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ABSTRACT

For a real-world decision-making problem, the reward function often needs to be
engineered or learned. A popular approach is to utilize human feedback to learn
a reward function for training. The most straightforward way to do so is to ask
humans to provide ratings for state-action pairs on an absolute scale and take these
ratings as reward samples directly. Another popular way is to ask humans to rank
a small set of state-action pairs by preference and learn a reward function from
these preference data. Recently, preference-based methods have demonstrated
substantial success in empirical applications such as InstructGPT. In this work,
we develop a theoretical comparison between these human feedback approaches in
offline contextual bandits and show how human bias and uncertainty in feedback
modelings can affect the theoretical guarantees of these approaches. Through this,
our results seek to provide a theoretical explanation for the empirical successes of
preference-based methods from a modeling perspective.

1 INTRODUCTION

Reward engineering is one of the most crucial aspects in real-world decision-making problems. It
is particularly important to bandits and reinforcement learning (RL), since it can be prohibitively
expensive to learn the entire environment through random exploration and most existing algorithms
rely on a reward function to guide their exploration in a deliberate manner so that they can solve the
desired tasks efficiently.

In some cases, it can be straightforward to select reward functions when we have sufficient prior
knowledge about the dynamics or rules that govern the problems of interest, such as games and
simulated physical systems [34; 35; 50]. However, this is often not the case in practice. Real-
world problems can be highly complex, and there may not be a clear choice of reward to use.
Therefore, practitioners often have to construct a reward function from scratch for their algorithms
to use. Unfortunately, such artificial rewards often end up misaligned with the overall objective of
the system and fail to lead to the desired policy. For instance, in the task of teaching a chatbot to
converse like a human, assigning a scalar reward to a chatbot’s reply is challenging since there is
no scale that can objectively evaluate its quality. Therefore, reward engineering poses a significant
challenge to policy learning, particularly when it is difficult to quantify policy performance or the
system is multi-objective.

To address these challenges, a popular methodology is to learn the reward function from human
feedback instead of handcrafting it from scratch. These methods assume a true reward function
exists and its corresponding optimal policy is aligned with our goal, but this true reward is not ac-
cessible or directly observable. Instead, it needs to be learned with the feedback data from human
annotators, who are believed to be able to evaluate an algorithm or agent in a way aligned with the
true reward. The most straightforward approach is to ask human annotators to rate subjects on an ab-
solute scale [29; 30; 20]. These ratings can be either used directly as reward samples or incorporated
into a pre-designed reward function as a component [53]. We refer to this use of human feedback as
“rating”. The rating approach has been popular because of its easy implementation and the compat-
ibility of such rating data with most existing algorithms. However, as some empirical studies have
shown [58; 24], the reward derived from human ratings is susceptible to bias and uncertainty of the
human annotators and can deviate from the true reward. To characterize the ratings given by human
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annotators, several models have been proposed and widely adopted in the literature [40; 31]. These
existing models, however, fall short on two aspects: (i) they model the uncertainty noise in a simple,
isolated form, and (ii) their modeling of the bias is also restrictive, which does not fully capture the
bias in practice and can render the problem of policy learning statistically inconsistent.

As an alternative, there has been a growing trend in recent years to use human feedback by com-
paring subjects rather than rating them individually. These methods are commonly referred to as
preference-based methods. In lieu of assigning ratings on an absolute scale, human annotators are
given small sets of subjects and tasked with comparing and ranking the subjects within each set.
Since some empirical studies have shown that humans are fairly accurate when making choices
among a small number of subjects [36; 52; 67], the preference-based approach is believed to be
more robust to human bias and uncertainty and learn reward more accurately. The preference feed-
back of human annotators is commonly modeled with either the Bradley-Terry-Luce model [6] or
the Plackett-Luce model [41], both of which have found extensive applications in recommender sys-
tems and crowdsourcing research [10; 47; 15]. Recently, preference-based methods have become
popular for reward learning in bandit problems and have played a crucial role in the remarkable
success of training large language models such as InstructGPT and ChatGPT.

