mains do not require solving the long-range dependence
problem: either the instances are too small, or policies are
too localized. So, we use these domains to answer question
(ii) above. We additionally create six new domains, which
we name as LR domains, that necessitate recognizing the
long-range influences for computing good solutions.

Domains: We now briefly describe the new LR domains
(see supplement for further details on all domains),

1) Deterministic Navigation (DNav): A robot in a 2D-grid
has to reach a far away goal cell in a minimum number of
steps. A reward of -1 is given at every time step and 0 on
reaching the goal.
2) Stochastic Corridor Navigation (StNav): This is a vari-
ant of IPPC’s Navigation domain. Given a 2D grid, a robot
has to reach a goal location, but it can die with a certain
probability at each cell, except the bottom and the topmost
rows are safe. The robot and goal locations are sampled
randomly in the bottom and top rows, respectively. There
is a single randomly sampled safe vertical corridor from
bottom to top. The IPPC Navigation is a special case of

1926

Model SRecon Pizza DNav StWall EAcad StNav Mean
PROST 0.34 0.09 0.94 0.69 0.37 0 0.41
SYMNET2 0.47 0.26 0.55 0.27 0.9 0.03 0.41
SYMNET3-KL 0.68 0.62 0.84 0.33 0.87 0.08 0.57
SYMNET3+KLD 0.62 0.58 0.91 0.38 0.92 0.15 0.59
SYMNET3+KL 0.61 0.18 0.95 0.35 0.91 0.05 0.51

Table 1: Comparison of SYMNET3.0 with the baselines on 6 LR domains (bold denotes the best-performing neural model)
.

Model Tam Traffic Sys Skill Nav TT Recon Elev Acad CT GoL Wild Mean
PROST 0.86 0.91 0.76 0.84 0.00 0.03 0.59 0.91 0.64 0.34 0.32 0.57 0.56
SYMNET2 0.90 0.88 0.79 0.82 0.54 0.78 0.35 0.92 0.83 0.81 0.62 0.78 0.75
SYMNET3-KL 0.91 0.85 0.81 0.81 0.53 0.70 0.42 0.87 0.73 0.8 0.76 0.79 0.75
SYMNET3+KLD 0.90 0.85 0.83 0.77 0.85 0.67 0.29 0.71 0.78 0.78 0.61 0.77 0.73
SYMNET3+KL 0.90 0.85 0.82 0.70 0.71 0.74 0.24 0.91 0.80 0.80 0.41 0.18 0.67

Table 2: Comparison of SYMNET3.0 with the baselines on 12 IPPC domains (bold denotes best-performing neural model)

StNav where the safe corridor is always the first column.
3) Extreme Academic Advising (EAcad): A variant of
IPPC’s Acad, EAcad has a set of courses arranged in a di-
rected acyclic graph with some courses as program require-
ments that the agent has to complete in order to complete
the degree. The probability of completing a course without
completing all its pre-requisites is very low. Therefore, in
the optimal policy, a course should be taken only if it is an
ancestor of some far-away program requirement.
4) Safe Recon (SRecon): In this modification of IPPC’s
Recon, there is 2D-grid with multiple objects, and the robot
has to locate an object to apply a tool to get a reward. The
action may damage the object, so it may need to locate and
try on the next object.
5) Pizza Delivery (Pizza): This is a new domain, in which a
robot in a 2D-grid has to pick pizza from one of the outlets
and deliver it to a customer in the shortest time in a windy
(stochastic) environment. The robot should choose an outlet
that minimizes the total distance, rather than going to the
closest one.
6) Stochastic Wall (StWall): Another new domain, where
a robot has to reach a goal location in a 2D grid, where
the grid contains either a horizontal or a vertical wall. Each
cell in the wall has a high death probability except for one
randomly selected safe passage in between. An agent has to
locate the safe passage in the wall and reach the goal.

Training Details: In the spirit of domain-independent gen-
eralized planning, we use a single architecture (with fixed
hyperparameter setting) on all domains, and the validation
set is used only for early stopping. For each LR domain,
we generate 1000 training, 100 validation, and 200 test in-
stances with size (#state-fluents) increasing from train to val-
idation to test instances. And for standard IPPC domains, we

generate 200 training, 10 validation, and 40 test instances.5.
See the supplement for details on the instance sizes.

Similar to SYMNET2.0, we use state-of-the-art online plan-
ner PROST and generate 30 trajectories for each training
instance, and train using imitation learning on the first 300
transitions . As PROST is a sampling-based solver, it can
end up taking different actions for the same state; we remove
this ambiguity by choosing the most frequent action for each
state. We train for 48 hours for each of the 6 new domains
and for 24 hours each on the 12 IPPC domains. Each check-
point is evaluated on validation instances, and we pick the
one with the best average reward on the validation instances.

Comparison Algorithms: For SYMNET3.0, GATpre and
GATpost have depth 2 each, and there are 10 attention-
heads in the influence-layer for all domains (supplement has
further details). We use the loss function Limit − λLKL,
where Limit and LKL denote the imitation, KL-based loss
and λ is a hyperparameter. We implement three variations:
firstly SYMNET3.0-KL where λ = 0, and SYMNET3.0+KL
where λ = 0.1. Our eventual goal is indeed to create one
planner that can work for all domains. To this end, we de-
velop a third variation, SYMNET3.0+KLD where we keep
λ = 0.1 for first 2000 training batches and then linearly
decay λ from 1 to 0 in the next 1000 batches. We compare
SYMNET3.0 with SYMNET2.0, the existing state-of-the-art
model for this task. For fair comparison, we use a 4 depth
GAT to match SYMNET3.0’s total depth. In addition we
also report results of PROST in its default setting. We note
that a direct comparison is not meaningful, as PROST uses
interleaved planning and execution, whereas other models
are offline planners.

