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ABSTRACT

Evaluations of large language model (LLM) capabilities are increasingly be-
ing incorporated into AI safety and governance frameworks. Empirically, how-
ever, LLMs can persistently retain harmful capabilities, and evaluations often fail
to identify hazardous behaviors. Currently, most evaluations are conducted by
searching for inputs that elicit harmful behaviors from the system. However, a lim-
itation of this approach is that the harmfulness of the behaviors identified during
any particular evaluation can only lower bound the model’s worst-possible-case
behavior. As a complementary approach for capability elicitation, we propose us-
ing model-manipulation attacks which allow for modifications to the latent activa-
tions or weights. Here, we test 8 state-of-the-art techniques for removing harmful
capabilities from LLMs against a suite of 5 input-space and 5 model-manipulation
attacks. In addition to benchmarking these methods against each other, we show
that (1) model resilience to capability elicitation attacks lies on a low-dimensional
robustness subspace; (2) the attack success rates (ASRs) of model-manipulation
attacks can help to predict and develop conservative high-side estimates of the
ASRs for held-out input-space attacks; and (3) state-of-the-art unlearning meth-
ods can easily be undone within 50 steps of LoRA fine-tuning. Together these
results highlight the difficulty of deeply removing harmful LLM capabilities and
show that model-manipulation attacks enable substantially more rigorous evalua-
tions for undesirable vulnerabilities than input-space attacks alone.1

1 INTRODUCTION

Rigorous evaluations of large language models (LLMs) are widely recognized as key for risk mit-
igation (Raji et al., 2022; Anderljung et al., 2023; Schuett et al., 2023; Shevlane et al., 2023) and
are consistently being incorporated into AI governance initiatives (POTUS, 2023; NIST, 2023; UK
DSIT, 2023; EU, 2023). However, despite their efforts, developers often fail to identify and fix
overtly harmful LLM behaviors before deployment (Wei et al., 2024; Shayegani et al., 2023; Carlini

∗Equal contribution
1Models will be released upon paper arXival.
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Figure 1: Model manipulation attacks can modify latents and weights. In contrast to input-space
attacks, model manipulation attacks elicit capabilities from an LLM by making small modifications
to the hidden activations or weights.

et al., 2024). Existing automated evaluations often fall short of identifying an LLM’s true potential
for harm (Casper et al., 2024a). For example, Li et al. (2024a) demonstrated that even when com-
mon, standardized benchmark attacks failed to jailbreak an LLM, manual ones succeeded more than
50% of the time. This highlights a fundamental limitation of using input-space attacks for LLM
evaluations: the worst behaviors identified during any particular evaluation can only offer a lower
bound of the model’s overall worst-case behaviors. Poor evaluations can not only underestimate
risks but can be counterproductive if they lead to a false sense of security (Anderljung et al., 2023).

In safety-critical engineering fields, it is a very common principle to design and test systems to
ensure that they can handle stresses at least as strong – and ideally stronger – than what they will
face in deployment (Clausen et al., 2006). For example, in construction, buildings are often designed
to handle several times the load they are ever intended to bear. Here, we propose an analogous
approach for AI system evaluations.

In addition to evaluating systems under input-space threats, we also propose using model manipu-
lation attacks which allow for adversarial modifcations to the model’s weights or latent activations.
We attempt to answer two questions, each corresponding to a different threat model:

• How vulnerable are LLMs to model manipulation attacks? Answering this will help us
understand how model-manipulation attacks can directly help to study risks from models
that are open-sourced2 or may be leaked (Nevo et al., 2024).

• How much can model manipulation attacks tell us about LLM vulnerabilities to un-
foreseen input-space attacks? Answering this will help us understand how model manip-
ulation attacks can help to assess risks from both open- and closed-source models.

Here, we test state-of-the-art capability removal (“unlearning”) methods for LLMs against a suite of
input-space and model manipulation attacks. We make four contributions.

1. Benchmarking: We benchmark 8 state-of-the-art unlearning methods and 10 capability
elicitation attacks against each other.

