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Deep convolutional neural networks for image segmentation do not learn the label struc-
ture explicitly and may produce segmentations with an incorrect structure, e.g., with
disconnected cylindrical structures in the segmentation of tree-like structures such as
airways or blood vessels. In this paper, we propose a novel label refinement method to
correct such errors from an initial segmentation, implicitly incorporating information
about label structure. This method features two novel parts: 1) a model that generates
synthetic structural errors, and 2) a label appearance simulation network that produces
segmentations with synthetic errors that are similar in appearance to the real initial
segmentations. Using these segmentations with synthetic errors and the original im-
ages, the label refinement network is trained to correct errors and improve the initial
segmentations. The proposed method is validated on two segmentation tasks: airway
segmentation from chest computed tomography (CT) scans and brain vessel segmen-
tation from 3D CT angiography (CTA) images of the brain. In both applications, our
method significantly outperformed a standard 3D U-Net, four previous label refinement
methods, and a U-Net trained with a loss tailored for tubular structures. Improvements
are even larger when additional unlabeled data is used for model training. In an ablation
study, we demonstrate the value of the different components of the proposed method.
© 2025 Elsevier B. V. All rights reserved.

1. Introduction

for biomedical image segmentation, due to its efficient struc-
tural design featuring skip-connections, showing superior accu-

Convolutional neural networks (CNNs) are the state-of-the-
art for many biomedical imaging segmentation tasks. Many
CNN segmentation architectures have been proposed, such
as fully connected networks (Long et al.| (2015)), Dense-Net
(Huang et al| (2017)), and the U-Net (Ronneberger et al.
(2015))). The U-Net has become the most popular network
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racy and robustness in various segmentation tasks (Isensee et al.
(2021));/S1ddique et al.[(2021)). Most CNN-based segmentation
methods including the U-Net do not fully exploit and encode
the structural information of the objects to be segmented. Con-
sequently, these methods may produce segmentations with er-
rors that become obvious when looking at the full segmented
structure. Examples of such errors are discontinuities in the
segmentations of elongated tubular structures, such as airways
in the lungs, as shown in Figure[I] Using label structural knowl-
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Fig. 1: Common structural errors in the segmentations obtained
by a U-Net, trained to segment airways (Garcia-Uceda et al.
(2021)). True positives are displayed in yellow, false negatives in blue
and false positives in red. Detailed views a-b show errors as miss-
ing terminal branches, and view c¢ shows a discontinuity error in the
branch. Best viewed in color with zoom.

edge such as continuity in the branches of the airway tree can
help prevent these errors. However, it is not trivial to explicitly
encode this global information in CNNs.

In this paper, we propose a framework to implicitly encode
the label structural information into CNNs by formulating this
as a label refinement step. Specifically, we generate structural
synthetic errors in segmentations (ground truth or baseline) and
train a label refinement network to correct these errors. The
trained network is expected to generalize to the real errors in
the initial segmentations produced by a baseline segmentation
network and correct them. To enhance the generalizability of
the label refinement network on the initial segmentations, a la-
bel appearance simulation network is applied to reduce the ap-
pearance difference between the segmentations with synthetic
errors and the initial segmentations. With either these segmen-
tations with appearance-enhanced synthetic errors or the initial
segmentations, together with the original images, as inputs and
the ground truth segmentations as reference, the label refine-
ment network can learn to correct those errors and incorporate
this in its segmentation decisions.

We validated the proposed label refinement method on two
segmentation tasks: airway segmentation from chest computed
tomography (CT) scans (Garcia-Uceda et al| (2021))) and brain
vessel segmentation from 3D CT angiography (CTA) images of
the brain (Su et al.|(2020)). We compared our method with a U-
Net baseline, four other label refinement methods: DoubleU-
Net (2020)), SCAN (2018)), Post-DAE
(Larrazabal et al.|(2020)) and DVAE (Aratjo et al.|(2019)); and
a U-Net trained with the clDice loss (2021))). More-

over, we conducted an ablation study to show the contribution

of each component of the label refinement method. Finally, we
performed experiments in a semi-supervised setting to train our
method using additional unlabeled data.

2. Related Work

2.1. Label Refinement

In this work, we apply a refinement network on the initial
segmentation from a baseline segmentation network together
with the original image, intending to correct errors in the ini-
tial segmentation. Similar approaches have been used in other
previous papers. [Yang et al.| (2019) refined low-quality man-
ual annotations made by non-experts by training their method
with added noise to reduce the inter-observer inconsistency of
the annotations. Unlike our method, Yang et al.|(2019) does not
focus on refining an initial automatic segmentation and there-
fore the label appearance simulation network is not needed.
refined the segmentations from a fully con-
volutional network by using adversarial training to reduce the
domain gap between the target predictions and the ground truth
segmentations on training data. |Aragjo et al.| (2019) attached
a variational auto-encoder after a U-Net network to encode the
label structure of the ground truth segmentations for a better la-

bel reconstruction. [Larrazabal et al.| (2020) applied a denoising
autoencoder after a U-Net as a post-processing method to re-

cover the label structure of the segmentation. (2020)
attached a second U-Net network to a baseline U-Net, using as
inputs the original image multiplied with the output of the first
U-Net. Different from these works, our method does not focus
on encoding (Aradjo et al.| (2019); [Larrazabal et al.| (2020)) or
discriminating (Dai et al] (2018); Jha et al| (2020)) the over-
all label structure, but instead on learning to correct the most
common errors in the segmentations.