While the preference-based approach has demonstrated notable empirical effectiveness in reward
engineering, its theoretical properties remain largely unexplored. Existing results have primarily
focused on algorithms for online bandit and RL, whose goal is to maximize a preference metric
rather than to learn a reward function [39; 65]. Recently, [80; 78] proved the optimal policy can be
learned from preference data in the offline setting with pessimism and maximum likelihood estima-
tion (MLE) and analyzed the suboptimality. [57] showed any robust RL algorithm can be adapted
to find the optimal policy with preference data, suggesting preference-based policy learning is no
harder than standard robust RL. However, the reason why the preference-based approach outper-
forms the traditional rating-based approach in practice still remains a question. In this work, we
provide a theoretical comparison between these human feedback approaches and propose a theory
that aims to explain the advantage of the preference-based approach over rating in policy learn-
ing from a modeling perspective. To align with recent applications [13; 38], we focus on tabular
contextual bandits in the offline setting.

Specifically, we first consider a new model for human rating data and analyze the suboptimality
guarantees of the standard LCB algorithm under it. Our rating model is based on a general class of
monotone functions that can account for both human bias and uncertainty with general forms. By
incorporating the concept of monotonicity, our model captures the bias observed in real-world hu-
man rating and maintains the correct reward ordering. This allows policy learning to be a consistent
yet nontrivial statistical problem, which differs from existing rating models that do not preserve the
reward ordering or guarantee the consistency of the induced policy learning problem. In addition,
our model is able to express a more general form of noise to represent human uncertainty during
rating. Through our models, we provide the first known suboptimality analysis for reward engi-
neering with human rating in bandit problems and shed light on how human bias and uncertainty
can adversely impact policy learning. Furthermore, we compare our results with the suboptimality
result from [80] for the preference-based method pessimistic MLE. The comparison reveals that the
preference-based approach enjoys lower suboptimality than the rating-based approach when human
bias is extreme in human rating. Lastly, we also consider a new model for human preference with
human bias and compare the sample complexity of pessimistic MLE under this new model with
the results for human rating. This comparison shows when human bias and uncertainty are equally
strong in both types of human feedback, the preference-based approach has no provable advantage
over the rating-based one. Altogether, our theory shows the advantage of the preference-based ap-
proach can be largely attributed to its modeling with mild human bias and uncertainty, which makes
it reasonable to believe the great empirical success of preference-based methods is because human
preference data is subject to less bias and uncertainty in practice.

1.1 RELATED WORKS

Preference-based reinforcement learning. Preference-based Reinforcement Learning (PbRL) [13;
49; 8; 59; 60; 14; 1] has been studied under different types of human feedback including action
comparison, state comparison and trajectory comparison—see [60; 1] for reviews of the literature.
Preference-based feedback has been well-studied in a bandit setting known as dueling bandits [2;
5; 17; 33; 44; 45; 46; 73; 74; 75; 81] with a survey in [4]. Recently, there is a growing interest in
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the theoretical guarantees of PbRL methods, including tabular case [37; 65] and linear and general
function approximations [39; 11; 79]. However, these works are focused on the online setting and
their methods are not applicable to the offline setting.

Offline policy learning. The vast literature on offline policy learning can be divided by the different
assumptions on the data sampling distribution. The strongest assumption is one that requires all
state-action pairs can be sampled [70; 16; 9; 61]. A similar assumption requires that the occupancy
measure of every possible policy be dominated by the data sampling distribution, which is common
in the function approximation setting [3; 51]. One of the weakest assumptions is one that requires
the occupancy measure of an optimal policy be dominated by the data sampling distribution. To
learn the optimal policy under this setting, the principle of pessimism [25; 7; 23] was introduced and
has inspired many algorithms [72; 42; 28; 63; 76; 77; 62; 64]. In particular, the sample complexity of
pessimistic algorithms has been extensively studied in the tabular case [48; 66; 27; 68; 43; 63; 69; 42]
and linear MDPs [23; 62; 77; 56; 18; 71]. In this spirit, the algorithms we study in this work also
use human feedback with pessimism.

Notation Given any vector x 2 RSA that represents a function x : S ⇥A ! R, we use x(s, a) to
denote the entry corresponding to the state-action pair (s, a). For any random sample X with distri-
bution P and a function f(·) of X , we denote the expectation of f(X) over P with EX⇠P [f(X)] or
EX [f(X)]. Similarly, we denote the variance of f(X) over P with VarX(f(X)). Lastly, we denote
equality in distribution with d

=.