As mentioned in Section 3, for both SYMNET2.0 and SYM-

5Code released at https://github.com/dair-iitd/symnet3

1927

Figure 2: (a) Shows the color-coded locations of a 23× 23 instance of the DNav do-
main where R and G are the robot and goal. Fig. (b) and (c) show the 2D t-SNE plot
for node embeddings of the grid locations for SYMNET2.0 and SYMNET3.0+KL.

Figure 3: The attention map of the
influence-layer in the Pizza domain
for the R node.

NET3.0, we use edge-types in one instance-graph, rather
than having multiple instance-graphs. This allows both mod-
els to avoid high memory requirement issues on larger in-
stances. We tried the original SYMNET2.0 setting of multi-
ple instance graphs, but it does not scale to large instances.
We also tried dynamically varying the GAT depth propor-
tional to the instance size in SYMNET2.0, but this also leads
to training issues due to high computational requirements
(as observed earlier [Zambetta and Thangarajah, 2022]).

Evaluation metric: Following SYMNET2.0, for a given do-
main, we calculate a relative performance score for a method
m on an instance i as, α(m, i) = Vm(i)−Vrand(i)

Vmax(i)−Vrand(i)
∈

(−∞, 1], where Vm(i) and Vrand(i) denote methodm’s and
random policy’s reward, respectively. And, Vmax(i) denotes
the best reward by any method on instance i. Here, a value
of 0 marks the random policy score, and 1 implies the best
performance across all methods on all runs. Next, we cal-
culate α(m) = 1

|Itest|
∑

i∈Itest α(m, i), which is method
m’s score averaged over all test instances (Itest). Finally,
we report α(m) averaged over 5 independent runs.

5 RESULTS

Tables 1 and 2 show our results where each (i, j)th entry
gives the α value of ith model on the jth domain. The
bold numbers show the best-performing neural method. The
results for PROST are in gray as it is not a direct comparison.
The last column reports the average over all domains.

Long Range Domains: Table 1 shows that all varia-
tions of SYMNET3.0 outperform the improved baseline
SYMNET2.0 on all 6 new LR domains on the mean ag-
gregate metric with a margin of +10 α(m) points for
SYMNET3.0+KL, +16 for SYMNET3.0-KL, and +18
for SYMNET3.0+KLD. Interestingly, SYMNET3.0+KLD

outperforms SYMNET2.0 on all 6 LR domains. Interest-
ingly, SYMNET3.0+KLD is able to achieve a score of
+15 on StNav, where PROST and SYMNET2.0 fail to
give any meaningful policy, highlighting the inherent diffi-
culty of the domain. Similarly, for Pizza domain, PROST
again fails to perform well, and both SYMNET3.0-KL and

SYMNET3.0+KLD get a score of greater than +55 as com-
pared to SYMNET2.0’s +26.

IPPC Domains: SYMNET3.0-KL performs at par with
SYMNET2.0 on the IPPC domains. However, overall, SYM-
NET3.0+KL’s performance drops in comparison to SYM-
NET2.0, specifically on Skill, GoL, and Wild domains. We
hypothesize that as the training data increases, it should
perform at par with SYMNET2.0and we leave this analysis
for future work.

Use of KL divergence loss: In general, we note that us-
ing KL-based loss improves performance in some domains.
However, having a KL-based loss doesn’t give better perfor-
mance consistently across all domains. We hypothesize that
this is because the KL loss enforces a strong inductive bias,
where all attention heads must focus on different nodes in
the graph. Hence, in the case of domains without long-range
dependency, it could lead to attention on irrelevant nodes
causing overfitting. We also observed in certain domains
that sometimes the KL loss could lead to convergence prob-
lems during training. The investigation of this phenomenon
is left for future work. The overall performance of unified
model SYMNET3.0+KLD is best among all baselines for
LR domains, and marginally lower than SYMNET2.0 for
IPPC domains suggesting that the SYMNET3.0+KLD archi-
tecture is robust across multiple types of domains.

Model selection based on validation reward: Further,
when we select the best among SYMNET3.0’s variations
based on the validation set, we notice that for both IPPC and
LR settings, this model gives a slight boost in the overall
performance in comparison to the earlier best model. Addi-
tionally, SYMNET3.0 marginally outperforms SYMNET2.0
in the IPPC setting (see Supplement for results).

5.1 INSIGHTS

Visualizing node embeddings: Figure 2 shows the node em-
beddings of the locations of a DNav instance of size 23×23
as computed by SYMNET3.0+KL and SYMNET2.0. Each
grid location is color-coded (Figure 2(a)) and is marked as a
circle in Figure 2(b) and (c) where its 2-dimensional t-SNE

1928

embedding is used as the circle’s location. SYMNET3.0’s
node-embeddings retain the structure of a 2D grid. In com-
parison, SYMNET2.0 does not exhibit any such structure.

Visualizing influence-layer: Figure 3 shows an instance
of the Pizza domain with 3 pizza outlets (P), one customer
(C), and a robot (R). Figure 3 shows the attention map (βij)
of the influence-layer, averaged over all heads where i is
the node with the robot (R). We observe that SYMNET3.0
automatically learns to assign a high attention score to the
key nodes having information of Pizza outlets (P) and the
customer (C). This provides deeper insight into the learned
policy. Further, we observe that in this instance, the learned
policy by our model is the one that takes the robot to the P,
which minimizes the total distance to C. We observe similar
qualitative behavior for other domains (see supplement).