2.2. Airway Segmentation

The airway tree in the lungs forms a complex 3D tree-like
branching network, with many branches of different sizes and
orientations. The peripheral branches of smaller size are chal-
lenging to segment from chest CT scans, as they have obscured
borders due to partial volume effects. Many classical methods
for airway tree extraction are based on a region growing algo-
rithm (Graham et al| 2010); [Co et al.| (2009] 2010)). However,
their accuracy is limited, and they typically miss a large number
of the smaller peripheral airways (Lo et al.| (2012)). Many state-
of-the-art airway segmentation methods are based on CNNs,
and especially the U-Net (Cheng et al| (2021); [Garcia-Ucedal
et al] (2021); |Qin et al| (2021); Zheng et al| (2021)). CNN-

based methods can obtain more accurate and complete segmen-
tations than previous intensity-based methods. However, even
the latest U-Net-based methods usually miss several terminal
branches and make errors in continuity around the smaller seg-
mented branches.

2.3. Brain Vessel Segmentation

The brain vessels form a complex 3D branching network that
consists of veins and arteries. In 3D CTA images of the brain,
many seemingly isolated vessel structures can be present due to
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3. Label Appearance Simulation Network

Fig. 2: Schematics of the proposed label refinement method. First, a base segmentation network f; is trained to obtain the initial segmentations
x. Second, we create segmentations with synthetic errors x; that are similar to the errors in x. Third, a label appearance improvement network f,
(together with a discriminator D) is trained to obtain segmentations with appearance-enhanced synthetic errors x. Finally, the label refinement
network f; is trained to correct these synthetic errors, with either X; or x together with the image 7 as inputs.

the image acquisition and vascular diseases, such as ischemic
large vessel occlusions. State-of-the-art vessel segmentation
methods have been applied to 3D time-of-flight (TOF) magnetic

resonance angiography (MRA) images (Hilbert et al.| (2020);
[Civne et al.| (2019); [Sanchesa et al.| (2019)), and to 3D and 4D
CTA images (Meijs et al.| (2017)) using U-Nets. [Su et al.| (2020)
used a U-Net-based method to extract a dilated vessel center-
line approximation. Compared to previous vessel segmentation

methods (Hilbert et al.[(2020); Livne et al.| (2019); |[Meijs et al.|
(2017); Sanchesa et al.| (2019)), centerline extraction recovers

the topology of the vessel structure more accurately (e.g., “kiss-
ing vessels” appear connected in the full segmentations but are
disconnected in centerline extraction). However, the U-Net still
makes other structural errors such as local connectivity gaps in
vessel branches.

3. Method

The proposed method consists of four steps, schematically
shown in Figure 2] Firstly, a baseline segmentation network
generates the initial segmentations (Section [3.I). Secondly,
synthetic errors are generated and added to every ground truth
segmentation, to create segmentations with synthetic errors to

train the label refinement network (Section @) Thirdly, a la-
bel appearance simulation network (LASN) based on adversar-
ial learning is used to reduce the appearance difference between
the segmentations with synthetic errors and the initial segmen-
tations (Section [3.3). Steps 2-3 constitute a realistic data aug-
mentation (error augmentation) technique to generate training
samples for the label refinement network, with a much larger
variety of errors than in the initial segmentations. Finally, a la-
bel refinement network is trained to predict the final refined seg-
mentations, using the segmentations with appearance-enhanced
synthetic errors or the initial segmentations, together with the
original images, as inputs and the ground truth segmentations
as reference (Section [3.4).

3.1. Base Segmentation Network

We use a base segmentation network f; to predict the initial
segmentations. Given a medical imaging dataset that contains
an image [ and the ground truth segmentation g for each subject,
the model f;(1|6;), with 6, the trainable parameters, is trained
by minimizing the Dice loss £, = Lg.(fi1 (1), g):
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where p; and g; are the ith voxel values of the probability maps
output by the model (in this case p = fi(/)), and the ground
truth segmentation, respectively.

The initial predicted segmentation is x, obtained by thresh-
olding the output probability maps p; of the network with a
value of 0.5. x may contain label structural errors, such as dis-
continuous branches in a tree-like structure. Next, we show how
to design synthetic errors similar to those in x that can be used
to train the label refinement network.

3.2. Generation of Synthetic Segmentation Errors

We use segmentations with synthetic errors x; to train the
label refinement network. The synthetic errors are generated
to resemble those present in the initial segmentations x, based
on our initial analysis of common errors. In this paper, we fo-
cus on two structures: airways in the lungs and vessels in the
brain. Airways and vessels share several characteristics: they
both form 3D branching networks, with branches of cylindri-
cal shape and various sizes and orientations. We use this prior
shape knowledge to generate synthetic errors, as described be-
low for each structure.

3.2.1. Synthetic Errors For Airways

Most of the errors in airway segmentations can be grouped
into two types: 1) missing terminal branches, partially or to-
tally, and 2) discontinuity in the segmented branches, which
occurs more frequently in smaller (thinner) branches. Exam-
ples of errors in airway segmentations obtained by the baseline
segmentation network in Section [3.T]are shown in Figure[T] To
generate similar synthetic errors, we select a random subset of
branches in the ground-truth segmentation of the airway tree
and remove a section of each branch by masking it at a ran-
dom position and with a random length. Branches are identi-
fied using the airway centerline tree, extracted from the airway
segmentation (Lo et al.| (2012))). Single branches are defined
as the segments between two bifurcation points or between the
last bifurcation and the end of terminal branches. The applied
masking is defined differently for each type of error:

Missing terminal branches: The subset of branches in which
to synthesize this type of errors is randomly sampled from all
the terminal branches in the airway tree, defined as branches
with no further bifurcations downstream. A mask of cylindri-
cal shape is applied to (partially) remove the selected branch.
The mask is defined by 1) a starting point, which is a random
position along the branch centerline between the branch start
and middle points; 2) a length, which is the distance between
the mask start point and branch end; and 3) a width, which is
three times the branch diameter. An example of this error type
is schematically shown in Figure[3]

Discontinuity in branches: The subset of branches in which
to synthesize this type of errors is randomly sampled from all
the branches in the airway tree, excluding the trachea, the two
main bronchi and the 2" generation airways. Since the more
peripheral and thinner airway branches have a higher chance
of being incomplete, we assign a higher sampling probability
to branches that are further away from the root of the airway
tree (the trachea). Each branch i is assigned an airway gener-
ation g; that is defined as the number of bifurcations counted