2 PRELIMINARIES

In this section, we make a brief review of the contextual bandit problem and policy learning in the
offline setting.

2.1 CONTEXTUAL BANDIT

We consider a contextual bandit represented by (S,A, r, ⇢). Specifically, we focus on a tabular
setting, where S := 1, 2, . . . , S denotes the state space of size S, and A := 1, 2, . . . , A denotes the
action space of size A. The function r : S ⇥A ! [0, R] represents the true reward function, which
is assumed to be deterministic and unknown in this paper. Here, r(s, a) is the immediate reward
obtained when taking action a 2 A in state s 2 S . ⇢ denotes the initial state distribution of the
bandit.

A policy ⇡ : S ! �(A) specifies how actions are selected given a state, where ⇡(·|s) 2 �(A)

represents the action selection probability vector at state s 2 S . We also use ⇡(s) to denote the
action selected by policy ⇡ at state s. We denote the state-action visitation distribution of ⇡ starting
from the initial distribution ⇢ with d

⇡
⇢ . The value function of policy ⇡ is defined as follows:

V
⇡
(s) := Es⇠⇢,a⇠⇡(·|s) [r(s, a)] .

Lastly, an optimal policy ⇡
? maximizes the value function for all states simultaneously.

2.2 OFFLINE POLICY LEARNING

We consider the offline setting of policy learning, in which the learner is given a dataset of i.i.d.
samples generated under a sampling distribution. While the sampling distribution can take different
forms under different feedback models, the task is always to learn a policy ⇡ from the offline dataset
that performs as well as the optimal policy as possible. In particular, we evaluate the performance
of ⇡ by the suboptimality metric defined as follow:

SubOpt(⇡) := Es⇠⇢

h
V

⇡?

(s)� V
⇡
(s)

i
. (1)

Here the suboptimality measures the performance difference between the optimal policy ⇡
? and ⇡ in

the problem bandit. Naturally, one aims to minimize the suboptimality and find an algorithm whose
suboptimality converges to zero as the sample size n approaches infinity.

3 HUMAN RATING MODELS

One of the most straightforward ways to use human feedback is to let human annotators evaluate on
an absolute scale. Since such data can be readily used in most algorithms in the existing literature,
the human rating approach has become very popular and one of the most important to study. As
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evidenced in behavioral studies, human ratings are subject to both bias and uncertainty [20; 32].
Specifically, under the influence of their own personalities and past experiences, human annotators
can exhibit personal opinion bias during rating, leading to deviations from the true score. Further-
more, due to the tedious and challenging nature of the rating process, the evaluation of the same
subject by the same human annotator can fluctuate over time, giving rise to what is known as intra-
observer uncertainty. In light of these phenomena, [20] propose a model that aims to characterize
the ratings from a human annotator in the real world, which has been widely adopted in the existing
literature [40; 31; 29]. In the following, we present this model in the single annotator case under the
contextual bandit setting. For any fixed state-action pair (s, a) 2 S ⇥A with true reward r(s, a), a
rating from human annotator er(s, a) can be written as

er(s, a) = r(s, a) +�(s,a) + ✏. (2)
Here, �(s,a) represents the bias of the human annotator for action a at state s. Learners and algo-
rithms have no knowledge of such bias and would take these observed ratings as reward samples
directly. In most works [20; 32], �(s,a) is modeled as an unknown constant; in [40], �(s,a) is a
Gaussian random variable with an unknown, non-zero mean. ✏ is a random noise representing the
intra-observer uncertainty, which is modeled with a zero-mean Gaussian random variable in these
works.

Apparently, such a human rating model bears several limitations. In (2), the bias �(s,a) has an
unknown non-zero expectation, which makes it impossible to recover the true reward r(s, a) exactly.
Furthermore, identifying the optimal action for a given state s becomes infeasible when the bias
causes a flip in the expected reward, i.e, E[er(s, a)] > E[er(s,⇡?

