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Abstract

Data-driven algorithm design automatically adapts algorithms to specific application do-
mains, achieving better performance. In the context of parameterized algorithms, this ap-
proach involves tuning the algorithm’s hyperparameters using problem instances drawn from
the problem distribution of the target application domain. This can be achieved by max-
imizing empirical utilities that measure the algorithms’ performance as a function of their
hyperparameters, using problem instances.
While empirical evidence supports the effectiveness of data-driven algorithm design, pro-
viding theoretical guarantees for several parameterized families remains challenging. This
is due to the intricate behaviors of their corresponding utility functions, which typically
admit piecewise discontinuous structures. In this work, we present refined frameworks for
providing learning guarantees for parameterized data-driven algorithm design problems in
both distributional and online learning settings.
For the distributional learning setting, we introduce the Pfaffian GJ framework, an extension
of the classical GJ framework, that is capable of providing learning guarantees for function
classes for which the computation involves Pfaffian functions. Unlike the GJ framework,
which is limited to function classes with computation characterized by rational functions,
our proposed framework can deal with function classes involving Pfaffian functions, which
are much more general and widely applicable. We then show that for many parameterized
algorithms of interest, their utility function possesses a refined piecewise structure, which
automatically translates to learning guarantees using our proposed framework.
For the online learning setting, we provide a new tool for verifying the dispersion prop-
erty of a sequence of loss functions, a sufficient condition that allows no-regret learning
for sequences of piecewise structured loss functions where the piecewise structure involves
Pfaffian transition boundaries. We use our framework to provide novel learning guarantees
for many challenging data-driven design problems of interest, including data-driven linkage-
based clustering, graph-based semi-supervised learning, and regularized logistic regression.

1 Introduction

Data-driven algorithm design (Ailon et al., 2011; Gupta & Roughgarden, 2016; Balcan, 2020) is a modern
approach that develops and analyzes algorithms based on the assumption that problem instances come from
an underlying application domain. Unlike traditional worst-case or average-case analyses, this approach
leverages observed problem instances to design algorithms that achieve high performance for specific problem
domains. In many application domains (Balcan et al., 2017; 2018a; 2022a), algorithms are parameterized,
meaning they are equipped with tunable hyperparameters which significantly influence their performance.
We develop general techniques applicable to a large variety of parameterized algorithm families for the
selection of domain-specific good algorithms by learning the hyperparameters from the problem instances
coming from the domain.

Typically, the performance of an algorithm is evaluated by a specific utility function. In more concrete
terms, for an algorithm parameterized by a ∈ A, consider the utility function class U = {ua : X → [0, H] |
a ∈ A}, where ua(x) gauges the performance of the algorithm with hyperparameters a when inputting
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a problem instance x. In the data-driven algorithm design setting, we assume an unknown underlying
distribution D over X , representing the application domain on which the algorithm operates. Consequently,
designing parameterized algorithms tailored to a specific domain corresponds to the optimal selection of
hyperparameters a for the given domain.

Applications of data-driven algorithm design span various domains, including low-rank approximation (Indyk
et al., 2019; 2021; Li et al., 2023), sparse linear systems solvers Luz et al. (2020), dimensionality reduction
Ailon et al. (2021), among others. Its empirical success (Indyk et al., 2019; Ailon et al., 2011; Indyk et al.,
2021) underscores the necessity for a theoretical understanding of this approach. Intensive efforts have been
made towards theoretical understanding for data-driven algorithm design, including learning guarantees for
numerical linear algebra methods (Bartlett et al., 2022), tuning regularization hyperparameters for regression
problems (Balcan et al., 2022a; 2023b), unsupervised and semi-supervised learning (Balcan et al., 2018c;
2020a; Balcan & Sharma, 2021), application to integer and mixed-integer programming (Balcan et al., 2018a;
2021b), to name but a few.

Prior theoretical work on data-driven algorithm design focuses on two main settings: distributional (also
known as statistical/batch) learning (Balcan et al., 2021a; Bartlett et al., 2022) and online learning (Balcan
et al., 2018b). In the distributional learning setting, there is a learner trying to optimize hyperparameters
for the algorithm within a specific domain, given access to problem instances from that domain. In this
case, the question is about the sample complexity: How many problem instances are required to learn good
hyperparameters that guarantee the algorithm’s performance in that domain? In the online learning setting,
there is a sequence of problem instances chosen by an adversary arriving over time. The goal now is to
design a no-regret learning algorithm: adjusting the algorithm’s hyperparameters on the fly so that the
difference between the average utility and the utility corresponding to the best hyperparameters in hindsight
diminishes over time.

The main challenge in establishing learning guarantees for the utility function classes lies in the complex
structure of the utility function. In other words, even a minimal perturbation in a can lead to a drastic change
in the performance of the algorithm, making the analysis of such classes of utility functions particularly
challenging. In response to this challenge, prior work takes an alternative approach by analyzing the dual
utility function class U∗ = {u∗

x : A → [0, H] | x ∈ X }, of which each function often admits piecewise
structured behavior (Balcan et al., 2021a; 2017; Bartlett et al., 2022).

Building upon this observation, in the distributional learning setting, Balcan et al. (2021a) propose a general
approach that analyzes the learnability of the utility function class via the piece and boundary functions class
induced by the piecewise structure. Targeting a more restricted scenario, Bartlett et al. (2022) introduced a
refinement for the GJ framework (Goldberg & Jerrum, 1993), which establishes tighter guarantees for utility
function classes of which the piecewise structure involves only rational functions. In the online learning
setting, Balcan et al. (2018b) introduce the dispersion condition, which serves as a sufficient condition
allowing no-regret learning for piecewise Lipschitz functions. Essentially, the dispersion property implies
that if the discontinuities of utility function sequences do not densely concentrate in any small region of the
hyperparameter space, then no-regret learning is possible.

Despite their broad applicability, these generalized frameworks exhibit inherent limitations. In the distribu-
tional learning setting, the framework introduced by Balcan et al. (2021a) reduces the problem of computing
the learning-theoretic complexity of a piecewise structured utility function to the complexities of the corre-
sponding piece and boundary functions, but these might themselves be challenging to compute for certain
function classes. The refined GJ framework instantiated by Bartlett et al. (2022) is limited to the cases
where the computation of utility functions only involves rational functions of the hyperparameters. For the
online learning setting, the dispersion property is generally challenging to verify (Balcan et al., 2018b; 2020b;
Balcan & Sharma, 2021), and requires further assumptions on the discontinuity of utility functions sequence.
Moreover, when the form of discontinuities goes beyond affine and rational functions, prior techniques for
verifying dispersion no longer apply.

Motivated by the limitations of prior research, part of this work aims to present refined theoretical frameworks
for data-driven algorithm design when the utility function admits a specific structure. In the distributional
learning setting, we introduce a powerful Pfaffian GJ framework that can establish learning guarantees for

2



Under review as submission to TMLR

function classes whose discontinuity involves Pfaffian functions. Roughly speaking, Pfaffian is a very general
class of functions that captures a wide range of functions of interest, including rational, exponentiation, and
combinations of those, among others. Furthermore, we demonstrate that many data-driven algorithm design
problems exhibit a specific refined Pfaffian piecewise structure, which, when combined with the Pfaffian GJ
framework, can establish learning guarantees for such problems. In the online learning setting, we introduce
a novel tool to verify the dispersion property, where the discontinuity of utility function sequences involves
Pfaffian functions, which go beyond affinity and rational functions.

Another aim of this work is to provide learning guarantees for several under-investigated data-driven al-
gorithm design problems, where the piecewise structure of the utility functions involves Pfaffian functions.
The problems we consider have been investigated in simpler settings, including data-driven agglomerative
hierarchical clustering (Balcan et al., 2017; 2020a), data-driven semi-supervised learning (Balcan & Sharma,
2021), and data-driven regularized logistic regression (Balcan et al., 2023b). However, previous investigations
have limitations: they either have missing results for natural extensions of the settings under study (Balcan
et al., 2017; Balcan & Sharma, 2021), require strong assumptions (Balcan et al., 2020a), or solely consider
distributional learning settings (Balcan et al., 2023b). Moreover, we emphasize that the techniques used in
prior work are insufficient and cannot be applied in our settings, which involve Pfaffian analysis.

By carefully analyzing the utility functions associated with these problems, we uncover their underlying
Pfaffian structures and carefully control the corresponding Pfaffian complexities, which allows us to leverage
our proposed frameworks to establish learning guarantees. It is important to note that analyzing those
specific problems poses a significant challenge: a loose estimation of the Pfaffian function complexity when
combined with our proposed frameworks would still lead to loose or vacuous learning guarantees.

Contributions. In this work, we provide a refined framework for theoretical analysis of data-driven algo-
rithm design problems. We then investigate many under-investigated data-driven algorithm design problems,
analyzing their underlying problem structure, and then leveraging our newly proposed frameworks to provide
learning guarantee for those problems. Concretely, our contributions are :

• We present the Pfaffian GJ framework (Definition 5, Theorem 4.2), a general approach for analyzing
the pseudo-dimension of various function classes of interest. This framework draws inspiration from
the refined version of the GJ framework introduced by Bartlett et al. (2022). However, in contrast
to the conventional GJ framework which is only capable of handling computation related to rational
functions, the Pfaffian GJ framework can handle computations that involve Pfaffian functions—a much
broader function class—significantly increasing its applicability. We note that our proposed Pfaffian GJ
framework is of independent interest and can be applied to other problems beyond data-driven algorithm
design.

• For distributional learning (statistical/batch) data-driven algorithm design, we introduce a refined piece-
wise structures (Definition 8) for the dual utility function class, which applies whenever the piece and
boundary functions are Pfaffian. In contrast to the prior piecewise structure proposed by (Balcan et al.,
2021a; Bartlett et al., 2022), our framework can be used to obtain concrete learning guarantees when the
piece and boundary functions belong to the class of Pfaffian functions, which includes widely used utility
functions, including the exponential and logarithmic functions. We then show how the refined piecewise
structure can be combined with the newly proposed Pfaffian GJ framework to provide learning guarantees
(Theorem 5.2) for problems that satisfy this property.

• For online learning data-driven algorithm design, we introduce a general approach (Theorem 7.2, The-
orem 7.3) for verifying the dispersion property (Balcan et al., 2018b)—a sufficient condition for online
learning in data-driven algorithm design. Prior work (Balcan et al., 2020b; Balcan & Sharma, 2021)
provides techniques for verifying dispersion only when the piece boundaries are algebraic functions. We
significantly expand the class of functions for which online learning guarantees may be obtained by es-
tablishing a novel tool which applies for Pfaffian boundary functions.

• We derive novel learning guarantees for a variety of understudied data-driven algorithm design problems,
including data-driven agglomerative clustering (Theorem 6.1), data-driven graph-based semi-supervised
learning (Theorem 6.4), as well as recover the guarantee for data-driven regularized logistic regression in
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previous work by Balcan et al. (2023b). By carefully analyzing the underlying structures of the utility
functions for these problems, we can convert them into the form of our proposed frameworks, which
automatically yield learning guarantees.

2 Related work

Data-driven algorithm design. Data-driven algorithm design (Ailon et al., 2011; Gupta & Roughgar-
den, 2016; Balcan, 2020) is a modern approach for automatically configuring algorithms and making them
adaptive to specific application domains. In contrast to conventional algorithm design and analysis, which
predominantly focuses on worst-case or average-case scenarios, data-driven algorithm design assumes the ex-
istence of an (unknown) underlying problem distribution that dictates the problem instance that algorithms
encounter. The main objective is to identify optimal configurations for such algorithms, leveraging available
problem instances at hand drawn from the same application domain. Empirical works have consistently val-
idated the effectiveness of data-driven algorithm approaches in various domains, including matrix low-rank
approximation (Indyk et al., 2019; 2021), matrix sketching (Li et al., 2023), mixed-integer linear program-
ming (Cheng et al., 2024), among others. These findings underscore the application of the data-driven
algorithm design approach in real-world applications.

Distributional learning guarantee for data-driven algorithm design. Motivated by the empiri-
cal successes of data-driven algorithm design, there is an emerged line of work that focuses on theoreti-
cally analyzing its underlying mechanism, mostly focusing on providing statistical generalization guarantees.
This includes learning guarantee for data-driven algorithm designs of low-rank approximation and sketching
(Bartlett et al., 2022), learning metrics for clustering (Balcan et al., 2020a; Balcan & Sharma, 2021; Balcan
et al., 2018c), integer and mixed-integer linear programming (Balcan et al., 2021b; 2022b; 2018a), hyper-
parameter tuning for regularized regression (Balcan et al., 2022a; 2023b), decision tree learning (Balcan &
Sharma, 2024), robust nearest-neighbors (Balcan et al., 2023a) among others.

Remarkably, Balcan et al. (2021a) introduced a general framework for establishing learning guarantees for
problems that admit a specific piecewise structure. Despite its broad applicability, the framework exhibits
limitations: (1) it requires an intermediate task of analyzing the dual piece and boundary function classes,
which are not trivial tasks, and (2) naively applying the framework will likely lead to sub-optimal bounds
(see Balcan et al., 2020a, Lemma 7, or Bartlett et al., 2022, Appendix E.3 for example). Building upon this
insight, Bartlett et al. (2022) instantiated a refinement of the classical GJ framework (Goldberg & Jerrum,
1993), offering an improved learning guarantee for data-driven algorithm design where the piecewise structure
involves only rational functions. However, it is essential to note that their framework has limitations since
it cannot be applied beyond rational structures.

Online learning guarantee for data-driven algorithm design. Another line of work focuses on pro-
viding no-regret learning guarantees for data-driven algorithm design problems in online learning settings.
This includes online learning guarantees for heuristic knapsack, SDP-rounding for integer quadratic program-
ming Balcan et al. (2017), and data-driven linkage-based clustering Balcan et al. (2020b), among others.

Online learning for data-driven algorithm design is generally a challenging task due to the discontinuity
and piecewise structure of the utility functions encountered. Most works provide learning guarantees in this
setting by verifying the dispersion of the utility function sequence, a sufficient condition proposed by Balcan
et al. (2018b) stating that the discontinuity of the sequence is not highly concentrated in any small region.
However, verifying the dispersion property is generally challenging. Balcan et al. (2020b) provided a tool for
verifying the dispersion property, targeting cases where the discontinuity is described by the roots of random
polynomials for one-dimensional hyperparameters or algebraic curves in the two-dimensional case. Balcan
& Sharma (2021) then generalize this, providing a tool for discontinuities described by algebraic varieties in
higher-dimensional cases.

Algorithms with predictions. Another modern approach for design algorithms is algorithms with predic-
tions (Mitzenmacher & Vassilvitskii, 2022), in which prediction is integrated at certain stages of algorithms
to enhance their performance. Typically, this approach assumes the existence of a machine learning model
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capable of receiving problem instances as input and generating predictions specific to each instance. The
performance analysis of these algorithms is closely tied to the quality of predictions generated by the machine
learning models. A higher quality of predictions generally correlates with improved algorithmic performance.
Hence, the algorithm, now integrated with predictive models, is analyzed based on its inherent algorithmic
performance and the quality of predictions. Algorithms with predictions have proved their efficacy in various
classical problems, including support estimation (Eden et al., 2021), page migration (Indyk et al., 2022),
online matching, flows, and load balancing (Lavastida et al., 2020), among others (Khodak et al., 2022;
Lykouris & Vassilvitskii, 2021; Wei & Zhang, 2020).

While having many similarities and overlapping traits, there is a fundamental distinction between the two
approaches. Data-driven algorithm design primarily seeks to optimize algorithmic hyperparameters directly
for specific application domains. On the other hand, algorithms with predictions aim to incorporate predic-
tion in some stages, with the hope that it will improve the performance of the algorithms if the quality of
the prediction is good. Besides, algorithms with predictions also have to decide what qualities or quantities
in the algorithms to predict, and how to predict using the input problem instance, which heavily affects the
performance and properties of algorithms. It is worth noting that these two directions can complement each
other and be integrated into the same system, as explored in numerous prior studies.

3 Preliminaries

In this section, we adhere closely to the problem setting and notation introduced by Balcan et al. (2021a).

Parameterized algorithms, utility function class, and dual utility function class. In this work, our
main focus is on parameterized algorithms, in which each algorithm has a set of hyperparameters a ∈ A ⊆ Rd

that have great influence on the performance of the algorithm. Let X represent the set of input problem
instances on which the algorithm operates. The performance of the algorithm for any hyperparameter is
measured by the utility function u : X × A → [0, H], where u(x, a) represents the performance of the
algorithm when operating on input problem instance x and be parameterized by a. The utility function
class U of the algorithm is then defined as U = {ua : X → [0, H] | a ∈ A}. The utility function class
U plays a central role in our analysis since the problem of tuning hyperparameter a for the algorithm can
be formulated as the problem of analyzing the learnability of U in both distributional and online learning
described below.

However, in data-driven algorithm design, the structure of the utility function class U can be very intricate in
the sense that: (1) a very small variation of the hyperparameter a can lead to sharp, unpredictable changes in
the utility function ua, and (2) the utility function ua corresponding to a fixed a admits a very complicated
structure as a function of x. Hence, analyzing U is often conducted via analyzing the dual utility function
class U∗, which often admits a certain degree of structure. The dual utility function class U∗ of U can be
defined as U∗ = {u∗

x : A → [0, H] | x ∈ X }, of which each dual utility function u∗
x corresponding to a fixed

problem instance x is defined as u∗
x(a) := ua(x), which consists of utility functions obtained by varying the

hyperparameter a for fixed problem instances from X . In this work, we will show that if U∗ admits Pfaffian
piecewise structure, we can recover the distributional and online learning guarantees for the utility function
class U in several cases of interest.

Distributional (statistical/batch) learning. In contrast to traditional worst-case or average-case algo-
rithm analysis, we assume the existence of an underlying problem distribution D over X , which encapsulates
information about the relevant application domain. Under such an assumption, our goal is to answer the
sample complexity question, i.e. how many problem instances are sufficient to learn near-optimal hyperpa-
rameters of the algorithm for any application-specific problem distribution. To this end, it suffices to bound
the pseudo-dimension (Pollard, 2012) of the corresponding utility function class U .

