
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LLMS AS REVERSE ENGINEERS? NOT YET ON TYPES
AND NAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown promising potential in reverse en-
gineering tasks such as function name recovery, owing to their ability to generate
meaningful identifiers under input conditions. However, existing studies primarily
emphasize fine-tuning LLMs for particular applications, often without providing
a clear rationale for selecting a given model. To address this gap, we systemati-
cally evaluate and quantify the performance of widely used open-source mid-sized
LLMs, including CodeLlama, Llama 2, and DeepSeek-R1, on two core reverse
engineering tasks: name recovery and type inference. Our experimental results
reveal that, without fine-tuning, none of these models achieves a high F1 score in
either task. These findings enhance our understanding of the practical utility of
LLMs in binary analysis and highlight critical avenues for improving their effec-
tiveness in reverse engineering and related domains.

1 INTRODUCTION

Large Language Models (LLMs) are proving to be powerful tools for assisting humans, particularly
developers in computer science. For example, models such as CodeLlama (Roziere et al., 2023) can
understand programming semantics and even perform coding tasks. Beyond software development,
LLMs are also being explored in computer security, where they have shown promise in binary re-
verse engineering tasks such as function summarization (Jin et al., 2023) and symbol name recovery
in stripped binaries (Xu et al., 2023; Jiang et al.; Xie et al., 2024). These advances highlight the
potential of LLMs to drive progress in program analysis, sparking growing interest among security
researchers in leveraging them for reverse engineering.

Despite this progress, evaluating the effectiveness of LLMs in binary reverse engineering remains
a challenge. The conventional approach involves fine-tuning existing models, but these models are
often selected without a clear rationale (Xie et al., 2024; Jiang et al.). While fine-tuning adapts
models to specific tasks and enables performance assessment, the diversity in LLM architectures
and training quality leads to widely varying outcomes.

A key issue is the lack of comprehensive benchmarking across existing LLMs. Such evaluations are
resource-intensive due to the large number of models and GPU requirements. Moreover, since each
model produces responses in different ways, a systematic and standardized evaluation framework is
essential for fair comparison.

To address this gap, we evaluate nine prominent LLMs, including Llama2 (Touvron et al., 2023),
CodeLlama (Roziere et al., 2023), and Deepseek-R1 (Guo et al., 2025), on reverse engineering tasks.
Our experiments show that, initially, all evaluated models achieve very low F1 scores (around 0.03)
on name recovery and type inference. However, after fine-tuning, DeepSeek-R1 demonstrates a
notable improvement, reaching an F1 score of 0.37. This result underscores the critical role of fine-
tuning in enhancing LLM performance. These findings provide valuable insights into the strengths
and limitations of current LLMs in binary reverse engineering and lay the foundation for future
advancements in this field.

Contributions. We make the following contributions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

• Automatic LLM Experiments: We develop a fully automated framework to systematically eval-
uate the reverse engineering performance of nine state-of-the-art LLMs, including CodeLlama
and DeepSeek-R1.

• Extensive Evaluation of Various LLMs: We perform extensive experiments across diverse
input representations, providing a broad and fair comparison of LLM capabilities.

• Uncovering Characteristics and Limitations of LLMs: Our study highlights the key advan-
tages and shortcomings of existing LLMs, informing future research directions and guiding the
selection of models for fine-tuning in reverse engineering applications.

2 BACKGROUND & MOTIVATION

Problem Definition. We study the capability of LLMs in name recovery and type inference from
stripped binaries.

• Name recovery involves predicting human-readable, semantically meaningful names for func-
tions, variables, and arguments to improve program comprehension. While prior works (Jiang
et al.; Jin et al., 2022) primarily focused on recovering only the function name from the body, we
extend this scope by requiring LLMs to infer all function names appearing inside the function
body, which considers every callee function.

• Type inference entails identifying and labeling the data types of variables, return values, and
function arguments, which is essential for reconstructing the program’s semantics.

We follow task formulations from prior research (Banerjee et al., 2021; Pei et al., 2021; He et al.,
2018; Xie et al., 2024). The model inputs include assembly code or decompiled code, the two
predominant forms of binary representation in reverse engineering.

• We use decompiled code, which provides a pseudocode-like structure that exposes stripped vari-
able names and type information more clearly, for both name recovery and type inference.