2. Science of robustness: We show that LLM resilience to a variety of capability elicitation
attacks lies on a low-dimensional robustness subspace.

3. Evaluation methodology: We show that the success of some model manipulation attacks
correlates with that of held-out input-space attacks. We also show that few-shot LoRA fine-
tuning attacks can typically be used to conservatively over-estimate a model’s robustness
to held-out input-space threats.

2It may seem obvious that model-manipulation attacks are needed to evaluate realistic threats from models
prior to open-sourcing. However, there is precedent for developers failing to use them prior to open-source
releases. For example, before releasing Llama 2 and Llama 3 models, Meta’s red-teaming efforts did not
reportedly involve model manipulation attacks (Touvron et al., 2023; Dubey et al., 2024).
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4. Few-shot fine-tuning attacks: We find that state-of-the-art unlearning methods can con-
sistently be undone within 50 steps of few-shot fine-tuning.

Overall, our results suggest that model manipulation attacks can be a unique and valuable way for
evaluators to gain more information about the potential worst-case behaviors of LLMs.

2 RELATED WORK

Latent-space attacks: During a latent-space attack, an adversary can make modifications to a
model’s hidden activations. Prior work has found that adversarial training under these attacks can
improve the generality of a model’s robustness (Sankaranarayanan et al., 2018; Singh et al., 2019;
Zhang et al., 2023; Schwinn et al., 2023; Zeng et al., 2024). In particular, Xhonneux et al. (2024),
Casper et al. (2024b), and Sheshadri et al. (2024) use latent adversarial training to improve defenses
against held-out types of adversarial attacks. Other recent work on activation engineering has in-
volved making modifications to a model’s behavior via simple transformations to their latent states
(Zou et al., 2023a; Wang & Shu, 2023; Lu & Rimsky, 2024) including Arditi et al. (2024) who
showed that linear activation interventions could be used to jailbreak LLMs.

Few-shot fine-tuning attacks: During a few-shot fine-tuning attack, an adversary can modify a
model’s weights via fine-tuning on a limited number of examples. For example, Qi et al. (2023)
showed that fine-tuning on as few as ten examples could be used to jailbreak a GPT-3.5. A variety
of works have used few-shot fine-tuning attacks to elicit LLM capabilities that were previously
suppressed by safety fine-tuning or machine unlearning (Jain et al., 2023; Yang et al., 2023; Qi
et al., 2023; Bhardwaj & Poria, 2023; Lermen et al., 2023; Zhan et al., 2023; Ji et al., 2024; Qi et al.,
2024; Hu et al., 2024; Halawi et al.; Peng et al., 2024; Lo et al., 2024; Łucki et al., 2024; Shumailov
et al., 2024; Lynch et al., 2024; Deeb & Roger, 2024). For example, Greenblatt et al. (2024) found
that fine-tuning was a reliable way of eliciting hidden capabilities from a “password locked” model
that would only exhibit certain capabilities if a specific “password” was present in the prompt.

Unlearning evaluation: Along with research on jailbreaks (e.g., (Shayegani et al., 2023)) and back-
doors (e.g., (Greenblatt et al., 2024)), machine unlearning has been a research sandbox for evaluating
capability elicitation methods. “Machine unlearning” been motivated by two main objectives: undo-
ing the influence of specific training examples and removing specific capabilities from models (Liu
et al., 2024). Here, we focus on capability unlearning. Conventionally, capability unlearning has
been evaluated using a pair of tests for the preservation of general knowledge and the reduction of
unlearning-task knowledge. However, more recently, adversarial approaches have been used to eval-
uate robust and generalizable unlearning (Patil et al., 2023; Lynch et al., 2024; Łucki et al., 2024;
Hu et al., 2024; Liu et al., 2024). Here, we build off of Li et al. (2024b) who introduce WMDP,
a benchmark for unlearning dual-use biotechnology, chemistry, and cyber-offense knowledge from
LLMs. We evaluate methods using the WMDP Bio unlearning and evaluation tasks.