(s))] for any a /2 ⇡
?
(s), in which case

the policy learning problem becomes inconsistent under this model. However, in the real world, the
bias of a human annotator should not keep him or her from identifying the best action in expectation,
but it is likely to take a much more general form. Neither of these is reflected in the current modeling
with additive constant bias. On the other hand, the uncertainty is only modeled with an additive sub-
gaussian random variable in these works. While this simple noise model is considered in many
theoretical works, it cannot capture the setting when reward samples are generated from human
rating. In practice, such uncertainty noise can be higher-order and more complex [22]. In addition,
the uncertainty might also be affected by the bias and reward at different state-action pairs and have
an intricate role in the final observation er(s, a).
To model human rating more realistically while keeping the policy learning problem consistent, we
propose a new model under which the rating er(s, a) can be expressed with

er(s, a) = h(r(s, a), ✏), (3)
where h(·, ·) is a general, deterministic transformation and ✏ is a random variable sampled from
N (0,�

2
) and independent from (s, a). For notational simplicity, we define h̄(r) := E✏[h(r, ✏)].

This can be interpreted as the reward function for this bandit instance in the human annotator’s
mind, which he or she uses to produce ratings. We can refer to h̄(r) as the biased reward and the
function h̄(·) as the expected bias function.

While the h transformation can be general in our model, for the policy learning problem to make
sense, it needs to satisfy three conditions. This can be viewed as the set of our assumptions on
human rating feedback, which we theorize captures the real-world scenario accurately. In particular,
we only consider models that satisfy these conditions:

Condition 1. The function h̄(·) satisfies
h̄(r1), h̄(r2) 2 [0, R] and h̄(r1) > h̄(r2)

for any r1, r2 2 [0, R] such that r1 > r2. In addition, h̄(0) = 0.

This condition assumes that h̄(·) is strictly monotone, implying that the biased reward function
should preserve the ranking under the true reward r in expectation. This condition is particularly
important, as it ensures that the consistency of the policy learning problem. Therefore, we can
identify the optimal policy based on human rating data in expectation.
Remark 1. The monotonicity in Condition 1 also guarantees that any group of samples can be cor-
rectly compared and ranked in expectation, which is a necessary condition for the use of preference-
based methods. This unifies the admissibility assumption in the rating models and preference mod-
els, which is crucial for the validity of our subsequent theoretical comparison between the two
approaches.
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Remark 2. We require h̄(0) = 0 only to rule out arbitrary constant shift in h̄ because shifting the
reward by a constant is trivial and does not change the policy learning problem or any theoretical
guarantee.

Condition 2. For any r 2 [0, R], h(r, ✏) is a degree-q polynomial in ✏ and symmetric in ✏ about its
expectation, i.e.,

�(h(r, ✏)� E✏[h(r, ✏)])
d
= h(r, ✏

0
)� E✏0 [h(r, ✏

0
)],

where ✏
0 is a random variable identically distributed as ✏.

Since h(r, ·) can be a very general function, the human uncertainty noise in the final observation
er(s, a) is allowed to have a complicated dependency on the bias and the true reward, even though
the randomness only comes from an independent Gaussian random variable ✏. For instance, the
original white noise ✏ may end up amplified or reshaped by the true reward and human’s internal
bias and cause the final ratings to exhibit a complex concentration around h̄(r). This not only
provides more realism and flexibility in modeling but also presents a greater theoretically challenge
compared to the uncertainty considered in (2), which is modeled with a simple additive Gaussian
noise with no interactions with the true reward and human bias.
Remark 3. Condition 2 is only a regulation on the effect of uncertainty—the uncertainty noise
should not favor any particular direction (though the bias still can). This is in line with the real world,
where the random noise concentrates evenly around the expectation and the effect of uncertainty
diminishes in expectation.

Condition 3. For any r1, r2 2 [0, R] such that r1 � r2, there are positive constants Ch,1, Ch,2 > 0

such that
h̄
�1

(r1)� h̄
�1

(r2)  Ch,1 · h̄
�1

(r1 � r2) and h̄(r1)� h̄(r2)  Ch,2 · h̄(r1 � r2).

This is a technical condition on the regularity of the expected bias function. It ensures that the bias
does not transform the reward too drastically, which eases our theoretical analysis.