Definition 1 (Pseudo-dimension, Pollard 2012). Consider a real-valued function class U , of which each func-
tion takes input in X . Given a set of inputs S = (x1, . . . , xN ), we say that S is shattered by U if there exists
a set of real-valued threshold r1, . . . , rN ∈ R such that |{(sign(u(x1) − r1), . . . , sign(u(xN ) − rN )) | u ∈ U}| =
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2N . The pseudo-dimension of U , denoted as Pdim(U), is the maximum size N of a input set that U can
shatter.

If the function class U is binary-valued, this corresponds to the well-known VC-dimension (Vapnik & Cher-
vonenkis, 1974). Standard results in learning theory suggest that a bound on the pseudo-dimension implies a
bound on the sample complexity (See Appendix A.1 for further background), which is formalized as follows.
Theorem 3.1 (Vapnik & Chervonenkis, 1974). Consider a real-valued function class U , of which each
function takes value in X . Assume that Pdim(U) is finite and U is bounded by H. Then given ϵ > 0 and
δ ∈ (0, 1), for any m ≥ m(δ, ϵ), where m(δ, ϵ) = O

(
H2

ϵ2 (Pdim(F) + log(1/δ)
)

, with probability at least 1 − δ

over the draw of S = (x1, . . . , xm) ∼ Dm, we have

Ex∼D(ûS(x)) ≥ sup
u∈U

Ex∼Du(x) − ϵ.

Here ûS ∈ arg maxu∈U
1
m

∑m
i=1 u(xi).

Online learning. In the online learning setting, there is a sequence of utility functions u(x1, ·), . . . , u(xT , ·)
corresponding to a sequence of problem instances (x1, . . . , xT ), coming over T rounds. The task is to design a
sequence of hyperparameters (a1, . . . , aT ) for the algorithm so that the regret (w.r.t. the best hyperparameter
in hindsight) is small

RegretT = max
a∈A

T∑
t=1

u(xt, a) −
T∑

t=1
u(xt, at).

Our goal is to design a sequence of hyperparameters a1, . . . , aT that achieve sub-linear regret.

4 Pfaffian GJ framework for data-driven algorithm design

In a classical work, Goldberg & Jerrum (1993) introduced a comprehensive framework for bounding the
VC-dimension (or pseudo-dimension) of parameterized function classes exhibiting a specific property. They
proposed that if any function within a given class can be computed via a specific type of computation,
named a GJ algorithm, consisting of fundamental operators such as addition, subtraction, multiplication,
division, and conditional statements, then the pseudo-dimension of such a function class can be effectively
upper bounded. The bound depends on the running time of the algorithm, offering a convenient approach
to reduce the task of bounding the complexity of a function class into the more manageable task of counting
the number of operators.

However, a bound based on runtime can often be overly conservative. Recently, Bartlett et al. (2022)
instantiated a refinement for the GJ framework. Noting that any intermediate values the GJ algorithm
computes are rational functions of parameters, Bartlett et al. proposed more refined complexity measures
of the GJ framework, namely the predicate complexity and the degree of the GJ algorithm. Informally, the
predicate complexity and the degree are the number of distinct rational functions in conditional statements
and the highest order of those rational functions, respectively. Remarkably, based on the refined complexity
measures, Bartlett et al. showed a refined bound, demonstrating its efficacy in various cases, including
applications on data-driven algorithm design for numerical linear algebra.

It is worth noting that the GJ algorithm has limitations as it can only accommodate scenarios where inter-
mediate values are rational functions. In other words, it does not capture more prevalent classes of functions,
such as the exponential function. Building upon the insights gained from the refined GJ framework, we in-
troduce an extended framework called the Pfaffian GJ Framework. Our framework can be used to bound the
pseudo-dimension of function classes that can be computed not only by fundamental operators and condi-
tional statements but also by a broad class of functions called Pfaffian functions, which includes exponential
and logarithmic functions. Technically, our result is a refinement of the analytical approach introduced by
(Khovanski, 1991; Karpinski & Macintyre, 1997; Milnor & Weaver, 1997) which is directly applicable to
data-driven algorithm design. An important part of our contribution is a careful instantiation of our main
result for several important algorithmic problems, as a naive application could result in significantly looser
bounds on the sample complexity.
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4.1 Pfaffian functions

We present the foundational concepts of Pfaffian chains, Pfaffian functions, and their associated complexity
measures. Introduced by Khovanski (1991), Pfaffian function analysis is a tool for analyzing the properties
of solution sets of Pfaffian equations. We note that these techniques have been previously used to derive an
upper bound on the VC-dimension of sigmoidal neural networks (Karpinski & Macintyre, 1997).

We first introduce the notion of a Pfaffian chain. Intuitively, a Pfaffian chain consists of an ordered sequence
of functions, in which the derivative of each function can be represented as a polynomial of the variables and
previous functions in the sequence.
Definition 2 (Pfaffian Chain, Khovanski 1991). A finite sequence of continuously differentiable functions
η1, . . . , ηq : Rd → R and variables a = (a1, . . . , ad) ∈ Rd form a Pfaffian chain C(a, η1, . . . , ηq) if there are
real polynomials Pi,j(a, η1, . . . , ηj) in a1, . . . , ad, η1, . . . , ηj, for for all i ∈ [d] and j ∈ [q], such that

∂ηj

∂ai
= Pi,j(a, η1, . . . , ηj).

Here, we emphasize again that Pi,j(a, η1, . . . , ηj) is a polynomial in a and the functions η1(a), . . . , ηj(a) of
a. We now define two complexity notations for Pfaffian chains, termed the length and Pfaffian degree, that
dictate the complexity of a Pfaffian chain. The length of a Pfaffian chain is the number of functions that
appear on that chain, while the Pfaffian degree of a chain is the maximum degree of polynomials that can be
used to express the partial derivative of functions on that chain. Formal definitions of Pfaffian chain length
and Pfaffian degree are mentioned in Definition 3.
Definition 3 (Complexity of Pfaffian chain). Given a Pfaffian chain C(a, η1, . . . , ηq), as defined in Definition
2, we say that the length of C is q, and Pfaffian degree of C is maxi,j deg(Pi,j).

Given a Pfaffian chain, one can define the Pfaffian function, which is simply a polynomial of variables and
functions on that chain.
Definition 4 (Pfaffian functions, Khovanski 1991). Given a Pfaffian chain C(a, η1, . . . , ηq), as defined in
Definition 2, a Pfaffian function over the chain C is a function of the form g(a) = Q(a, η1, . . . , ηq), where
Q is a polynomial in variables a and functions η1, . . . , ηq in the chain C.

The concepts of the Pfaffian chain, functions, and complexities may be a bit abstract to unfamiliar readers.
To help readers better grasp the concepts of Pfaffian chains and Pfaffian functions, here are some simple
examples.

Example 1. Consider the chain C(a, ea) consisting of the variable a and the function ea, where a ∈ R.
Then C is a Pfaffian chain since d

da ea = ea, which is a polynomial of degree 1 in ea. Hence, the chain C has
length q = 1 and Pfaffian degree M = 1. Now, consider the function f(a) = (ea)2 + a3. We observe that
f(a) is a polynomial in a and ea. Therefore, f(a) is a Pfaffian function over the chain C.

Example 2. The following example is useful when analyzing the learnability of clustering algorithms. Let
β = (β1, . . . , βk) ∈ Rk and α ∈ R be variables, and let d(β) =

∑k
i=1 diβi > 0, where di are some fixed real

coefficients for i = 1, . . . , k. Consider the functions f(α, β) := 1
d(β) , g(α, β) := ln d(β), and h(α, β) := d(β)α.

Then f , g, and h are Pfaffian functions from the chain C(α, β, f, g, h) of length 3 and Pfaffian degree 2, since

∂f

∂α
= 0,

∂f

∂βi
= −di · f2,

∂g

∂α
= 0,

∂g

∂βi
= di · f,

∂h

∂α
= g · h,

∂h

∂βi
= di · f · h.
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4.2 Pfaffian GJ Algorithm

We now present a formal definition of the Pfaffian GJ algorithm, which shares similarities with the GJ
algorithm but extends its capabilities to compute Pfaffian functions as intermediate values, in addition to
basic operators and conditional statements. This improvement makes the Pfaffian GJ algorithm significantly
more versatile compared to the classical GJ framework.
Definition 5 (Pfaffian GJ algorithm). A Pfaffian GJ algorithm Γ operates on real-valued inputs a ∈ A ⊆ Rd,
and can perform three types of operations:

• Arithmetic operators of the form v′′ = v ⊙ v′, where ⊙ ∈ {+, −, ×, ÷}.

• Pfaffian operators of the form v′′ = η(v), where η : R → R is a Pfaffian function.

• Conditional statements of the form “if v ≥ 0 . . . else . . . ”.

Here v and v′ are either inputs or (intermediate) values previously computed by the algorithm.

The main difference between the classical GJ algorithm (Goldberg & Jerrum, 1993; Bartlett et al., 2022)
and our Pfaffian GJ algorithm is that we allow unary Pfaffian operators in the algorithmic computation.
By leveraging the fundamental properties of Pfaffian chains and functions, we can easily show that all
intermediate functions computed by a specific Pfaffian GJ algorithm come from the same Pfaffian chain
(see Appendix B.1 for details). Therefore, for a Pfaffian GJ algorithm Γ, we can define a Pfaffian chain C
corresponding to Γ, as formalized below.
Definition 6 (Pfaffian chain associated with Pfaffian GJ algorithm). Given a Pfaffian GJ algorithm Γ
operating on real-valued inputs a ∈ A ⊆ Rd, we say that a Pfaffian chain C is associated with Γ if all the
intermediate values computed by Γ is a Pfaffian function from the chain C.

This remarkable property enables us to control the complexity of the Pfaffian GJ algorithm Γ by controlling
the complexity of the corresponding Pfaffian chain C. We formalize this claim in the following lemma.
Lemma 4.1. For any Pfaffian GJ algorithm Γ involving a finite number of operations, there is a Pfaffian
chain C of finite length associated with Γ.

Proof Sketch. The Pfaffian chain C can be constructed recursively as follows. Initially, we create a Pfaffian
chain of variables a with length 0. Using the basic properties of Pfaffian functions discussed in Appendix
B.1, each time Γ computes a new value v, one of the following cases arises: (1) v is a Pfaffian function on
the current chain C, or (2) we can extend the chain C by adding new functions, increasing its length (but
still finite), such that v becomes a Pfaffian function on the modified chain C. □

Remark 1. We note that each Pfaffian GJ algorithm Γ can be associated with various Pfaffian chains,
with different complexities. For example, if C(a, η1, . . . , ηq) is a Pfaffian chain corresponding to Γ, then
C′(a, η1, . . . , ηq, ea1) is also a Pfaffian chain corresponding to Γ, but with a greater length compared to C.
Therefore, in any specific application, designing the corresponding Pfaffian chain C for Γ with a small com-
plexity is a crucial task that requires careful analysis.

We now present our main technical tool, which can be used to bound the pseudo-dimension of a function class
by expressing the function computation as a Pfaffian GJ algorithm and giving a bound on the complexity
of the associated Pfaffian chain. Technical background for the proof is located in Appendix B.2.
Theorem 4.2. Consider a real-valued function class U = {ua : X → R | a ∈ A} with domain X , of which
each function ua ∈ U is parameterized by a ∈ A ⊆ Rd. Suppose that for every x ∈ X and r ∈ R, there is a
Pfaffian GJ algorithm Γx,r, with associated Pfaffian chain Cx,r of length at most q and Pfaffian degree at most
M , that given ua ∈ U , check whether ua(x) > r. Moreover, assume that values computed at intermediate
steps of Γx,r are from the Pfaffian chain Cx,r, each of degree at most ∆; and the functions computed in
the conditional statements are of at most K Pfaffian functions. Then Pdim(U) ≤ d2q2 + 2dq log(∆ + M) +
4dq log d + 2d log ∆K + 16d.
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Proof. To bound Pdim(U), the overall idea is that given N input problem instances x1, . . . , xN and N
thresholds r1, . . . , rN , we bound ΠU (N), the number of distinct sign patterns

(sign(ua(x1) − r1 > 0), . . . , sign(ua(xN ) − rN > 0))
= (sign(u∗

xN
(a) − r1 > 0), . . . , sign(u∗

xN
(a) − rN > 0))

obtained by varying a ∈ A. Then we solve the inequality 2N ≤ ΠL(N) to obtain an upper bound for
Pdim(U).

From assumption, for each xi and a threshold value ri, the value of sign(ua(xi) − ri) = sign(u∗
xi

(a) − ri)
can be computed by a Pfaffian GJ algorithm Γxi,ri

that takes input as a and return if ua(xi) > ri.

Again, from the assumption, the Pfaffian GJ algorithm Γxi,ri has at most K conditional statements, each
determines if τx,i(a) ≥ 0, where τx,i(a) is a Pfaffian function from the Pfaffian chain Cxi

of length at most
q and Pfaffian degree at most ∆ corresponding to Γx,i.

Therefore, each binary value sign(u∗
xi

(a) − ri) is determine by at most K other values in the form
sign(τxi,j(a)) for j = 1, . . . , K, meaning that the number of patterns

(sign(u∗
x1

(a) − r1 > 0), . . . , sign(u∗
xN

(a) − rN > 0))

is upper-bounded by the number of sign patterns

(sign(τx1,1(a)), . . . , sign(τx1,K(a)), . . . , sign(τxN ,1(a)), . . . , sign(τxN ,K(a)))

obtained by varying a. Moreover, we can construct a Pfaffian chain C′ of length at most qN and Pfaffian
degree at most ∆ by merging all the Pfaffian chain Cxi

, such that any function τx,i(a) above is a Pfaffian
function from the Pfaffian chain C′, and of degree at most ∆.

Finally, the number of sign patterns (sign(τx1,1(a)), . . . , sign(τxN ,K(a))) can be upper-bounded by the
number of connected components of Rd − ∪N

i=1 ∪K
j=1 {a : τxi,j(a) = 0}, where τxi,j(a) = 0 is a

Pfaffian hypersurface. Using results by Khovanski (1991) and Karpinski & Macintyre (1997) (see Ap-
pendix B.2 for background), we can establish Lemma B.6, which leads to the claimed bound Pdim(U) ≤
d2q2 + 2dq log(∆ + M) + 4dq log d + 2d log ∆K + 16d.

Remark 2. For the case q = 0, meaning that the functions computed in the conditional statements are
merely rational functions in a, Theorem 4.2 gives an upper bound of O(d log(∆K)), which matches the rate
of GJ algorithm instantiated by Bartlett et al. (2022).

5 Pfaffian piecewise structure for data-driven distributional learning

In this section, we analyze function classes for which the duals have a Pfaffian piecewise structure, a special
case of the piecewise decomposable structure introduced by Balcan et al. (2021a). Compared to their piece-
wise decomposable structure, our proposed Pfaffian piecewise structure incorporates additional information
about the Pfaffian structures of piece and boundary functions of the dual function classes, as well as the
maximum number of forms that the piece functions can take. We argue that the additional information can
be derived as a by-product in many data-driven algorithm design problems, but would be ignored if naively
using the framework by Balcan et al. (2021a). We then show that if the dual utility function class U∗ of
a parameterized algorithm admits the Pfaffian piecewise structure, then we can directly establish learning
guarantees for the utility function class U . We note that the advantage of our framework compared to the
framework by Balcan et al. (2021a) is two-fold: (1) our approach offers a concrete and alternative way of
analyzing the pseudo-dimension for the utility function class U , avoiding the non-trivial combinatorial tasks
of analyzing the pseudo/VC-dimension of the dual piece and boundary function classes if using the frame-
work by Balcan et al. (2021a), and (2) directly and naively applying the framework by Balcan et al. (2021a)
can potentially lead to loose or vacuous bounds. Additionally, we propose a further refined argument for the
case where all dual utility functions share the same boundary structures, which leads to further improved
learning guarantees.
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5.1 Prior generalization framework for piecewise structured utility functions in data-driven algorithm
design and its limitations

In this section, we discuss a prior general framework for providing learning guarantees for data-driven al-
gorithm design problems by Balcan et al. (2021a). Many parameterized algorithms, such as combinatorial
algorithms and integer/mixed-integer programming (Balcan et al., 2018a; 2017), exhibit volatile utility func-
tions with respect to their parameters. In other words, even minor changes in parameters can lead to
significant alterations in the behavior of the utility function. Analyzing such volatile utility function classes
poses a significant technical challenge.

Fortunately, many data-driven algorithm design problems still possess a certain degree of structure. Prior
studies (Balcan et al., 2017; 2018a; 2022a; 2023b) have demonstrated that the dual utility functions asso-
ciated with data-driven algorithm design problems often exhibit a piecewise structure. In other words, the
parameter space of the dual utility function can be partitioned into regions, each separated by distinct bound-
ary functions. Within each region, the dual utility function corresponds to a piece function that exhibits
well-behaved properties, such as being linear, rational, or Pfaffian in nature. Building upon this insight,
prior work by Balcan et al. (2021a) proposed a formal definition of a piecewise-structured dual utility func-
tion class and established a generalization guarantee applicable to any data-driven algorithm design problem
conforming to such structures.

Formally, let us recall the definition of the utility function class U = {ua : X → [0, H] | a ∈ A} for an
parameterized algorithm, where A ⊆ Rd. This class represents functions that evaluate the performance of
the algorithm, with ua : X → [0, H] denoting the utility function corresponding to parameter a. For a given
input problem instance x ∈ X , ua(x) yields the performance evaluation of the algorithm on x. Notably,
for each input x ∈ X , we can define the dual utility function corresponding to x as u∗

x : A → [0, H], where
u∗

x(a) := ua(x) measures the performance for a specific problem instance x as a function of the parameter
a. Consequently, we can also define the dual utility function class U∗ = {u∗

x : A → R | x ∈ X }. It was shown
in prior work (Balcan et al., 2021a; 2022a;c; 2023b) that in many data-driven algorithm design problems,
every function in the dual function class U∗ adheres to a specific piecewise structure, which can be precisely
defined as follows:

Definition 7 (piecewise decomposable, Balcan et al. 2021a). A function class H ⊆ RA that maps a domain
A to R is (F , G, k)-piecewise decomposable for a class G ⊆ {0, 1}A and a class F ⊆ RA of piece functions if
the following holds: for every h ∈ H, there are k boundary functions I(g(1)(a) ≥ 0), . . . , I(g(k)(a) ≥ 0) ∈ G
and a piece function fb ∈ F for each bit vector b ∈ {0, 1}k such that for all a ∈ A, h(a) = fby

(a) where
ba = (g(1)(a), . . . , g(k)(a)) ∈ {0, 1}k.