• We use assembly code, as it directly reflects the binary instructions, despite its lack of high-level
context and semantic cues, only for the function name recovery of assembly code.

Binaries. When a developer writes a program in C, the source code must go through the compilation
process to produce an executable binary. During compilation, the binary may include debug sym-
bols, resulting in an unstripped binaries. These symbols preserve the original names of variables,
functions, and other identifiers, making the binary easier to analyze and debug. However, unstripped
binaries are significantly larger in size. To reduce storage overhead and protect intellectual property,
developers typically remove these symbols, producing a stripped binaries. Stripped binaries retain
only the executable instructions but omit the symbolic information, making them smaller and more
difficult to reverse engineer. At the same time, the developer can choose the level of optimization to
select to what degree the program will be optimized from the source code.

Related works. Several studies have explored reverse engineering tasks with AI models, though
most focus on narrow aspects. First, Shang et al. (2024) investigated function name recovery and
binary code summarization. However, their approach is limited to predicting only the function name
from the given code body, without addressing variable name recovery or type inference. Then, Yang
et al. (2025) measured AI-augmented decompiler performance on variable naming and type infer-
ence. While relevant, their study does not incorporate LLMs and does not address function name
recovery. Last, Liu & Wang (2020) examined the performance of traditional decompilers, providing
a baseline but not leveraging LLMs for reverse engineering tasks. To our knowledge, no prior work
has systematically evaluated LLMs across both function name recovery and type inference, leaving
an important gap in understanding their effectiveness.

Moreover, in terms of related reverse engineering works, there are several works conducting function
name recovery (Jiang et al.; Jin et al., 2022; David et al., 2020) and variable name recovery (Baner-
jee et al., 2021; Xie et al., 2024). Furthermore, there are several research papers inferring type
inference (Pei et al., 2021; Chen et al., 2022; Zhang et al., 2021; He et al., 2018).

Motivation. The rapid growth of open-source LLMs has fueled their adoption in reverse engineer-
ing, where they are often fine-tuned for specialized tasks. However, the choice of model is rarely

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

justified, raising concerns about bias, inconsistency, and reproducibility in research outcomes. For
example, SYMGEN (Jiang et al.) employs CodeLlama-34B, while RESYM (Xie et al., 2024) relies
on StarCoder-3B, yet the rationale behind these selections is never clearly explained. Such arbitrary
choices hinder fair comparisons and make it difficult to understand whether performance differences
stem from model design, training data, or task-specific fine-tuning.

In computer science domains, systematic LLM benchmarking has already become common practice,
enabling researchers to make informed model selections. By contrast, binary reverse engineering
still lacks a rigorous, comparative evaluation framework. As a result, the field risks repeating efforts,
overlooking promising models, or drawing misleading conclusions about LLM capabilities.

This gap motivates our work. We conduct the first systematic, large-scale evaluation of multiple
state-of-the-art LLMs on two fundamental reverse engineering tasks: name recovery and type infer-
ence. By doing so, we aim to provide concrete, evidence-driven insights into model performance,
establish fair and reproducible benchmarks, and lay the foundation for principled model selection in
future reverse engineering research.

3 AUTOMATED MEASUREMENT

Because different LLMs produce responses in varying formats, a standardized evaluation pipeline
is required to ensure fair and consistent comparison. To achieve this, we design an automated post-
processing workflow that normalizes outputs across models. This pipeline leverages an auxiliary
LLM specialized in formatting, which converts heterogeneous responses into a uniform structure
suitable for downstream evaluation.

3.1 DATA REPRESENTATION

One of our primary input formats is decompiled code as shown in Figure 3, whose structure and
symbols are strongly influenced by the decompiler. To eliminate these artifacts, we normalize sym-
bol names by replacing them with placeholders (e.g., VAR, TYPE, and FUNC), each tagged with
a unique identifier to distinguish instances. This normalization minimizes noise from decompiler-
specific details and allows us to measure LLM capabilities in reverse engineering more directly. The
further procedure for generating decompiled code is described in the Appendix.

3.2 MODEL INFERENCE

Response Generation. We initialize each target pre-trained LLM using the Hugging Face trans-
formers API (tra, 2023). Rather than optimizing prompts, we adopt an established reverse engineer-
ing promp (gpt, 2023) that has been shown effective in prior ChatGPT based studies (cha). Figure 4a
presents the exact template used to query models. The prompt provides task instructions alongside
the input code (decompiled or assembly), explicitly indicating which placeholders require inference.