Overall, this h transformation can model very general behavior. For example, many human anno-
tators with strong personal opinions tend to exhibit an extreme bias in their evaluations, making
them rate subjects with low true reward even lower and rate those with high true reward even higher
on average. Our model can capture such bias with a convex h̄(·), with a concrete example and its
theoretical guarantees detailed in Appendix B.

4 RESULTS FOR HUMAN RATING

Before the theoretical comparison with the preference-based approach, let us first establish some
theoretical results for our more general rating model. In particular, we analyze the suboptimality of
the LCB algorithm under our more practical rating model. These results can provide some theoreti-
cal explanation for how human bias and uncertainty could adversely affect policy learning.

In the case of human rating, we are given an offline dataset D = {(si, ai, eri)}ni=1. The state-action
pairs in D are generated in an i.i.d. fashion according to a sampling distribution over the state-action
space. The sampling probability of the state-action pair (s, a) is denoted with d(s, a). For each
(si, ai), the human annotator provides a rating sample eri following the rating model (3) based on
the true reward r(si, ai).

Let us also make a brief review of the standard LCB approach for offline policy learning [23; 42; 69].
In the existing literature, it is common to assume the knowledge of a reasonable upper bound on the
variance of reward observations. Similarly, we assume there exists an upper bound on the variance
Var✏(h(r, ✏)) for all r 2 [0, R], which we denote with V

2
R,� and can depend on R and �. Recall

that the learner has no knowledge of the transformation h, but let us assume the learner can make a
reasonable estimate eV 2

R,� for the true variance V
2
R,� such that eV 2

R,� = cV V
2
R,�, where cV > 0 is an

absolute constant. To learn the optimal policy with at least 1 � � success probability, the standard
LCB algorithm (Algorithm 1) uses a penalty in the form of

bm = cb

s
eV 2
R,� log

SA
�

m
(4)

with an appropriately chosen constant cb.
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Algorithm 1: LCB for contextual bandits
1 Input: Offline rating dataset D, confidence level � 2 (0, 1).
2 for all (s, a) 2 S ⇥A do

3 Set n(s,a) =
Pn

i=1 1{(si, ai) = (s, a)};
4 Set er(s, a) = 1

n

Pn
i=1 eri 1{(si, ai) = (s, a)};

5 Set br(s, a) = max{er(s, a)� bn(s,a)
, 0};

6 return b⇡LCB(·) = argmaxa2A br(·, a).

To understand the effects of human bias and uncertainty on policy learning under our more realistic
rating model, let us establish the lower bound on the suboptimality of the LCB algorithm. We will
consider two scenarios with different coverage assumptions for the offline dataset D.

4.1 LOWER BOUND UNDER PARTIAL COVERAGE

As [42; 69] have shown, to learn the optimal policy in the offline setting, it is sufficient for the
sampling distribution of the offline dataset to cover the state-action pairs that the optimal policy can
reach. Concretely, this assumption can be written as follows:
Assumption 1. There exists an optimal policy ⇡

?
such that d(s, a) > 0 whenever d

⇡?

⇢ (s, a) > 0 for

any (s, a) 2 S ⇥A.

Under this assumption, it makes sense to define a concentrability coefficient C? as follows:

C
?
:= max

(s,a)2X

d
⇡?

⇢ (s, a)

d(s, a)
, (5)

where the set X is the set of all state-action pairs that the sampling distribution of D can cover,
i.e., X := {(s, a) 2 S ⇥ A : d(s, a) > 0}. Under Assumption 1, if the reward can be observed
exactly or with only additive sub-gaussian noise, the LCB algorithm (Algorithm 1) with penalty
(4) is guaranteed to converge to the optimal policy [42; 69]. However, theory suggests it does not
converge in the worst case when the reward function is engineered from human rating. In particular,
let us consider the setting beyond the standard additive sub-gaussian noise, which has been well-
studied in the existing literature. That is, let us consider a more practical model in the form of (3)
with q � 2. We can prove that even when the rating model preserves the correct reward ordering in
expectation and keeps the policy learning problem consistent, it is possible that the LCB algorithm
does not converge to the optimal policy and must suffer constant suboptimality.
Theorem 1. For any fixed constant 0 < � < 1, there exists a contextual bandit instance with initial

state distribution ⇢ such that if one samples a dataset D of size n � c(�, cb, cV , q,�, R) using a

sampling distribution d satisfying Assumption 1 with C
?
= 2 and runs Algorithm 1 on D, the output

policy b⇡LCB must suffer constant suboptimality, i.e.,

ED[SubOpt(b⇡LCB)] = c0R, (6)
where c0 is a universal constant and c(�, cb, cV , q,�, R) is a constant depending on �, cb, cV , q,�, R.