Remark 3. At the risk of notation abuse, we sometimes use the term boundary functions to refer to g(i)(a)
rather than I(g(i)(a) ≥ 0). We will ensure the context is clear when employing this shorthand.

An intuitive illustration of the piecewise structure can be found in Figure 1. Roughly speaking, if a function
class satisfies the piecewise structure as defined in Definition 7, then for each function in such a class, the
input domain is partitioned into multiple regions by k boundary functions. Within each region, which
corresponds to a k-element binary vector indicating its position relative to the k boundary functions, the
utility function is a well-behaved piece function. Based on this observation, Balcan et al. (2021a) showed that
for any algorithm, if the dual utility function class satisfies the piecewise structure as defined in Definition
7, then the pseudo-dimension of the utility function class is bounded.

Theorem 5.1 (Balcan et al. (2021a)). Consider the utility function class U = {ua : X → [0, H] | a ∈ A}.
Suppose that the dual function class U∗ is (F , G, k)-piecewise decomposable with boundary functions G ⊆
{0, 1}A and piece functions F ⊆ RA. Then the pseudo-dimension of U is bounded as follows

Pdim(U) = O((Pdim(F∗) + VCdim(G∗)) log(Pdim(F∗) + VCdim(G∗)) + VCdim(G∗) log k),

where F∗ and G∗ is the dual class of F and G, respectively.

10



Under review as submission to TMLR

(a) A demonstration of piecewise structure of u∗
x in sheer

view.
(b) The corresponding piecewise structure of u∗

x in top view.

Figure 1: An example of the original piecewise structure (Definition 7) and our proposed Pfaffian piecewise
structure (Definition 8). Here, (a) demonstrates the sheer view of the piecewise structure of a specific
dual utility function u∗

x, while (b) shows the corresponding top view for better illustration of regions and
their boundaries. As can be seen, there are three boundary functions gx,1(a) = 1

2 a2
1 − a2, gx,2(a) =

(a1 − 5)2 + (a2 − 5)2 − 16, and gx,3(a) = a1 − ea2 , partitioning the domain A into 7 regions. In each region,
the function u∗

x(a) takes the form of a Pfaffian function. What is not captured by the original piecewise
structure Definition 7 is that, in this example, there is only 4 forms that u∗

x(a) can take, which is either
a1 + a2

2 (blue region), e−0.2(a2
1+a2

2) (red regions), log(a2) + 2 (green region), and
√

a2
1 + a2

2 + exp(0.1√
a1),

(yellow region). It can be verified that all the piece and boundary functions are Pfaffian function from the
Pfaffian chain Cx(a, ea2 , e−0.2(a2

1+a2
2), 1√

a1
, e0.1√

a1 , 1√
a2

1+a2
2+exp(0.1√

a1)
).

Intuitively, Theorem 5.1 allows us to bound the pseudo-dimension of the utility function class U , which is not
well-behaved, by alternatively analyzing the dual boundary and piece function classes F∗ and G∗. However,
Bartlett et al. (2022) demonstrate that for certain problems in which the piecewise structure involves only
rational functions, naively applying Theorem 5.1 can yield looser bounds compared to the approach based on
the GJ framework (Goldberg & Jerrum, 1993). Besides, applying Theorem 5.1 requires the non-trivial task
of analyzing the dual classes F∗ and G∗ of piece and boundary functions. This might cause trouble, such as
leading to loose bounds (see Balcan et al., 2020a, Lemma 7) or vacuous bounds (see Bartlett et al., 2022,
Appendix E.3 for example). This situation arises when the piece and boundary functions involve Pfaffian
functions, motivating the need to design a refined and concrete approach.

5.2 A refined piecewise structure for data-driven algorithm design

In this section, we propose a more refined and concrete approach to derive learning guarantees for data-
driven algorithm design problems where the utility functions exhibit a Pfaffian piecewise structure. The key
difference between our proposed frameworks and the framework by Balcan et al. (2021a) is that we consider

11
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) such that ,

where are polynomials,

Calculate

Calculate

Calculate

Figure 2: A demonstration of how the computation of a dual utility function satisfying Pfaffian piecewise
structure can be described by Pfaffian GJ algorithm. Given an input x ∈ X and a threshold r ∈ R, the
function u∗

x is piecewise structured with boundary functions g
(i)
x (for i = 1, . . . k), and piece functions fh,b

(b ∈ {0, 1}k). Note that, the piece functions fh,b can take at most kF forms and all the piece and boundary
functions are Pfaffian functions from the chain C.

the following additional factors: (1) Both piece and boundary functions are Pfaffian functions from the same
Pfaffian chain, and (2) the maximum number of the distinct forms that the piece function can admit. Later,
we will argue that by leveraging those extra structures, we can get a better pseudo-dimension upper bound
by a logarithmic factor, compared to using the framework by Balcan et al. (2021a). The Pfaffian piecewise
structure is formalized as below.

Definition 8 (Pfaffian piecewise structure). A function class H ⊆ RA that maps domain A ⊆ Rd to R is
said to be (kF , kG , q, M, ∆, d) piecewise structured if the following holds: for every h ∈ H, there are at most
kG boundary functions of the forms I(g(1)

h (a) ≥ 0), . . . , I(g(k)
h (a) ≥ 0), where k ≤ kG, and a piece function

fh,b for each binary vector b ∈ {0, 1}k such that for all a ∈ A, h(a) = fh,ba(a) where ba = (I(g(1)
h (a) ≥

0), . . . , I(g(k)
h (a) ≥ 0)) ∈ {0, 1}k. Moreover, the piece functions fh,b can take on of at most kF forms, i.e.∣∣{fh,b | b ∈ {0, 1}k

}∣∣ ≤ kF , and all the piece and boundary functions fh,b, g
(i)
h are Pfaffian functions of degree

at most ∆ over a Pfaffian chain Ch of length at most q and Pfaffian degree at most M .

An intuitive illustration of Pfaffian piecewise structure and its comparison with the piecewise structure
by Balcan et al. (2021a) can be found in Figure 1. For a data-driven algorithm design problem with
corresponding utility function class U = {ua : X → [0, H] | a ∈ A} where A ⊆ Rd, we can see that if its dual
utility function class U∗ = {u∗

x : A → R | x ∈ X } admits the Pfaffian piecewise structure as in Definition 8,
then it can be computed using the Pfaffian GJ algorithm (see Figure 2 for a visualization). Therefore, we
can use the established results for the Pfaffian GJ algorithm (Theorem 5) to derive learning guarantees for
such problems. We formalize this claim in the following theorem.

Theorem 5.2. Consider the utility function class U = {ua : X → [0, H] | a ∈ A} where A ⊆ Rd. Suppose
that the dual function class U∗ = {u∗

x : A → [0, H] | x ∈ X } is (kF , kG , q, M, ∆, d)-Pfaffian piecewise
structured, then the pseudo-dimension of U is bounded as follows

Pdim(U) ≤ d2q2 + 2dq log(∆ + M) + 4dq log d + 2d log ∆(kF + kG) + 16d.

Proof. An intuitive explanation of this theorem can be found at Figure 2. Since U∗ admits
(kF , kG , q, M, ∆, d)-Pfaffian piecewise structure, then for any problem instance x ∈ X corresponding to
the dual utility function u∗

x, there are at most I(g(1)
x ≥ 0), . . . , I(g(k)

x ≥ 0) where k ≤ kG , and a piece
function fx,b for each binary vector b ∈ {0, 1}k such that for all a ∈ A, u∗

x(a) = fx,ba(a), where
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ba = (I(g(1)
x (a) ≥ 0), . . . , I(g(k)

x (a) ≥ 0)). Therefore, for any problem instance x and real threshold r ∈ R,
the boolean value of u∗

x(a) − r ≥ 0 for any a ∈ A can be calculated an algorithm Γx,r described as follow:
first calculating the boolean vector ba, and then calculate the boolean value fx,ba(a) − r ≥ 0.

From assumption, note that g
(i)
x and fx,b are Pfaffian functions of degree at most ∆ from Pfaffian chain

Cx of length at most q and Pfaffian degree at most M . This means that Γx,r is a Pfaffian GJ algorithm.
Therefore, combining with Theorem 4.2, we have the above claim.

Remark 4. The details of the differences between our refined Pfaffian piecewise structure and the piecewise
structure by Balcan et al. (2021a) can be found in Appendix C.1. In short, compared to the framework
by Balcan et al. (2021a), our framework offers: (1) an improved upper bound on the pseudo-dimension
by a logarithmic factor (Theorem C.1) compared to naively applying (Balcan et al., 2021a), and (2) a
more concrete method for problems admitting a Pfaffian piecewise structure, without invoking dual piece and
boundary function classes, which are non-trivial to analyze. This might lead to loose bounds (see (Balcan
et al., 2020a), Lemma 7, or (Bartlett et al., 2022), Appendix E.3 for example).

5.3 Special case: discontinuity-homogeneous function class

We now consider the case where all the dual utility functions v∗ ∈ V∗ share the same discontinuity structure,
which can be used to establish an improved bound for the utility function class V. We then argue that this
analysis is particularly useful in some cases (Section 5.3.1).

Concretely, consider a utility function class V = {va : X → [0, H] | a ∈ A} where A ⊆ Rd, with the
corresponding dual function class V = {v∗

x : A → [0, H] | x ∈ X }. Different from Section 5.2, here all the dual
utility function v∗

x shares the same discontinuity structure: that is, there is a partition P = {A1, . . . , An} of
the parameter space A such that for any problem instance x ∈ X , the dual function v∗

x is a Pfaffian function.
In this case, we have the following refined bound for the utility function class V.

Lemma 5.3. Consider a function class V = {va : X → [0, H] | a ∈ A} where A ⊆ Rd. Assume there is a
partition P = {A1, . . . , An} of the parameter space A such that for any problem instance x ∈ X , the dual
function v∗

x is a Pfaffian function of degree at most ∆ in region Ai from a Pfaffian chain Cx,Ai of length at
most q and Pfaffian degree M . Then the pseudo-dimension of V is upper bounded as follows

Pdim(V) = O(q2d2 + qd log(∆ + M) + qd log d + log n).

Remark 5. The detailed proof is provided in Appendix C.2. Essentially, Lemma 5.3 simplifies the analysis
by restricting the complexity of the Pfaffian chain to individual regions Ai, rather than across the entire
partition P. The insight here is that, compared to the Pfaffian piecewise structure (Theorem 5.1), Lemma
5.3 makes use of the fact that all the dual functions v∗

x share the same discontinuity structure dictated by a
fixed partition P of A. This shared structure significantly reduces the length of the Pfaffian chain, which is
typically the dominant term in the upper bound.

5.3.1 Use case: analyzing via surrogate function class

In many applications, we might want to analyze the utility function class U indirectly by studying a surrogate
utility function class V, of which the dual function class V∗ is “sufficiently close” to U∗. This indirect approach
offers several advantages. First, even the dual utility function U∗ may lack a clear structure or prove difficult
to analyze, making it impractical to establish learning guarantees for U by examining U∗ (Balcan et al.,
2023b). Second, when U∗ is excessively complex, deriving learning guarantees for U through its analysis may
lead to sub-optimal bounds. In such cases, analyzing a simpler surrogate function class V can yield tighter
bounds (Balcan et al., 2020c).

Formally, consider the utility function class U = {ua : X → [0, H] | a ∈ A} with the corresponding dual
utility function class U∗ = {u∗

x : A → [0, H] | x ∈ X }. Assume that for any dual utility function u∗
x ∈ U∗,

there is a function v∗
x : A → [0, H] such that ∥v∗

x − u∗
x∥∞ ≤ δ. We then construct the surrogate dual function

class V∗ = {v∗
x : A → [0, H] | x ∈ X }, and the surrogate utility function class V = {va : X → [0, H] | a ∈ A}.
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In this section, we consider a scenario where we approximate the parameterized utility function over a
predefined partition A1, . . . , An of the parameter space A. Formally, a partition P of a set A is a collection
{A1, . . . , An} of non-empty subsets Ai of A that are pairwise disjoint and whose union is the entire set A.
For any problem instance x, the function v∗

x(a) restricted to Ai (for any i = 1, . . . , n) is a Pfaffian function
from some Pfaffian chain Cx. This is a special case, as for every problem instance x, the dual function v∗

x

exhibits the same discontinuity structure, which can be leveraged to obtain a tighter bound. Our goal is
for this property to recover the learning guarantee for the utility function class U . To do that, we proceed
with the following steps: (1) derive learning guarantee for V using the property of V∗, (2) using the relation
between U∗ and V∗, derive learning guarantee for U via V. Step (1) is resolved by Lemma 5.3 above, and to
proceed step (2), we first recall the following useful results.

Lemma 5.4 (Balcan et al., 2020c). Let F = {fr | r ∈ R} and G = {gr | r ∈ R} consist of function mapping
from X to [0, 1]. For any S ⊆ X , we have

R̂S(F) ≤ ĜS(G) + 1
|S|

∑
x∈S

∥f∗
x − g∗

x∥∞.

Here R̂S(F) is the empirical Rademacher complexity of F corresponding to S.

R̂S(F) = Exi1,...,xii i.i.d from unif. {−1, 1}

(
sup
f∈F

m∑
i=1

xiif(xi)
)

We also recall a standard result in learning theory, which draws a connection between empirical Rademacher
complexity and the pseudo-dimension.

Lemma 5.5 (Wainwright, 2019). Let F is a bounded function class. Then Rm(F) = O
(√

Pdim(F)
m

)
. Here

Rm(F) = supS∈X m R̂S(F).

We are now ready to present the main result in this section, which allows us to establish learning guarantee
for the utility function class U via the surrogate function class V satisfying a very specific piecewise Pfaffian
structure.

Lemma 5.6. Consider the utility function class U = {ua : X → [0, H] | a ∈ A} where A ⊆ Rd. Assume
that there exists a function class V = {va : X → R | a ∈ A} such that:

1. For any x, we have ∥u∗
x − v∗

x∥∞ ≤ ξ, and

2. There is a partition P = {A1, . . . , An} of A such that for any problem instance x ∈ X , the dual
function v∗

x is a Pfaffian function of degree at most ∆ when restricted to region Ai, from a Pfaffian
chain Cx,Ai

of length at most q and Pfaffian degree M .

Then, for any δ ∈ (0, 1), w.p. at least 1 − δ over the draw of m problem instances S = {x1, . . . , xm} ∼ Dm,
where D is any problem distribution over X , we have∣∣∣∣sup

a∈A
Ex∼Dua(x) − Ex∼D[uâS

(x)]
∣∣∣∣ ≤ O

(√
q2d2 + qd log(∆ + M) + qd log d + log n

m
+ ξ +

√
log(1/δ)

m

)
.

Here âS ∈ arg mina∈A
1
m

∑m
i=1 ua(x)

Proof. From Lemma 5.3, we have Pdim(V) = O(q2d2 + qd log(∆ + M) + qd log d + log n), which implies

Rm(V) = O

(√
q2d2 + qd log(∆ + M) + qd log d + log n

m

)
.
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From Lemma 5.4, we have

Rm(U) ≤ O

(√
q2d2 + qd log(∆ + M) + qd log d + log n

m
+ ξ

)
.

From here, standard learning theory result implies the final claim.

6 Applications of the Pfaffian piecewise structure framework

In this section, we demonstrate how to leverage our proposed framework to establish new distributional learn-
ing guarantees for under-explored data-driven algorithm design problems. For convenience, the notation
used in this section might be redefined for each applications.

6.1 Data-driven agglomerative hierarchical clustering

Agglomerative hierarchical clustering (Murtagh & Contreras, 2012), or AHC, is a versatile, two-stage cluster-
ing approach widely employed across various domains. In the first stage, data is organized into a hierarchical
clustering tree, determining the order in which data points are merged into clusters. Subsequently, in the
second stage, the cluster tree is pruned according to a specific objective function, of which some common
choices are k-mean, k-median, or k-center (Lloyd, 1982; Xu & Wunsch, 2005), among others, to obtain the
final clusters.

The first stage of AHC involves carefully designing linkage functions, which measure the similarity between
clusters and determine the pair of clusters to be merged at each step. These linkage functions require a
pairwise distance function δ between data points and calculate the distance between clusters based on the
distances of their constituent points in a specific manner. Common linkage functions include single-linkage,
complete-linkage, and average-linkage, with numerous variants interpolating between these simple functions
employed in practical applications (Awasthi et al., 2017; Saeed et al., 2003; White et al., 2010). It is important
to note that if two linkage functions generate the same hierarchical cluster tree, they will yield the same
final clusters, irrespective of the objective function used in the subsequent pruning stage. This observation
will be useful in later analyses.

Although linkage functions are a crucial component of AHC, they are generally chosen heuristically without
any theoretical guarantees. Recently, Balcan et al. (2017) proposed a data-driven, provable approach for de-
signing linkage functions. Similar to other data-driven settings, their analysis operates under the assumption
that there exists an unknown, application-specific distribution for clustering instances. They then provide
learning guarantees for some simple families of linkage functions, parameterized by a single parameter, that
interpolates among single, complete, and average linkage. However, they assume that the pairwise distance
function δ is fixed, whereas in practice, multiple distance functions, each with distinct properties and ben-
efits, are combined to achieve better performance (Balcan et al., 2005). Subsequent work by Balcan (2020)
proposes combining multiple pairwise distance functions by jointly learning their weights and the parameters
of the linkage function. However, their analysis holds only under a strict assumption on the linkage func-
tion and distance functions. In particular, it requires that the merge function m is 2-point-based, meaning
that the distance mδ(A, B), defined using the pairwise distance function δ, between two clusters A, B only
depends on the distance δ(a, b) between two specific points a ∈ A and b ∈ B. Moreover, that pair of points
must depend only on the ordering of pairwise distances: for any two distances δ, δ′, and two pair of points
(a, b), (a′, b′) ∈ A × B, we have δ(a, b) ≤ δ(a′, b′) if and only if δ′(a, b) ≤ δ′(a′, b′), then mδ(A, B) = δ(a, b)
implies that mδ′(A, B) = δ′(a, b). That restriction effectively rules out many merge functions of interests
and compatibility of distance functions learned.

