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Abstract
Adapting large language models (LLMs) to spe-
cific tasks remains challenging due to the exten-
sive retraining required, prompting the need for
efficient adapter techniques. Despite this, the con-
current serving of multiple adapters, each with
unique matrix shapes, poses significant system-
level challenges. To address these issues, we iden-
tify an opportunity in structurally sparse adapters,
which, unlike low-rank adapters, maintain con-
sistent matrix shapes while varying in sparsity
patterns. Leveraging this characteristic, we intro-
duce SpartanServe, a system designed for efficient
concurrent serving of LLMs using multiple struc-
turally sparse adapters. SpartanServe employs
a unified matrix multiplication operation and a
novel memory management technique to enable
effective batching. Furthermore, the incorpora-
tion of Triton kernels enhances the acceleration of
matrix multiplication in the serving process. Ex-
perimental results demonstrate that SpartanServe
achieves 2.12× speedup over S-LoRA when serv-
ing 96 adapters using a single NVIDIA A100
GPU (40GB), showcasing its efficacy in concur-
rent LLM serving.

1. Introduction
As the field of natural language processing (NLP) continues
to advance, large language models (LLMs) (Brown et al.,
2020) have emerged as a cornerstone technology, power-
ing a wide range of applications from automated customer
service (Pandya & Holia, 2023) to sophisticated content
generation (Imani et al., 2023).

The Need for Adapters. Large Language Models (LLMs)
require adapters like Low-Rank Adaptation (LoRA) (Hu
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et al., 2021) to efficiently fine-tune their performance on
specific tasks while managing computational and resource
constraints. LLMs, with their extensive parameters and ca-
pabilities, still face challenges in adapting to new or niche
applications without exhaustive retraining. Adapters offer
a solution by introducing lightweight, task-specific adap-
tations that modify only a subset of the model’s parame-
ters (Dettmers et al., 2024; Liu et al., 2024; Qiu et al., 2023;
Liu et al., 2023). This approach significantly reduces the
memory and computational power needed for fine-tuning,
making it feasible to deploy LLMs in varied and resource-
limited environments.

Expensiveness of Multi-Adapter Concurrent LLM Serv-
ing. With the rise of LLM adaptation techniques, building
multiple adapters on the same base LLM has become stan-
dard practice. Consequently, during the inference phase, we
can batch input requests with independent adapters together
for faster processing. However, this concurrent serving of
multiple adapters is costly due to the irregularity of the
adapters. Specifically, adapters like LoRA require specify-
ing the hidden low-rank dimension as a hyper-parameter,
resulting in different adapters having different low-rank
matrix shapes. To address this issue, Sheng et al. (2024)
proposed S-LoRA, which tackles the heterogeneous shapes
of low-rank matrices. Despite these significant system-level
improvements, challenges persist in concurrently serving
LLMs with numerous, heterogeneous LoRA adapters.

An Opportunity from Structural Sparse Adapters. In
this work, we identify an opportunity presented by struc-
turally sparse adapters (Qiu et al., 2023; Liu et al., 2023). We
argue that there is a fundamental difference between struc-
turally sparse adapters and low-rank adapters: for the same
large language model (LLM), structurally sparse adapters
maintain the same matrix shape but exhibit different sparsity
patterns. Leveraging this advantage, we propose a unified
matrix multiplication approach for concurrent LLM serving.

Our Contributions. In this work, we propose SpartanServe,
a system designed for concurrent LLM serving using multi-
ple structurally sparse adapters. We present a unified matrix
multiplication operation for these adapters, along with a
memory management technique that enables efficient batch-
ing. Additionally, we incorporate Triton kernels to further
accelerate matrix multiplication in the concurrent LLM serv-
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ing process. We show that SpartanServe is able to achieve
2.12× speedup over S-LoRA when serving 96 adapters
using a single NVIDIA A100 GPU (40GB).

2. Structural Sparse LLM Adapters
2.1. LLM Fine-Tuning

Fine-tuning allows pre-trained LLMs adapt to specific tasks
through retraining on domain specific data and updating
the model weights. Given the substantial parameter counts
in LLMs, fine-tuning these models in entirety is resource-
intensive. Consequently, parameter-efficient fine-tuning
(PEFT) approaches (Hu et al., 2021; Dettmers et al., 2024;
Qiu et al., 2023) have garnered considerable interest.