For example, all placeholders in the decompiled code are included in the prompt, ensuring that the
model clearly understands which tokens to predict. Nonetheless, due to differences in instruction
following ability, responses often deviate from the requested format, include extraneous explana-
tions, or vary between short tokens and full sentences.

Response Extraction. Such inconsistencies make direct evaluation infeasible. Moreover, a single
parsing algorithm cannot robustly handle the degree of variation across models. To address this,
we employ an auxiliary LLM to post process outputs. The auxiliary model is prompted with the
raw response and the formatting specification, producing a normalized result in a consistent schema.
This standardization eliminates ambiguities caused by heterogeneous response styles and enables
automated, large-scale evaluation of LLM outputs.

3.3 LLM FINE-TUNING

To assess LLMs beyond zero-shot inference, we also fine-tune them on our reverse engineering
dataset. Full parameter fine-tuning is computationally expensive for large models, so we adopt low-
rank adaptation (LoRA) (Hu et al., 2022; Dettmers et al., 2023). LoRA freezes the base model

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

LLMs Size Years LLMs Size Years

CodeLlama (Roziere et al., 2023) 13B 2023 Llama2 (Touvron et al., 2023) 13B 2023
WizardCoder (Luo et al., 2023) 15B 2023 Deepseek-V2 (Zhu et al., 2024) 16B 2024
Qwen 2.5 (Team, 2024) 14B 2024 Phi4 Unsloth (AI, 2024) 14B 2024
Qwen 3 (Team, 2025b) 14B 2025 Deepseek-R1-Qwen (Guo et al., 2025) 14B 2025
Gemma 3 (Team, 2025a) 12B 2025

Table 1: List of Evaluated LLMs.

weights and introduces trainable low-rank matrices, which are orders of magnitude smaller than the
full parameter set Only these matrices are updated during fine-tuning. This approach drastically
reduces resource requirements, allowing us to fine-tune multiple models efficiently while preserving
the representational capacity of the base LLMs.

3.4 EVALUATION METRICS

Evaluating name recovery and type inference requires task-specific metrics to ensure accuracy and
fairness.

Type Inference. In the C programming language, primitive types (e.g., char, int) must be
matched exactly. We therefore apply strict equality checks: the inferred type must match the ground
truth completely. This rule extends to user-defined and composite types, where partial matches are
not accepted. This strict matching ensures precise measurement of type inference accuracy.

Name Recovery. Unlike type inference, evaluating function and variable names is more complex.
Developers may use different but semantically equivalent identifiers, including synonyms, abbrevia-
tions, or acronyms. To handle this, we adopt the SYMLM (Jin et al., 2022) method, which leverages
CodeWordNet to compute semantic distances between sub-names. The method decomposes each
function or variable name into sub-words, calculates semantic distances between corresponding sub-
words of the original and inferred names, and averages these values. That is, based on the sub-word
comparison, the inferred name could obtain partial scores.

4 EXPERIMENTS

4.1 DATASET

We generate the decompiled code via diverse open-source projects, mostly from GNU software (gnu,
2025). To comprehensively evaluate the capabilities of LLMs, we include binaries compiled for four
architectures (x86-64, x86-32, ARM 32-bit, MIPS 32-bit) at multiple compiler optimization levels.
Given the large number of available functions and practical time constraints, we randomly select
2, 500 function samples from each architecture and optimization pair, yielding a total of 40, 000
unique functions for evaluation. To guarantee dataset uniqueness, we remove duplicates by compar-
ing both the decompiled code and the corresponding assembly code. Each LLM is then evaluated on
this dataset using precision, recall, and F1 score, which are widely accepted metrics for measuring
performance in name recovery and type inference tasks.