Contributions. In this section, we instantiate theoretical guarantees for novel data-driven AHC settings,
where we near-optimally learn the parameter of the merge function family and the combination of multiple
point-wise distance functions. Compared to prior work, the setting we consider is more general, since (1)
requires no restriction on the considered point-wise distances, (2) extends to cluster families that are not
2-point-based, (3) and applies to any objective functions used for tree-pruning.
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6.1.1 Problem setting

Distance function, linkage function, and linkage family. Given a set of n points S ∈ X n, where
X denotes the data domain, and a distance function δ : X × X → R≥0, the overall goal of clustering is to
partition S into clusters such that the intra-cluster distance is minimized, and the inter-cluster distance is
maximized. In the AHC approach, we first design a linkage function mδ based on δ, where mδ(A, B) specifies
the distance between two clusters A and B. The cluster tree construction algorithm starts with n singleton
clusters, each containing a single data point, and successively merges the pair of clusters A, B that minimizes
the cluster-wise distance mδ(A, B). This sequence of merges yields a hierarchical cluster tree, with the root
corresponding to the entire set S, leaf nodes corresponding to individual points in S, and each internal node
representing a subset of points in S obtained by merging the point sets corresponding to its two child nodes.
Subsequently, the cluster tree is pruned to obtain the final clusters via a dynamic programming procedure
that optimizes a chosen objective function. Common objective functions include k-means, k-medians, and
k-centers, among others. Importantly, given a fixed objective function, if two linkage functions generate the
same cluster tree for a given dataset, they will yield the same final clusters.

As discussed previously, the point-wise distance function δ can be a convex combination of several distance
functions chosen from a given set of distance functions δ = {δ1, . . . , δL}, i.e., δ = δβ =

∑L
i=1 βiδi for some

β = (β1, . . . , βL) ∈ ∆(L). Here ∆(L) = {β ∈ RL | βi ≥ 0,
∑L

i=1 βi = 1} denotes the (L − 1)-dimensional
probability simplex. The combined distance function δβ is then used in the linkage function. In this work,
we consider the following parameterized families of linkage functions:

M1 =
{

m1,α
δβ

: (A, B) 7→
(

min
a∈A,b∈B

(δβ(a, b))α + max
a∈A,b∈B

(δβ(a, b))α

)1/α

, α ∈ R ∪ {−∞, ∞} \ {0}

}
,

M2 =
{

m2,α
δβ

: (A, B) 7→

 1
|A||B|

∑
a∈A,b∈B

(δβ(a, b))α

1/α

, α ∈ R ∪ {−∞, ∞} \ {0}

}
,

M3 =
{

m3,α
δ : (A, B) 7→

 1
|A||B|

∑
a∈A,b∈B

Πi∈[L](δi(a, b))αi

1/
∑

i
αi

, αi ∈ R ∪ {−∞, ∞} \ {0}

}
.

The linkage function family M1 interpolates between single and complete linkage. The linkage function
family M2 is called the versatile linkages (Fernández & Gómez, 2020), which interpolates among single,
complete, and average linkage. The family M3 is another generalization of single, complete, and average
linkages that incorporates multiple pairwise distance functions. Note that in M3, we do not combine all the
given distance functions δ = {δ1, . . . , δL} into one but treat them separately. Precisely, if we set αi = 1, and
αj = 0 for all j ̸= i, we have average linkage with respect to the distance function δi; if we set αi = ∞,
and αj = 0 for all j ̸= i, we have complete linkage with respect to the distance function δi; and if we set
αi = −∞, and αj = 0 for j ̸= i, we have the well-known single linkage with respect to δi.

Data-driven AHC. In the data-driven setting, we are given multiple problem instances P1, . . . , PN , where
each problem instance Pi = (Si, δ) consists of a set of points Si that need to be clustered, a fixed set of
distance functions δ that is shared across problem instances. Assuming that there exists an underlying
problem distribution that represents a specific application domain, we aim to determine how many problem
instances are sufficient to learn the parameters α of the linkage function families and the weights β of the
distance functions (for the families M1 and M2). These questions are equivalent to analyzing the pseudo-
dimension of the following classes of utility functions.

For i ∈ 1, 2, let Aα,β
i denote the algorithm that takes a problem instance P = (S, δ) as input and returns a

cluster tree Aα,β
i (S, δ) ∈ T , where T is the set of all possible cluster trees, by using the interpolated merge

function m1,α
δβ

. Then given an objective function, for example, the k-means objective, the pruning function
µk : T → Sk takes as input a clustering tree, and returns a k-partition {P1, . . . , Pk} of S that minimizes
such objective function. Then, given a target cluster Y = {C1, . . . , Ck}, the performance of the algorithm
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Aα,β
i is given by the Hamming distance between the produced clusters µk(Aα,β

i (S, δ)) = {P1, . . . , Pk} and
the target clusters Y = {C1, . . . , Ck}

ℓ(µk(Aα,β
i (S, δ)), Y) = min

σ∈Sk

1
|S|

k∑
i=1

|Ci \ Pσi |.

Here, the minimum is taken over the set of all permutations of {1, . . . , k}. We can clearly see that ℓ takes
value in {0, 1

n , . . . , n−1
n , 1}. However, note that given an objective function, the cluster tree is equivalent to

the produced clusters. Thus, the performance of the algorithm is completely determined by the cluster tree
it produces, and for simplicity, we can express the performance of Aα,β

i as uα,β
i : (S, δ) 7→ v(Aα,β

i (S, δ)),
where v is a function that maps a cluster tree to a value in [0, 1].

Similarly, we denote Aα
3 as the cluster tree building algorithm that takes P = (S, δ) as the input and returns

a cluster tree Aα
3 (S, δ) by using the linkage function m3,α

δ . Again, we have that uα
3 : (S, δ) 7→ v(Aα

3 (S, δ))
represents the performance of the algorithm. We consider the following function classes that measure the
performance of the above algorithm families:

H1 = {uα,β
1 : (S, δ) 7→ u(Aα,β

1 (S, δ)) | α ∈ R ∪ {−∞, +∞}, β ∈ ∆([L])},

H2 = {uα,β
2 : (S, δ) 7→ u(Aα,β

2 (S, δ)) | α ∈ R ∪ {−∞, +∞}, β ∈ ∆([L])},

H3 = {uα
3 : (S, δ) 7→ u(Aα

3 (S, δ)) | αi ∈ R ∪ {−∞, ∞} \ {0}}.

In the next section, we analyze the pseudo-dimension of the function classes described above, which provides
insights into the number of problem instances required to learn near-optimal AHC parameters for a specific
application domain.

6.1.2 Generalization guarantees for data-driven hierarchical clustering

In this section, we will leverage our proposed Pfaffian piecewise structure (Theorem 5.2) to establish the
upper bounds for the pseudo-dimension of H1, H2, and H3 described above. First, we will instantiate a
pseudo-dimension upper-bound for H1, which is formalized as the following Theorem 6.1.

Theorem 6.1. Let H1 be a class of functions

H1 = {uα,β
1 : (S, δ) 7→ u(Aα,β

1 (S, δ)) | α ∈ R ∪ {−∞, +∞}, β ∈ ∆([L])}

mapping clustering instances (S, δ)) to [0, 1] by using merge functions from class M1 and an arbitrary
objective function. Then Pdim(H1) = O(n4L2).

Proof. Overview. The high-level idea is to show that the dual utility function u∗
1,P : (α, β) 7→

u(Aα,β
1 (S, δ)) for any fixed problem instance P = (S, δ) exhibits a piecewise structure: its parameter space

is partitioned by multiple boundary functions, and within each region, the cluster tree remains unchanged,
implying that the utility function is constant. We then characterize the number and complexity of the
boundary functions, which we show belong to a Pfaffian system. Subsequently, we can utilize our framework
to obtain a bound on the pseudo-dimension of H1.

Proof details. Fix a problem instance P = (S, δ), and consider the dual utility function u∗
1,P : (α, β) 7→

u(Aα,β
1 (S, δ)). Suppose A, B ⊆ S and A′, B′ ⊆ S are two candidate clusters at some merge step of the

algorithm. Then A, B is preferred for merging over A′, B′ iff(
min

a∈A,b∈B
(δβ(a, b))α + max

a∈A,b∈B
(δβ(a, b))α

)1/α

≤
(

min
a∈A′,b∈B′

(δβ(a, b))α + max
a∈A′,b∈B′

(δβ(a, b))α

)1/α

,

or equivalently,
(δβ(a1, b1))α + (δβ(a2, b2))α ≤ (δβ(a′

1, b′
1))α + (δβ(a′

2, b′
2))α,
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where (a1, b1) ∈ arg mina∈A,b∈B(δβ(a, b))α, (a2, b2) ∈ arg maxa∈A,b∈B(δβ(a, b))α, (a′
1, b′

1) ∈
arg mina∈A′,b∈B′(δβ(a, b))α, and (a′

2, b′
2) ∈ arg maxa∈A′,b∈B′(δβ(a, b))α. Each possible choice of the points

a1, b1, a2, b2, a′
1, b′

1, a′
2, b′

2 corresponds to a boundary function in the form

I((δβ(a1, b1))α + (δβ(a2, b2))α − (δβ(a′
1, b′

1))α + (δβ(a′
2, b′

2))α ≥ 0).

Among all possible choices of the points a1, b1, a2, b2, a′
1, b′

1, a′
2, b′

2, we get at most n8 distinct boundary
conditions across which the merge decision at any step of the algorithm may change

We next show that the boundary functions constitute a Pfaffian system in α, β1, . . . , βL and bound its
complexity. For each pair of points a, b ∈ S, define fa,b(α, β) := 1

δβ(a,b) , ga,b(α, β) := ln δβ(a, b) and
ha,b(α, β) := δβ(a, b)α. Recall δβ(a, b) =

∑L
i=1 βiδi(a, b). Consider the chain C(α, β, fa,b, ga,b, ha,b) of length

q = 3n2, for a, b ∈ S. We will show that these functions form a Pfaffian chain of Pfaffian degree M = 2.
Indeed, we have for each a, b ∈ S,

∂fa,b

∂α
= 0,

∂fa,b

∂βi
= −δi(a, b)f2

a,b,

∂ga,b

∂α
= 0,

∂ga,b

∂βi
= δi(a, b)fa,b,

∂ha,b

∂α
= ga,bha,b,

∂ga,b

∂βi
= δi(a, b)fa,bha,b,

which establishes the claim. The boundary conditions can clearly be all written in terms of the functions
{ha,b}a,b∈S , meaning that the degree ∆ = 1. Note that the piece functions are constant and can only take
value in {0, 1

n , . . . , 1}, meaning that kF = n+1. Then we conclude that H∗
1 admits (n+1, n8, 3n2, 2, 1, L+1)-

Pfaffian piecewise structure. Applying Theorem 5.2 now gives that Pdim(H1) = O(n4L2 + n2L log L +
L log(n8 + n + 1)) = O(n4L2).

Similarly, we also have the upper-bound for the pseudo-dimension of H2, and H3.

Theorem 6.2. Let H2 be a class of functions

H2 = {uα,β
2 : (S, δ) 7→ u(Aα,β

2 (S, δ)) | α ∈ R ∪ {−∞, +∞}, β ∈ ∆([L])}

mapping clustering instances (S, δ) to [0, 1] by using merge functions from class M2 and an arbitrary merge
function. Then Pdim(H2) = O(n4L2).

Theorem 6.3. Let H3 be a class of functions

H3 = {uα
3 : (S, δ) 7→ u(Aα

3 (S, δ)) | αi ∈ R ∪ {−∞, ∞} \ {0}}

mapping clustering instances (S, δ) to [0, 1] by using merge functions from class M3. Then Pdim(H3) =
O(n4L2).

The detailed proofs of Theorem 6.2, 6.3 for the function classes H2, and H3 can be found in Appendix D.1.
Although these function classes share the same pseudo-dimension asymptotic upper-bound, their structures
differ, necessitating separate analyses and leading to distinct Pfaffian piecewise structures. To show that
the dual function classes of H1, H2, and H3 admit Pfaffian piecewise structure, we analyze the transition
condition on the hyperparameters when the preference for merging two candidate clusters A, B switches to
merging a different pair of clusters A′, B′ instead, at any merge step of the hierarchical clustering algorithm.
The transition condition corresponds to an equality involving Pfaffian functions of the parameters α and
β. All of such equations corresponding to each tuple (A, B, A′, B′) ⊂ S4 will divide the parameter space
into regions, in each of which the AHC algorithm produces the same clustering tree, leading to the same
performance. After this step, we construct the Pfaffian chains for each function in function classes H1,
H2, and H3, where the difference naturally lies in the form of functions in those function classes. We then
carefully analyze the complexities of the Pfaffian chain of those Pfaffian functions to obtain the above bounds.
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6.2 Data-driven graph-based semi-supervised learning

Semi-supervised learning (Chapelle et al., 2010) is a learning paradigm where labeled data is scarce due to
expensive labeling processes. This paradigm leverages unlabeled data in addition to a small set of labeled
samples for effective learning. A common semi-supervised learning approach is the graph-based method
(Zhu & Goldberg, 2009; Chapelle et al., 2010), which captures relationships between labeled and unlabeled
data using a graph. In this approach, nodes represent data points, and edges are constructed based on the
similarity between data point pairs, measured by a given distance function. Optimizing a labeling function
on this graph helps propagate labels from the labeled data to the unlabeled data.

A large body of research focuses on how to learn such labeling functions given the graph, including using
st-mincuts (Blum & Chawla, 2001), optimizing harmonic objective with soft mincuts (Zhu et al., 2003),
label propagation (Zhu & Ghahramani, 2002), among others. However, under the assumption that the
graph well describes the relationship amongst data, it is known that all algorithms for learning the labeling
function above are equivalent (Zhu & Goldberg, 2009). This also highlights the importance of the graph in
graph-based semi-supervised learning.

Despite its significance, the graph is usually considered given or constructed using heuristic methods without
theoretical guarantees (Zhu, 2005; Zemel & Carreira-Perpiñán, 2004). Recently, Balcan & Sharma (2021)
proposed a novel data-driven approach for constructing the graph, by learning the parameters of the graph
kernel underlying the graph construction, from the problem instances at hand. Each problem instance P
consists of sets of labeled L and unlabeled data U and a distance metric d. Assuming that all problem
instances are drawn from an underlying, potentially unknown distribution, they provide guarantees for
learning near-optimal graph kernel parameters for such a distribution. Nonetheless, they consider only a
single distance function, whereas in practical applications, combining multiple distance functions, each with
its unique characteristics, can improve the graph quality and typically result in better outcomes compared
to utilizing a single metric (Balcan et al., 2005).

Contributions. In this section, we consider a generalized and more practical setting for data-driven graph-
based semi-supervised learning, where we learn the parameters of the commonly-used Gaussian RBF kernel
wσ,β(u, v) = exp(−δ(u, v)/σ2) and the weights β ∈ ∆(L) = {β ∈ RL | βi ≥ 0,

∑L
i=1 βi = 1} of δ =

∑L
i=1 βiδi

which is a convex combination of multiple distance functions for constructing the graph.

6.2.1 Problem setting

Graph-based semi-supervised learning with Gaussian RBF Kernel. In the graph-based semi-
supervised learning with Gaussian RBF kernel, we are given a few labeled samples L ⊂ X ×Y, a large number
of unlabeled points U ⊂ X , and a set of distance functions δ = {δ1, . . . , δL}, where δi : X × X → R≥ 0 for
i = 1, . . . , L. Here, X denotes the data space, and Y = {0, 1} denotes the binary classification label space.
To extrapolate labels from L to U , a graph Gσ,β is constructed with the node set L ∪ U and edges weighted
by the Gaussian RBF graph kernel wσ,β(u, v) = exp(−d(u, v)/σ2), where σ is the bandwidth parameter, and
δ =

∑L
i=1 βiδi is a convex combination of the given distance functions. After constructing the graph Gσ,β, a

popular graph labeling algorithm called the harmonic method (Zhu et al., 2003) is employed. It assigns soft
labels by minimizing the following quadratic objective:

1
2
∑
u,v

w(u, v)(f(u) − f(v))2 = fT (D − W )f,

where f ∈ [0, 1]n, n = |U| + |L|, W denotes the graph adjacency matrix Wuv = wα,β(u, v), and D is the
diagonal matrix with entries Dii =

∑
j Wij . The final predictions are obtained by rounding fu for u ∈ U , i.e.

predicting I{fu ≥ 1
2 }, denoted by Gσ,β(L, U , δ). Let vσ,β : (L, U , δ) 7→ [0, 1] denote the average 0-1 binary

classification loss of the predictions of the above algorithm when the graph is built with parameters σ, β.

Data-driven graph-based semi-supervised learning. In the data-driven setting, we are given multiple
problem instances P1, . . . , Pi, each Pi is represented as a tuple (Li, Ui, δ) of a set of labeled samples Li, a
set of a unlabeled samples Ui, and a set of distance functions δ that is shared across problem instances.
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Assuming that there is an underlying problem distribution, that represents a specific application domain, we
want to know how many problems instance is sufficient to learn the best parameters α, β that is near-optimal
for such problem distribution. To do that, we want to analyze the pseudo-dimension of the following function
class:

G = {vσ,β : (L, U , δ) 7→ v(Gσ,β(L, U , δ)) | σ ∈ R \ {0}, β ∈ ∆(L)}.

6.2.2 Generalization guarantee for data-driven semi-supervised learning with Gaussian RBF kernel
and multiple distance functions

We now instantiate the main result in this section, which establishes an upper bound for the pseudo-dimension
of the function class G described above.

Theorem 6.4. Let G be a class of functions mapping semi-supervised learning instances (L, U , δ) to [0, 1].
Then Pdim(G) = O(n4L2), where n = |L| + |U| is the total number of samples in each problem instance, and
L = |δ| is the number of distance functions.

Proof. Technical overview. Fix a problem instance P = (L, U , δ), we will show that the dual loss
function v∗

P (σ, β) := vσ,β(L, U , δ) is piecewise constant and characterize the number and complexity of the
boundary functions which we will show belong to a Pfaffian system. This implies a bound on the pseudo-
dimension of G following our Pfaffian piecewise structure Theorem 5.2.

Proof details. First, the quadratic objective minimization has a closed-form solution (Zhu et al., 2003),
given by

fU = (DUU − WUU )−1WULfL,

where W denotes the graph adjacent matrix, D is the diagonal matrix with entries Dii =
∑

j Wij , and
subscripts U , L refer to the unlabeled and labeled points, respectively. Here fL ∈ {0, 1}|L| is the ground
truth label of samples in the labeled set L.