6 RELATED WORK

Generalized Planning: Earlier works for learning gen-
eralized policies for relational planning focus on learn-
ing generalized features that can be transferred across in-
stances [Fern et al., 2003, Guestrin et al., 2003, Mausam and
Weld, 2003]. Recent works try to learn generalized policies
using deep neural networks for both PPDDL [Toyer et al.,
2018, Ståhlberg et al., 2022a,b] and RDDL [Issakkimuthu
et al., 2018, Garg et al., 2019, 2020, Sharma et al., 2022].
Ståhlberg et al. [2022a,b] argue that the policies that can not
be written in two variable counting logic can not be repre-
sented using Graph Neural Networks. They also highlight
the problem of long-range dependencies; however, they do
not propose any solution. ASNet [Toyer et al., 2018] also fo-
cuses on PDDL (rather than RDDL), and has a tight coupling
with an online planner to learn generalized neural policies
for PPDDL. PPDDL and RDDL differ in their modeling
choices; for example, PPDDL provides an explicit goal state
definition, whereas RDDL does not. Neural solvers for both
of these depend heavily on these facts; for example, ASNet
relies on the availability of a goal state. Further, automati-
cally converting a domain from one to another would first
require grounding the representation, losing the first-order
semantics. Hence, it is difficult to have a direct comparison.
Another work by Silver et al. [2021] learns to predict ob-
jects’ importance with the goal of pruning the number of
objects. However, their target is to speed up planning rather
than generalize and hence not directly comparable to ours.

To the best of our knowledge, work by Issakkimuthu et al.
[2018] was the first to learn policies using neural networks
for RDDL RMDPs; however, they do not learn generalized
policies. A sequence of works [Bajpai et al., 2018, Garg
et al., 2019, 2020, Sharma et al., 2022] learns generalized
neural policies for RDDL RMDPs.

General Graph Neural Network techniques: Skip
connections-based approaches like JK-net [Xu et al., 2018]

focus on improving the learnability when the depth of the
GNN is increased but do not affect the representation prob-
lem of long-range dependence. Another approach is to use
hierarchical GNNs based on Pooling approaches like Diff-
pool [Ying et al., 2018] that stack blocks of message passing
and pooling blocks. However, these approaches select and
deselect nodes to be grouped together based on a learned
score and hence alter the notion of distance among nodes
– a notion critical in the planning problems. Moreover, to
handle size transfer, an architecture with a varying number
of message passing and pooling blocks are needed to han-
dle large instances. Hence, for any fixed-sized hierarchical
GNN, there is always a large enough instance such that the
given network does not have the capacity to capture all the
long-range dependencies.

7 CONCLUSION AND FUTURE WORK

We have studied the problem of capturing long-range de-
pendencies in neural architectures for learning policies in
RDDL RMDPs. We have proposed SYMNET3.0, which
defines the novel notion of influence graph defined over
state variables, with edges representing transitions between
them. The distance in the influence graph is incorporated
as a feature in the instance graph, to represent long range
dependencies, and the corresponding policies are learned
using a multi-headed attention architecture. Extensive ex-
perimentation shows that our approach is competitive on 12
IPPC domains, and does significantly better on six domains
designed to test long range dependencies, in comparison
with SOTA baselines.

One of the limitations of our work is the dependence on
an existing planner to generate training dataset for imita-
tion learning. Integrating SYMNET3.0 with RL for learning
generalised policies is a direction for future work. Another
potential limitation is that we only consider pairwise dis-
tances between nodes - it may not capture policies which
simultaneously depend on distances among a set of nodes;
this is another direction for future work. Applying our ap-
proach to the PPDDL-based RMDPs is also a direction for
future work.

Acknowledgements

This work is supported by IBM AI Horizon Networks
(AIHN) grant. Parag Singla is supported by IBM SUR
awards. Mausam is supported by grants from Huawei,
Google, Verisk, and a Jai Gupta Chair Fellowship. We thank
the IIT Delhi HPC facility for computational resources.
Any opinions, findings, conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views or official policies, either ex-
pressed or implied, of the funding agencies.

1929

References

Uri Alon and Eran Yahav. On the bottleneck of graph
neural networks and its practical implications. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=i80OPhOCVH2.

Aniket Bajpai, Sankalp Garg, and Mausam. Transfer of
deep reactive policies for MDP planning. In Annual
Conference on Neural Information Processing Systems
(NeurIPS), pages 10988–10998, 2018.

Craig Boutilier, Raymond Reiter, and Bob Price. Symbolic
dynamic programming for first-order mdps. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
volume 1, pages 690–700, 2001.

Alan Fern, Sungwook Yoon, and Robert Givan. Approxi-
mate policy iteration with a policy language bias. Ad-
vances in neural information processing systems, 16,
2003.

Sankalp Garg, Aniket Bajpai, and Mausam. Size indepen-
dent neural transfer for RDDL planning. In Proceedings
of the International Conference on Automated Planning
and Scheduling, volume 29, pages 631–636, 2019.

Sankalp Garg, Aniket Bajpai, and Mausam. Symbolic net-
work: generalized neural policies for relational mdps. In
International Conference on Machine Learning, pages
3397–3407, 2020.

Edward Groshev, Aviv Tamar, Maxwell Goldstein, Sid-
dharth Srivastava, and Pieter Abbeel. Learning gener-
alized reactive policies using deep neural networks. In
2018 AAAI Spring Symposium Series, 2018.

Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal
Kanodia. Generalizing plans to new environments in
relational mdps. In Proceedings of the 18th international
joint conference on Artificial intelligence, pages 1003–
1010, 2003.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Ville-
gas, David Ha, Honglak Lee, and James Davidson. Learn-
ing latent dynamics for planning from pixels. arXiv
preprint arXiv:1811.04551, 2018.

Murugeswari Issakkimuthu, Alan Fern, and Prasad Tade-
palli. Training deep reactive policies for probabilistic
planning problems. In Proceedings of the International
Conference on Automated Planning and Scheduling, vol-
ume 28, 2018.

Thomas Keller and Patrick Eyerich. Prost: Probabilis-
tic planning based on uct. In Twenty-Second Interna-
tional Conference on Automated Planning and Schedul-
ing, 2012.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights
into graph convolutional networks for semi-supervised
learning. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence. AAAI Press, 2018. ISBN 978-1-
57735-800-8.

Mausam and Andrey Kolobov. Planning with Markov Deci-
sion Processes: An AI Perspective. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2012.

Mausam and Daniel Weld. Solving relational MDPs with
first-order machine learning. In Proceedings of the Work-
shop on Planning under Uncertainty and Incomplete In-
formation, at ICAPS, 2003.

Rasmus Palm, Ulrich Paquet, and Ole Winther. Recurrent
relational networks. Advances in neural information pro-
cessing systems, 31, 2018.

Scott Sanner. Relational dynamic influence diagram lan-
guage (rddl): Language description. Unpublished ms.
Australian National University, 32:27, 2010.

Vishal Sharma, Daman Arora, Florian Geißer, Mausam,
and Parag Singla. Symnet 2.0: Effectively handling
non-fluents and actions in generalized neural policies
for rddl relational mdps. In Proceedings of the Thirty-
Eighth Conference on Uncertainty in Artificial Intelli-
gence, volume 180 of Proceedings of Machine Learn-
ing Research, pages 1771–1781. PMLR, 01–05 Aug
2022. URL https://proceedings.mlr.press/
v180/sharma22a.html.

Tom Silver, Rohan Chitnis, Aidan Curtis, Joshua B Tenen-
baum, Tomás Lozano-Pérez, and Leslie Pack Kaelbling.
Planning with learned object importance in large problem
instances using graph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, volume 35,
pages 11962–11971, 2021.

Simon Ståhlberg, Blai Bonet, and Hector Geffner. Learning
general optimal policies with graph neural networks: Ex-
pressive power, transparency, and limits. Proceedings of
the 32nd International Conference on Automated Plan-
ning and Scheduling, 2022a.

Simon Ståhlberg, Blai Bonet, and Hector Geffner. Learning
generalized policies without supervision using gnns. Pro-
ceedings of the 19th International Conference on Princi-
ples of Knowledge Representation and Reasoning, 2022b.

Sam Toyer, Felipe Trevizan, Sylvie Thiébaux, and Lexing
Xie. Action schema networks: Generalised policies with
deep learning. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

1930

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://proceedings.mlr.press/v180/sharma22a.html
https://proceedings.mlr.press/v180/sharma22a.html

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. International Conference on Learn-
ing Representations, 2018.

Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph
information bottleneck. Advances in Neural Information
Processing Systems, 33:20437–20448, 2020.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe,
Ken-ichi Kawarabayashi, and Stefanie Jegelka. Repre-
sentation learning on graphs with jumping knowledge
networks. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 5453–5462. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/
v80/xu18c.html.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,
Will Hamilton, and Jure Leskovec. Hierarchical graph
representation learning with differentiable pooling. Ad-
vances in neural information processing systems, 31,
2018.

Håkan LS Younes, Michael L Littman, David Weissman,
and John Asmuth. The first probabilistic track of the
international planning competition. Journal of Artificial
Intelligence Research, 24:851–887, 2005.

Fabio Zambetta and John Thangarajah. Oracle-sage: Plan-
ning ahead in graph-based deep reinforcement learning.
In Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Dis-
covery in Databases, 2022.

1931

https://proceedings.mlr.press/v80/xu18c.html
https://proceedings.mlr.press/v80/xu18c.html

SymNet 3.0: Exploiting Long-Range Influences in Learning
Generalized Neural Policies for Relational MDPs

(Supplementary Material)

Vishal Sharma*1 Daman Arora∗1 Mausam1 Parag Singla1

1Indian Institute of Technology Delhi {vishal.sharma, cs5180404, mausam, parags}@cse.iitd.ac.in

1 PROOFS

Theorem 4. For a node n in the influence graph, let L(n, k) denote the multi-set of node features of nodes that are exactly
k hops away from node n in the influence graph. In reference to theorem 1, given the features of nodes n1 and n2, if there
exists a k > 0 such that L(n1, k) ̸= L(n2, k), then, given a sufficiently powerful attention function SYMNET3.0 has the
power to learn the parameters that break the symmetry induced between s1 and s2 which have the features of nodes n1 and
n2 swapped.

Proof (Sketch). The high level intuition of the proof is that their will exist certain "key-nodes" in the graph which have
unique features. For example, in the Navigation domain, it will be the Goal location. For the Pizza domain, it would be
the location of the Pizza and the Customer. If a node is using distance from these key-nodes, then it is possible to break
symmetries induced by a fixed-depth GAT. The more the number of key-nodes, the easier it is to break the symmetry. The
formal proof is as follows:

Let Cf,n,d denote the number of times f occurs in L(n, d). As L(n1, k) ̸= L(n2, k), ∃f ′, s.t. Cf ′,n1,k ̸= Cf ′,n2,k. With
a sufficiently powerful attention function, in the state s1, node n1 can focus attention on f ′ to learn a node embedding
different from that of n2.