4.2 MODELS

We support eight mainstream code LLMs described in Table 1. It specifies the models, their sizes,
and the published years. We select LLMs that are widely deployed for programming tasks (pop,
2023), and well-documented in the literature (Li et al., 2023; Guo et al., 2025). To ensure a fair
comparison of existing models, we chose to use models of similar sizes among the various available
models. We exclude ChatGPT (cha) because it is not free to utilize its API, and its size is 175 billion
for GPT3 and 1.76 trillion for GPT4, which are not adequate for comparison. Similarly, any larger
and charged models are excluded from our measurement.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

4.3 EXPERIMENT SETUP

Name Recovery and Type Inference via Decompiled Code. We first evaluate the ability of LLMs
to recover both function and variable names, as well as to infer variable types, using the full set of
40, 000 samples. Decompiled code serves as input because it retains richer semantic information
than assembly code, enabling a more comprehensive assessment of each LLM across all architec-
tures and optimization levels. This approach follows prior work such as VARBERT (Pal et al., 2024)
and RESYM (Xie et al., 2024), which also rely on decompiled code for variable name recovery. By
using the same setup for both name recovery and type inference, we obtain a deeper understanding
of LLM performance in semantic program analysis.

Function Name Recovery via Assembly Code. Assembly code provides a faithful representation
of the execution process of a function and is therefore suitable for function name recovery. However,
as noted earlier, recovering variable names from assembly is significantly more difficult due to the
lack of semantic context. Accordingly, this experiment focuses exclusively on predicting function
names from assembly, again using the 40, 000 sample dataset. Unlike prior work (Jin et al., 2022),
we do not incorporate program state information. In summary, the assembly-based setup evaluates
only function name recovery.

Name Recovery With and Without CodeWordNet. To measure the contribution of CodeWord-
Net, which plays a central role in our name recovery evaluation, we run comparative experiments
with and without CodeWordNet. These experiments are restricted to the x86-64 architecture to il-
lustrate general trends without requiring a full-scale analysis across all architectures. Only the F1
score is reported, as it effectively reflects the trends in both precision and recall observed in earlier
experiments.

Impact of Model Size on Task Performance. To investigate whether larger models yield better
performance, we evaluate three variants of CodeLlama with different parameter sizes. The 70B
model is excluded due to GPU limitations. Similar to the CodeWordNet experiments, this analysis
is conducted on the x86-64 architecture, with F1 score as the primary metric.

Performance Evaluation with Fine-Tuned Models. To assess the benefits of fine-tuning, we pre-
pare an additional training set by randomly selecting 10, 000 functions per architecture and opti-
mization pair, independent of the original 2, 500 sample test set. This results in a training-testing
split of 80% and 20%, a standard practice in machine learning, and a total of 160,000 functions for
fine-tuning. Each LLM is fine-tuned on this dataset and evaluated on the held-out test set.

Evaluation on Real-World Firmware Using Two Decompilers. Finally, to test LLMs in a realistic
reverse engineering setting, we evaluate them on real-world firmware binaries. All symbols are
stripped, and the binaries are decompiled into pseudocode using two decompilers: Ghidra and IDA
Pro. This allows us to compare performance across decompiler outputs and examine the impact of
decompilation quality. Each LLM is evaluated on all tasks (name recovery and type inference) using
both versions of the decompiled code.

4.4 RESULTS

Due to page limits, we present results primarily on the x86-64 architecture. Results for the remaining
architectures are provided in the Appendix.

• Table 2 and Table 3: Name recovery performance (original vs. fine-tuned models).
• Table 4: Type inference performance (original vs. fine-tuned models).
• Table 5: Function name recovery from assembly code.
• Figure 1: Impact of CodeWordNet on function name recovery performance.
• Figure 2: Comparison of CodeLlama model sizes on name recovery and type inference.
• Table 6: Performance on real-world firmware with decompiled code from two different decom-

pilers.

LLM Performance on Name Recovery. Overall, original LLMs perform poorly on name recovery
tasks, with most models achieving low F1 scores. Function name recovery is generally easier than

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Arch Model
Function Name Recovery Performance

O0 O1 O2 O3
Orig Fine Orig Fine Orig Fine Orig Fine

x86-64

CodeLlama 0.04 0.03 0.04 0.05 0.05 0.05 0.04 0.05
Llama2 0.01 0.02 0.00 0.02 0.01 0.02 0.01 0.02
Deepseek-V2 0.01 0.03 0.02 0.04 0.02 0.04 0.02 0.04
Deepseek-R1 0.02 0.04 0.02 0.05 0.02 0.05 0.02 0.05
Qwen2.5 0.03 0.04 0.03 0.05 0.03 0.06 0.03 0.06
Qwen 3 0.05 0.04 0.06 0.05 0.06 0.05 0.05 0.05
WizardCoder 0.01 0.04 0.01 0.06 0.01 0.06 0.01 0.06
Phi4 0.04 0.05 0.05 0.07 0.05 0.07 0.04 0.07
Gemma3 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03

Table 2: F1 Scores on Function Name Recovery with x86-64 and Different Optimization Lev-
els.