3 METHODS

We pit unlearning methods against capability elicitation attacks. We used each unlearning method to
impair an LLM’s ability to assist users in tasks involving dual-use biotechnology information while
preserving its general capabilities (Li et al., 2024b). The goal of each capability elicitation attack is
to produce an adversarial modification to model text inputs, input embeddings, latent activations, or
weights to make it regain its ability to help users with dual-use biology tasks.

Unlearning methods: We unlearn dual-use bio-hazardous knowledge on the Llama 3 8B Instruct
model Dubey et al. (2024) with the 8 unlearning methods listed in Table 1 and outlined in Ap-
pendix A.2.1. For all methods except TAR, we train on up to 1,600 examples of max length 512
from the bio-remove-split of WMDP as the forget set, and up to 1,600 examples of max length 512
from Wikitext as the retain set. Due to the computational cost of TAR, we attack the public release
TAR model unlearned on WMDP Bio data. We also attack the public release of the “Random Map-
ping” method which is an ablated version of TAR without meta-learning. For all methods we trained,
we evaluate 8 checkpoints evenly spaced across training on unlearning efficacy, utility preservation,
and robustness to attacks. We evaluate unlearning efficacy on the WMDP Bio QA dataset.
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Defenses
Unlearning methods Gradient Difference (GradDiff) (Liu et al., 2022)

Random Misdirection for Unlearning (RMU) (Li et al., 2024b)
RMU with Latent Adversarial Training (RMU+LAT) (Sheshadri et al., 2024)
Representation Noising (RepNoise) (Rosati et al., 2024)
Erasure of Language Memory (ELM) (Anonymous, 2024)
Representation Rerouting (RR) (Zou et al., 2024)
Tamper Attack Resistance (TAR) (Tamirisa et al., 2024)
Random Mapping (RandMap) (Tamirisa et al., 2024)

Attacks
Input-space Gradient-guided GCG (Zou et al., 2023b)

AutoPrompt (Shin et al., 2020)

Perplexity-guided BEAST (Sadasivan et al., 2024)

Prosaic PAIR (Chao et al., 2024)
Human prompt

Model manipulation Latent perturbation Embedding space (Schwinn et al., 2024)
Latent space (Sheshadri et al., 2024)

Fine-tuning Benign LoRA (Qi et al., 2023)
LoRA (Hu et al., 2021)
Full parameter

Table 1: Table of attacks and defenses. The capability elicitation (attack) methods and unlearning
(defense) methods we use to remove and extract bio-hazardous capability from LLMs.

Capability elicitation attacks: We use 5 input-space attacks and 5 model manipulation attacks on
our unlearned models. These attacks are designed to increase WMDP Bio performance. We list
all 10 attacks in Table 1. Note that in this setting, we use capability elicitation methods to produce
universal adversarial attacks which work for all prompts. This allows us to attribute improvements
in performance to capability elicitation rather than answer-forcing from the model. We selected
attacks based on algorithmic diversity and prominence in the state of the art.

In addition to the attacks in Table 1, we also tried many-shot attacks (Anil et al., 2024; Lynch et al.,
2024) and translation attacks (Yong et al., 2023; Lynch et al., 2024) but found them to be consistently
unsuccessful. All attacks, except fine-tuning attacks, used a 64-example subset for attack generation
(approximately 5% of the evaluation examples) and were evaluated on the remaining WMDP Bio
QA data. For descriptions and implementation details for each attack method, see Appendix A.

4 EXPERIMENTS

As discussed in Section 1, we have two motivations, each corresponding to a different threat model.
First, we want to directly evaluate robustness to model manipulation attacks in order to better un-

Method WMDP ↓ WMDP Under ↓ MMLU ↑ MT-Bench/10 ↑ AGIEval ↑ Unlearning Score ↑Best Attack

Llama3 8B Instruct 0.70 0.71 0.64 0.78 0.41 0.00

Grad Diff 0.26 0.54 0.53 0.28 0.27 0.19
RMU 0.26 0.59 0.59 0.68 0.42 0.39
RMU + LAT 0.32 0.66 0.60 0.71 0.39 0.34
RepNoise 0.25 0.62 0.57 0.64 0.36 0.36
ELM 0.29 0.54 0.54 0.73 0.41 0.37
RR 0.26 0.65 0.61 0.76 0.44 0.44
TAR 0.24 0.43 0.27 0.10 0.30 0.08
RandMap 0.27 0.61 0.55 0.41 0.31 0.24