Missing terminal branch Discontinuity in branch
— -

Fig. 3: Schematics of the synthetic segmentation errors defined
for airways. Definitions are shown for a randomly selected terminal
branch (left) and non-terminal branch (right). bo: branch start point,
bg: branch end point, by,: branch middle point, my: mask start point,
L: mask length. The masked section of airway branches is displayed
in blue (for the selected one as well as other nearby branches). Best
viewed in color with zoom.

in the path from the trachea to the given branch. The sam-
pling probability p; for a candidate branch is then defined as
pi = &/ Zsz“l 8k, Vi = 1...N,, where g; is the airway genera-
tion and N, the number of candidate branches. A mask of cylin-
drical shape is applied to create a gap in the selected branch.
The mask is defined by 1) a center, which is a random posi-
tion along the branch centerline; 2) a length, which is a random
distance between a minimum of 10 voxels and the total branch
length; and 3) a width, which is three times the branch diam-
eter. An example of this error type is schematically shown in
Figure 3]

Parameters: The extent of each type of errors in the airway
segmentations with synthetic errors is determined by a separate
parameter, denoted as p{ and pj. p{ is the proportion of selected
branches with errors of type “missing terminal branches”, with
respect to all the terminal branches. pj is the proportion of se-
lected branches with errors of type “discontinuity in branches”,
with respect to all the branches in the airway tree (excluding the
trachea, the two main bronchi and the 2" generation airways).

3.2.2. Synthetic Errors for Brain Vessels

Most of the errors in brain vessel segmentation are in the
form of partially missing vessel branches. To generate simi-
lar synthetic errors, we create random gaps in the ground-truth
segmentation of each vessel by masking it at a random posi-
tion and with a random length. Since the errors occur more
frequently for long vessels than for short ones, we group all the
vessels into three equal-sized groups: long, medium size and
short, based on the relative centerline segment lengths in each
subject. The distribution of vessel lengths (in voxels), using
the median and interquartile range (IQR), is: for long segments
70 (49-106), for medium-size segments 29 (22-36), and for
short segments 13 (9-17). For long segments, the maximum
number of injected gaps is 6 (randomly sampled from a uni-
form distribution between 0 and 6 positions) with a gap length
between 10-35 voxels. For medium-size segments, the max-
imum number of gaps is 4 with a gap length between 10-20
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Fig. 4: Example of segmentation of airways obtained by the dif-
ferent components of the proposed method. In the detailed views,
true positives are displayed in yellow, false negatives in blue and false
positives in red. Best viewed in color with zoom.

voxels. For the short segments, the maximum number of gaps
is 2 with a gap length between 6-15 voxels. Those error injec-
tions are applied on the 1 voxel-wide ground truth centerlines,
by dilating it with a 3x3X3 cubic structure element to generate
the final vessel segmentation with synthetic errors.

Parameters: The extent of errors in the vessel segmentations
with synthetic errors is determined by only one parameter, de-
noted as p¥. pV is the proportion of selected branches with er-
rors with respect to all the branches in the vessel network.

3.3. Label Appearance Simulation Network

Although the segmentations with synthetic errors x are de-
signed to have similar structural errors to the initial segmenta-
tions x, there may be an appearance difference between x, and
x (see an example in Figure ). The label refinement network
trained on x; may therefore generalize poorly to x. To prevent
this, we use a label appearance simulation network f,(:|6,) to
change the appearance of x; to be more similar to that of x,
while preserving the synthetic errors that we added to x;.

The label appearance simulation network f,(-|6,), with 6, the
trainable parameters, is optimized by adversarial learning via a
discriminator D:

f: = arg rr}ln((mDax -Eadv(faa D)) + ALy (X, X)) )

with the adversarial loss L,q, defined as:

Luav(fas D) = ExflogD(x)] + Eg [log(1 — D(£:)]  (3)

where D is a classifier, discriminating the given segmentation
with errors X and the initial segmentation x. It outputs a proba-
bility between 0.0 and 1.0. X; = f,(x,) is the obtained segmen-
tation with appearance-enhanced synthetic errors. We added
a Dice-based identity loss L. (¥, x) to train f;(-), in order to
preserve the synthetic errors that we added in x,. The hyperpa-
rameter A controls the balance between the identity loss and the
dissimilarity adversarial loss.

3.4. Label Refinement Network

Finally, we optimize a label refinement network f, to pre-
dict the ground truth segmentations, based on the segmentations
with appearance-enhanced synthetic errors X, together with the
original images as inputs. This way, f, learns to correct seg-
mentation errors and can be used to improve the initial segmen-
tations x. The model f>((1, X)|6,), with 6, the trainable parame-
ters, is trained by minimizing the Dice loss between the model
output and ground truth segmentations £, = Lg.(f2(1, %), g),
given by equation (). The final refined segmentation result is
v, obtained by thresholding the output probability maps p, of
the refinement network with value 0.5.

The main difference between the base segmentation network
/i and the proposed combination of base network followed by
label refinement network f, is that the synthetic errors allow
the label refinement network f, to incorporate prior knowledge
about likely mistakes by the base segmentation network fj. For
example, in airway and brain vessel segmentation, one type of
prior knowledge we use is that airway trees and brain vessels
should always be continuous structures, while the base segmen-
tation network f; sometimes makes discontinuity errors. By
adding the synthetic errors to the ground truth segmentations,
the label refinement network f, learns to correct the mistakes
that the base segmentation network f; is likely to make.

4. Experiments

4.1. Datasets

We validated the proposed method on two biomedical imag-
ing segmentation tasks: segmenting airways from chest CT
scans and brain vessels from CTA images of the brain.