Arch Model
Variable Name Recovery Performance

O0 O1 O2 O3
Orig Fine Orig Fine Orig Fine Orig Fine

x86-64

CodeLlama 0.01 0.22 0.02 0.08 0.01 0.05 0.01 0.08
Llama2 0.01 0.26 0.01 0.05 0.00 0.04 0.01 0.06
Deepseek-V2 0.03 0.29 0.10 0.05 0.03 0.05 0.04 0.08
Deepseek-R1 0.01 0.17 0.00 0.05 0.01 0.05 0.00 0.05
Qwen2.5 0.01 0.33 0.02 0.07 0.01 0.06 0.01 0.08
Qwen 3 0.02 0.18 0.04 0.06 0.02 0.05 0.02 0.05
WizardCoder 0.01 0.33 0.03 0.08 0.03 0.07 0.02 0.08
Phi4 0.01 0.33 0.02 0.10 0.01 0.07 0.01 0.09
Gemma3 0.02 0.10 0.02 0.02 0.02 0.03 0.02 0.03

Table 3: F1 Scores on Variable Name Recovery with x86-64 and Different Optimization Levels.

variable name recovery, though the margin is small. Among original models, Qwen3 achieves the
best function name recovery with an F1 score of 0.06. Interestingly, DeepSeek-V2 achieves an F1
score of 0.10 under the O1 optimization setting, but performs worse under other optimization levels.

Fine-tuning significantly improves performance in some cases. For example, WizardCoder improves
from 0.01 to 0.33 on variable name recovery after fine-tuning. However, improvements are incon-
sistent: in some cases (e.g., DeepSeek-V2 under O1), fine-tuning actually reduces performance by
half. Still, fine-tuning tends to improve scores across most cases, though the gains are often modest.

Finding 1: Fine-tuning generally improves name recovery, but gains are inconsistent and not
guaranteed.

LLM Performance on Type Inference. Type inference proves even more challenging, with all
models performing worse than on name recovery. Although fine-tuning provides slight improve-
ments, the gains remain marginal. Llama2 consistently outperforms other models, but no model,
original or fine-tuned, achieves an F1 score above 0.1. The difficulty can be attributed to strict eval-
uation criteria requiring exact type matches, as well as the frequent use of user-defined types, which
complicates inference further.

Arch Model
Variable Type Inference Performance

O0 O1 O2 O3
Orig Fine Orig Fine Orig Fine Orig Fine

x86-64

CodeLlama 0.02 0.02 0.01 0.02 0.02 0.00 0.01 0.00
Llama2 0.03 0.06 0.01 0.04 0.01 0.03 0.01 0.03
Deepseek-V2 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00
Deepseek-R1 0.02 0.00 0.03 0.01 0.01 0.00 0.02 0.00
Qwen2.5 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00
Qwen 3 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.01
WizardCoder 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Phi4 0.02 0.00 0.01 0.00 0.01 0.01 0.01 0.00
Gemma3 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00

Table 4: F1 Scores on Type Inference with x64 and Different Optimization Levels.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Model
Function Name Recovery Variable Name Recovery Type Inference
Ghidra IDA Pro Ghidra IDA Pro Ghidra IDA Pro

CodeLlama 0.02 0.04 0.01 0.03 0.03 0.10
Llama2 0.00 0.01 0.01 0.01 0.02 0.12
Deepseek-V2 0.00 0.00 0.03 0.01 0.01 0.02
Deepseek-R1 0.03 0.03 0.01 0.02 0.07 0.05
Qwen2.5 0.02 0.04 0.01 0.02 0.04 0.09
Qwen3 0.05 0.07 0.01 0.04 0.06 0.11
WizardCoder 0.00 0.01 0.02 0.07 0.02 0.08
Phi4 0.04 0.07 0.02 0.04 0.03 0.09
Gemma3 0.03 0.05 0.01 0.03 0.08 0.08

Table 6: F1 Score on Every Task from Real World Firmware with Two Distinct Decompilers.