We construct one such set of parameters for SYMNET3.0 that will break the symmetry among s1 and s2 with respect to
nodes n1 and n2.

1. GATpre can learn an identity mapping for each node by focusing all attention on itself and those nodes in its
neighbourhood that have exactly the same features as itself while ignoring all other neighbours.

2. Next, consider the following (un-normalized) attention function in the influence layer.

e(fi, fj , dij) =

0 d = 0

0 fj = f ′, dij = k

−INF otherwise

where INF is a very large positive number.

3. Next, GATpost can also learn an identity mapping (similar to GATpre).

The above parameters ensure that, in the influence layer, any given node gives a non-zero attention weight (after normaliza-
tion) to itself and to any other node at a distance k having features f ′. In state s1, n1’s attention is spread over n1 and those
nodes at a distance k that have f ′ as their features. Therefore the influence embedding for n1 in s1 will be

Cf′,n1,k

Cf′,n1,k+1 ∗ k.

*Equal Contribution

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

Similarly for n2 in s2, it will be
Cf′,n2,k

Cf′,n2,k+1 ∗ k. Since Cf ′,n1,k ̸= Cf ′,n2,k, the embeddings will be different when the
features are swapped, thus breaking the symmetry among n1 in s1 and n2 in s2.

An example of attention function in the influence layer that can break symmetry: Additionally, we also provide an
explicit construction of attention weights of the influence layer, that is independent of f ′. Assume that the features of
nodes come from a finite-ordered set F and there exists a function idxF : F → N that returns the index of a feature in the
ordered-set F . Consider the un-normalized attention function for m,n ≥ 1,

am,n(fi, fj , dij) =

0 dij = 0

0 idx(fj) = m and dij = n

−INF otherwise
(1)

where −INF is a very large negative number. Since the influence layer has multi-head attention, we can assign each head
with a different attention function. Specifically, we assign am,n to the (n|F |+m)th attention head. Note that if a graph has
|G| nodes, this ensures there are atmost |G||F | attention heads.

Note that given these attention heads, it is possible to encode the multi-set of neighbours at a distance k in the influence
embedding! Let Cf,n,d denote the number of times feature f occurs in the d-hop neighbour of node n. If we’re given that
L(n1, k) ̸= L(n2, k), we can say that ∃f ′ ∈ F such that Cf,n1,k ̸= Cf,n2,k.

Consider the embedding of node n1 in state s1, specifically the athidx(f ′),k attention head which would correspond to
the (k|F |+ idx(f ′))th element of the influence embedding. Equal attention would be spread over n1 and Cf ′,n1,k nodes.

Therefore the aggregated distance would be
Cf′,n1,k

1+Cf′,n1,k
∗k. Correspondingly for n2 in s2, this element would be

Cf′,n2,k

1+Cf,n2,k
∗k.

Since Cf ′,n1,k ̸= Cf ′,n2,k the embedding for n1 in s1 would not equal the embedding for n2 in s2. A similar argument can
be made for n2 in s1 and n1 in s2. In practice this kind of a construction would require the dimension of the heads to scale
with the size of the graph, however this is an exaggeration in the practical setting. In practical domains, there are only a
fixed-small number of key features, and just considering the distance from them is sufficient for computing the policy.

2 RDDL EXAMPLE

The IPPC domain of Navigation is a 2D grid world where a robot has to reach a goal cell. Each cell in the grid has a death
probability with which the robot can die. The agent receives a +1 reward for reaching the goal and 0 otherwise.

Object Types: x, y

Non-Fluents: north(y, y), south(y, y), east(x, x), west(x, x), min_x(x), max_x(x),
prob(x, y), goal(x, y)

State-Fluents: robot_at(x, y)

Actions: move_north, move_south, move_east, move_west

3 EXPERIMENTAL DETAILS

• Data generation: For each domain, we generate 1000 training, 100 validation, and 200 test instances with size
increasing from train to val to test instances. Similar to SYMNET2.0, we use state-of-the-art online planner PROST
and generate 30 trajectories of each training instance using the default settings.

• Architectural Details: For our experiments with SYMNET2.0, we use a GAT with depth 4, having shared weights
across layers, each layer having 10 attention heads. For SYMNET3.0, both the pre-processing and post-processing
GATs are of depth 2 and have 10 attention heads, with shared weights. For SYMNET3.0, the influence layer uses 10
attention heads. The final node embedding dimension for both models is 20, and action decoders used are MLPs with 1
hidden layer of dimension 20.

• Training details: We train all models for 48 hours on a K40 GPU using imitation learning for LR domains and for 24
hours for IPPC domains. Each checkpoint is evaluated on validation instances and we pick the one with best average
for testing.

Figure 1: (left) Figure shows the attention map averaged across all heads for the robot’s location computed by SYM-
NET3.0+KL for the DNav domain. We note that the attention heads focus on the corners of the grid helping in the
localization of all nodes. (right) Figure shows the attention map averaged across all heads for the robot’s location computed
by SYMNET3.0+KL for the SRecon domain. Here, 0 and 1 denote the object 0 and object 1. We note that the attention
heads focus on one of the corners of the grid.