4.1.1. Chest CT data

The dataset of chest CT scans is from a retrospective study
of pediatric patients (6 to 17 years old) with cystic fibrosis lung
disease, acquired routinely at the hospital Erasmus MC-Sophia
Rotterdam (Bouma et al.| (2020)). The CT scans show notice-
able structural airway abnormalities resulting from the disease.
In our study, we used 178 low-dose CT scans acquired at full
inspiration breath-hold. All CT scans have slice dimensions
512x512, with a variable number of slices between 200-1000.
Each CT scan has an in-plane voxel size in the range 0.35-
0.65 mm, with slice thickness between 0.75—-1.0 mm, and slice
spacing between 0.3—-0.8 mm. A random subset of 65 CT scans
from the total 178 scans have annotations of the airway lumen.
To obtain these annotations, Thirona’s lung quantification soft-
ware LungQ (Thirona, Nijmegen, the Netherlands) was used to
automatically extract the airway lumen from the CT scan. Then,
these segmentations were visually checked by trained data ana-
lysts for accuracy, and corrected as needed.

For our experiments, we used as testing data 41 random CT
scans from the subset of 65 CT scans with ground truth seg-
mentations. From the remaining 24 CT scans with annotations,
we used three different random data splits with 20 CT scans
for training the networks and 4 CT scans for validation. The
remaining 113 CT scans without ground truth segmentations
were used as unlabeled training data for the experiments with
semi-supervised learning.
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4.1.2. CTA data of the Brain

The dataset of CTA images of the brain is from the MR
CLEAN Registry (Jansen et al.| (2018)), an ongoing registry
for patients who underwent endovascular treatment for acute
ischemic stroke in one of 19 hospitals in the Netherlands since
March 2014. The data was collected during clinical practice,
and we applied the following data inclusion criteria: 1) slice
thickness <1.5 mm, 2) slice spacing <1.5 mm, 3) the contrast
acquisition phase has to be peak arterial phase, equilibrium or
early venous phase (Rodriguez-Luna et al.| (2014)), and 4) the
image should cover at least half of the brain. In our study,
we used 69 CTA images from 69 different subjects used in |Su
et al.[(2020). All CTA images were skull-stripped with an atlas-
based registration method (Peter et al.[(2017)). 20 CTA im-
ages had no vessel annotations, 9 CTA images had a complete
brain vessel centerline annotation, and the remaining 40 CTA
images (randomly sampled from the whole dataset) had vessel
centerline annotations in a randomly sampled sub-volume of
140x140x140 voxels. The centerline annotations were dilated
with a 3xX3x3 cubic structure element to obtain the ground truth
segmentations. Each CTA image has an in-plane voxel size
in the range 0.4-0.68 mm, with slice thickness between 0.5—
1.5 mm, and slice spacing between 0.3—1.0 mm.

For our experiments, we used as testing data 2 random full-
volume CTA scans and 20 random CTA cubes from the set of 9
full-volume, annotated CTA scans and 40 CTA cubes, respec-
tively. From the remaining data with annotations, we used three
different random data splits with 7 full-volume CTA scans and
14 CTA cubes for training the networks, and 6 CTA cubes for
validation. The remaining 20 full-volume CTA scans without
manual annotations were used as unlabeled training data for the
experiments with semi-supervised learning.

4.2. Parameters for Generating Synthetic Errors

The generation of synthetic errors depends on the parameters
p} and p§ for airways, and p¥ for vessels, described in Sec-
tions [3.2.1] and [3.2.2] respectively. In the rest of the paper we
refer to these parameters as “synthetic error rate”, for each type
of error. For each training sample, the synthetic error rate is
randomly sampled from a uniform distribution between 0.0 and
the upper bound, or maximum synthetic error rate. These upper
bounds are hyperparameters for the proposed method, denoted
as P*l‘ and Pg for airways, and P" for vessels.

We conducted experiments varying the hyperparameters for
the error generation in the proposed method, i.e., the maximum
synthetic error rates (P} and P for airways, and P" for vessels),
to investigate their influence in the method performance. The
results are shown in Section 3.3 below.

In our further experiments, the optimal hyperparameters
were determined on the validation set for each of the three ran-
dom data splits that we used, for both applications. Each hyper-
parameter was searched independently, from 0.0 to 1.0, while
fixing the parameters for other error types to 0.0.

4.3. Network Architecture

The baseline segmentation network fj is a 3D U-Net (Cicek
et al| (2016))), shown in Figure The label refinement net-
work f> and the label appearance simulation network f, use

a similar U-Net layout, with the discriminator D in f, using
the same layout as the U-Net encoder. The U-Net consists
of an encoding path followed by a decoding path, with skip-
connections linking the two paths. The network has 5 levels of
depth, 16 feature channels in the first layer, and an input image
size of 128x128x128. Each level of the encoding / decoding
paths consists of two 3x3x3 convolutional layers followed by a
2x2x2 pooling or upsampling layer, respectively. Each convo-
lutional layer consists of 3X3x3 convolution with zero padding
followed by instance normalization and leaky ReLU activation.
The number of feature channels is doubled or halved after ev-
ery pooling or upsampling layer, respectively. The last layer of
the U-Net is a 1x1x1 convolution, combining the outputs into a
single feature map, followed by a sigmoid activation. A training
batch contains only one image due to GPU memory limits. The
networks are implemented using PyTorch (Paszke et al.|(2019)).
The source code is publicly available: https://github.com/
ShuaiChenBIGR/Label-refinement-network.

4.4. Details of Training and Inference of Networks

For training, we first apply random rigid transformations as
data augmentation, in the form of 1) random 3D rotations up
to 30 degrees for all axes, 2) random scaling with a factor be-
tween 0.7-1.4 and 3) random flipping in the three directions.
Then, we generate samples by extracting random image patches
of size 128x128x128 on the fly from the input training images
and corresponding ground truth segmentations. For the airway
segmentation experiments, a lung mask is applied to the output
of the network and the ground truth patches before computing
the training loss. For this operation, we use a pre-computed
lung mask that is easily obtained with a region growing algo-
rithm (Lo et al.| (2010)). During training, we used the Adam
optimizer (Kingma and Ba| (2017)) with an initial learning rate
of 1x1072. To train the refinement network />, the segmenta-
tion ¥ in each training sample is randomly sampled with equal
probability from either the initial segmentations x or the seg-
mentations with appearance-enhanced synthetic errors X; from
the label appearance simulation network.

