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1 INTRODUCTION

Molecules have various computational representations, including numerical descriptors, strings,
graphs, point clouds, and surfaces. Each representation method enables the application of vari-
ous machine learning methodologies from linear regression to graph neural networks paired with
large language models (Serra et al., 2001; He et al., 2024).

To complement existing representations, we introduce the representation of molecules through
vector-valued functions, or n-dimensional vector fields, that are parameterized by neural networks,
which we denote molecular neural fields. Unlike surface representations, molecular neural fields
capture external features and the hydrophobic core of macromolecules such as proteins. Compared
to discrete graph or point representations, molecular neural fields are compact, resolution indepen-
dent and inherently suited for interpolation in spatial and temporal dimensions (Sitzmann et al.,
2019} [Lombardi et all 2019; Jiang et al.l 2020). These properties inherited by molecular neural
fields lend themselves to tasks including the generation of molecules based on their desired shape,
structure, and composition, and the resolution-independent interpolation between molecular con-
formations in space and time. Here, we provide a framework and proofs-of-concept for molecu-
lar neural fields, namely, the parametrization and superresolution reconstruction of a protein-ligand
complex using an auto-decoder architecture and the embedding of molecular volumes in latent space
using an auto-encoder architecture.

2 RELATED WORK

Since their introduction by [Sitzmann et al.| (2020), implicit neural networks have been widely used
in computer vision for processing images, videos and 3D scenes (Essakine et al) |2024). More
recently, Mehta et al.| (202 1)) have introduced modulated periodic activations, enabling generalizable
high-fidelity implicit neural representations.

Recent approaches in representation learning of 3-dimensional molecular structures have mainly
focused on graph-related methods (Zhou et al.l 2022; Moon et al. [2023). For the representa-
tion of proteins, learning on the molecule’s surfaces has proven successful (Gainza et al., [2020).
(Gainza et al.| [2020) have used implicit neural networks to generate the surfaces of metal-organic
frameworks through signed-distance fields. (Kilgour et al., 2024) have introduced multi-type point
clouds-representation learning based on an equivariant graph neural network.

3 METHODOLOGY

A Python library was implemented to sample a vector-valued function f(x,y, z), mapping from R?
(molecular structure) to R¢ (molecular properties). Each dimension in R? represents one or more
atom types (e.g. hydrogens, carbons, or oxygens) based on an atomic radius (van der Waals radius as
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Figure 1: Upper row: Workflow and architecture overview of the presented methodology. For
a given input molecule, a vector-valued function is computed and sampled on a 3D grid. Based
on these samples, a neural network is trained that parametrizes the molecule using a modulated
synthesis network with sine activations introduced by Mehta et al.| (2021). Lower row: Based
on the above workflow and architecture, a protein-ligand complex is encoded and parameterized
by a modulated neural network in an auto-decoder setting. The two rightmost images show the
reconstruction of the ligand and protein using the learned latent.

default) or an atomistic property (e.g. electronegativity or Awigner-Seitz electron density). Values
in R? are computed by the sum of radial basis functions scaled by a radius or property centered at
the origin of each atom with given type(s) in the molecule. Section describes the radial basis
function used. The result of this approach is shown in the second step of the upper row of Figure[]
The neural network architecture is based on an implementation of the modulated periodic activation-
based architecture by Mehta et al.| (2021), extended with the ability to process d-dimensional data
in order to parameterize vector-valued functions and a 3D convolutional encoder. In this study, the
input vector-valued functions of the molecules were uniformly sampled using a 32 x 32 x 32 grid.
In cases where only SMILES were available, conformers were generated using RDKit.