The key challenge now is to analyze the formula (DUU − WUU )−1 of which the element will be shown to be
Pfaffian functions of σ, β. Recall that wu,v = exp(−δβ(u, v)/σ2) for u, v ∈ L∪U , and Dii =

∑n
j=1 wij . First,

we recall the identity A−1 = adj(A)
det(A) , for any invertible matrix A, where adj(A) and det A are the adjoint

and determinant of matrix A, respectively. Therefore, we can see that any element of (DUU − WUU )−1 is a
rational function of wu,v of degree at most |U|.

Now, consider the Pfaffian chain C(σ, β, 1
σ , w11, . . . , wnn) with L + 1 variables σ, β, and of length q = n2 + 1.

To see the Pfaffian degree of C, note that for any pair of nodes u, v ∈ U ∪ L, we have

∂wu,v

∂βi
= −δi(u, v)

σ2 exp
(

−δβ(u, v)
σ2

)
= −δi(u, v)g2wu,v,

∂wu,v

∂α
= 2δβ(u, v)

σ3 exp
(

−δβ(u, v)
σ2

)
= 2δβ(u, v)g3wu,v.

Thus, the Pfaffian chain C has Pfaffian degree M = 5.

Now, consider the dual loss function vL,U,δ(σ, β). Note that

vL,U,δ(σ, β) = 1
|U|

∑
u∈U

I(I(fu ≥ 1/2) = gu),

where gu is the ground-truth label of unlabeled node u, using for evaluation purpose. We can see that, for
each u ∈ U , I(fu ≥ 1/2) = I

(
f(1)

u

f
(2)
u

≥ 1/2
)

= I
(

f
(1)
u ≥ 1/2f

(2)
u

)
is a boundary function. Both functions

f
(1)
u , f

(2)
u are Pfaffian functions from chain C and of degree |U|. In each region determined by the sign vector

bU , where bu = I(fu ≥ 1/2) for u ∈ U , the dual loss function vL,U,δ(σ, β) is a constant functions. We can see
that there are at most |U| + 1 such constant functions that vL,U,δ(σ, β) can take. Therefore, by Definition
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8, the dual function class G∗ is (|U| + 1, |U| + 1, n2 + 1, 5, |U|)-Pfaffain piecewise structured. We can apply
Theorem 5.2 to get

Pdim(G) = O(n4L2 + n2L log(|U|) + n2L log L + L log |U|).

Noting |U| ≤ n and simplifying yields the claimed bound.

At a high level, the solution to the harmonic objective of Zhu et al. (2003) has a closed-form expression
fU = (DUU − WUU )−1WULfL. Here each element of (DUU − WUU )−1 can be shown to be a Pfaffian function
of the graph hyperparameter σ over a Pfaffian chain of length n2 + 1. We then apply Theorem 5.2 to obtain
the stated pseudo-dimension bound.

6.3 Data-driven regularized logistic regression

Logistic regression (James et al., 2013) is a fundamental statistical technique and widely used classification
model with numerous applications across diverse domains, including healthcare screening (Armitage et al.,
2008), market forecasting (Linoff & Berry, 2011), and engineering safety control (Palei & Das, 2009), among
others. To mitigate overfitting and enhance robustness, regularizations, such as sparsity (ℓ1) and shrinkage
(ℓ2) constraints, are commonly employed in logistic regression (Mohri et al., 2018; Murphy, 2012). In
regularized logistic regression and regularized linear models in general, the regularization parameters, which
control the magnitude of regularization, play a crucial role (Mohri et al., 2018; Murphy, 2012; James et al.,
2013) and must be carefully chosen. Setting regularization parameters too high may lead to underfitting,
while setting them too low may nullify the effectiveness of regularization. In practice, a common strategy
for selecting regularization parameters is cross-validation, which is known to lack theoretical guarantees, in
general, (Zhang, 2009; Chichignoud et al., 2016).

Recently, Balcan et al. (2023b) proposed a data-driven approach for selecting regularization parameters in
regularized logistic regression. Their methodology considers each regression problem, comprising training
and validation sets, as a problem instance drawn from an underlying problem distribution. The objective
is to leverage the available problem instances to determine regularization parameters that minimize the
validation loss for any future problem instance sampled from the same distribution.

Contribution. In this section, we will demonstrate the applicability of Lemma 5.3 by recovering a result
by Balcan et al. (2023b).

6.3.1 Problem setting

Regularized logistic regression. We closely follow the data-driven regularized logistic regression setting
by Balcan et al. (2023b). A problem instance P = (X, y, Xval, yval) ∈ Rm,p,m′ = Rm×p × {±1}m ×Rm′×p ×
{±1}m′ consists of a training set (X, y) and a validation set (Xval, yval). Given a regularization parameter
λ ∈ [λmin, λmax], the regularized logistic regression solves for the coefficients β̂(X,y) that is the best fit for
the training set (X, y)

β̂(X,y)(λ) = arg min
β∈Rp

l(β, (X, y)) + λR(β),

where l(β, (X, y)) = 1
m

∑m
i=1 log(1 + exp(−yix

⊤
i β)) denotes the logistic loss, and R(β) is either sparsity

(∥β∥1) or shrinkage (∥β∥2
2) regularizer.

Data-driven regularized logistic regression. In the data-driven setting, we are given multiple problem
instances P1, . . . , PN . Assuming that there is an underlying problem distribution, that represents a specific
application domain, we want to know how many problems instance is sufficient to learn the regularization
hyperparameter λ that is near-optimal for such problem distribution. To do that, we want to analyze the
learnability of the function class H = {hλ : Rm,p,m′ → [0, H] | λ ∈ [λmin, λmax]}. Here, for an input problem
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instance P = (X, y, Xval, yval), we define

hλ(P ) = l(β̂X,y(λ), (Xval, yval)) = 1
m′

m′∑
i=1

log(1 + exp(−yix
⊤
i β̂(X,y)(λ))

= 1
m′ log

m′∏
i=1

(1 + exp(−yix
⊤
i β̂(X,y)(λ))


which is the validation loss for the problem instance P corresponding to the regularization hyperparameter
λ.

6.3.2 Generalization guarantee for data-driven regularized logistic regression

As discussed previously, the challenge for analyzing the learnability of H is the unknown structure of hλ(P )
as a function of problem instance P . Even if we consider the dual function class H∗ = {h∗

P : [λmin, λmax] →
[0, H] | P ∈ Rm,p,m′}, it is also hard to analyze the structure of H∗ as we do not have the explicit form of
h∗

P (λ). Hence, the approach here is to construct a surrogate function class V∗
ϵ that is sufficiently “close” to

H∗ and is more well-behaved, and then we will use the idea proposed in Section 5.3.1 to recover the learning
guarantee for H.

Using this approach, we recover the following result by Balcan et al. (2023b), which establishes learning
guarantee for hyperparameter tuning for regularized logistic regression.

Theorem 6.5. Consider the problem of tuning regularization parameter for regularized logistic regression
with ℓ1 (or ℓ2) regularizer under data-driven setting. Consider the function class H = {hλ : Rm,p,m′ →
R | λ ∈ [λmin, λmax]}, where hλ(P ) is the validation loss for the problem instance P and with regularization
hyperparameter λ. Then for any δ ∈ (0, 1), with probability at least 1−δ over the draw of m problem instances
S = {P1, . . . , Pm} ∼ Dm, where D is some problem distribution over Rm,p,m′ , we have

EP ∼Dhλ̂S
(P ) ≤ sup

λ∈[λmin,λmax]
Ep∼Dhλ(P ) + O

(√
m2 + log(1/ϵ)

m
+ ϵ2 +

√
log(1/δ)

m

)
.

Proof. Technical overview. The idea is to construct a surrogate function class V∗
ϵ = {v∗

P,ϵ : [λmin], λmax] →
[0, H]} that is sufficiently close to H∗ given any ϵ: for any problem instance P ∈ Rm,p,m′ , we have ∥v∗

P,ϵ −
h∗

P ∥∞ < ϵ. This can be done using Theorem D.1. Moreover, we can partition the space [λmin, λmax] into
1
ϵ (λmax − λmin), over each of which the function v∗

P ,ϵ is a Pfaffian function. We then use our proposed result
(Theorem 5.3) to bound the statistical complexity of Vϵ, which then can convert to the statistical complexity
of H.

Proof details. We now go to the details of the proof, which consists of the following step.

Constructing the surrogate function class V∗
ϵ and Vϵ. To construct such a surrogate function class

V∗
ϵ for H∗, for any problem instance P = (X, y, Xval, yval), Balcan et al. (2023b) first approximate the

regularized logistic regression estimator β̂(X,y)(λ) by β
(ϵ)
(X,y)(λ), using Algorithm 1 if R(β) = ∥β∥1 (or

Algorithm 2 if R(β) = ∥β∥2). Intuitively, for a sufficiently small ϵ, the search space [λmin, λmax] can be
divided into 1

ϵ (λmax − λmin) pieces. Within each piece, β(ϵ)(x, y)(λ) is a linear function of λ, and there
exists a uniform error bound of O(ϵ2) for the approximation error ∥β

(ϵ)
(X,y)(λ) − β̂(X,y)(λ)∥2 (formalized in

Theorem D.1). The surrogate dual validation loss function class V∗
ϵ can now be defined as V∗

ϵ = {v∗
P,ϵ :

[λmin, λmax] → R | P ∈ Rm,p,m′}. Here

v∗
P,ϵ(λ) = l(βϵ

(X,y)(λ), (Xval, yval)) = 1
m′

m′∑
i=1

log(1 + exp(−yix
⊤
i βϵ

(X,y)(λ)))

= 1
m′ log

m′∏
i=1

(1 + exp(−yix
⊤
i βϵ

(X,y)(λ)))

 ,
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and βϵ
(X,y)(λ) is defined as in Theorem D.1. An important property of βϵ

(X,y)(λ) is its piecewise linear
structure: we can partition [λmin, λmax] into 1

ϵ (λmax − λmin) intervals, and in each interval [λmin + tϵ, λmin +
(t + 1)ϵ], βϵ

(X,y)(λ) = λaP,ϵ,t + bP,ϵ,t, where aP,ϵ,t, bP,ϵ,t is defined as in Theorem D.1. This leads to the
piecewise structure of V∗

ϵ , and we have successfully construct a surrogate function class for H∗ that is: (1)
admits piecewise structure, and (2) sufficiently close to H∗.

We can then the define Vϵ = {vλ,ϵ : Rm,p,m′ → R | λ ∈ [λmin, λmax]}, where vλ,ϵ := v∗
P,ϵ(λ).

Analyzing the pseudo-dimension of Vϵ. We can now proceed to analyze Vϵ. First, notice that z 7→
1

m′ log z is a monotonic function. Hence, we can simplify the analysis by analyzing the pseudo-dimension of
Gϵ = {gλ,ϵ(P ) : Rm,p,m′ → R | λminλmax]}, where

gλ,ϵ(P ) =
m′∏
i=1

(1 + exp(−yix
⊤
i βϵ

(X,y)(λ))).

Fixing a problem instance P and a threshold τ ∈ R, by the property of βϵ
(X,y)(λ), we know that the domain

[λmin, λmax] can be partitioned in to 1
ϵ [λmax − λmin] intervals. In each interval [λmin + tϵ, λmin + (t + 1)ϵ],

gλ,ϵ(P ) takes the form

gλ,ϵ(P ) =
m′∏
i=1

(1 + exp(−yix
⊤
i (λat + bt))).

This implies that, in each interval [λmin + tϵ, λmin + (t + 1)ϵ], gλ,ϵ(P ) is a Pfaffian function of degree at most
m from a Pfaffian chain C of length at most m and of Pfaffian degree at most m. From Lemma 5.3, we
conclude that Pdim(Gϵ) = Pdim(Vϵ) = O(m2 + log(1/ϵ)).

Recover the guarantee for H. Note that we just have the learning guarantee for the surrogate function
class Vϵ. To recover the learning guarantee for H, we need to leverage the approximation error guarantee
between H and H(ϵ). Using Theorem 5.4, we then conclude that

Rm(H) = O

(√
m2 + log(1/ϵ)

m
+ ϵ2

)
.

Finally, classical learning theory results imply the claim.

Remark 6. Compared to Balcan et al. (2023b), our framework provides a significant generalization. The
techniques used for analyzing the surrogate logistic loss in Balcan et al. (2023b) involves bounding the complex-
ity of Pfaffian piece functions, while the piece boundaries of the surrogate function are nice linear functions.
In contrast, in this work we develop general techniques that can handle Pfaffian boundary functions as well,
and we recover results from Balcan et al. (2023b) as a special case.

7 Online learning

In this section, we introduce new general techniques for establishing no-regret learning guarantees for data-
driven algorithms in the online learning setting when discontinuity of the piecewise Lipschitz dual loss or
utility functions admit Pfaffian structure. Prior work (Balcan et al., 2020b) provided a tool for online learning
when non-Lipschitzness (or discontinuity) occurs along roots of polynomials in one and two dimensions, and
Balcan & Sharma (2021) extended the result to algebraic varieties in higher dimensions. Here, we generalize
the results to cases where non-Lipschitzness occurs along Pfaffian hypersurfaces.

7.1 Overview of the dispersion property

We first start by giving a high-level overview of the dispersion property, which serves as a sufficient condition
for online learning where the sequence of loss (or utility) functions is not continuous but is piecewise Lipschitz.
While it is not always possible to obtain sub-linear regret for online learning with piecewise Lipschitz loss
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functions, Balcan et al. (2018b) introduce the dispersion condition under which online learning is possible.
Roughly speaking, dispersion measures the number of discontinuities of the loss function that can occur in
a ball of a given radius. A sufficient bound on the dispersion can lead to a no-regret learning guarantee.
Concretely, we will use the f -point-dispersion (Balcan et al., 2020b) which is a slightly more generalized
notion.

Definition 9 (f -point-dispersed, Balcan et al. 2020b). The sequence of loss functions ℓ1, ℓ2, . . . is f -point-
dispersed for the Lipschitz constant L and dispersion function f : N × [0, ∞) → R if for all T and for all
ϵ > 0, we have

E[max
ρ,ρ′

|{t = 1, . . . , T : |ℓt(ρ) − ℓt(ρ′)| > L∥ρ − ρ′∥2}|] ≤ f(T, ϵ),

where the max is taken over all ρ, ρ′ ∈ C : ∥ρ − ρ′∥2 ≤ ϵ.

A continuous version of the classical multiplicative weights algorithm achieves the following no-regret guar-
antee provided the loss functions are dispersed.

Theorem 7.1 (Balcan et al., 2020b). Let C ⊂ Rd be contained in a ball of radius R and ℓ1, ℓ2, · · · : C → [0, 1]
be piecewise L-Lipschitz functions that are f -point-dispersed with an r0-interior minimizer. Then, there exists
an algorithm that satisfies the regret bound

E[
T∑

t=1
ℓt(ρt) − ℓt(ρ∗)] ≤ O(

√
dTM log(R/r) + f(T, r) + TLr),

for any r ∈ (0, r0].

Contributions. Though the dispersion property provides a sufficient condition for no-regret learning piece-
wise Lipschitz loss functions, it is verifying the dispersion property that poses a challenge for Pfaffian struc-
tured functions. In this section, we provide a general tool for verifying dispersion property for the sequence
of loss functions of which the discontinuities involve in Pfaffian hypersurfaces (Section 7.2). We then demon-
strate the applicability of our tool by providing no-regret learning guarantees for under-explored data-driven
algorithm design problems in the online learning setting (Section 7.3).

7.2 A general tool for verifying dispersion property involving Pfaffian discontinuity

We first introduce a useful notion of shattering which we use to establish a constant upper bound on the
VC-dimension of a class of Pfaffian functions with bounded chain length and Pfaffian degree when labeled
by axis-aligned segments (i.e., line segments parallel to some coordinate axis). This bound is crucial in
extending the framework for establishing dispersion developed in prior work (Balcan et al., 2020b; Balcan &
Sharma, 2021). We use tools from the theory of Pfaffian functions (included in Appendix E).

Definition 10 (Hitting and shattering). Consider a Pfaffian chain C(x, f1, . . . , fq). Let P = {P1, . . . , PK}
denote a set of hypersurface, each defined by a Pfaffian function P (x, f1(x), . . . , fq(x)) = 0 from the Pfaffian
chain C. We say that a subset P ′ ⊆ P is hit by a line segment v if, for any P ∈ P, v intersects with P iff
P ∈ P ′. A line Υ hits a subset P ′ ⊆ P, there is a line segment v ∈ Υ such that v hit P ′. A collection V of
line segments shatters P if for each subset P ′ ⊆ R, there exists a line segment V such that v hits P ′.

We have the following key structural result which intuitively establishes a bound on the complexity of
intersection of Pfaffian hypersurfaces.

Theorem 7.2. There is a constant KM,q,d,p depending only on M , q, d, and p such that axis-aligned line
segments in Rp cannot shatter any collection of KM,q,d,p Pfaffian hypersurfaces consisting of functions from
a Pfaffian C chain of length q, degree at most d and Pfaffian degree at most M .

Proof. Let C(x, f1, . . . , fq), where x ∈ Rp, is a Pfaffian chain of length q and of Pfaffian degree at most
M . Let P = {P1, . . . , PK} denote a collection of K Pfaffian hypersurfaces Pi(x, f1(x), . . . , fq(x)) = 0 for
i = 1, . . . , K, where each Pi is a Pfaffain function of degree at most d from the Pfaffian chain C. We seek
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to upper bound the number of subsets of P which may be hit by axis-aligned line segments. We will first
consider shattering by line segments in a fixed axial direction x = xj for j ∈ [p].

Let Υj be a line along the axial direction xj . The subsets of P which may be hit by segments along Υj are
determined by the pattern of intersections of Υj with the hypersurfaces in P. We can now use Theorem E.1
to bound the number of intersections between Υj and any hypersurface Pi = 0 for Pi ∈ P as

R := 2q(q−1)/2d(M min{q, p} + d)q,

using the fact that the straight line Υj is given by p − 1 equations xk = 0 for k ̸= j which form a Pfaffian
system with Pi of chain length q, Pfaffian degree M , and degrees deg(Pi) = d, deg(xk) = 1 for k ̸= j.
Therefore Υj intersects hypersurfaces in P at most KR points, resulting in at most KR + 1 segments of
Υj . Thus, Υj may hit at most

(
KR+1

2
)

= O(K22q(q−1)d2(M min{q, p} + d)2q) subsets of P. We remark that
these upper bounds correspond to an assumption that the Pfaffian hypersurfaces are in a general position,
i.e. a small perturbation to the hypersurfaces does not change the number of intersections. Note that there
can only be fewer subsets otherwise, so the upper bound still holds.