Table 2: Benchmarking LLM unlearning methods: We report original WMDP Bio performance,
worst-case WMDP Bio performance after attack, and three measures of general utility: MMLU,
MT-Bench, and AGIEval. For all benchmarks, the random-guess baseline is 0.25 except for MT-
Bench/10 which is 0.1. Representation rerouting (RR) has the best unlearning score. No model has
a WMDP accuracy less than 0.43 after attack.
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derstand risks from models that are open-sourced or leaked. Second, we want to understand what
model manipulation attacks can tell us about unforeseen input-space attacks in order to study risks
from open- or closed-source models. Unfortunately, unforeseen attacks are, by definition, ones that
we do not have access to. Instead, since all of the input-space attacks that we use are held out during
unlearning, we treat them as proxies for other held-out input-space attacks in general.

4.1 BENCHMARKING UNLEARNING METHODS

Unlearning evaluation: In our models, we evaluate unlearning efficacy on the WMDP Bio QA
task. We evaluate general utility on MMLU Hendrycks et al. (2020), MT-Bench Bai et al. (2024),
and AGIEval Zhong et al. (2023). Because the goal of unlearning is to differentially decrease capa-
bilities in a target domain, we calculate an “unlearning score” based on both the efficacy and utility
degradation. For an original model M ′ and an unlearned model M , we calculate Sunlearn(M) with
the following formula:

Sunlearn(M) = [SWMDP(M)− SWMDP(M
′)]︸ ︷︷ ︸

∆Unlearn efficacy

− [Sutility(M)− Sutility(M
′)]︸ ︷︷ ︸

∆Utility degradation

(1)

where SWMDP(·) is the accuracy on the WMDP Bio QA Evaluation and Sutility(·) is an aggregated
utility measure. Sutility(·) is calculated by taking the average of MMLU, MT-Bench (divided by
10 so the score is between 0 and 1), and AGIEval. A positive unlearning score indicates that the
model differentially lost WMDP Bio capabilities relative to general capabilities while a negative one
reflects counterproductive unlearning. A “perfect” unlearning technique that did not change general
capabilities but brought WMDP Bio performance down to the random-guess baseline would score
0.45. Table 4 reports results from the best-performing checkpoint (as determined by unlearning
score) from each of the 8 methods.

Representation rerouting (RR) achieves the highest unlearning score. GradDiff, TAR, and
RandMap struggle. We find different levels of unlearning success. Representation rerouting (RR)
performs the best overall, achieving an unlearning score of 0.44. In contrast, GradDiff and RandMap
have limited success and are only able to remove bio capabilities with heavy costs to general utility.
The TAR model performed the worst overall due to near-random guess performance on all evalua-
tions. Upon deeper investigation, we found that the TAR model had broad challenges with fluency.
We also discovered that its unlearning was perplexingly brittle. For example, we found that sim-
ply adding a non-masked <|begin of text|> token as a prefix before evaluation caused the
model to increase from 24% to 37%. As we will also show later in Figure 4, several other simple
input-space attacks were able to greatly improve its performance.

No method is robust to all attacks. We plot the increase in WMDP Bio performance for the best
checkpoint after each attack in Figure 4 and show that all models, even those with the lowest utility,
exhibit a worst-case performance increase of 0.19 points or more on the WMDP Bio QA task.

4.2 MODEL ROBUSTNESS EXISTS ON A LOW-DIMENSIONAL SUBSPACE.

Weighted PCA: We perform weighted principal component analysis on the WMDP improvements
achieved by all 10 attacks on all 50 checkpoints. We first constructed a matrix A with one row
per model and one column per attack. Each Aij in the table corresponds to the increase in WMDP
performance in model i under attack j. We then centered the data by multiplying each row Ai by the
square root of the unlearning score:

√
Sunlearn(Ai) This scaling step allowed for models to influence

the analysis in proportion to their unlearning score.