Figure 2: (left) Figure shows the attention map averaged across all heads for the robot’s location computed by SYM-
NET3.0+KL for the StNav domain. Here, the probability of death of each cell is written on the cell. We note that the
attention is focused on the entrance of the column which is safest. (right) Figure shows the attention map averaged across all
heads for the robot’s location computed by SYMNET3.0+KL for the StWall domain. Here, the attention is focuses on the
goal and the cells near the safe passage cell.

4 DETAILED RESULTS AND ATTENTION MAPS

The detailed results of experiments for each run of various models for LR domains is shown in Table 1 and for IPPC domains
is shown in Table 2

Tables 3 and 4 show the results when the best model among SYMNET3.0-KL, SYMNET3.0+KLD and SYMNET3.0+KL is
chosen based on validation scores..

Model SRecon Pizza DNav StWall EAcad StNav Mean

PROST 0.34 0.09 0.94 0.69 0.37 0 0.67

SYMNET2[1] 0.49 0.22 0.74 0.26 0.89 0 0.63
SYMNET2[2] 0.47 0.35 0.57 0.23 0.89 0.01 0.56
SYMNET2[3] 0.49 0.27 0.46 0.27 0.9 0 0.54
SYMNET2[4] 0.43 0.11 0.43 0.31 0.9 0.13 0.55
SYMNET2[5] 0.47 0.33 0.57 0.27 0.9 0.03 0.58

SYMNET3-KL[1] 0.63 0.65 0.86 0.47 0.95 0 0.76
SYMNET3-KL[2] 0.63 0.43 0.83 0.31 0.72 0.2 0.62
SYMNET3-KL[3] 0.73 0.69 0.87 0.42 0.81 0 0.7
SYMNET3-KL[4] 0.7 0.64 0.8 0.24 0.9 0.08 0.65
SYMNET3-KL[5] 0.72 0.66 0.86 0.24 0.95 0.09 0.68

SYMNET3+KLD[1] 0.64 0.42 0.96 0.44 0.96 0.43 0.79
SYMNET3+KLD[2] 0.55 0.82 0.91 0.31 0.9 0.01 0.71
SYMNET3+KLD[3] 0.59 0.55 0.88 0.4 0.86 0.11 0.71
SYMNET3+KLD[4] 0.72 0.44 0.92 0.31 0.94 0.04 0.72
SYMNET3+KLD[5] 0.61 0.67 0.88 0.41 0.95 0.17 0.75

SYMNET3+KL[1] 0.46 0.09 0.92 0.43 0.92 0.05 0.76
SYMNET3+KL[2] 0.65 0.31 0.93 0.33 0.91 0.02 0.72
SYMNET3+KL[3] 0.67 0.14 0.97 0.27 0.94 0.03 0.73
SYMNET3+KL[4] 0.66 0.18 0.93 0.36 0.95 0.15 0.75
SYMNET3+KL[5] 0.61 0.18 0.98 0.36 0.83 0 0.72

Table 1: Performance of all runs of different models on 6 LR domains.

5 SIZES OF INSTANCES

In the spirit of transfer, the sizes of instances increase from training to validation to test instances. A measure of size is the
number of state fluents present in the instance. We report the minimum and maximum of train, validation and the test sets
for LR domains in table 5 and for IPPC domains in table 6.

6 DOMAINS AND GENERATORS

1. Deterministic Navigation (DNav)
Deterministic Navigation involves a Robot and a Goal cell located in a square grid. For each step that the Robot is not
in the Goal cell, it receives a reward of -1. The optimal policy requires the Robot to reach the Goal in the minimum
number of timesteps. To generate instances, first the grid size is sampled uniformly from [Dmin, Dmax] and then the
goal and start cell of the robot is samples uniformly from the grid cells. Parameters for generation:

(a) Dmin: Minimum allowed grid dimension
(b) Dmax: Maximum allowed grid dimension.

To generate the train, validation, and test sets, we use the parameters mentioned in Table 7

2. Extreme Academic Advising (EAcad) Extreme Academic Advising consists of various courses which are arrange in
a Directed Acyclic Graph. Certain courses are program requirements. For each time step, every program requirement
that is not completed adds a negative reward to the total reward. In order to get high reward, an agent must complete
program requirements in the shortest amount of time possible. If all the pre-requisites of a course have been completed
then the probaility of completion of the course when attempted is 0.95. Otherwise, the probability of completion is
0.05. This incentivizes an agent to complete courses in the DAG order specifically leaving out courses which are not
ancestors to a requirement course. To generate the courses, we set L which is the number of levels, and C the number

Model Tam Traffic Sys Skill Nav TT Recon Elev Acad CT Wild GoL Mean

PROST 0.86 0.91 0.76 0.84 0 0.03 0.59 0.91 0.64 0.34 0.32 0.57 0.56

SYMNET2[1] 0.91 0.9 0.76 0.84 0.09 0.76 0.41 0.9 0.88 0.65 0.71 0.82 0.72
SYMNET2[2] 0.92 0.88 0.72 0.78 0.69 0.79 0.3 0.91 0.85 0.91 0.51 0.83 0.76
SYMNET2[3] 0.89 0.87 0.85 0.86 0.59 0.82 0.3 0.92 0.9 0.76 0.47 0.72 0.75
SYMNET2[4] 0.89 0.9 0.81 0.83 0.45 0.76 0.35 0.95 0.64 0.89 0.63 0.8 0.74
SYMNET2[5] 0.89 0.86 0.82 0.79 0.88 0.77 0.37 0.93 0.86 0.82 0.78 0.75 0.79