This result is reminiscent of Proposition 1 in [42], which constructs a bandit and shows the empir-
ically best policy chooses a suboptimal action with constant probability under Assumption 1. The
very same work also shows that by adding a pessimism penalty, the LCB algorithm (Algorithm 1)
can converge to the optimal policy under the same data coverage assumption. In contrast, our the-
orem shows that even when we make pessimistic estimates and penalize less-observed state-action
pairs in human rating data, a constant suboptimality can still ensue. This shows a disadvantage of
using human rating as reward samples directly: although the estimation problem induced by human
rating is still consistent, using LCB with only the knowledge of variance is not sufficient for conver-
gence. Instead, the learner needs to know the shape of the noise distribution, but it is unrealistic to
model the human uncertainty accurately in practice. We also provide an upper bound result for the
case when the learner has complete knowledge of the uncertainty noise distribution in Appendix C.

Proof sketch In a bandit instance with special reward design, we first find the lower bound for
the probability that suboptimal actions are only observed for a very small number of times in the
offline dataset. Such state-action pairs can have huge fluctuation in their empirical reward average
and mislead the algorithm. Then, we find the lower bound on the probability that a state-action
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pair (s, a) such that br(s, a) > br(s, a?) exists, which can cause the algorithm to always select the
suboptimal action a and suffer suboptimality. Different from Proposition 1 in [42], in which the
reward noise for suboptimal actions is defined with two Dirac delta functions, the noise under our
rating model is unbounded and can be viewed as a Gaussian chaos, so we compute this probability
using a method from the corresponding literature. Moreover, in the same paper, a bandit instance is
sufficient to induce constant suboptimality as long as its action space is designed large. In our case,
since the pessimism penalty in Algorithm 1 accounts for the bandit size and larger bandit instances
are penalized more, it requires a careful balance in the design of our bandit instance.

4.2 LOWER BOUND UNDER FULL COVERAGE

Uniform coverage is another popular coverage assumption for offline policy learning [70; 54; 19].
It can be written as follows:
Assumption 2. The sampling distribution satisfies d(s, a) > 0 for any (s, a) 2 S ⇥A.

This coverage assumption is much stronger than Assumption 1 and makes the offline policy learning
problem much easier. Under Assumption 2, many algorithms without the pessimism principle can
also be shown to provably converge to the optimal policy [9; 61]. Moreover, [23] showed that the
suboptimality of algorithms with pessimism can decay faster when the data are well-explored. In
this setting, we establish a lower bound on the suboptimality of Algorithm 1 under Assumption 2.
Theorem 2. For any fixed constant 0 < � < 1, there exists a contextual bandit instance with

initial state distribution ⇢ such that if one samples a dataset D of size n � max{48�
4
, 60} using a

sampling distribution d satisfying Assumption 2 with d(s, a) =
1

SA for every s 2 S and a 2 A and

runs Algorithm 1 on D, the output policy b⇡LCB must suffer suboptimality at least

ED[SubOpt(b⇡LCB)] = c0 · h̄
�1

0

@

s
V 2
R,�

n

1

A ,

where c0 is a constant that depends on q.

In fact, under uniform data coverage as in Theorem 2, pessimism becomes unnecessary and this
result holds no matter what penalty bn is used in the algorithm. This theorem demonstrates another
disadvantage of human rating: even when the data covers the entire state-action space and learning
is no longer impeded by the lack of knowledge of human uncertainty, the suboptimality is still
bottlenecked by human bias.

5 COMPARISON WITH PREFERENCE-BASED APPROACH

In contrast to rating, the preference-based approach relies on models that characterize how a human
annotator would rank a group of subjects by reward. In this case, the feedback is simply the most
preferred subject to the human annotator within the group. Such feedback actually contains less
information than rating. Preference data are also incompatible with standard bandit algorithms and
require special adaptation to use [57]. However, the preference-based approach has received much
attention recently because some have found it easier and more accurate for human to make pref-
erences than rating [36; 52; 67]. In this section, we compare the human rating approach with the
preference-based approach.