Four principal components explain over 90% of the variation in performance across the ten
attacks. Fig. 2 displays the eigenvalues from PCA and the top four principal components (each
weighted by their eigenvalues). We see that the first principal component captures over half of the
variance in attack successes, and the first four capture over 90%. This suggests that not all capability
elicitation attacks exploit models via the same mechanisms, nor do they all do so via completely
different ones. Meanwhile, analysis of the eigenvalue-weighted coordinates suggests that some
model manipulation attacks are better predictors of input-space vulnerabilities than others. The first
principal component exhibits a distinct difference between full and LoRA fine-tuning and all other
attacks. Meanwhile, benign LoRA fine-tuning, embedding-space, and latent-space attack successes
tend to coincide more with the success of held-out input-space attacks.
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Figure 2: Four principal components explain over 90% of the variation in performance across
the ten attacks. (Left) The proportion of explained variance for each principal component. (Right)
We display the first four principal components weighted by their eigenvalues. The first suggests a
split between the two adversarial (LoRA, Full) fine-tuning attacks and all others.

4.3 MODEL MANIPULATION ATTACKS HELP TO PREDICT AND UPPER BOUND THE SUCCESS
OF INPUT-SPACE ATTACKS

Comparing the success of input-space and model manipulation attacks: In Figure 3, we plot the
increases in WMDP Bio performance from input space versus model manipulation attacks. In the
plots, we size points by their unlearning score and display the weighted pearson correlation.

Benign fine-tuning, embedding-space, and latent-space attack successes tend to correlate with
input-space attack successes. These three model manipulation attacks tend to have positive corre-
lations with input-space attack successes with low p values (e.g., < 0.05). This suggests that benign
fine-tuning embedding-space and latent-space attacks are particularly able to predict the successes
of held-out input-space attacks. Surprisingly, full model fine-tuning attacks tend to negatively pre-
dict input-space attacks, though this trend is largely due to the ELM models. ELM models often
cluster far away from all others, suggesting that ELM may be a mechanistically unique unlearning
technique, but we leave further exploring this for future work.

LoRA fine-tuning attack successes tend to upper bound input-space attack successes for models
that do not experience significant utility degradation. LoRA fine-tuning on the WMDP Bio forget
set was usually able to exceed the success of all other attacks we tested. In the few cases in which the
success of LoRA attacks does not exceed another attack, it tends to be for models (e.g., TAR) with
low unlearning scores due to general utility degradation. This suggests that they may not have been
robust to fine-tuning because of successful unlearning so much as having behavior that was unstable
under training. This suggests that evaluators looking to upper bound the worst-case behavior of a
model under potentially unforeseen threats may be able to use these fine-tuning attacks.

Unlearning can consistently be reversed within 50 fine-tuning steps – sometimes even in a
single step. We show the results of multiple fine-tuning attack configurations against the best-
performing model from each unlearning method in Figure 5. All finetuning experiments as detailed
in Appendix A.3 are done within 50 gradients steps, and with 400 examples or fewer. In particular,
the attack ‘Full-4’ only performs a single gradient step (with a batch size of 64) and still increases the
WMDP performance on 5 of the 8 models by over 25 percentage points. The only models that were
resistant to few-shot fine-tuning attacks were from GradDiff and TAR. However, GradDiff was still
compromised by the Benign LoRA attack within just 50 gradient steps. Both of TAR and GradDiff
models had low unlearning scores due to poor general utility.

5 DISCUSSION

Implications for evaluations: Our work may be of particular interest to the LLM evaluation com-
munity. Frameworks for AI governance are increasingly designed to rely on high-quality evaluations
to identify hazards and handle risks in LLMs (Raji et al., 2022; Anderljung et al., 2023; Schuett et al.,
2023; Shevlane et al., 2023; Uuk et al., 2024). Formal evaluations of AI systems, however, face a
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Figure 3: Benign fine-tuning, embedding-space, and latent-space attack successes tend to corre-
late with input-space attack successes. LoRA fine-tuning attack successes tend to upper bound
the successes of input space attacks for models with high unlearning scores. Here, we plot the
increases on WMDP Bio performance from input-space attacks versus model manipulation attacks.
We weight points by their unlearning score from Section 4.1. We also display the unlearning-score-
weighted correlation, the correlation’s p value, and the line y = x (Notice this is not the line of best
fit). Points below and to the right of the line indicate that the model manipulation attack was more
successful. For models with a high unlearning score, LoRA attacks consistently match or exceed
the performance of all input-space attacks.