SYMNET3-KL[1] 0.92 0.85 0.87 0.85 0.78 0.77 0.21 0.92 0.89 0.76 0.88 0.82 0.79
SYMNET3-KL[2] 0.91 0.89 0.82 0.84 0.29 0.59 0.41 0.88 0.68 0.84 0.8 0.75 0.73
SYMNET3-KL[3] 0.93 0.83 0.75 0.84 0.2 0.8 0.61 0.88 0.62 0.81 0.64 0.78 0.72
SYMNET3-KL[4] 0.91 0.84 0.79 0.77 0.88 0.53 0.48 0.89 0.65 0.77 0.74 0.8 0.75
SYMNET3-KL[5] 0.89 0.82 0.83 0.73 0.5 0.79 0.41 0.76 0.79 0.8 0.73 0.82 0.74

SYMNET3+KLD[1] 0.9 0.85 0.81 0.76 0.87 0.77 0.23 0.94 0.92 0.77 0.66 0.79 0.77
SYMNET3+KLD[2] 0.89 0.86 0.83 0.83 0.84 0.82 0.36 0.28 0.55 0.86 0.66 0.83 0.72
SYMNET3+KLD[3] 0.9 0.83 0.85 0.75 0.86 0.76 0.19 0.81 0.78 0.81 0.58 0.69 0.73
SYMNET3+KLD[4] 0.91 0.87 0.84 0.84 0.8 0.8 0.37 0.86 0.8 0.72 0.7 0.76 0.77
SYMNET3+KLD[5] 0.9 0.86 0.8 0.67 0.87 0.22 0.31 0.66 0.86 0.76 0.47 0.77 0.68

SYMNET3+KL[1] 0.91 0.86 0.82 0.63 0.85 0.81 0.18 0.93 0.8 0.76 0.53 0.65 0.73
SYMNET3+KL[2] 0.9 0.86 0.78 0.7 0.85 0.8 0.29 0.9 0.89 0.72 0.56 -0.27 0.67
SYMNET3+KL[3] 0.91 0.86 0.84 0.68 0.87 0.66 0.27 0.9 0.75 0.89 0.21 0.76 0.72
SYMNET3+KL[4] 0.89 0.81 0.83 0.74 0.72 0.74 0.21 0.92 0.88 0.83 0.4 -0.1 0.66
SYMNET3+KL[5] 0.9 0.86 0.83 0.75 0.27 0.7 0.26 0.9 0.67 0.8 0.36 -0.13 0.6

Table 2: Performance of all runs of different models on 12 IPPC domains.

of courses per level. Additionally, each courses has, on average p number of prerequisites from the previous level.
The number of course requirements is R, and the are sampled with a probability proportional to the square of their
level. This is done so as to choose courses which require a lot of pre-requisites to be completed in order. Parameters of
generation are:

(a) Lmin: Minimum number of levels
(b) Lmax: Maximum number of levels
(c) Cmin: Minimum number of courses per level
(d) Cmax: Maximum number of courses per level
(e) p: Average number of pre-requisites

To generate train, val, and test sets, we use the parameters mentioned in Table 8.

3. Safe Recon (SRecon) In Safe Recon, an agent has to traverse on a rectangular grid and take pictures of object where it
detects life. Once an agent reaches at an object, it must apply tools("water" and "life"), in the correct order(first water,
then life). Tools can fail with some probability. Once life has been detected, the agent can take pictures which gives
it positive reward until the end of the episode. If an tool is damaged, it can go back to BASE to repair its tool or use
damaged tools. Using damaged tools is risky because the a negative reward is given for each photo clicked which
doesn’t have life. This domain is identical to the one used for IPPC 2014, with the difference being that we do not use
HAZARDS in our version. The parameters for instance generation are:

(a) Dmin Minimum grid size
(b) Dmax Maximum grid size
(c) Omin Minimum number of objects
(d) Omax Maximum number of objects
(e) pmin Minimum threshold for tool damage probability
(f) pmax Maximum threshold for tool damage probability

Model SRecon Pizza DNav StWall EAcad StNav Mean
PROST 0.34 0.09 0.94 0.69 0.37 0 0.41
SYMNET2 0.47 0.26 0.55 0.27 0.9 0.03 0.41
SYMNET3-KL 0.68 0.62 0.84 0.33 0.87 0.08 0.57
SYMNET3+KLD 0.62 0.58 0.91 0.38 0.92 0.15 0.59
SYMNET3+KL 0.61 0.18 0.95 0.35 0.91 0.05 0.51
SYMNET3(best val) 0.68 0.58 0.95 0.38 0.91 0.15 0.61

Table 3: Comparison of SYMNET3.0 variants with the baselines on 6 LR domains. The last row denotes the score of the
best among SYMNET3.0+KL, SYMNET3.0-KL and SYMNET3.0-KLD chosen on the basis of average validation reward.

Model Tam Traffic Sys Skill Nav TT Recon Elev Acad CT GoL Wild Mean
PROST 0.86 0.91 0.76 0.84 0 0.03 0.59 0.91 0.64 0.34 0.32 0.57 0.56
SYMNET2 0.9 0.88 0.79 0.82 0.54 0.78 0.35 0.92 0.83 0.81 0.62 0.78 0.75
SYMNET3-KL 0.91 0.85 0.81 0.81 0.53 0.7 0.42 0.87 0.73 0.8 0.76 0.79 0.75
SYMNET3+KLD 0.9 0.85 0.83 0.77 0.85 0.67 0.29 0.71 0.78 0.78 0.61 0.77 0.73
SYMNET3+KL 0.9 0.85 0.82 0.7 0.71 0.74 0.24 0.91 0.8 0.8 0.41 0.18 0.67
SYMNET3(best val) 0.91 0.85 0.83 0.81 0.85 0.67 0.42 0.91 0.78 0.8 0.76 0.79 0.78

Table 4: Comparison of SYMNET3.0 variants with the baselines on 12 IPPC domains. The last row denotes the score of the
best among SYMNET3.0+KL, SYMNET3.0-KL and SYMNET3.0-KLD chosen on the basis of average validation reward.