During inference on new images, the input patches are ex-
tracted in a sliding-window fashion, with an overlap of 50%
in the three directions. Then, the patch-wise predicted output
by the network is aggregated by stitching the patches together,
to reconstruct the full-size segmentation result. For the airway
segmentation experiments, we applied a lung mask to the final
segmentation to remove any spurious noise prediction outside
the lungs. For this operation, we use the same region growing
algorithm as during training.

For the adversarial loss in equation (2)), the weight A is set to
0.01 for all experiments in this paper, based on visual inspec-
tion of the generated segmentations with appearance-enhanced
synthetic errors x.

4.5. Comparisons

We compared the results of our proposed method with the
baseline 3D U-Net segmentation network described in Sec-
tion Also, we compared our method with four other label
refinement methods: DoubleU-Net (Jha et al.| (2020)), SCAN
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(Da1 et al.| (2018))), Post-DAE (Larrazabal et al.| (2020)) and
DVAE (Aratjo et al.| (2019)); and a U-Net trained with the
clDice loss (Shit et al.|(2021)). In all cases, we reimplemented
the methods from the original papers. DoubleU-Net consists
of two consecutive U-Nets, with skip connections from the en-
coder of the first U-Net to the decoders of both U-Nets. For
DoubleU-Net, no hyperparameters needed to be tuned. SCAN
uses a U-Net with a discriminator and adversarial loss, discrim-
inating between the segmentation results and the ground truth.
We tuned the weight that balances the segmentation loss and
the adversarial loss (low value on the adversarial term) between
0.001 and 0.1, on the validation sets for each application. For
Post-DAE, we trained the denoising autoencoder (DAE) to map
the segmentation with synthetic errors (x;) to the ground truth
segmentation (g). Then, we passed the initial segmentation
(x) through the trained DAE to obtain the final segmentation
(v). We used the DAE implementation for binary segmentation
(Larrazabal et al. (2020)). For DVAE, we trained the method
with the class-weighted binary cross entropy loss with weights
0.7 and 0.3 for foreground and background classes, respectively
(Araujo et al.|(2019)). For the U-Net trained with the clDice
loss, we used the combination of clDice and Dice losses with
parameter @ = 0.5 (Shit et al.| (2021))). Our implementations of
all methods used the same 3D U-Net backbone as our proposed
method and the U-Net baseline.

We also conducted an ablation study of the proposed method
(LR+Syn+LASN) by removing some of the components. We
evaluated 1) a simple label refinement method by inputting the
original images and the initial segmentations without any syn-
thetic errors (LR), 2) a label refinement method with synthetic
errors added to the initial segmentations (LR+Syn(init)), and 3)
a label refinement method with synthetic errors added to the
ground truth segmentations but without the label appearance
simulation network (LR+Syn).

4.6. Evaluation Metrics

We evaluated the methods with the Dice coefficient to mea-
sure the overall segmentation quality, as well as with three met-
rics designed for tree-like structures: centerline completeness,
centerline leakage, and number of gaps. For the airway seg-
mentation experiments, the required centerlines were obtained
by applying a skeletonization method (Lee et al.| (1994)) to the
ground truth segmentation mask. For the vessel segmentation
experiments, the ground truth centerlines were manually anno-
tated. The evaluation metrics are defined below:

Dice coefficient measures the voxelwise overlap between the
predicted mask Y and the ground truth mask G:

21Y NG|
ce =
Y|+ 1G]

“4)

Centerline completeness measures the proportion of the
length of correctly detected centerlines (i.e., the intersection be-
tween the predicted mask Y and the ground truth centerlines
G.) with respect to the length of ground truth centerlines G;:

|Ychll

Completeness = ———
Gl

&)

Centerline leakage measures the proportion of the length of
false positive centerlines (i.e., the intersection between the pre-
dicted centerlines Y and the ground truth background 1 — G)
with respect to the length of ground truth centerlines G:

Leakage = w 6)
|Gl

Gaps measures the number of continuity gaps in the correctly
detected centerlines (i.e., the intersection between the predicted
mask Y and the ground truth centerlines G.;). It is calculated
with connected component analysis (Fiorio and Gustedt|(1996))
as follows:

Gaps = NCC(Y N Gy) — NCC(Gy) @)

with NCC counting the number of 26-neighbor-connected com-
ponents in the input centerlines.

5. Results

5.1. Segmentation Results

The results of our experiments for airway and brain vessel
segmentation are shown in Tables[T]and 2] respectively. In both
applications, the proposed label refinement method achieves
the highest Dice and completeness scores, the lowest number
of gaps, with a moderate leakage compared to the other meth-
ods. This indicates that our method learns from the synthesized
errors and succeeds in correcting errors in the real data. In
both applications, the methods with the highest completeness
(U-Net trained with clDice loss for airways, and DoubleU-Net
for vessels) show both more leakage and more gaps than our
method. This indicates that these methods may lack the ability
to learn relevant label structural information, and over-segment
branches to increase the completeness rather than correcting er-
rors in continuity. For airway segmentation, DVAE shows a
similar number of gaps to the proposed method, while suffering
from lower Dice and completeness. For vessel segmentation,
both Post-DAE and DVAE show lower Dice and completeness
than the proposed method, with a moderate improvement in the
number of gaps compared to the U-Net baseline. This indi-
cates that the autoencoder-based methods suffer from under-
segmentation in both applications.