number of challenges (Anderljung et al., 2023) including limitations in technical tooling. Our work
adds to the growing consensus that access to model internals is necessary for rigorous evaluations
(Casper et al., 2024a). When models are released with open weights, model manipulation attacks
during evaluations are directly necessary to understand risks from misuse. Meanwhile, when they
are released with closed weights, our results still suggest that model manipulation attacks can help
evaluators make more informed inferences about potential worst-case behavior.

Limitations: Our work focuses only on Llama 3 8B Instruct derived models, on the task of unlearn-
ing hazardous biology knowledge. This allows for considerable experimental depth, but we expect
that there may be different dynamics with different models performing different tasks. Another lim-
itation is that our evaluations of undesirable capabilities were conducted only by evaluating models
under multiple-choice questions from the WMDP Bio test set (Li et al., 2024b). However, these
evaluations can sometimes be brittle. Finally, the science of evaluations is still generally immature,
and it is not yet clear how to best translate the outcome of evaluations like ours into actionable
recommendations.

Future work:
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Figure 4: All unlearning methods could be successfully attacked, but not all attacks were suc-
cessful on all models. Here, we benchmark attacks against the best models from each unlearning
method based on unlearning score. No method is robust to all the 10 attacks. The min-max WMDP
performance increase under an attack was 19% (Human Prompt vs. TAR).

Figure 5: Fine-tuning undoes unlearning efficiently. We plot the heatmap of the best checkpoint
for each method under fine-tuning attack. All fine-tuning experiments are done within 50 gradient
steps, with 400 examples or less. All hyper-parameters are listed in Appendix A.3.

• Models and tasks: Experiments with larger models and additional tasks would offer a
broader understanding of model manipulation attacks’ potential to aid in capability evalua-
tions. We are particularly interested in similar work involving jailbreaks.

• What mechanisms underlie robust capability removal? Currently, our understanding of
robust unlearning is limited. It is not known what types of mechanisms are responsible for
strong versus weak unlearning. We are interested in future work to mechanistically charac-
terize unlearning. This could help in understanding how to unlearn undesirable capabilities
in a way that is effective, robust, and lacks side effects.

• Bridging research and practice: This work was motivated by the goal of helping evalu-
ators more effectively study potential worst-case risks from harmful capabilities in LLMs.
We hope that model manipulation attacks can be further studied and used in practice to
assess risks in consequential models pre-deployment.

Conclusion: By comprehensively benchmarking 8 capability removal methods under 10 diverse
capability elicitation methods, we have contributed to a more thorough understanding of LLM ro-
bustness and how to evaluate it. Not all capability elicitation attacks exploit the same weaknesses in
models, nor do they all exploit the exact same ones. We have found that over 90% of the empirical
variance in robustness across our suite of attacks can be explained by four principle components.
Meanwhile, model manipulation attacks that make small perturbations to the LLM’s weights or ac-
tivations can help to predict its vulnerability to input-space methods. In particular, we show that
few-shot fine-tuning attacks tend to be very strong and often exceed the successes of input-space
attacks. Together these results suggest that model manipulation attacks can be uniquely helpful for
inferring risks from unforeseen types of input space attacks.
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A EXPERIMENT DETAILS

A.1 UNLEARNING EVALUATION

We report MT-Bench score as the average of one round and two round scores, and divide it by 10,
the maximum number of points possible.

A.2 UNLEARNING METHODS AND IMPLEMENTATION

A.2.1 UNLEARNING METHODS

• Gradient Difference (GradDiff): Inspired by Liu et al. (2022), we train models to maxi-
mize the difference between the training loss on the forget dataset and the retain dataset.