5.1 HUMAN PREFERENCE UNDER BTL

Let us consider the most basic case of human preference called pairwise comparison, which involves
the ranking between a pair of state-action pairs based on their rewards. This is predominantly mod-
eled with the Bradley-Terry-Luce (BTL) model [6], under which a human annotator gives a binary
response y = {0, 1} following a Bernoulli distribution when asked to compare two state-action pairs
(s, a

0
) and (s, a

1
) with a

0
6= a

1:

P (y|s, a, a
0
) =

exp(r(s, a
y
))

exp(r(s, a0)) + exp(r(s, a1))
. (7)

Like our rating model in (3), the BTL model admits a consistent statistical problem. The learner
is given a dataset D0

= {(si, a
0
i , a

1
i , yi)}

n
i=1, which contains i.i.d. human preference samples from

some sampling distribution. yi is the binary human preference feedback for the comparison between
(si, a

0
i ) and (si, a

1
i ). We denote the sampling probability of the state-action-action triplet (s, a0, a1)

with d(s, a
0
, a

1
).
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Algorithm 2: Pessimistic MLE for contextual bandits
1 Input: Offline preference dataset D0, confidence level � 2 (0, 1).
2 Construct the reward function set F := {v 2 RSA

: 1>
v = 0, kvk1  R};

3 Set

er = argmax
f2F

nX

i=1

log

✓
1{yi = 1} exp(f(si, a

1
i ))

exp(f(si, a
0
i )) + exp(f(si, a

1
i ))

+
1{yi = 0} exp(f(si, a

0
i ))

exp(f(si, a
0
i )) + exp(f(si, a

1
i ))

◆
;

4 Construct empirical covariance matrix

b⌃ =
1

n

nX

i=1

⇣
1(si,a0

i )
� 1(si,a1

i )

⌘⇣
1(si,a0

i )
� 1(si,a1

i )

⌘>
;

5 Construct the pessimistic reward function set

FCR(er) =
⇢
f 2 F :

q
(f � er)>b⌃(f � er)  b

0
n

�
;

6 return b⇡PMLE = argmax⇡ minbr2FCR(er) Es⇠⇢[br(s,⇡(s))].

To find the optimal policy with human preference data, we can use pessimistic MLE [80], which
first computes a reward function by MLE and then outputs the optimal policy corresponding to a
pessimistic version of this MLE reward (Algorithm 2). The data coverage assumption is similar to
Assumption 1, which essentially requires the sampling distribution to covers the state-actions pairs
that optimal policy can reach. In the tabular case, this assumption can be written as follows:
Assumption 3. There exists an optimal policy ⇡

?
such that the pairwise concentrability coefficient

C
†
:=

vuuut sup

v2[�1,1]SA:1>v=0

⇣P
(s,a) d

⇡?

⇢ (s, a)v(s, a)

⌘2

P
(s,a0,a1) d(s, a

0, a1)
�
v(s, a0)� v(s, a1)

�2 (8)

is bounded.

[80] proved the convergence of pessimistic MLE in the linear bandit setting. The following theorem
is a special case of Theorem 3.2 from [80] with some modification, which expresses everything in
the tabular setting. This shows when we assume human preference follows the BTL model, pes-
simistic MLE can provably converge to the optimal policy under the mild data coverage assumption
of Assumption 3 and its suboptimality decays at a fast rate of O(1/

p
n). This result marks a clear

distinction from the negative results for human rating.
Theorem 3. Denote � =

1
2+exp(R

p
SA)+exp(�R

p
SA)

. Suppose Assumption 3 holds. For any fixed

constant 0 < � < 1, if one runs Algorithm 2 with

b
0
m = c

0
b

s
SA+ log

1
�

�2m
,

where c
0
b is an appropriately chosen universal constant, with probability 1� �, the suboptimality of

the output policy b⇡PMLE satisfies

SubOpt(b⇡PMLE)  c0C
†
R

0

@
s

SA+ log
1
�

�2n
+

r
S2A2 log

n
�

n

1

A ,

where c0 is a universal constant.