In the ablation study, the label refinement method with syn-
thetic errors (LR+Syn) achieves better Dice, leakage, and num-
ber of gaps scores than the baseline refinement network (LR),
for both applications. For airway segmentation, the (LR+Syn)
method has slightly lower completeness, while this is similar
for vessel segmentation. Moreover, adding synthetic errors to
the initial segmentations (LR+Syn(init)), in contrast to doing
so to the ground truth segmentations (LR+Syn), achieves simi-
lar results in all metrics when compared to the baseline U-Net,
for both applications. This suggests that the initial segmenta-
tions are too incomplete to add sufficient useful synthetic errors
to train the refinement network. The proposed method, combin-
ing the synthetic errors and the label appearance simulation net-
work (LR+Syn+LASN), achieves a much higher completeness,
with similar Dice, leakage and number of gaps scores when
compared to the method with only synthetic errors (LR+Syn),
for both applications.
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Table 1: Results for airway segmentation. Average performance (standard deviation) over the results obtained from three random data splits. LR:
simple label refinement network. LR+Syn(init): label refinement method with synthetic errors on initial segmentations. LR+Syn: label refinement
method with synthetic errors on ground truth segmentations. LR+Syn+LASN: label refinement method with label appearance simulation network.
T: significantly better than the U-Net baseline (p < 0.05). |: significantly worse than the U-Net baseline (p < 0.05). P-values are calculated by
the paired two-sided Student’s T-test (on the average results from the three data splits). Boldface: best results, or not significantly different from

the best results.

Method Dice Completeness  Leakage Gaps
U-Net baseline (Garcia-Uceda et al.|(2021)) 0.76 (0.05) 0.74 (0.12) 0.23 (0.19)  95.73 (47.94)
DoubleU-Net (Jha et al.{(2020)) 0.77 (0.05)T 0.73 (0.11) 0.21 (0.18) 99.93 (48.11)
SCAN (Dai et al.| (2018)) 0.77 (0.05)T 0.75(0.11)T  0.31(0.23)] 98.83 (48.81)
Post-DAE (Larrazabal et al.| (2020)) 0.76 (0.06)  0.74 (0.12) 0.23 (0.19) 94.35 (48.17)
DVAE (Aragjo et al.{(2019)) 0.75 (0.06)  0.72 (0.12) 0.18 (0.17)T 93.68 (49.69)7
U-Net + cIDice (Shit et al.| (2021)) 0.78 (0.05)T 0.75(0.11)T  0.25(0.18)  95.96 (49.28)
LR 0.76 (0.05) 0.74(0.1D)T 0.23(0.17) 94.90 (47.66)
LR+Syn(init) 0.77 (0.06)  0.73 (0.12) 0.19 (0.17)  94.92 (50.14)
LR+Syn 0.79 (0.05)7 0.73 (0.12) 0.17 (0.17)T 93.54 (50.83)7
LR+Syn+LASN (proposed) 0.79 (0.05)T 0.75(0.11)T  0.20 (0.16)T 91.63 (48.63)T

Table 2: Results for brain vessel segmentation. Average performance (standard deviation) over the results obtained from three random data
splits. LR: simple label refinement network. LR+Syn(init): label refinement method with synthetic errors on initial segmentations. LR+Syn:
label refinement method with synthetic errors on ground truth segmentations. LR+Syn+LASN: label refinement method with label appearance
simulation network. 7: significantly better than the U-Net baseline (p < 0.05). |: significantly worse than the U-Net baseline (p < 0.05). P-values
are calculated by the paired two-sided Student’s T-test (on the average results from the three data splits). Boldface: best results, or not significantly

different from the best results.

Method Dice Completeness  Leakage Gaps
U-Net baseline (Su et al.| (2020)) 0.57 (0.10)  0.70 (0.18) 0.19 (0.18) 106.68 (161.41)
DoubleU-Net (Jha et al.| (2020)) 0.59 (0.09)T 0.73 (0.18)7 0.18 (0.16) 92.41 (151.27)7
SCAN (Dai et al.|(2018)) 0.57 (0.09) 0.70 (0.18) 0.17 (0.15)  104.05 (160.91)
Post-DAE (Larrazabal et al.|(2020)) 0.58 (0.10)  0.69 (0.19) 0.13 (0.14)T 97.36 (172.81)
DVAE (Aratjo et al.| (2019)) 0.57 (0.10)  0.68 (0.18) 0.15 (0.14)7 77.44 (143.21)7
U-Net + cIDice (Shit et al.|(2021))  0.61 (0.11)T 0.72 (0.18)T  0.16 (0.16)T 67.52 (122.44)7
LR 0.57 (0.10)  0.70 (0.18) 0.16 (0.16)T 82.05 (139.45)7
LR+Syn(init) 0.58 (0.11)  0.71 (0.19) 0.18 (0.15)  69.91 (126.89)7
LR+Syn 0.60 (0.11)T 0.71 (0.19) 0.12 (0.11)T 64.86 (115.21)7
LR+Syn+LASN (proposed) 0.62 (0.10)T 0.74 (0.20)T  0.14 (0.11)T 46.64 (76.57)7

5.2. Semi-supervised Results

We conducted experiments using semi-supervised learning to
train the proposed label refinement method, to investigate the
benefit of using additional unlabeled data for training. As seg-
mentations in which to synthesize errors for the unlabeled data,
we used the results on the same data obtained by the proposed
method (LR+Syn+LASN) trained on the labeled data. We de-
note these results as “pseudo labels”. The error generation in
these pseudo labels follows the same strategy and hyperparam-
eters as in the previous experiments (Sections[3.2]and[4.2). The
pseudo labels are also used as ground truth segmentations for
the unlabeled images. These unlabeled data together with the
labeled data in the previous experiments are then used to train a
new label refinement network.

The results of our semi-supervised learning experiments for
airway and brain vessel segmentation are shown in Tables [3]
and [4] respectively. Adding unlabeled data for training signifi-
cantly improves the Dice score while the leakage remains sim-

ilar, for both applications. The completeness is also improved
for airway segmentation, while for vessels, the number of gaps
is improved.