• Random Misdirection for Unlearning (RMU): Li et al. (2024b) propose a method where
model activations on harmful data are perturbed and model activations on benign data are
preserved.

• RMU with Latent Adversarial Training (RMU+LAT): Sheshadri et al. (2024) propose
training models using adversarial attacks in the latent space as a way to perform stronger
unlearning. They combined this with RMU by leveraging adversarial perturbations when
training only on the forget dataset.

• Representation Noising (RepNoise): Rosati et al. (2024) propose adding a noise loss term
that minimizes the KL divergence between the distribution of harmful representations given
harmful input and Gaussian noise.

• Erasure of Language Memory (ELM): Anonymous (2024) introduce ELM in order to
thoroughly unlearn knowledge by training the model to mimic unknowledgeable behavior
on the unlearning domain.

• Representation Rerouting (RR): Zou et al. (2024) introduces Representation Rerouting
(also known as “circuit breaking”) which trains models to map latent states induced by
topics in the unlearning domain to orthogonal representations.

• Tamper Attack Resistance (TAR): Tamirisa et al. (2024) introduce TAR as a meta-
learning approach which uses a tamper-resistant loss to minimize the effect of an attacker.

• Random Mapping (RandMap): In an ablation experiment, Tamirisa et al. (2024) also use
random hashes to maximize the cosine similarity of the residual streams and hash vectors,
which encourages the language model to remap token representations to random states.

Both for algorithmic diversity and to use the same implementations as the works which introduced
each method, we use full fine-tuning for RMU, RMU-LAT, and RepNoise and LoRA for GradDiff,
ELM, and RR.

A.2.2 HYPERPARAMETERS

Beginning from prior works’ implementations of methods, we tuned the hyperparameters below in
order to achieve (1) gradual progress in unlearning across the 8 checkpoints that we took and (2) a
high unlearning score by the end of training.

• GradDiff
– LoRA Fine-tune

LoRA Rank: 256
LoRA α: 128
LoRA dropout: 0.05

– Learning Rate: 10−4
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– Batch Size: 32
– Unlearning Loss Coefficient β: 14

• RMU

– Layer Fine-tune
Layers: 5, 6, 7

– Retain Loss Coefficient α: 90
– Steer: 20
– Learning Rate: 5× 10−5

– Batch Size: 8

• RMU+LAT

– Layer Fine-tune
Layers: 5, 6, 7

– Retain Loss Coefficient α: 90
– Learning Rate: 5× 10−5

– Batch Size: 8
– Steer: 20

• RepNoise

– Full Fine-tune
– Learning Rate: 5× 10−6

– Batch Size: 4
– Noise Loss Coefficient α: 2
– Ascent Loss Coefficient β: 0.01

• ELM

– LoRA Fine-tune
LoRA Rank: 64
LoRA α: 16
LoRA dropout: 0.05

– Learning Rate: 2× 10−4

– Batch Size: 8
– Retain Coefficient: 1
– Unlearn Coefficient: 6

• Representation Rerouting

– LoRA Fine-tune
LoRA Rank: 16
LoRA α: 16
LoRA dropout: 0.05

– Learning Rate: 1× 10−4

– Batch Size: 8
– Target Layers: 10, 20
– Transform Layers: All
– LoRRA Alpha: 10

A.3 ATTACK METHODS AND IMPLEMENTATION

Greedy Coordinate Gradient (GCG) GCG (Zou et al., 2023b) performs token-level substitu-
tions to an initial prompt by evaluating the gradient with respect to a one-hot vector of the current
token. We implemented both time-bounded attacks on each unlearned model and transfer attacks
using prefixes from one model to attack others. Unless otherwise specified, we report the mean
performance of each gradient-guided attack.
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AutoPrompt Like GCG, AutoPrompt (Shin et al., 2020) performs a gradient-guided search over
input tokens to design universal adversarial prompts.