2.2. Low-Rank Adaptation and Variations

Low-Rank Adaptation (LoRA) (Hu et al., 2021) represents
one category of PEFT methods that has attracted momentum.
The fundamental principle of LoRA is based on the intrin-
sic rank hypothesis, which posits that the essential updates
required during the model adaptation process can be encap-
sulated in a low-dimensional space. In practice, LoRA im-
plements this by freezing the original weights of the model
and introducing two smaller, trainable matrices whose prod-
uct forms a low-rank approximation of the weight changes.
This method significantly reduces the quantity of trainable
parameters, often by several orders of magnitude, thereby
decreasing both memory overhead and computational ex-
pense. Consequently, LoRA maintains comparable accuracy
to traditional full-parameter fine-tuning but with much lower
resource demands.

Several variants of LoRA have been developed to enhance
the fine-tuning of pre-trained language models. Adaptive
Low-Rank Adaptation (AdaLoRA) conserves resources by
assigning higher ranks to crucial matrices while pruning
less significant ones(Zhang et al., 2023). Another variant,
Weight-Decomposed Low-Rank Adaptation (DoRA) sepa-
rates weight updates into two components: magnitude and
direction (Liu et al., 2024), allowing DoRA to more effec-
tively optimize weight adjustments, potentially enhancing
model performance at lower ranks.

We argue that low-rank style adapters are facing a similar
challenge in LLM concurrent serving: the matrix shapes
of different adapters are not the same. Specialized op-
timizations are needed to improve system-level perfor-
mance (Sheng et al., 2024).

2.3. Structural Sparse LLM Adapters

Besides low-rank matrices, another class of structured matri-
ces used for compressed matrix representation is structural
sparse matrices, which only store the nonzero elements and

their indices, thus drastically reducing the memory required
to store the matrices’ information.

Butterfly Orthogonal Fine-Tuning (BOFT) is one such
fine-tuning method, using block-sparse matrices to achieve
parameter-efficiency. It builds upon Orthogonal Fine-
Tuning (OFT), which applies the insight that orthogonal
transformations preserves hyper-spherical energy by main-
taining the pair-wise angle between neurons, and leverages
butterfly factorization to efficiently parameterize dense or-
thogonal matrices. Butterfly factorization was used in the
Cooley-Tukey Fast Fourier Transform Algorithm, which
uses a recursive structure to write a matrix in ℜd×d as the
product of sparse matrix products. This method has been
adopted in other works of fast linear transforms and efficient
training (Chen et al., 2021; Dao et al., 2019; 2022).

Formally, we start by defining a butterfly factor BF (k) as

BF (k) =

[
D1(k/2) D2(k/2)
D3(k/2) D4(k/2)

]
, where each Di(k/2) is

a diagonal matrix in ℜ k
2×

k
2 . Each butterfly component

B̃(d, k) ∈ ℜd×d is a block diagonal matrix composed of d
k

butterfly factors of size k × k. i.e.:

B̃(d, k) = diag(BF
1 (k)...BF

d
k
(k))

Using butterfly factorization, for a dense matrix B(d) ∈
ℜd×d, we can write it as

B(d) = B̃(d, d)B̃(d, d/2)...B̃(d, 2)

where each B̃(d, k), k > 2 is a sparse matrix with fixed spar-
sity pattern. Each factor’s non-zero pattern can be created
by a block-wise permutation of the B̃(d, 2) non-zero pat-
terns. As a result, we can preserve the orthogonality of the
dense matrix B(d) by enforcing the blocks of B̃(d, 2) to be
orthogonal matrices. This can be generalized to using block
butterfly components where each Bb(d, k) is composed of
block butterfly factors of k × k blocks, with each block
having a size of b× b. Using this formulation, a foward pass
using a BOFT adapter can be expressed as:

z = ((

m∏
i=1

B̃b(d, i) ·Wbase)
Tx

3. SpartanServe: Concurrent Serving of
Multiple Structural Sparse Adapters

3.1. LLM Concurrent Serving

Efficient deployment of Transformer-based Large Language
Models (LLMs) in production environments necessitates
meticulous management of computational resources and
user requests. In practical applications, LLMs must handle
multiple concurrent user requests, with each user poten-
tially employing a distinct pretrained adapter while sharing
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a common base model. Traditional methods, which process
requests sequentially, fail to fully utilize GPU capabilities,
resulting in considerable inefficiencies and prolonged re-
sponse times.