We will now bound the number of distinct subsets that may be hit as the axis-aligned Υj is varied (while it is
still along the direction xj). Define the equivalence relation Lx1 ∼ Lx2 if the same sequence of hypersurfaces
in P intersect Lx1 and Lx2 (in the same order, including with multiplicities). To obtain these equivalence
classes, we will project the hypersurfaces in P onto a hyperplane orthogonal to the xj-direction. By the
generalization of the Tarski-Seidenberg theorem to Pfaffian manifolds, we get a collection of semi-Pfaffian
sets (van den Dries, 1986), and these sets form a cell complex with at most O(K(p!)2(2p(2p+q))p(M +d)qO(p3))
cells (Gabrielov & Vorobjov, 2001). This is also a bound on the number of equivalence classes for the relation
∼.

Putting together, for each axis-parallel direction xj , the number of distinct subsets of P hit by any line
segment along the direction xj is at most O(K22q(q−1)d2(M min{q, p} + d)2qK(p!)2(2p(2p+q))p(M + d)qO(p3)).
Thus, for all axis-parallel directions, we get that the total number of subsets of P that may be hit is at most

CK = O
(

p2q(q−1)d2(M min{q, p} + d)2qK(p!)2(2p(2p+q))p+2(M + d)qO(p3)
)

.

For fixed M, q, d, p, this grows sub-exponentially in K, and therefore there is an absolute constant KM,q,d,p

such that CK < 2K provided K ≥ KM,q,d,p. This implies that a collection of KM,q,d,p Pfaffian hypersurfaces
cannot be shattered by axis-aligned line segments and establishes the desired claim.

We can now use the above theorem to establish the following general tool for verifying dispersion of piecewise-
Lipschitz functions where the piece boundaries are given by Pfaffian hypersurfaces.

Theorem 7.3. Let l1, . . . , lT : Rp → R be independent piecewise L-Lipschitz functions, each having discon-
tinuities specified by a collection of at most K Pfaffian hypersurfaces of bounded degree d, Pfaffian degree M
and length of common Pfaffian chain q. Let L denote the set of axis-aligned paths between pairs of points
in Rp, and for each s ∈ L define D(T, s) = |{1 ≤ t ≤ T | lt has a discontinuity along s}|. Then we have
that E[sups∈L D(T, s)] ≤ sups∈L E[D(T, s)] + Õ(

√
T log T ), where the soft-O notation suppresses constants

in d, p, M, q.

Proof. Technical overview. We relate the number of ways line segments can label vectors of K Pfaffian
hypersurfaces of degree d, Pfaffian degree M and common chain length q, to the VC-dimension of line
segments (when labeling Pfaffian hypersurfaces), which from Theorem 7.2 is constant. To verify dispersion,
we need a uniform-convergence bound on the number of Lipschitzness violations between the worst pair of
points ρ, ρ′ at distance ≤ ϵ, but the definition allows us to bound the worst rate of discontinuities along any
path between ρ, ρ′ of our choice. We can bound the VC-dimension of axis aligned segments against Pfaffian
hypersurfaces of bounded complexity, which will allow us to establish dispersion by considering piecewise
axis-aligned paths between points ρ and ρ′.
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Proof details. The proof is similar to analogous results in (Balcan et al., 2020b; Balcan & Sharma,
2021). The main difference is that instead of relating the number of ways intervals can label vectors of
discontinuity points to the VC-dimension of intervals, we instead relate the number of ways line segments
can label vectors of K Pfaffian hypersurfaces of bounded complexity to the VC-dimension of line segments
(when labeling Pfaffian hypersurfaces), which from Theorem 7.2 is constant. To verify dispersion, we need
a uniform-convergence bound on the number of Lipschitz failures between the worst pair of points α, α′ at
distance ≤ ϵ, but the definition allows us to bound the worst rate of discontinuities along any path between
α, α′ of our choice. We can bound the VC dimension of axis aligned segments against bounded complexity
Pfaffian hypersurfaces, which will allow us to establish dispersion by considering piecewise axis-aligned paths
between points α and α′.

Let P denote the set of all Pfaffian hypersurfaces of degree d, from a Pfaffian chain of length at most q and
Pfaffian degree at most M . For simplicity, we assume that every function has its discontinuities specified by
a collection of exactly K Pfaffian hypersurfaces (K could be an upper bound, and we could simply duplicate
hypersurfaces as needed which does not affect our argument below). For each function lt, let π(t) ∈ PK

denote the ordered tuple of Pfaffian hypersurfaces in P whose entries are the discontinuity locations of lt.
That is, lt has discontinuities along (π(t)

1 , . . . , π
(t)
K ), but is otherwise L-Lispchitz.

For any axis aligned path s, define the function fs : PK → {0, 1} by

fs(π) =
{

1 if for some i ∈ [K], πi intersects s,
0 otherwise,

where π = (π1, . . . , πK) ∈ PK . The sum
∑T

t=1 fs(π(t)) counts the number of vectors (π(t)
1 , . . . , π

(t)
K ) that

intersect s or, equivalently, the number of functions l1, . . . , lT that are not L-Lipschitz on s. We will apply VC-
dimension uniform convergence arguments to the class F = {fs : PK → {0, 1} | s is an axis-aligned path}.
In particular, we will show that for an independent set of vectors (π(t)

1 , . . . , π
(t)
K ), with high probability we

have that 1
T

∑T
t=1 fs(π(t)) is close to E[ 1

T

∑T
t=1 fs(π(t))] for all paths s.

Now, Theorem 7.2 implies that VC dimension of F is at most KM,q,d,p. A standard VC-dimension uniform
convergence argument for the class F imply that with probability at least 1 − δ, for all fs ∈ F∣∣∣∣∣ 1

T

T∑
t=1

fs(π(t)) − E

[
1
T

T∑
t=1

fs(π(t))
]∣∣∣∣∣ ≤ O

(√
KM,q,d,p + log(1/δ)

T

)
, or∣∣∣∣∣

T∑
t=1

fs(π(t)) − E

[
T∑

t=1
fs(π(t))

]∣∣∣∣∣ ≤ Õ
(√

T log(1/δ)
)

.

Now since D(T, s) =
∑T

t=1 fs(π(t)), we have for all s and δ, with probability at least 1 − δ, sups∈L D(T, s) ≤
sups∈L E[D(T, s)] + Õ(

√
T log(1/δ)). Taking expectation and setting δ = 1/

√
T implies

E[sup
s∈L

D(T, s)] ≤ (1 − δ)
(

sup
s∈L

E[D(T, s)] + Õ(
√

T log(1/δ))
)

+ δ · T

≤ sup
s∈L

E[D(T, s)] + Õ(
√

T log(
√

T )) +
√

T ,

which implies the desired bound. Here we have upper bounded the expected regret by T in the low probability
failure event where the uniform convergence does not hold.

The above result reduces the problem of verifying dispersion to showing that the expected number of discon-
tinuities E[D(T, s)] along any axis-aligned path s is Õ(ϵT ), which together with Theorem 7.3 implies that
the sequence of functions is f -point-dispersed with f(T, ϵ) = Õ(ϵT +

√
T ), which in turn implies no-regret

online learning (Theorem 7.1).
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7.3 Applications

We will now instantiate our general online learning results for concrete applications, including linkage clus-
tering and regularized logistic regression. The key new challenge for establishing online learning guarantees
is that we need to analyze the relative position of the Pfaffian structured discontinuities (in contrast, in the
distributional learning setting, we only cared about the number of induced sign patterns).

7.3.1 Online learning for data-driven agglomerative hierarchical clustering

We first show how to analyse disperion property of Pfaffian structured loss functions in agglomerative hier-
archical clustering. Technical lemmas needed for the proof are deferred to Appendix E.

Theorem 7.4. Consider an adversary choosing a sequence of clustering instances where the t-th instance
has a symmetric distance matrix D(t) ∈ [0, R]n×n and for all i ≤ j, d

(t)
ij is κ-smooth. For the sub-family of

M1 with α > αmin for 0 < αmin < ∞, we have that the corresponding sequence of utility functions u
(t)
1 are

f -point-dispersed with f(T, ϵ) = Õ(ϵT +
√

T ).

Proof. Technical overview. By using a generalization of the Descartes’ rule of signs, we first show that
there is at most one positive real solution for the equation

(d(a1, b1))α + (d(a2, b2))α = (d(a′
1, b′

1))α + (d(a′
2, b′

2))α.

We then use κ boundedness of the distances dij to show that the probability of having a zero α∗ ∈ I in
any interval of width I is at most Õ(ϵ). Using that we have at most n8 such boundary functions, we can
conclude that E[D(T, s)] = Õ(n8ϵT ) and use Theorem 7.3.

Proof details. As noted in the proof of Theorem 6.1, the boundaries of the piecewise-constant dual utility
functions are given by

(d(a1, b1))α + (d(a2, b2))α = (d(a′
1, b′

1))α + (d(a′
2, b′

2))α, (1)
for some (not necessarily distinct) points a1, b1, a2, b2, a′

1, b′
1, a′

2, b′
2 ∈ S.

We use the generalized Descartes’ rule of signs (Jameson, 2006; Haukkanen & Tossavainen, 2011), which
implies that the number of real zeros in α (for which boundary condition is satisfied) is at most the number
of sign changes when the base of the exponents are arranged in an ascending order (since, the family
{ax | a ∈ R+} is Descartes admissible on R), to conclude that the boundary of the loss function occurs for
at most one point α∗ ∈ R apart from α = 0. We consider the following distinct cases (up to symmetry):

• Case dβ(a1, b1) ≥ dβ(a2, b2) ≥ dβ(a′
1, b′

1) ≥ dβ(a′
2, b′

2). The number of sign changes is one, and the
conclusion is immediate.

• Case dβ(a1, b1) ≥ dβ(a′
1, b′

1) ≥ dβ(a2, b2) ≥ dβ(a′
2, b′

2). The only possibility is dβ(a1, b1) = dβ(a′
1, b′

1)
and dβ(a2, b2) = dβ(a′

2, b′
2). But then, the condition holds for all α and we do not get a critical

point. This corresponds to the special case of tie-breaking when merging clusters, and we assume
ties are broken following some arbitrary but fixed ordering of the pair of points.

• Case dβ(a′
1, b′

1) ≥ dβ(a1, b1) ≥ dβ(a2, b2) ≥ dβ(a′
2, b′

2). The number of sign changes is two. Since
α = 0 is a solution, there is at most one α∗ ∈ R ∈ \{0} corresponding to a critical point.

Now, let ϵ > 0. Consider an interval I = [α1, α2] with α1 > αmin such that the width α2 − α1 ≤ ϵ. If
equation (1) has a solution α∗ ∈ I (guaranteed to be unique if it exists), we have that

d(a1, b1) =
(

(d(a′
1, b′

1))α∗
+ (d(a′

2, b′
2))α∗

− (d(a2, b2))α∗
)1/α∗
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Let p1 denote the density of d(a1, b1) which is at most κ by assumption, and let f(α∗) := (d(a′
1, b′

1))α∗ +
(d(a′

2, b′
2))α∗ − (d(a2, b2))α∗ and d1(α∗) := (f(α∗))1/α∗

. We seek to upper bound Prp1{d1(α∗) | α∗ ∈
I, f(α∗) ≥ 0} to get a bound on the probability that there is a critical point in I.

Now we consider two cases. If f(α) ≤ ϵα for all α ∈ I, we have that d1(α) = f(α)1/α ≤ ϵ for all α ∈ I. Thus,
the probability of having a critical point in I is O(κϵ) in this case.

Else, we have that f(α∗) > ϵα∗
> 0 for some α∗ ∈ I. Using Taylor series expansion for d1(α) around α∗, we

have

d1(α∗ + ϵ) = d1(α∗) + d′
1(α∗)ϵ + O(ϵ2).

Thus, the set {d1(α∗) | α∗ ∈ I, f(α∗) ≥ 0} is contained in an interval of width at most |d′
1(α∗)|O(ϵ), implying

a upper bound of κ|d′
1(α∗)|O(ϵ) on the probability of having a critical point in I.

Thus it is sufficient to give a bound on |d′
1(α∗)|. We have

d′
1(α∗) = d1(α∗)

(
− 1

α∗2 ln f(α∗) + 1
α∗

g(α∗)
f(α∗)

)
= 1

α∗

(
g(α∗)
f(α∗) − d1(α∗) ln d1(α∗)

)
,

where

g(α) := ln d(a′
1, b′

1)(d(a′
1, b′

1))α∗
+ ln d(a′

2, b′
2)(d(a′

2, b′
2))α∗

− ln d(a2, b2)(d(a2, b2))α∗
.

Thus,

|d′
1(α∗)| =

∣∣∣∣∣ 1
α∗

(
g(α∗)
f(α∗) − d1(α∗) ln d1(α∗)

) ∣∣∣∣∣
≤
∣∣∣ 1
α∗

∣∣∣ ·
(∣∣∣ g(α∗)

f(α∗)

∣∣∣+ |d1(α∗) ln d1(α∗)|
)

≤
∣∣∣ 1
αmin

∣∣∣ ·
(∣∣∣ g(α∗)

f(α∗)

∣∣∣+ R ln R

)
.

Now using Lemma E.3, we get that

∣∣∣ g(α∗)
f(α∗)

∣∣∣ ≤ 1
α∗ + ln R,

and thus,

|d′
1(α∗)| ≤ O

(
R ln R

α2
min

)
.

Using that we have at most n8 boundary functions of the form (1), we can conclude that E[D(T, s)] =
Õ( R ln R

α2
min

κn8ϵT ) and using Theorem 7.3 we can conclude that the sequence of utility functions are f -point-
dispersed with f(T, ϵ) = Õ(ϵT +

√
T ).

We also show how to use our tools above to establish the dispersion property for the M3 linkage clustgering
algorithm family.
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Theorem 7.5. Consider an adversary choosing a sequence of clustering instances where the t-th instance
has a symmetric distance matrix D(t) ∈ [0, R]n×n and for all i ≤ j, d

(t)
ij is κ-smooth. For the family of

clustering algorithms M3, we have that the corresponding sequence of utility functions u
(t)
3 as a function of

the parameter α = (α1, . . . , αL) are f -point-dispersed with f(T, ϵ) = Õ(ϵT +
√

T ).

Proof. Technical overview. It is sufficient to show dispersion for each αi keeping the remaining parameters
fixed. This is because, the definition of dispersion allows us to consider intersections of discontinuities with
axis-aligned paths. WLOG, assume α2, . . . , αL are fixed. The boundary functions are given by solutions of
exponential equations in α1 of the form

1
|A||B|

∑
a∈A,b∈B

Πi∈[L](di(a, b))αi = 1
|A′||B′|

∑
a′∈A′,b′∈B′

Πi∈[L](di(a′, b′))αi ,

for A, B, A′, B′ ⊆ S. We can now use Theorem 7.3 together with Theorem 25 of Balcan & Sharma (2021)
to conclude that the discontinuities of u

(t)
3 are f -point-dispersed with f(T, ϵ) = Õ(ϵT +

√
T ).

Proof details. We will show dispersion for each αi keeping the remaining parameters fixed. This is sufficient
because, the definition of dispersion Balcan et al. (2020b) allows us to consider discontinuities along axis-
aligned paths between pairs of points α, α′ in the parameter space. WLOG, assume that α2, . . . , αL are
fixed. The boundary functions are given by solutions of exponential equations in α1 of the form

1
|A||B|

∑
a∈A,b∈B

Πi∈[L](di(a, b))αi = 1
|A′||B′|

∑
a′∈A′,b′∈B′

Πi∈[L](di(a′, b′))αi ,

for A, B, A′, B′ ⊆ S. We can rewrite this equation in the form
∑n

j=1 ajebjx = 0 where, x = α1, bj =
ln(d1(a, b)) for a, b ∈ A × B or a, b ∈ A′ × B′ and aj = 1

|A||B| Πi∈{2,...,Ldi(a, b)αi for a, b ∈ A × B or
aj = −1

|A′||B′| Πi∈{2,...,L}di(a′, b′)αi for a′, b′ ∈ A′ × B′. The coefficients aj are real with magnitude at most
RL−1. By Lemma E.4, we have that di(a, b)αi is κ′-bounded for κ′ ≤ κ

αmin
max{1, R

1
αmin

−1}, and therefore

the coefficients aj have a κ′′-bounded density for κ′′ ≤ n2κ′L−1 = O

(
n2
(

κR1/αmin

αmin

)L−1
)

(using Lemma 8

from Balcan et al. (2018b)). Using Theorem E.5, the probability there is a discontinuity along any segment
along the direction α1 of width ϵ is p1 = Õ(ϵ). Thus, for any axis-aligned path s between points α, α′ ∈ RL,
the expected number of discontinuities for any utility function u

(t)
3 (t ∈ [T ]) is at most Lp1 = Õ(ϵ). We can

now apply Theorem 7.3 to get

E[sup
s∈L

D(T, s)] ≤ sup
s∈L

E[D(T, s)] + Õ(
√

T log T )

= Õ(ϵT ) + Õ(
√

T log T ),

where L denotes the set of axis-aligned paths between pairs of points α, α′ ∈ RL. It then follows that
E[sups∈L D(T, s)] = Õ(

√
T ) for ϵ ≥ T −1/2, establishing that the sequence of utility functions u

(1)
3 , . . . , u

(T )
3

is f -point-dispersed with f(T, ϵ) = Õ(ϵT +
√

T ).

7.3.2 Online learning for data-driven regularized logistic regression

We consider an online learning setting for regularized logistic regression from Section 6.3. The problem
instances Pt = (X(t), y(t), X

(t)
val, y

(t)
val) are now presented online in a sequence of rounds t = 1, . . . , T , and the

online learner predicts the regularization coefficient λt in each round. The regret of the learner is given by

RT = E
T∑

t=1
hλt(Pt) − hλ∗Pt,
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where λ∗ = arg minλ∈[λmin,λmax] E
∑T

t=1 hλ(Pt). Our main result is to show the existence of a no-regret
learner in this setting.