We can compare the suboptimality in this theorem with the results for the rating-based approach.
A comparison with Theorem 1 shows the uncertainty in human ratings may require the data to
have stronger coverage in order to converge to the optimal policy. A comparison with Theorem
2 shows when the bias in human ratings distorts the reward function and makes it more extreme
and drastic (less smooth in the Lipschitz sense), the h̄

�1
(·) can slow down the suboptimality’s

decay with respect to the sample size. In fact, we can observe that the preference-based approach
enjoys faster suboptimality decay because preference feedback contains no bias and mild uncertainty
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noise according to the BTL model. While such modeling is justified by empirical evidences, it
makes one wonder whether the advantage of preference-based methods mostly comes from the
modeling aspect. To delve into this further, let us make another theoretical analysis for the case
when preference data are affected by human bias.

5.2 HUMAN PREFERENCE UNDER BIASED BTL

Let us introduce a new model for human preference called the biased BTL model. This model
considers the case when human preferences are also subject to bias just like the rating model (3)
and the feedback is generated with respect to the biased reward. In particular, the binary feedback
ey = {0, 1} for (s, a0) and (s, a

1
) follows:

P (ey|s, a, a0) = exp(h̄(r(s, a
ey
)))

exp(h̄(r(s, a0))) + exp(h̄(r(s, a1)))
, (9)

where h̄ is the expected bias function from (3).

We consider the performance of pessimistic MLE (Algorithm 2) again with human preference data
generated under this model. While the data are generated under human bias this time, we still run
pessimistic MLE on the new data as before. Different from the suboptimality results in the previous
section, we focus on the sample complexity for learning the optimal policy. We take a gap-dependent
approach in our analysis to consider the case when human bias closes the biased optimality gap
r(s,⇡

?
(s))� r(s, a) and the actual optimality gap h̄(r(s,⇡

?
(s)))� h̄(r(s, a)) remains big, where a

is the second best action at s. This echoes with the type of undesirable bias we considered in the last
comparison, which is true when human annotators have more extreme standards at heart. In a simple
bandit instance, we can obtain the following result and notice the samples needed to find the optimal
policy with the preference-based approach is no less than the samples needed for the rating-based
approach.
Theorem 4. Consider any single-state bandit instance with A = {a1, a2} and 0  h̄(r(a1)) <

h̄(r(a2))  1. For any fixed constant 0 < � < 1, let nrate be the total number of samples needed to

learn the optimal action with probability at least 1�� in the human rating setting under observation

model (3) with additive sub-gaussian uncertainty noise and uniform data coverage na1 = na2 , and

let npref be the number of samples needed to learn the optimal action with probability at least 1� �

in the human preference setting with observation model (9). It always holds that

nrate

npref

< 0.25�
2
. (10)

We can see that when the variance proxy of the uncertainty noise �
2 is no larger than 4 in human

rating (the expected reward is bounded in [0, 1]), the samples needed in the rating-based approach
is always fewer than the preference-based approach. This shows if one assumes a similar amount
of human bias and uncertainty in both types of human feedback, the preference-based approach is
no more sample-efficient. This actually contradicts with the empirical observations in the existing
literature, which suggests preference-based methods have superior performance. Hence, our theory
shows the bias-free modeling plays a great role in the lower sample complexity of preference-based
methods, and our theoretical results can conversely confirm the standard BTL modeling of human
preference feedback—it is reasonable to believe human preference data is indeed subject to less bias
and uncertainty in practice.

6 CONCLUSION

In this work, we have studied policy learning using human feedback for reward engineering in
bandit. Specifically, we have provided a theoretical comparison between human rating methods and
preference-based methods, which shows human bias and uncertainty can have considerable adverse
effect on policy learning. Our theory also suggests the preference-based approach has no provable
advantage over the traditional rating-based approach when the two types of human feedback are
modeled with equally strong human bias and uncertainty. This implies the reason for the empirical
success of preference-based methods might be that human preference data are subject to milder
human bias and uncertainty. Beyond this work, it is still open for future work to investigate the case
when the human feedback is generated from a mixture model representing a group of annotators and
provide a comparison between rating methods and preference-based methods in this setting.
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