Finding 2: Fine-tuning has limited impact on type inference. Improving performance may
require richer contextual information and more flexible evaluation metrics.

LLM Performance on Function Name Recovery via Assembly Code. Recovering function names
from assembly code remains extremely challenging. As shown in Table 5, both original and fine-
tuned models achieve 0.0 F1 scores (rounded at the third decimal place). Although models occa-
sionally generate correct predictions, these are too sparse to register improvements. Fine-tuning also
fails to produce meaningful gains.

Arch Model
Asm
O0-3

Orig Fine

x86-64

CodeLlama 0.00 0.00
Llama2 0.00 0.00
Deepseek-V2 0.00 0.00
Deepseek-R1 0.00 0.00
Qwen2.5 0.00 0.00
Qwen 3 0.00 0.00
WizardCoder 0.00 0.00
Phi4 0.00 0.00
Gemma3 0.00 0.00

Table 5: F1 Scores on Function
Name Recovery with x86-64 and
Different Optimization Levels via
Assembly Code.

Finding 3: Both original and fine-tuned LLMs struggle
with function name recovery from assembly code.

LLM Performance on Real-World Firmware with Two
Decompilers. On real-world firmware, all models again
achieve near-zero F1 scores (Table 6). This outcome is con-
sistent with the weak performance observed in the previous
experiments. Interestingly, most models perform slightly bet-
ter on IDA Pro outputs compared to Ghidra, suggesting that
IDA Pro may produce higher-quality or more consistent pseu-
docode.

Impact of CodeWordNet. As shown in Figure 1, remov-
ing CodeWordNet causes a sharp drop in performance due to
strict string matching penalties. This demonstrates that while LLMs often generate semantically
similar names, CodeWordNet is essential for fair evaluation.

w CodeWordNet wo CodeWordNet
O0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
er

fo
rm

an
ce

CodeLlama
Llama
Deepseek-V2
Deepseek-R1
Qwen
Qwen3
WizardCoder
Phi4
Gemma3

w CodeWordNet wo CodeWordNet
O1

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
er

fo
rm

an
ce

CodeLlama
Llama
Deepseek-V2
Deepseek-R1
Qwen
Qwen3
WizardCoder
Phi4
Gemma3

w CodeWordNet wo CodeWordNet
O2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
er

fo
rm

an
ce

CodeLlama
Llama
Deepseek-V2
Deepseek-R1
Qwen
Qwen3
WizardCoder
Phi4
Gemma3

w CodeWordNet wo CodeWordNet
O3

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
er

fo
rm

an
ce

CodeLlama
Llama
Deepseek-V2
Deepseek-R1
Qwen
Qwen3
WizardCoder
Phi4
Gemma3

Figure 1: F1 Score on Function Name Recovery with and without CodeWordNet in x86-64
Architecture via Decompiled Code.

Impact of LLM Model Size vs. Training Quality. Our observations show that training quality is
more important than parameter count. For example, CodeLlama (13B) and Qwen3 (14B) outperform
larger models on function name recovery, despite being relatively small.

Finding 4: Larger model size does not guarantee better performance; training data quality is a
more decisive factor.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Impact of LLM Model Architecture vs. Training Quality. Comparisons of models with identical
architectures further highlight the importance of data quality. DeepSeek-R1, a fine-tuned variant of
Qwen2.5, consistently underperforms Qwen2.5 in name recovery, despite identical architecture and
parameter count. Similarly, CodeLlama outperforms Llama2, likely due to its training optimization
for code-related tasks.

Finding 5: Training data quality significantly impacts performance, even among models with
the same architecture.

O0 O1 O2 O3
0.00

0.01

0.02

0.03

0.04

0.05

P
er

fo
rm

an
ce

Function Name Recovery
7B
13B
34B

O0 O1 O2 O3
0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
er

fo
rm

an
ce

Variable Name Recovery
7B
13B
34B

O0 O1 O2 O3
0.000

0.005

0.010

0.015

0.020

0.025

0.030

P
er

fo
rm

an
ce

Type Inference
7B
13B
34B

Figure 2: F1 Score of Name Recovery and Type Inference with Different Sizes of CodeLlama
in x86-64 Architecture.