5.3. Influence of the Synthetic Error Rate

The results of our experiments varying the maximum syn-
thetic error rates (Section [4.2)) are shown in Figure[5} For air-
way segmentation, with a smaller amount of “discontinuity” er-
rors (0.1) the completeness is increased. Between 0.1 and 0.5,
changing the amount of “discontinuity” errors in the segmen-
tations with synthetic errors does not affect much the method
performance. In contrast, increasing the amount of “missing
terminal branches” errors improves both Dice and completeness
scores, reaching a peak when the maximum error rate is =~ 0.75.
This supports our hypothesis that missing terminal branches are
relevant errors to be corrected in the initial airway segmenta-
tions. For vessel segmentation, a moderate amount (0.6) of
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Table 3: Results with semi-supervised learning for airway segmentation. Average performance (standard deviation) over the results obtained
from three random data splits. LR+Syn+LASN: proposed method trained only with labeled data. LR+Syn+LASN+Unlabeled: proposed method
trained with both labeled and unlabeled data. Boldface: significantly better than the supervised results (p < 0.05). P-values are calculated by the
paired two-sided Student’s T-test (on the average results from the three data splits).

Method Dice Completeness  Leakage Gaps
LR+Syn+LASN 0.79 (0.05) 0.75(0.11)  0.20(0.16) 91.63 (48.63)
LR+Syn+LASN+Unlabeled 0.81 (0.04) 0.77 (0.10) 0.19 (0.16) 90.53 (48.80)

Table 4: Results with semi-supervised learning for brain vessel segmentation. Average performance (standard deviation) over the results
obtained from three random data splits. LR+Syn+LASN: proposed method trained only with labeled data. LR+Syn+LASN+Unlabeled: proposed
method trained with both labeled and unlabeled data. Boldface: significantly better than the supervised results (p < 0.05). P-values are calculated

by the paired two-sided Student’s T-test (on the average results from the three data splits).

Method Dice Completeness  Leakage Gaps
LR+Syn+LASN 0.62 (0.10) 0.74 (0.20)  0.14 (0.11) 46.64 (76.57)
LR+Syn+LASN+Unlabeled 0.63 (0.09) 0.75(0.18) 0.13 (0.11) 42.45 (71.26)

“discontinuity” errors has a positive effect in the method per-
formance.

When compared to the LR+Syn and LR+Syn(init) methods,
the proposed label refinement method is able to learn from
higher amounts of synthetic errors, thereby improving the la-
bel refinement performance.

6. Discussion

In this paper, we propose a novel label refinement method
that can correct errors in the initial segmentations from a stan-
dard deep segmentation network such as the U-Net. The nov-
elty of our method is that it uses segmentations augmented with
realistic synthetic errors as training samples, from where the
label refinement network can learn to correct the errors. The
synthetic errors are automatically generated to simulate com-
mon errors observed in the initial segmentations and are then
refined by a label appearance simulation network to resemble
the appearance of real errors in the initial segmentations.

We evaluated our method on the segmentation of airways
from chest CT scans and brain vessels from CTA images of
the brain. In both applications, our method achieved signif-
icantly higher Dice overlap and completeness scores, with a
lower number of gaps and a comparable leakage, when com-
pared to the baseline U-Net and other previous label refine-
ment methods. When segmenting branching structures, a higher
completeness means that more and/or longer branches are de-
tected, especially the smaller ones that are challenging to seg-
ment.

The ability of our method to segment highly complete tree-
like structures with more branches is clinically important, as
this could lead to more sensitive biomarkers. For example, in
airway analysis, the airway-artery ratio (Kuo et al.[(2017))) and
airway tapering (Kuo et al.|(2020)) measures can be used to as-
sess cystic fibrosis lung disease, and including more measure-
ments from the smaller peripheral branches can allow earlier
detection of the disease (Tiddens et al.| (2010)). Moreover, the
ability of our method to correct continuity errors and thereby

connect the segmentation is beneficial, as most methods to mea-
sure branches assume a fully connected segmentation and dis-
card branches after a discontinuity.

The proposed method outperformed the four other label re-
finement methods: DoubleU-Net (Jha et al.| (2020)), SCAN
(Dai et al.| (2018))), Post-DAE (Larrazabal et al.| (2020)) and
DVAE (Araujo et al.| (2019)); and the U-Net trained with
the clDice loss (Shit et al| (2021)). Moreover, using semi-
supervised learning techniques to train our method with addi-
tional unlabeled data we can further improve the method per-
formance when compared to the fully supervised setting.

6.1. Comparison with Other Methods

The main difference between the proposed method and other
label refinement methods is that ours provides a more general
and powerful way of using a training dataset that includes seg-
mentations augmented with synthetic errors. Instead, DoubleU-
Net (Jha et al.| (2020)) uses the original images masked by the
initial segmentations to train the second network. Although
the increased model capacity of DoubleU-Net may improve the
segmentations, its ability to correct the errors may be limited
by the fact that no new errors are introduced to the input of the
refinement network. This makes it less efficient to implicitly
exploit the label structural information similar to a standard U-
Net. Post-DAE (Larrazabal et al.| (2020)) and DVAE (Araujo
et al| (2019)) aim to refine the initial segmentation by learn-
ing and recovering the overall label structure. In both appli-
cations, the autoencoder-based methods show worse segmenta-
tion performance than our method. This may reflect the lim-
itations of autoencoders in reconstructing the complicated la-
bel structure of airways and brain vessels. SCAN (Dai et al.
(2018)) refines the segmentation by making it indistinguish-
able from the ground truth segmentation through an adversar-
ial loss, where the distribution of the learned features may also
provide the general structural information of the objects to be
segmented. SCAN mainly focuses on simulating the appear-
ance of the ground truth segmentations. However, SCAN is not
designed to learn to correct structural errors explicitly, thus it
may not capture the local continuity information as efficiently
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Fig. 5: Influence of the hyperparameters of the proposed method,
the maximum synthetic error rates, in the method performance,
for airway and brain vessel segmentation. Results are shown as
average performance with standard deviation (error bars), for Dice and
completeness metrics, over three random data splits. The results for
the baseline (LR) are displayed as dashed line. Better viewed in color.

as our method. This is reflected by the significantly worse com-
pleteness reported by SCAN in Tables [T|and 2} for both appli-
cations. Our method provides an implicit way to enhance the
network awareness of the structural information in the ground
truth segmentations. For example, after seeing many continuity
errors, the refinement network is expected to understand the lo-
cal continuity within elongated structures, and consequently to
be able to correct these errors in the initial segmentations. Fi-
nally, the clDice loss (Shit et al.| (2021)) focuses the training on
the centerline structures and penalizes errors (discontinuities)
in them. Although using the cIDice loss is a straightforward
approach, it only corrects discontinuity errors and not missing
terminal branches.