Theorem 7.6. Consider the online learning problem for tuning the logistic regression regulariza-
tion coefficient λt stated above. There exists an online learner with expected regret bounded by
O(
√

T log[(λmax − λmin)T ]).

Proof. Technical overview. The key idea is to use an appropriate surrogate loss function which well
approximates the true loss function, but is dispersed and therefore can be learned online. We then connect
the regret of the learner with respect to the surrogate loss with its regret w.r.t. the true loss.

We consider an ϵ-grid of λ values. For each round t, to construct the surrogate loss function, we sample a
uniformly random point from each interval [λmin +kϵ, λmin +(k+1)ϵ] and compute the surrogate loss h

(ϵ)
λ (P )

at that point, and use a linear interpolation between successive points. By Theorem D.1, this has an error of
at most O(ϵ2), which implies the regret gap with the true loss is at most O(ϵ2T ) when using the surrogate
function.

We show that the surrogate function is f -point-dispersed (Definition 4, Balcan et al. (2020b)) with
f(T, r) = rT

ϵ . Using Theorem 5 of Balcan et al. (2020b), we get that there is an online learner with
regret O(

√
T log((λmax − λmin)/r)+f(T, r)+Tr + ϵ2T ) = O(

√
T log((λmax − λmin)/r)+ T r

ϵ + ϵ2T ). Setting
ϵ = T −1/4 and r = T −3/4, we get the claimed regret upper bound.

Proof details. We consider an ϵ-grid of λ values given by intervals [λmin + kϵ, λmin + (k + 1)ϵ] for k =
0, . . . , ⌊ λmax−λmin

ϵ ⌋. For each round t, to construct the surrogate loss function, we sample a uniformly random
point λ

(k)
t from each interval [λmin + kϵ, λmin + (k + 1)ϵ] and compute the surrogate model β̂(X,y)(λ) at that

point using Algorithm 1 (2) for ℓ1 (ℓ2), and use a linear interpolation between successive points λ
(k)
t , λ

(k+1)
t

which are at most 2ϵ apart. By Theorem D.1, we have that ∥β̂(Xt,yt)(λ) − β
(ϵ)
(Xt,yt)(λ)∥2 = O(ϵ2) for any

λ ∈ [λmin, λmax], where β
(ϵ)
(Xt,yt)(λ) is the true model (that exactly optimizes the logistic loss) for (Xt, yt).

By Lemma 4.2 of Balcan et al. (2023b) we can conclude that the corresponding surrogate loss ĥ
(ϵ)
λ (Pt) also

satisfies ||ĥ(ϵ)
λ (Pt) − hλ(Pt)|| ≤ O(ϵ2) for any λ ∈ [λmin, λmax].

This implies the regret with respect to the true loss is at most O(ϵ2T ) more than the regret when using the
surrogate function. Suppose λ∗ = arg minλ∈[λmin,λmax]

∑T
t=1 E[hλ(Pt)]. We have,

RT =
T∑

t=1
E[hλt

(Pt) − hλ∗(Pt)]

=
T∑

t=1
E[hλt

(Pt) − ĥλ∗(Pt)] +
T∑

t=1
E[ĥλ∗(Pt) − hλ∗(Pt)]

≤
T∑

t=1
E[hλt

(Pt) − ĥλ∗(Pt)] + O(ϵ2T )

≤
T∑

t=1
E[hλt

(Pt) − ĥλ̂(Pt)] + O(ϵ2T ),

where λ̂ = arg minλ∈[λmin,λmax]
∑T

t=1 E[ĥλ(Pt)].

We next show that the surrogate function is f -point-dispersed (Definition 4, Balcan et al. (2020b)) with
f(T, r) = rT

ϵ . Indeed, let 0 < r < ϵ. Let I = [λ1, λ2] ⊂ [λmin, λmax] be an interval of length r. Then the
probability ĥλ(Pt) has a critical point in I is at most r/ϵ.
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Using Theorem 5 of Balcan et al. (2020b) combined with the above argument, we now get that there is an
online learner with regret O(

√
T log((λmax − λmin)/r)+f(T, r)+Tr+ϵ2T ) = O(

√
T log((λmax − λmin)/r)+

T r
ϵ + ϵ2T ). Setting ϵ = T −1/4 and r = T −3/4, we get the claimed regret upper bound.

8 Conclusion and future directions

In this work, we introduce the Pfaffian GJ framework for the data-driven distributional learning setting,
providing learning guarantees for function classes whose computations involve the broad class of Pfaffian
functions. Additionally, we propose a refined Pfaffian piecewise structure for data-driven algorithm design
problems and establish improved learning guarantees for problems admitting such a refined piecewise struc-
ture. We apply our framework to a variety of previously studied data-driven algorithm design problems
(including hierarchical clustering, graph-based semi-supervised learning and regularized logistic regression)
under natural settings, where known techniques do not yield concrete learning guarantees. By carefully ana-
lyzing the underlying Pfaffian structure for these problems, we leverage our proposed framework to establish
novel statistical learning guarantees. We further study the data-driven online learning setting, where we
introduce a new tool for verifying the dispersion property, applicable when the transition boundaries of the
utility functions involve Pfaffian functions.
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Appendix

A Preliminaries

In this section, we first recall some additional classical notions and results on learning theory, which is also
helpful in our analysis.

A.1 Classical generalization results

For completeness, along with the definition of pseudo-dimension (Definition 1), we now give a formal defi-
nition of the VC-dimension, which is a counterpart of pseudo-dimension when the function class is binary-
valued.

Definition 11 (Shattering and VC-dimension). Let U is a class of binary-valued functions that take input
from X . Let S = {x1, . . . , xm} ⊂ X be the set of m input instances, we say that S is shattered by U if

|{(u(x1), . . . , u(xm) | u ∈ U}| = 2m.

The VC-dimension of U , denoted VCdim(U), is the largest size of the set S that can be shattered by U .

Rademacher complexity Bartlett & Mendelson (2002) is another classical learning-theoretic complexity mea-
sure for obtaining data-dependent learning guarantees.

Definition 12 (Rademacher complexity, Bartlett & Mendelson (2002); Wainwright (2019)). Let U be a
real-valued function class which takes input from domain U . Let S = {x1, . . . , xm} ∼ D be a set of m input
instances drawn from some problem distribution D over X . Then the empirical Rademacher complexity
RS(U) of U with respect to U is defined as

R̂S(U) = Eσ

[
sup
u∈U

∣∣∣∣∣ 1
m

m∑
i=1

σif(xi)
∣∣∣∣∣
]

.

The Rademacher complexity of U for n samples is then defined as

Rm(U) = ES∼Dm [R̂S(U)] = ES∼DmEσ

[
sup
u∈U

∣∣∣∣∣ 1
m

m∑
i=1

σiu(xi)
∣∣∣∣∣
]

.

A.2 Uniform convergence and PAC-learnability

We now remind classical notions in learning theory, which formalizes the learnability of a function class.

Definition 13 (Uniform convergence). Let U is a real-valued function class which takes input from X , and
D is a distribution over X . If for any ϵ > 0, and any δ ∈ [0, 1], there exists N(ϵ, δ) s.t. w.p. at least 1 − δ
over the draw of m ≥ N(ϵ, δ) samples x1, . . . , xm ∼ D, we have

∆m = sup
u∈U

∣∣∣∣∣ 1
m

m∑
i=1

f(xi) − Ex∼D[f(X)]
∣∣∣∣∣ ≤ ϵ,

then we say that (the empirical process of) F uniformly converges. The quantity ∆m is called the empirical
process of function class F .

The following classical result demonstrates the connection between uniform convergence and learnability
with an ERM learner.

Theorem A.1 (Mohri et al. (2018)). If U has a uniform convergence guarantee with N(ϵ, δ) samples then
it is PAC learnable with ERM and N(ϵ/2, δ) samples.
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Proof. For S = {x1, . . . , xm} ⊂ X , let LS(u) = 1
m

∑m
i=1 u(xi), and LD(u) = Ex∼D[u(x)] for u ∈ U . Since

U is uniform convergence with N(ϵ, δ) samples, w.p. at least 1 − δ for all u ∈ U , we have |LS(u) − LD(u)|
where S drawn from Dm, m ≥ N(ϵ, δ). Let uERM ∈ arg minu∈U LS(u) be the hypothesis outputted by the
ERM learner, and u∗ ∈ arg minu∈U LD(u) be the best hypothesis. We have

LD(uERM ) ≤ LS(uERM ) + ϵ

2 ≤ LS(u∗) + ϵ

2 ≤ LD(u∗) + ϵ,

which concludes the proof.

B Omitted proofs from Section 4

In this section, we will present basic properties of Pfaffian chain/functions and a proof for Theorem 4.2.

B.1 Some facts about Pfaffian functions with elementary operators

In this section, we formalize some basic properties of Pfaffian functions. Essentially, the following results
say that if adding/subtracting/multiplying/dividing two Pfaffian functions from the same Pfaffian chain, we
end up with a function that is also the Pfaffian function from that Pfaffian chain. Moreover, even if the
two Pfaffian functions are not from the same Pfaffian chain, we can still construct a new Pfaffian chain that
contains both the functions and the newly computed function as well (by simply combining the two chains).

Fact 1 (Addition/Subtraction). Let g, h be Pfaffian functions from the Pfaffian chain C(a, η1, . . . , ηq) (a ∈
Rd). Then we have g(a) ± h(a) are also Pfaffian functions from the chain C.

Proof. For any ai, we have ∂
∂ai

(g ± h)(a) = ∂
∂ai

g(a) ± ∂
∂ai

h(a). Since ∂g(a)
∂ai

and ∂h(a)
∂ai

are polynomial of a

and ηi, ∂
∂ai

(g ± h)(a) are also polynomial of a and ηi, which concludes the proof.

Fact 2 (Multiplication). Let g, h be Pfaffian functions from the Pfaffian chain C(a, η1, . . . , ηq) (a ∈ Rd)
of length q and Pfaffain degree M . Then we have g(a)h(a) is a Pfaffian function from the chain
C′(a, η1, . . . , ηq, g, h).

Proof. For any ai, we have ∂
∂ai

(g(a)h(a)) = g ∂h(a)
∂ai

+ h ∂g(a)
∂ai

, which is a polynomial of a, η1, . . . , ηq, g, h.

Fact 3 (Division). Let g, h be Pfaffain functions from the Pfaffian chain C(a, ηq, . . . , ηq) (a ∈ Rd) of length
q and Pfaffian degree M . Assume that h(a) ̸= 0, then we have g(a)

h(a) is a Pfaffian function from the Pfaffian
chain C′(a, η1, . . . , ηq, , 1

h , g
h ).

Proof. For any ai, we have ∂
∂ai

(
g(a)
h(a)

)
= ∂g(a)

∂ai

1
h(a) − g(a)

h(a)
∂h(a)2

∂ai
is a polynomial of a, η1, . . . , ηq, 1

h , g
h .

Fact 4 (Composition). Let h be a Pfaffian function from the Pfaffian chain C(a, η1, . . . , ηq) (a ∈ Rd), and
g be Pfaffian function from the Pfaffain chain C′(b, η′

1, . . . , η′
q′) (b ∈ R). Then g(h(a)) is a Pfaffian function

from the Pfaffian chain C′′(a, η1, . . . , ηq, h, η′
1(h), . . . , η′

q′(h)).

Proof. For any ai, we have ∂g(h(a))
∂ai

= ∂h(a)
∂ai

∂g(h(a))
∂h(a) . Note that ∂g(h(a))

∂h(a) = P (h(a), η′
1(h(a)), . . . , η′

q′(h(a)),
where P is some polynomial. Therefore, g(h(a)) is a Pfaffian function from the Pfaffian chain
C′′(a, η1, . . . , ηq, h, η′

1(h), . . . , η′
q′(h)).

B.2 Background for proof of Theorem 4.2

In this section, we will present the proof of the Pfaffian GJ algorithm guarantee (Theorem 4.2). To begin
with, we first recall some preliminary results about a standard technique for establishing pseudo-dimension
upper-bound by analyzing the solution set connected components bound.
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B.2.1 Preliminaries on the connection between pseudo-dimension and solution set connected
components bound

We first introduce the notion of a regular value. Roughly speaking, given a smooth map F : Rd → Rr,
where r ≤ d, a regular value ϵ ∈ Rr is the point in the image space such that the solution of F (a) = ϵ is
well-behaved.

Definition 14 (Regular value, Milnor & Weaver (1997)). Consider C1 functions f1, . . . , fr : Rd → R
where r ≤ d, A ⊆ Rd, and the (smooth) mapping F : A → Rr given by F (a) = (f1(a), . . . , fr(a)). Then
(ϵ1, . . . , ϵr) ∈ Rr is a regular value of F if either: (1) F −1((ϵ1, . . . , ϵr)) = ∅, or (2) F −1((ϵ1, . . . , ϵr)) is a
(d − r)-dimensional sub-manifold of Rd.

It is widely known that by Sard’s Lemma Milnor & Weaver (1997), the set of non-regular values of the
smooth map F has Lebesgue measure 0. Based on this definition, we now present the definition of the
solution set connected components bound.

Definition 15 (Solution set connected components bound, Karpinski & Macintyre (1997)). Consider func-
tions τ1, . . . , τK : X × A → R, where A ⊆ Rd. Given x1, . . . , xN , assume that τi(xj , ·) : Rd → R is a
C1 function for i ∈ [K] and j ∈ [N ]. For any F : Rd → Rr, where F (a) = (Θ1(a), . . . , Θr(a)) with Θi

chosen from the NK functions τi(xj), if the number of connected components of F −1(ϵ), where ϵ is a regular
value, is upper bounded by B independently on xi, r, and ϵ, then we say that B is the solution set connected
components bound.

The solution set connected components bound offers an alternative way of analyzing VC-dimension (or
pseudo-dimension) of related parameterized function classes, which is formalized in the following lemma
Karpinski & Macintyre (1997). We include a high-level proof sketch for comprehensiveness.

Lemma B.1 (Karpinski & Macintyre (1997)). Consider the binary-valued function Φ(x, a), for x ∈ X and
a ∈ Rd constructed using the boolean operators AND and OR, and boolean predicates in one of the two forms
“τ(x, a) > 0” or “τ(x, a) = 0”. Assume that the function τ(x, a) can be one of at most K forms (τ1, . . . , τK),
where τi(x, ·) (i ∈ [K]) is a C∞ function of a for any fixed x. Let CΦ = {Φa : X → {0, 1} | x ∈ Rd} where
Φa = Φ(·, a). Then

VCdim(CΦ) ≤ 2 log2 B + (16 + 2 log K)d,

where B is the solution set connected components bound.

Proof Sketch. The key idea involved in proving the following lemma is a combinatorial argument due
to Warren (Theorem 1, Warren (1968)) which bounds the number of connected components induced by a
collection of boundary functions by

∑d
j=0 bj , where bj is the number of connected components induced by

intersections of any j functions. This can be combined with the solution set connected components bound
B, to get a bound

∑d
j=0 2j

(
NK

j

)
B ≤ B

( 2NKe
d

)d on the total number of connected components. The result
follows from noting 2N ≤ B

( 2NKe
d

)d if the N instances x1, . . . , xN are to be shattered. □

We now recall a result which is especially useful for bounding the solution set connected components bound
B for equations related to Pfaffian functions.

Lemma B.2 (Khovanski (1991)). Let C be a Pfaffian chain of length q and Pfaffian degree M , consists
of functions f1, . . . , fq in a ∈ Rd. Consider a non-singular system of equations Θ1(a) = · · · = Θr(a) = 0
where r ≤ d, in which Θi(a) (i ∈ [r]) is a polynomial of degree at most ∆ in the variable a and in the
Pfaffian functions f1, . . . , fq. Then the manifold of dimension k = d − r determined by this system has at
most 2q(q−1)∆mSd−r[(r − d + 1)S − (r − d)]q connected components, where S = r(∆ − 1) + dM + 1.

The following corollary is the direct consequence of Lemma B.2.
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Corollary B.3. Consider the setting as in Lemma B.1. Assume that for any fixed x, τi(x, ·) (i ∈ [K]) is a
Pfaffian function from a Pfaffian chain C with length q and Pfaffain degree M . Then

B ≤ 2dq(dq−1)/2∆d[(d2(∆ + M)]dq.

The following lemma gives a connection between the number of sign patterns and number of connected
components.

Lemma B.4 (Section 1.8, Warren (1968)). Given N real-valued functions h1, . . . , hN , the number of dis-
tinct sign patterns

∣∣{(sign(h1(a)), . . . , sign(hN (a))) | a ∈ Rd}
∣∣ is upper-bounded by the number of connected

components Rd − ∪i∈[N ]{a ∈ Rd | gi(a) = 0}.

The following result is about the relation between the connected components and the solution set connected
components.

Lemma B.5 (Lemma 7.9, Anthony & Bartlett (2009)). Let {f1, . . . , fN } be a set of differentiable functions
that map from Rd → R, with regular zero-set intersections. For each i, define Zi the zero-set of fi: Zi =
{a ∈ Rd : fi(a) = 0}. Then

CC

Rd −
⋃

i∈[N ]

Zi

 ≤
∑

S⊆[N ]

CC

(⋂
i∈S

Zi

)
.

Combining with Definition 15, the RHS becomes B
∑d

i=0
(

N
i

)
≤ B

(
eN
d

)d for N ≥ d.

B.2.2 Pfaffian formulae

We now introduce the building block of the Pfaffian GJ framework, named Pfaffian formula. Roughly
speaking, a Pfaffian formula is a boolean formula that incorporates Pfaffian functions.

Definition 16 (Pfaffian formulae). A Pfaffian formulae f : Rd → {True, False} is a disjunctive normal
form (DNF) formula over boolean predicates of the form g(a, η1, . . . , ηq) ≥ 0, where g is a Pfaffian function
of a Pfaffian chain C(a, η1, . . . , ηq).

The following lemma essentially claims that for any function class, if its computation can be described by a
Pfaffian formula and the corresponding Pfaffian chain exhibits bounded complexities, then the function class
also possesses bounded pseudo-dimension.

Lemma B.6. Suppose that each algorithm L ∈ L is parameterized by a ∈ Rd. Suppose that for every x ∈ X
and r ∈ R, there is a Pfaffian formula fx,r of a Pfaffian chain C with length q and Pfaffian degree M , that
given L ∈ L, check whether L(x) > r. Suppose that fx,r has at most K distinct Pfaffian functions in its
predicates, each of degree at most ∆. Then,

Pdim(L) ≤ d2q2 + 2dq log(∆ + M) + 4dq log d + 2d log ∆K + 16d.