Performance of CodeLlama Across Different Model Sizes. Comparing the 7B, 13B, and 34B
variants of CodeLlama (Figure 2) shows little difference in performance. Despite being nearly
five times larger, the 34B model does not exhibit significant accuracy gains over the 7B version.
While larger models may benefit more from fine-tuning, their raw performance remains largely
size-invariant.

Finding 6: Larger variants of the same model family do not necessarily yield better results in
reverse engineering tasks.

Overall LLM Performance. Across all tasks, baseline LLMs demonstrate limited capability, with
most achieving F1 scores below 0.1. While fine-tuning leads to measurable improvements, the gains
remain insufficient for LLMs to reliably perform reverse engineering tasks.

4.5 FURTHER ANALYSIS

In this section, we provide a deeper analysis of the LLM performance.

Model Fine-tuning Time (s/200 steps)
CodeLlama 56, 640
Llama2 60, 540
Deepseek-V2 186, 720
Deepseek-R1 46, 740
Qwen2.5 48, 540
Qwen3 74, 580
WizardCoder 63, 000
Phi4 33, 120
Gemma3 142, 680

Table 7: Time Spent on the Fine-tuning Process

Time Spent on Fine-tuning. As shown
in Table 7, most models require approxi-
mately 60, 000 seconds (16.6 hours) to com-
plete 200 fine-tuning steps. Notably, Qwen2.5
and DeepSeek-R1 finish in around 46, 000 sec-
onds, roughly 25% faster than other models.
This is expected, since DeepSeek-R1 is built
on Qwen2.5. In contrast, DeepSeek-V2 takes
186, 720 seconds, over three times longer than
the average.

Further investigation revealed that this ex-
tended duration is largely due to prompt tem-
plate design. When we modified CodeLlama’s

prompt template, we observed a similar increase in training time, confirming the strong influence
of template structure. Unfortunately, not all models provide well-documented templates, making it
difficult to select effective ones or verify their legitimacy.

Finding 7: Fine-tuning time is highly sensitive to prompt templates; poor template design can
increase training duration by up to 4 times longer.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Original Finetuned Ground Truth
execute tas k oss l rsa pkey set key oss l md sha update
initial cond ition de termin altion oss l prov be run oss l prov be run
error hand ling stack chk fail stack chk fail
main te str out ine sm t est group sm sig t est

Table 8: Function Name Recovery Cases that the Original and Finetuned Qwen2.5 Model
Generate

Responses from LLMs. Despite being instructed to produce outputs in a strict format without ex-
planations, no LLM consistently adhered to the required structure. For example, DeepSeek-R1 fre-
quently generated a chain of thought reasoning before producing an answer. In some cases, the rea-
soning was so long that the model failed to return the final output. Moreover, it usually causes signif-
icant performance overhead due to the length of reasoning. To address this, we modified the prompt
template to suppress reasoning, since DeepSeek-R1 lacks a built-in mechanism for disabling it.

Additionally, DeepSeek-R1 occasionally produced generic refusals (e.g., “I’m sorry, but I can’t as-
sist with that request.”), which prevented task completion. To standardize outputs across all models,
we implemented a post-processing step using another LLM to extract only the relevant information.
Alternatively, fine-tuning resolved this issue directly, after training, models consistently adhered to
the required output format.

Finding 8: LLMs usually fail to follow consistent output formatting unless assisted by fine-
tuning or post-processing.

Cases Where Fine-Tuning Helps. As discussed in §4.4, fine-tuning improves both performance
and formatting. To illustrate this, we highlight cases where the fine-tuned Qwen2.5 model succeeded
in function name recovery while the original version failed. Qwen2.5 is particularly notable because
it shows substantial improvements after fine-tuning.

Table 8 presents four representative examples. For instance, the original Qwen2.5 model fails to
identify the stack chk fail function, which is a common and recognizable function for de-
tecting stack overflow, whereas the fine-tuned version recovers it correctly. Interestingly, the model
does not always generate the same prediction for this function, as it frequently appears at the end
of decompiled code and often co-occurs with other functions in our dataset. Similarly, functions
from the OpenSSL library are more reliably identified by the fine-tuned model, reflecting improved
semantic understanding and code recognition.