To address these inefficiencies, batching adapters with vary-
ing configurations for processing becomes crucial. Nev-
ertheless, integrating batching adapters introduces a new
challenge due to the diversity of user configurations. Low-
rank adapters, in particular, face specific difficulties when
users specify varying ranks, leading to unaligned matrix
dimensions that complicate batching operations. Effectively
managing this issue necessitates advanced batching mech-
anisms, which may involve padding and fragmentation to
standardize input dimensions, or the development of sophis-
ticated kernels designed to handle discrepancies in adapter
configurations.

3.2. Our Proposed Optimization

Unified Operation for Multiple Structural Sparse
Adapters. BOFT adapters offers an opportunity in sim-
ple batching capabilities within transformer-based models.
These adapters are particularly amenable to unified opera-
tions due to their inherent structural properties.

Each butterfly component of a BOFT adapter can be rep-
resented in a dense format as square matrices, where both
the rows and columns correspond to the size of the input
shape. This uniformity in matrix dimensions across different
adapters simplifies the process of batching.

Adapter Batching. At each layer, each BOFT adapter is
structured in a block sparse format, where only non-zero
blocks are stored. However, different adapters may have
different block sizes. To address this issue, we select a
minimal common block size that divides the original block
size. Using this common block size, we generated a layout
for each butterfly component, which specifies the placement
of each block within the sparse matrix relative to its position
in the corresponding full matrix Figure 1.

Subsequently, these block sparse weights are consolidated
into a single tensor, and the layouts of individual adapters
are merged into a unified layout. During model inference,
the batched adapters are multiplied with the computation
result of the base model. For this purpose, we applied
Triton’s block sparse matrix multiplication, which generates
a Triton kernel based on the created unified layout and block
size to facilitate efficient batch computation.

Memory Management. The batching of these adapters
requires the creation of a new adapter tensor, effectively
doubling the number of adapters in the GPU memory. This
increase often leads to out-of-memory issues when batching
multiple adapters simultaneously. We developed a solution
where adapter weights are initially loaded onto CPU mem-

ory. Only the necessary adapter weights are transferred
to the GPU for the duration of the batching process and
subsequently offloaded to the CPU upon completion. This
approach limits the number of adapters in a single batch to
the capacity of the GPU memory at the batch’s conclusion,
rather than the considerably higher memory demands during
the batching process itself, mitigating the risk of memory
overflow during extensive batching operations.

Speed Up Triton Kernels. Due to the design of the JIT
compiler used to create the Triton (Tillet et al., 2019) block-
sparse matrix multiplication API, initializing the kernel in-
duces significant overhead even with warm-up, causing in-
ference to slow down. To address this issue, we used Py-
Torch’s CUDA graph integration to optimize kernel launch-
ing. CUDA graph enables us to define and store CUDA
kernels as a single unit, rather than a sequence of individ-
ually launched operations. This allows us to launch Triton
kernels in one single CPU operation, reducing launch over-
heads.
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Figure 1. Batching adapters of different block size at one butterfly
factor: although different users specified different block sizes, we
are able to use the minimum common block size to create a unified
layout for all adapters. Within the unified layout, each of the n
matrices is a boolean matrix. The individual entries of matrix i in
the layout signify whether the corresponding block in adapter i is
non-zero. The unified layout is then used to create a Triton kernel
for block sparse matrix multiplication.

4. Experiment
4.1. Settings

Models. We evaluated BOFT adapter inference perfor-
mance on foundation models using LLama2-7B (Touvron
et al., 2023), one of the most popular generative text mod-
els that uses transformer architecture as a core component.
The adapters are added to the “k proj”, “q proj”, “v proj”,
“o proj” modules in each self-attention layer. We considered
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3 different model and adapter configurations, listed in Ta-
ble 1. The settings are chosen based on previously reported
parameter count ratio that yielded similar performance be-
tween BOFT and LoRA (Liu et al., 2023). The evaluation
was conducted on a server with a single A100 GPU with
40GB of memory.