4 PRELIMINARY RESULTS AND CONCLUSION

For our initial experiment, we trained the proposed architecture as an auto-decoder on a type 2
inhibitor binding to unphosphorylated interleukin-1 receptor-associated kinase 4 (PDB ID 6EGR).
The complex was learned by sampling a 32 x 32 x 32 grid of its vector-valued function mapping
R3 — RS (hydrogens, carbons, and Awigner-Seitz electron density of the ligand and protein) and
successfully reconstructed using the conditioning latent with a PSNR (peak signal-to-noise ratio) of
38.5. Following the super-resolution approach from computer vision, we generated an up-scaled ver-
sion with a resolution of 128 x 128 x 128 (PSNR = 27.2) compared to a ground truth sampled at the
same higher resolution (Wang et al.,[2021)). A visual comparison of the results is shown in Appendix
Figure 2] Next, we parameterized multiple conformers of a molecular complex, the solution struc-
ture of a dimeric lactose DNA-binding domain complexed with a DNA sequence (PDB ID 10SL),
using a single modulated network trained as an auto-encoder (see architecture in Figure [T). An
animation of the interpolation through latent space by linearly interpolating between latents can be
found in the GitHub repository linked below. Finally, we used the proposed architecture as an auto-
encoder trained on the FreeSolv (n = 642) data set. We sampled a vector-valued function mapping
R3 — R0 (all occurring atom types and Awigner-Seitz electron density). The reconstruction qual-
ity is similar to the up-scaling experiment with an average PSNR of 28.7. Upon visual inspection of
the latent space, we note that the latents represent the shape, size, and basic physicochemical proper-
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ties of encoded molecules (Appendix Figure[3). In Appendix Figure 4] we show that the model can
also smoothly interpolate between randomly chosen molecules when trained on a larger data set.

Molecular neural fields have a vast potential for applications in machine learning for life sciences.
Learning directly on electron density maps from X-ray crystallographic experiments or Cryo-EM
density maps are near-future applications. Beyond that, the representation allows for the simple
integration of organic and non-organic molecular information and the parametrization of physico-
chemical valid navigation between conformers. While challenges remain, we believe this work to
be valuable to the broader machine learning community in life sciences. All code, models, and data
are available at https://anonymous.4open.science/r/DB1B.

MEANINGFULNESS STATEMENT

We believe that a meaningful representation of life must achieve a balance between accuracy, gen-
eralizability, and explainability. However, computational representations often encounter intrinsic
trade-offs in simultaneously optimizing these interdependent properties. The framework we present
in this work is a step towards further achieving this balance and reducing the impact of these trade-
offs. Furthermore, new representations are meaningful if they enable researchers to explore new
methodologies. By representing molecules as vector-valued functions and parametrizing them using
neural networks, we open up a new range of neural network architectures and approaches to the life
sciences community.
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A APPENDIX

Figure 2: Super-resolution decoding of protein-ligand complex (separated channels). The top row
(a, b) shows a density plot with a resolution 32 x 32 x 32. The middle row (c, d) shows the up-scaled
version with a resolution of 128 x 128 x 128. The bottom row (e, f) shows the ground truth at a
resolution of 128 x 128 x 128. The peak signal-to-noise ratio of the up-scaled version and the ground
truth is 75.7.
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Figure 3: Embedding of molecular neural field latents of the FreeSolv data set. The scatter plots
are colored by the Wildman—Crippen molar revlectivity value (MolMR), the exact molecular weight
(ExactMolWt), the topological polar surface area (TPSA), the Wildman—Crippen LogP value (Mol-
LogP), the number of rotatable bonds (NumRotatableBonds), and the hydration free energy. The
hydration free energy was provided with the FreeSolv data set, all other values were calculated us-
ing RDKit. On visual inspection, the plots show that the latent space is meaningful in terms of

molecular structure and shape.
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Figure 4: Smoothly interpolating between two molecules parametrized by the auto-encoder trained
on the FreeSolv data set.
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A.1 EQUATIONS

The vector-valued function f mapping from R? to R! for a given atom type ¢ is sampled at point
(z,y, z) using the following function:

fly,2)= Y exp (—ﬁ (W - 1)) ()

a; €My

Where a; are the coordinates for atom a; € My, 8 a user-chosen scaling factor, d(a;, (z,vy, z)) the
squared Euclidean distance between a; and (z, y, z), and r,, the chosen radius property for atom a;.
As default, the radius property for atom field calculations is the Van der Waals radius.
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