6.2. Synthetic Errors for Semi-supervised Learning

With the proposed method, synthetic errors can be added to
any pseudo labels obtained on unlabeled data, to be used in
semi-supervised learning. In Section [5.2] we have shown that
our method performance was significantly improved when us-
ing additional unlabeled data for training. Our approach to gen-
erating synthetic errors could be used together with other com-
mon semi-supervised methods using pseudo labels, e.g., to op-

timize the prediction consistency of the same image from dif-
ferent models (Tarvainen and Valpolal (2017)), or the prediction
consistency of the same image with different transformations
(Bortsova et al.{(2019)). Using synthetic errors in these methods
may improve the segmentation quality of pseudo labels from the
unlabeled data, which could provide more informative features
from these data and thereby improve the segmentation perfor-
mance.

6.3. Importance of Realistic Synthetic Errors

The proposed label refinement network may underperform
if the segmentations with synthetic errors used for training are
too different from the initial segmentations. In our method, the
synthetic errors are added to the ground truth segmentations,
which have a fine and smooth appearance. In contrast, the ini-
tial segmentations are more irregular. Our proposed solution is
to use a label appearance simulation network trained with an
adversarial loss to make the appearance of the segmentations
with synthetic errors resemble that of the real initial segmen-
tations. The results in Tables [T] and ] clearly show the benefit
of using the LASN network in our method. In both applica-
tions, without the LASN network could our method (LR+Syn)
only slightly improve the segmentation performance with a re-
duced leakage, when compared to the baseline (LR). This may
be due to the positive regularization effect of increasing the va-
riety in the training data by including the segmentations with
synthetic errors. Only after introducing the LASN network was
our method able to improve the completeness while retaining
an adequate leakage.

6.4. Possible Application to Other Segmentation Tasks

While we studied only two applications in this work, the pro-
posed method can be applied to other segmentation tasks of
tree-like structures, such as neurons or vessels in retina, liver,
or lungs. Indeed, the types of errors studied (i.e. missing termi-
nal branches and discontinuities) are relevant for any tree-like
structures, and not limited to airways and brain vessels.

The proposed label refinement method via error synthesis can
be applied to other non-tree-like segmentation tasks. The core
step is to identify common types of errors in the initial seg-
mentations. For example, a common error we observed in prior
work using the U-Net for the segmentation of the aorta and pul-
monary arteries from chest CT scans (Chen et al.|(2021)) was
that the segmentation of one of the structures often leaked into
the other one, while being both independent anatomical struc-
tures. This is mostly due to the obscured boundaries of both
arteries on the CT scan. This type of error can be simulated
by locally removing the boundaries between the aorta and pul-
monary artery classes. Applying our method to correct such
errors may improve the overall segmentation performance for
this application.

In some segmentation tasks, a discontinuity in the segmen-
tation could be due to a pathological abnormality (e.g. mucus
plugs in airways or occlusions in vessels), rather than an er-
ror to be corrected by our method. In this scenario, since the
label refinement model f; uses as inputs both the original im-
age and the segmentation with synthetic errors, from the image
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it may be able to differentiate between cases where there is a
label discontinuity but some evidence of an organ (a segmen-
tation error) and cases of a pathological abnormality (not an
error). Whether our method can handle pathological abnormal-
ities correctly will depend on whether the training dataset con-
tains sufficiently many examples of these, and should be tested
on data containing such abnormalities.

6.5. Limitations

The main limitation of the proposed method lies in the two-
step design and implementation: 1) analyze the errors in the ini-
tial segmentations to identify the relevant types of errors, and 2)
design and generate the synthetic errors based on these results.
The first step requires observation and interpretation by human
experts. The synthetic errors we used in this paper are suit-
able for the segmentation of tree-like structures. However, the
relevant types of errors generally differ across different applica-
tions and datasets, and therefore the synthetic errors we used are
not directly applicable to other segmentation tasks. The second
step is typically a complex image processing task. Neverthe-
less, once the synthetic errors are successfully designed for a
given application, the training of our label refinement method
can be done fully automatically.

A limitation of our validation of the proposed method is that
we considered only two types of false negative errors (i.e., miss-
ing terminal branches and errors in continuity). We did not con-
sider false positive errors because these were much less frequent
in the initial segmentations and often appeared as disconnected
blobs that could be easily removed without the need for more
complex label refinement. Nevertheless, from the results ob-
tained in this paper we expect that our method can successfully
correct other types of errors as well.

7. Conclusion

We presented a novel label refinement method that can learn
from synthetic errors to refine the initial segmentations from
a base segmentation network. A label appearance simulation
network was applied to reduce the appearance difference be-
tween the segmentations with synthetic errors and the real ini-
tial segmentations, thereby improving the generalizability of
our method. On two segmentation tasks for branching struc-
tures, the proposed method achieved significantly better seg-
mentation results when compared to four previous label refine-
ment methods, and a U-Net trained with a loss tailored for tubu-
lar structures. The segmentation performance of our method
was further improved by using additional unlabeled data for
training with semi-supervised learning techniques.
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