To generate the train, validation, and test sets we use the parameters mentioned in Table 9.

4. Pizza Delivery (Pizza) Pizza Delivery consists of a rectangular grid of width w and height h. In addition, the grid
contains d pizza shops which are subgoals. The agent must collect the pizza from any pizza shop and deliver it to the
customer in the minimum time possible. Additionally, a wind blows which can randomly push you to any neighbouring
cell. To generate domains, a start location s, customer location c and a special pizza shop location p′ is sampled
uniformly randomly. Next, to sample the remaining d− 1 goals, we remove all cells p such that

dist(s, p) ≥ dist(s, p′)

or
dist(s, p) + dist(c, p) ≤ dist(s, p′) + dist(c, p′)

This is done so that the planner doesn’t go to the nearest pizza shop but learns to minimize the sum of both dis-
tances(distance to shop+distance to customer). Out of the candidate cells, we sample with probability proportional to
the distance from s. Parameters for generation:

(a) wmin: Minimum grid width
(b) wmax: Maximum grid width
(c) hmin: Minimum grid height
(d) hmax Maximum grid height
(e) dmin: Minimum number of pizza shops
(f) dmax Maximum number of pizza shops

To generate the train, validation, and test sets we use the parameters mentioned in Table 10.

Domain Train(min) Train(max) Val(min) Val(max) Test(min) Test(max)
SRecon 48 193 208 249 373 924
Pizza 34 153 205 265 409 493

EAcad 8 36 42 192 120 320
StWall 25 100 121 225 256 400
DNav 81 196 225 324 400 625

Table 5: Number of state fluents for LR domains for training, validation, and test sets.

Domain Train(min) Train(max) Val(min) Val(max) Test(min) Test(max)
Acad 4 50 60 96 120 240
CT 12 84 112 144 180 312

GoL 4 36 42 64 81 100
Skill 6 42 12 42 30 60

Recon 29 81 68 107 120 257
TT 12 75 108 147 192 300

Wild 10 72 72 128 128 288
Tam 2 48 28 84 48 140
Elev 9 32 18 32 24 60

Traffic 32 80 32 80 56 104
Sys 2 15 2 14 15 25
Nav 9 49 25 90 120 120

Table 6: Number of state fluents for IPPC domains for training, validation and test sets.

Dmin Dmax Horizon
Train 9 14 40
Val 15 18 60
Test 20 25 60

Table 7: Table shows the parameters used in to generate instances in the DNav domain.

Lmin Lmax Cmin Cmax p Horizon
Train 2 8 2 8 1 40
Val 7 12 3 8 1 100
Test 12 20 5 8 1 200

Table 8: Table shows the parameters used in to generate instances in the EAcad domain.

Dmin Dmax Omin Omax pmin pmax Horizon
Train 6 13 2 4 0 0.5 40
Val 13 14 2 4 0 0.5 80
Test 18 19 2 4 0 0.5 80

Table 9: Table shows the parameters used in to generate instances in the SRecon domain.

wmin wmax hmin hmax dmin dmax Horizon
Train 5 12 5 12 2 4 100
Val 14 16 14 16 2 4 150
Test 20 22 20 22 2 4 200

Table 10: Table shows the parameters used in to generate instances in the Pizza domain.

nmin nmax Horizon
Train 5 10 40
Val 11 15 40
Test 16 20 40

Table 11: Table shows the parameters used in to generate instances in the StWall domain.

5. Stochastic Wall (StWall) Stochastic Wall consists of a square grid of dimension n. Uniformly randomly, a row or a
column is sampled to form a barrier. The start and goal location are sampled such that they lie on opposite sides of the
barrier. In the barrier, a cell is selected to be a safe passageway from one part of the grid to the other. Hitting the barrier
can cause death with some probability sampled from U(0.8, 1.0). The agent must navigate from his initial position to
the goal. The generation parameters are:

wmin wmax hmin hmax Horizon
Train 5 10 5 10 40
Val 11 15 11 15 40
Test 15 20 15 20 40

Table 12: Table shows the parameters used in to generate instances in the StNav domain.

(a) nmin: Minimum size of the grid.
(b) nmax: Maximum size of the grid.

To refer to the generation parameters for train, val and test splits, refer to table 11.

6. Stochastic Navigation (StNav) This domains consists of a grid of width w and height h. The bottom and top rows are
safe. The start state is sampled from the bottom row and the goal state is sampled in the top row. In the middle rows,
the robot can die with some probability. However, there exists a single column which has very low death probability
from U(0.045, 0.055). For all other column, the death probability in each cell is from U(0.88, 0.92). This task has long
range dependencies because the agent has to decide which column to enter into. The column could be very far and thus
SYMNET2.0might not be able to decide which direction to take. The generation parameters are:

(a) wmin: Minimum width of the grid.
(b) wmax: Maximum width of the grid.
(c) hmin: Minimum height of the grid.
(d) hmax: Maximum height of the grid.

To refer to the generation parameters for train, val and test splits, refer to table 12