Table 1. Model and adapter settings. m denote the number of
butterfly components used to create the BOFT adapter, b denote
the block size. The %Params column denotes the percentage of
parameters of one adapter compared to the base model parameter
count.

Setting BOFT LoRA
m b %Param Rank %Param

1 2 32 0.48% 64 0.96%
2 2 {64, 32} 0.72% 64 0.96%

Baselines. We evaluated our results against two systems
capable of serving multiple LoRA adapters: Huggingface
PEFT (Mangrulkar et al., 2022) and S-LoRA (Sheng et al.,
2024).

Huggingface PEFT is a framework engineered to adapt ex-
tensive pretrained models to diverse tasks while optimizing
resource utilization. This library collaborates seamlessly
with various other libraries such as Transformers, Diffusers,
and Accelerate. Although it supports the batching of multi-
ple adapters, its efficiency in this regard is limited.

S-LoRA is designed for the scalable deployment of multiple
LoRA adapters across single or multiple GPUs. It achieves
high adapter capacity by hosting adapters on main memory
and dynamically loading requested ones to GPU memory.
S-LoRA also improves throughput and latency through the
implementation of Unified Paging and specialized CUDA
kernels. However, it operates independently and lacks in-
tegration with other large language model frameworks and
libraries.

Dataset. We created a dataset comprised text data of varying
lengths, intentionally structured to simulate a spectrum of
user queries that might be observed in real-world settings.
In each experiment setting, for the n input text data samples,
the corresponding adapter configuration was selected using
a round-robin approach. For each request, we set the output
length to 100 tokens.

4.2. Main Results

Comparison with Huggingface PEFT. We compare Spar-
tanServe and Huggingface PEFT Lora adapters for perform-
ing inference with multiple adapters in terms of request
latency. BOFT adapters consistently exhibit lower latency,
as shown in Table 2. Furthermore, as the number of adapters
scales up, the latency associated with Huggingface PEFT

LoRA adapters increases, whereas SpartanServe maintain
a stable latency profile. Here, we don’t compare with Hug-
gingface PEFT using larger number of adapters as it already
performs much slower under small adapter counts.

Table 2. Average latency (s/req) for SpartanServe and Huggingface
PEFT when serving multiple adapters

Setting # adapters SpartanServe LoRA

S1 2 19.23 13.77
S1 4 8.99 22.22
S1 16 18.90 76.28
S1 32 11.67 142.24
S1 64 12.10 260.79

Comparison with S-LoRA We evaluated SpartanServe
and S-Lora for performing inference on 512 user requests
with varying numbers of adapters. We use setting 1 when
comparing larger number of adapters as setting 2 would
cause out-of-memory issues for SpartanServe when using
one 40GB GPU. Our results indicate that as the number of
adapters increases, SpartanServe exhibits lower latency, as
shown in Table 3.

Table 3. Average latency (s/req) for SpartanServe and S-LoRA
when serving multiple adapters

Setting # adapters SpartanServe S-LoRA

S2 2 17.88 13.27
S2 4 21.51 12.46
S2 16 23.07 15.12
S2 32 19.23 22.33
S2 64 21.78 27.49

S1 72 13.04 29.52
S1 84 14.14 30.37
S1 96 15.30 32.46

5. Conclusion
In this work, we study the concurrent LLM serving with mul-
tiple adapters. We have explored the potential of structurally
sparse adapters, which maintain consistent matrix shapes
while varying in sparsity patterns, unlike low-rank adapters.
This insight led to the development of SpartanServe, a sys-
tem designed for the efficient concurrent serving of LLMs
using multiple structurally sparse adapters. SpartanServe
leverages a unified matrix multiplication operation and an
innovative memory management technique to enable ef-
fective batching. Additionally, the use of Triton kernels
enhances the acceleration of matrix multiplication during
the serving process. Experimental results demonstrate that
SpartanServe achieves 2.12× speedup over S-LoRA when
serving 96 adapters using a single NVIDIA A100 GPU
(40GB).
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