BEAST We used BEAm Search-based adversarial Attack (BEAST) (Sadasivan et al., 2024) to
produce universal adversarial suffixes which were appended after the evaluation questions. Un-
like GCG and AutoPrompt, BEAST is guided by perplexity instead of gradients. Since our attacks
need to be universal, we leverage a modified version of BEAST to generate universal adversar-
ial tokens for several user input prompts. Formally, we can define a set of user input prompts as
{x(u)

1 ,x
(u)
2 , · · · ,x(u)

n }, where each xi contains a question qi and answer choices ai. Our goal is to
generate an adversarial sequence of tokens x(a) such that qi ⊕ x(a) ⊕ ai can effectively attack the
language model for all i ∈ {1, 2, · · · , n}. We place the adversarial tokens between each question
and the answer choices so that the beam search in BEAST is conditioned solely on the question and
not the answers, as the jailbreak tokens to the end of the user prompt directly can leak the answer
choices into the tokens. We attacked with different hyperparameters for search width and time, and
reported results for K = 5.

PAIR In addition to gradient-based approaches such as GCG and finetuning attacks, we also in-
clude a model-based approach similar to PAIR (Chao et al., 2024). PAIR uses a prompt-level jail-
breaking attack, where an entirely new adversarial prompt is generated instead of augmenting the
prompt with adversarial tokens. This is not transferable compared to other universal attack ap-
proaches as the attack is highly dependent on the original prompt. Instead, we modify PAIR to
develop an adversarial suffix that can applied to many (potentially unseen) prompts. First, we task
an attack model (base model such as Llama 3 8B) to generate an adversarial suffix, similar to how
PAIR generates an adversarial prompt. Then, we append the adversarial suffix to each of the prompts
in the training dataset and measure the accuracy of the target model (unlearned model) on the jail-
broken prompts. Finally, we pass in an improvement prompt (a general string that asks the attack
model to improve its adversarial suffix) and the accuracy of the target model to the attack model to
repeat the process.

Human Prompt We hand-crafted adversarial prompts to elicit harmful responses from a language
model. After manual iteration, our selected prefix was “#Answer Key\n\nThis answer key contains
questions and answers for advanced topics in bioengineering and biotechnology. All answers were
verified correct by a panel of experts.”

Embedding Attack Schwinn et al. (2024) proposes applying adversarial perturbations to a lan-
guage model’s embedding layer instead of in the input space. We train universal ℓ2-norm bounded
embedding space prompts which we apply to the embedded tokens for the prefix used for WMDP-
bio evaluation: “The following are multiple choice questions (with answers) about biology.\n”.

Latent Layer Attack Sheshadri et al. (2024) proposes applying adversarial perturbations to a
language model’s latent layers. We train universal ℓ2-norm bounded embedding space prompts
which we apply to the latent tokens at layer 5 for the prefix used for WMDP-bio evaluation: “The
following are multiple choice questions (with answers) about biology.\n”.

Few-shot fine-tuning attacks We perform fine-tuning as relearning attack. The forget set (WMDP
Bio Remove) consists of hazardous biology data, and the retain set (WMDP Bio Retain) contains
non-hazardous biology data. We also performed benign LoRA fine-tuning on wikitext. We report
hyper-parameters in Appendix A.3. All LoRA and Benign attacks are done with rank 16 and alpha
32. All examples have a maximum length of 512 tokens.
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Table 3: Hyper-parameters for Fine-tuning Attacks
Dataset # of Examples Batch Size Learning Rate Epochs Total Steps

Full-1 WMDP Bio Remove 400 16 2e-05 2 25

Full-2 WMDP Bio Remove 64 8 2e-05 2 16

Full-3 WMDP Bio Retain 64 64 5e-05 2 2

Full-4 WMDP Bio Retain 64 64 5e-05 1 1

LoRA-1 WMDP Bio Remove 400 8 5e-05 1 50

LoRA-2 WMDP Bio Remove 400 64 5e-05 1 7

LoRA-3 WMDP Bio Retain 400 8 5e-05 1 50

LoRA-4 WMDP Bio Remove 64 8 1e-04 2 16

LoRA-5 WMDP Bio Retain 64 8 1e-04 2 16

Benign-1 Wikitext 400 8 5e-05 1 50
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