Proof. This lemma is a direct consequence of Lemma B.1, and Corollary B.3.

C Additional details and omitted proofs for Section 5

In this section, we will present an additional comparison between our proposed framework and the general
piecewise structure framework by Balcan et al. (2021a), as well as a detailed proof for Lemma 5.3.
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C.1 A detailed comparison between the piece-wise structure by Balcan et al. (2021a) and our refined
Pfaffian piece-wise structure

In this section, we will do a detailed comparison between our refined Pfaffian piece-wise structure, and the
piece-wise structure proposed by Balcan et al. (2021a). First, we derive concrete pseudo-dimension bounds
implied by Balcan et al. (2021a) when the refined Pfaffian piece-wise structure is present. We note that this
implication is not immediate and needs a careful argument to bound the learning-theoretic complexity of
Pfaffian piece and boundary functions which appear in their bounds.

Theorem C.1. Consider the utility function class U = {ua : X → R | a ∈ A}, where A ⊆ Rd. Suppose
that U∗ admits (kF , kG , q, M, ∆, d)-Pfaffian piece-wise structure. Then using Theorem 5.1 by Balcan et al.
Balcan et al. (2021a), we have

Pdim(U) = O((d2q2 + dq log(∆ + M) + dq log d + d) · log[(d2q2 + dq log(∆ + M) + dq log d + d)kG ]).

Proof. Consider an utility function class U = {ua : X → R | a ∈ A}, where A ⊆ Rd, we assume that U∗

admits (kF , kG , q, M, ∆, d)-Pfaffian piece-wise structure. Then, U∗ also admits (F , G, kG) piece-wise structure
following Definition 7. Here, H is the set of Pfaffian functions of degree ∆ from a Pfaffian chain of length q
and Pfaffian degree M , and G is the set of threshold functions which are also Pfaffian functions of degree ∆
from the same Pfaffian chain of length q and Pfaffian degree M .

The first challenge in using the framework of Balcan et al. is that it only reduces the problem of bounding the
learning-theoretic complexity of the piecewise-structured utility function to that of bounding the complexity
of the piece and boundary functions involved, which is non-trivial in the case of Pfaffian functions. That
is, we still need to bound Pdim(F∗) and VCdim(G∗), where F∗ and G∗ are dual function classes of F and
G, respectively. To bound VCdim(G∗), we first consider the set of N input instances S = {g1, . . . , gN } ⊂ G,
and bound the number of distinct sign patterns,

ΓS(N) = |{(g∗
a(g1), . . . , g∗

a(gN )) | a ∈ A}| = |{(g1(a), . . . , gN (a)) | a ∈ A}|.

From Lemma B.5 and B.4, and B.2, we can bound ΓS(N) as

ΓS(N) = O(2dq(dq−1)/2∆d[(d2(∆ + M)])dq

(
eN

d

)d

.

Solving the inequality 2N = O(2dq(dq−1)/2∆d[(d2(∆ + M)]dq
(

ek
d

)d), we have VCdim(G∗) ≤ dq(dq−1)
2 +

d log ∆ + dq log(d2(∆ + M)).

We now bound Pdim(F∗). By definition, we have F∗ = {f∗
a : F → R | a ∈ A}. Again, to bound Pdim(F∗),

we first consider the set S = {f1, . . . , fN } ⊂ F and a set of thresholds T = {r1, . . . , rN }, and we want to
bound the number of distinct sign patterns

ΓS,T (N) = |{(sign(f∗
a(f1) − r1), . . . , sign(f∗

a(fN ) − rN )) | a ∈ A}|
= |{(sign(f1(a) − r1), . . . , sign(fN (a) − rN )) | a ∈ A}|.

Using similar argument as for G∗, we have Pdim(F∗) = O(d2q2 + dq log(∆ + M) + dq log d + d). Combining
with Theorem 3.3 by Balcan et al. Balcan et al. (2021a), we conclude that

Pdim(U) = O((d2q2 + dq log(∆ + M) + dq log d + d) log[(d2q2 + dq log(∆ + M) + dq log d + d)kG ]).

Remark 7. Compared to our bounds in Theorem 5.2, Theorem C.1 (implied by Balcan et al. (2021a)) has
two notable differences. First, our bound is sharper by a logarithmic factor O(log(d2q2 + dq log(∆ + M) +
dq log d + d)), which is a consequence of using a sharper form of the Sauer-Shelah lemma. Second, we have a
dependence on a logarithmic term kF which is asymptotically dominated by the other terms, and corresponds
to better multiplicative constants than Theorem C.1.
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C.2 Omitted proofs for Section 5.3.1

Lemma 5.3 (restated). Consider a function class V = {va : X → R | a ∈ A} where A ⊆ Rd. Assume
there is a partition P = {A1, . . . , An} of the parameter space A such that for any problem instance x ∈ X ,
the dual utility function u∗

x is a Pfaffian function of degree at most ∆ in region Ai from a Pfaffian chain CAi

of length at most q and Pfaffian degree M . Then the pseudo-dimension of V is upper-bounded as follows

Pdim(V) = O(q2d2 + qd log(∆ + M) + qd log d + log n).

Proof. Consider N problem instances x1, . . . , xN with N corresponding thresholds τ1, . . . , τN , we first want to
bound the number of distinct sign patterns ΠV(N) = |{(sign(va(x1)− τ1), . . . , sign(va(xN )− τN )) | a ∈ A}|.

Denote ΠAi

V (N) = |{(sign(va(x1) − τ1), . . . , sign(va(xN ) − τN )) | a ∈ Ai}|, we have ΠV(N) ≤
∑n

i=1 ΠAi

V (N).
For any i ∈ [n], from the assumptions, Lemma 5.2 and using Sauer’s Lemma, we have

ΠV(N) ≤
(

eN

S

)S

,

where S = C(q2d2 + qd log(∆ + M) + qd log d) for some constant C. Therefore ΠV(N) ≤ n
(

eN
S

)S . Solving
the inequality 2N ≤ ΠV(N), we conclude that Pdim(V) = O(q2d2 + qd log(∆ + M) + qd log d + log n) as
expected.

D Additional background and omitted proofs for Section 6

In this section, we will present the deferred proofs as well as additional for various applications in Section 6.

D.1 Omitted proofs for Section 6.1

Theorem 6.2. Let H2 be a class of functions

H2 = {uα,β
2 : (S, δ) 7→ u(Aα,β

2 (S, δ)) | α ∈ R ∪ {−∞, +∞}, β ∈ ∆([L])}

mapping clustering instances (S, δ) to [0, 1] by using merge functions from class M2 and an arbitrary merge
function. Then Pdim(H2) = O(n4L2).

Proof. Fix the clustering instance (S, δ). Suppose A, B ⊆ S and A′, B′ ⊆ S are two candidate clusters at
some merge step of the algorithm. Then A, B is preferred for merging over A′, B′ iff 1

|A||B|
∑

a∈A,b∈B

(δβ(a, b))α

1/α

≤

 1
|A′||B′|

∑
a∈A′,b∈B′

(δβ(a, b))α

1/α

,

or equivalently,
1

|A||B|
∑

a∈A,b∈B

(δβ(a, b))α ≤ 1
|A′||B′|

∑
a∈A′,b∈B′

(δβ(a, b))α.

For distinct choices of the point sets A, B, A′, B′, we get at most
(2n

2
)2

≤ 24n distinct boundary conditions
across which the merge decision at any step of the algorithm may change.

We next show that the boundary functions constitute a Pfaffian system in α, β1, . . . , βL and bound its
complexity. For each pair of points a, b ∈ S, define fa,b(α, β) := 1

δβ(a,b) , ga,b(α, β) := ln δβ(a, b) and
ha,b(α, β) := δβ(a, b)α. Similar to the proof of Theorem 6.1, these functions form a Pfaffian chain
C(α, β, fa,b, ga,b, ha,b) for a, b ∈ S. We can see that C is of length q = 3n2 and Pfaffian degree M = 2.
The boundary conditions can all be written in terms of the functions {ha,b}a,b∈S , meaning kG = n8 and de-
gree ∆ = 1. Again, note that kF = n+1. Therefore, H∗

2 admits (n+1, n8, 3n2, 2, 1, L+1)-Pfaffian piece-wise
structure. Applying Theorem 5.2 now gives that Pdim(H2) = O(n4L2+n2L log L+L log 24n) = O(n4L2).
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Theorem 6.3. Let H3 be a class of functions

H3 = {uα
3 : (S, δ) 7→ u(Aα

3 (S, δ)) | αi ∈ R ∪ {−∞, ∞} \ {0}}

mapping clustering instances (S, δ) to [0, 1] by using merge functions from class M3. Then Pdim(H3) =
O(n4L2).

Proof. Fix the clustering instance (S, δ). Suppose A, B ⊆ S and A′, B′ ⊆ S are two candidate clusters at
some merge step of the algorithm. Then A, B is preferred for merging over A′, B′ iff 1

|A||B|
∑

a∈A,b∈B

Πi∈[L](δi(a, b))αi

1/
∑

i
αi

≤
(

1
|A′||B′|

Πi∈[L](δi(a, b))αi

)1/
∑

i
αi

,

or equivalently,
1

|A||B|
∑

a∈A,b∈B

Πi∈[L](δi(a, b))αi ≤ 1
|A′||B′|

∑
a∈A′,b∈B′

Πi∈[L](δi(a, b))αi .

For distinct choices of the point sets A, B, A′, B′, we get at most
(2n

2
)2

≤ 24n distinct boundary conditions
across which the merge decision at any step of the algorithm may change.

We next show that the boundary functions constitute a Pfaffian system in α1, . . . , αL and bound its
complexity. For each pair of points a, b ∈ S, define ha,b(α1, . . . , αL) := Πi∈[L](δi(a, b))αi . Note that
∂h
∂αi

:= ln δi(a, b)ha,b(α1, . . . , αL), and thus these functions form a Pfaffian chain of chain length n2 and
Pfaffian degree 1. The boundary conditions can be all written in terms of the functions {ha,b}a,b∈S , meaning
that kG = 24n, and ∆ = 1. Again, note that kF = n+1. Therefore H∗

3 admits (n+1, 24n, n2, 1, 1, L)-Pfaffian
piece-wise structure. Applying Theorem B.6 now gives that Pdim(H2) = O(n4L2).

D.2 Additional background and omitted proofs for Section 6.3

Theorem D.1 (Rosset (2004)). Given a problem instance P = (X, y, Xval, yval) ∈ Πm,p, for small enough ϵ,
if we use Algorithm 1 (2) to approximate the solution β̂(X,y)(λ) of RLR under ℓ1 (ℓ2) constraint by β

(ϵ)
(X,y)(λ)

then there is a uniform bound O(ϵ2) on the error ∥β̂(X,y)(λ) − β
(ϵ)
(X,y)(λ)∥2 for any λ ∈ [λmin, λmax].

For any λ ∈ [λt, λt+1], where λk = λmin + kϵ, the approximate solution β(ϵ)(λ) is calculated by

β
(ϵ)
(X,y)(λ) = β

(ϵ)
t −

[
∇2l

(
β

(ϵ)
t , (X, y)

)
A

]−1
·
[
∇l
(

β
(ϵ)
t , (X, y)

)
A

+ λ sgn
(

β
(ϵ)
t

)
A

]
= atλ + bt,

if we use Algorithm 1 for RLR under ℓ1 constraint, or

β
(ϵ)
(X,y)(λ) = β

(ϵ)
t −

[
∇2l

(
β

(ϵ)
t , (X, y)

)
+ 2λt+1I

]−1
·
[
∇l
(

β
(ϵ)
t , (X, y)

)
+ 2λβ

(ϵ)
t

]
= a′

tλ + b′
t,

if we use Algorithm 2 for RLR under ℓ2 constraint.

E Additional background and omitted proofs for Section 7

We record here some fundamental results from the theory of Pfaffian functions (also known as Fewnomial
theory) which will be needed in establishing our online learning results. The following result is a Pfaffian
analogue of Bezout’s theorem from algebraic geometry, useful in bounding the multiplicity of intersections
of Pfaffian hypersurfaces.

Theorem E.1 (Khovanski (1991); Gabrielov (1995)). Consider a system of equations g1(x) = · · · = gn(x) =
0 where gi(x) = Pi(x, f1(x), . . . , fq(x)) is a polynomial of degree at most di in x ∈ Rn and f1, . . . , fq are a
sequence of functions that constitute a Pfaffian chain of length q and Pfaffian degree at most M . Then the
number of non-degenerate solutions of this system does not exceed

2q(q−1)/2d1 . . . dn(min{q, n}M + d1 + · · · + dn − n + 1)q.
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Algorithm 1 Approximate incremental quadratic algorithm for RLR with ℓ1 penalty, Rosset (2004)
Set β

(ϵ)
0 = β̂(X,y)(λmin), t = 0, small constant δ ∈ R>0, and A = {j | [β̂(X,y)(λmin)]j ̸= 0}.

while λt < λmax do
λt+1 = λt + ϵ(

β
(ϵ)
t+1

)
A

=
(

β
(ϵ)
t

)
A

−
[
∇2l

(
β

(ϵ)
t , (X, y)

)
A

]−1
·
[
∇l
(

β
(ϵ)
t , (X, y)

)
A

+ λt+1 sgn
(

β
(ϵ)
t

)
A

]
(

β
(ϵ)
t+1

)
−A

= 0⃗

A = A ∪ {j ̸= A | ∇l(β(ϵ)
t+1, (X, y)) > λt+1}

A = A \ {j ∈ A |
∣∣∣β(ϵ)

t+1,j

∣∣∣ < δ}
t = t + 1

Algorithm 2 Approximate incremental quadratic algorithm for RLR with ℓ2 penalty, Rosset (2004)
Set β

(ϵ)
0 = β̂(X,y)(λmin), t = 0.

while λt < λmax do
λt+1 = λt + ϵ

β(ϵ)(λ) = β
(ϵ)
t −

[
∇2l

(
β

(ϵ)
t , (X, y)

)
+ 2λt+1I

]−1
·
[
∇l
(

β
(ϵ)
t , (X, y)

)
+ 2λt+1β

(ϵ)
t

]
t = t + 1

E.1 Online learning for data-driven agglomerative hierarchical clustering

We will now present some useful lemmas for establishing Theorem 7.4. The following lemma generalizes
Lemma 25 of Balcan et al. (2020b).

Lemma E.2. Let X1, . . . , Xn be a finite collection of independent random variables each having densities
upper bounded by κ. The random variable Y =

∑n
i=1 βiXi for some fixed scalars β1, . . . , βn with

∑n
i=1 βi = 1

has density fY satisfying fY (y) ≤ κ for all y.

Proof. We proceed by induction on n. First consider n = 1. Clearly Y = X1 and the conclusion follows
from the assumption that X1 has density upper bounded by κ.

Now suppose n > 1. We have Y = β1X1 + β2X2 + · · · + βnXn = β1X1 + (1 − β1)X ′, where X ′ =
1

1−β1

∑n
i=2 βiXi. By the inductive hypothesis, X ′ has a density fX′ which is upper bounded by κ. Let fX1

denote the density of X1. Noting X ′ = Y −β1X1
1−β1

and using the independence of X ′ and X1, we get

fY (y) =
∫ ∞

−∞
fX′

(
y − β1x

1 − β1

)
fX1(x)dx ≤

∫ ∞

−∞
κfX1(x)dx = κ.

This completes the induction step.

We will now present a useful algebraic lemma for establishing Theorem 7.4.

Lemma E.3. If α > 0, a, b, c > 0, and aα + bα − cα > 0, then

aα ln a + bα ln b − cα ln c

aα + bα − cα
≤ 1

α
+ ln max{a, b, c}.

Proof. We consider two cases. First suppose that c > a and c > b. We have that

aα ln a + bα ln b − cα ln c

aα + bα − cα
≤ aα ln c + bα ln c − cα ln c

aα + bα − cα
≤ ln c
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in this case.

Now suppose c ≤ a (the case c ≤ b is symmetric). Observe that for α > 0, the function f(x) = xα ln K
x is

monotonically increasing for x ≤ Ke−1/α when K, α, x > 0. This implies for K = max{a, b}e1/α,

cα ln K

c
≤ aα ln K

a
≤ aα ln K

a
+ bα ln K

b
,

or, equivalently,

aα ln a + bα ln b − cα ln c ≤ ln K(aα + bα − cα).

Since, aα + bα − cα > 0, we further get

aα ln a + bα ln b − cα ln c

aα + bα − cα
≤ ln K = 1

α
+ ln max{a, b}.

To establish Theorem 7.5, we first present a useful lemma, and restate a useful result from Balcan & Sharma
(2021).

Lemma E.4. Suppose X is a real-valued random variable taking values in [0, M ] for some M ∈ R+ and
suppose its probability density is κ-bounded. Then, Y = Xα for α ∈ [αmin, 1] for some αmin > 0 takes values
in [0, M ] with a κ′-bounded density with κ′ ≤ κ

αmin
max{1, M

1
αmin

−1}.

Proof. The cumulative density function for Y is given by

FY (y) = Pr[Y ≤ y] = Pr[X ≤ y1/α]

=
∫ y1/α

0
fX(x)dx,

where fX(x) is the probability density function for X. Using Leibniz’s rule, we can obtain the density
function for Y as

fY (y) = d

dy
FY (y)

= d

dy

∫ y1/α

0
fX(x)dx

≤ κ
d

dy
y1/α

= κ

α
y

1
α −1.

Now for y ≤ 1, y
1
α −1 ≤ y ≤ 1 and therefore fY (y) ≤ κ

αmin
. Else, y ≤ M , and fY (y) ≤ κ

αmin
M

1
αmin

−1.

We will also need the following result which is useful to establish dispersion when the discontinuities of the
loss function are given by roots of an exponential equation in the parameter with random coefficients.

Theorem E.5 (Balcan & Sharma (2021)). Let ϕ(x) =
∑n

i=1 aie
bix be a random function, such that coeffi-

cients ai are real and of magnitude at most R, and distributed with joint density at most κ. Then for any
interval I of width at most ϵ, Pr(ϕ has a zero in I) ≤ Õ(ϵ) (dependence on bi, n, κ, R suppressed).
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