Additional Performance Reasoning. In many cases, LLMs fail to generate the complete name or
type requested by the prompt, which inherently lowers F1 scores. For example, although a prompt
asks for ten variable names, LLMs often miss some of them, which can lead to a lower F1 score.
Moreover, due to their tendency to produce extended reasoning, models sometimes exceed output
size limits, causing truncation before the answer is generated. A few models, such as CodeLlama,
further complicate evaluation by producing multiple candidate names for a single function, making
it unclear which should be considered correct.

5 CONCLUSION

Recent years have seen a surge of reverse engineering approaches leveraging machine learning and,
increasingly, large language models. While LLMs are often fine-tuned for reverse engineering tasks,
the choice of a specific model is typically made without a clear rationale. To address this gap, we
conducted a systematic evaluation of nine widely used LLMs on name recovery and type infer-
ence. Our experiments reveal that, although fine-tuning can yield measurable improvements, current
LLMs remain fundamentally limited in their ability to perform reverse engineering tasks. These find-
ings underscore the need for more effective fine-tuning strategies, higher-quality training data, and
possibly alternative input representations to fully unlock the potential of LLMs in binary analysis.

Reproducibility. The result can be reproducible by executing the identical scripts. The number will
be similar, but not identical, due to randomness of LLMs and random data selection.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

chatgpt. https://chat.openai.com/. Accessed: 2025-09-23.

Prompt engineering GPT-3.5 for RE task, 2023. https://sugared-hacksaw-840.notio
n.site/Prompt-engineering-GPT-3-5-for-RE-task-410957bece45472ca
829e2139c299d8c.

Large Language Model for Software Engineering, 2023. https://github.com/gai4se/LL
M4SE?tab=readme-ov-file#model-list.

Python Transformers, 2023. https://pypi.org/project/transformers/.

GNU Software, 2025. https://www.gnu.org/software/software.en.html.

Unsloth AI. Unsloth phi-4, 2024. URL https://huggingface.co/unsloth/phi-4.

Pratyay Banerjee, Kuntal Kumar Pal, Fish Wang, and Chitta Baral. Variable name recov-
ery in decompiled binary code using constrained masked language modeling. arXiv preprint
arXiv:2103.12801, 2021.

Qibin Chen, Jeremy Lacomis, Edward J Schwartz, Claire Le Goues, Graham Neubig, and Bogdan
Vasilescu. Augmenting decompiler output with learned variable names and types. In 31st USENIX
Security Symposium (USENIX Security 22), pp. 4327–4343, 2022.

Yaniv David, Uri Alon, and Eran Yahav. Neural reverse engineering of stripped binaries using aug-
mented control flow graphs. Proceedings of the ACM on Programming Languages, 4(OOPSLA):
1–28, 2020.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin Vechev. Debin: Predicting
debug information in stripped binaries. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1667–1680, 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Linxi Jiang, Xin Jin, and Zhiqiang Lin. Beyond classification: Inferring function names in stripped
binaries via domain adapted llms.

Xin Jin, Kexin Pei, Jun Yeon Won, and Zhiqiang Lin. Symlm: Predicting function names in stripped
binaries via context-sensitive execution-aware code embeddings. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1631–1645, 2022.

Xin Jin, Jonathan Larson, Weiwei Yang, and Zhiqiang Lin. Binary code summarization: Bench-
marking chatgpt/gpt-4 and other large language models. arXiv preprint arXiv:2312.09601, 2023.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Zhibo Liu and Shuai Wang. How far we have come: Testing decompilation correctness of c decom-
pilers. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp. 475–487, 2020.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

10

https://chat.openai.com/
https://sugared-hacksaw-840.notion.site/Prompt-engineering-GPT-3-5-for-RE-task-410957bece45472ca829e2139c299d8c
https://sugared-hacksaw-840.notion.site/Prompt-engineering-GPT-3-5-for-RE-task-410957bece45472ca829e2139c299d8c
https://sugared-hacksaw-840.notion.site/Prompt-engineering-GPT-3-5-for-RE-task-410957bece45472ca829e2139c299d8c
https://github.com/gai4se/LLM4SE?tab=readme-ov-file#model-list
https://github.com/gai4se/LLM4SE?tab=readme-ov-file#model-list
https://pypi.org/project/transformers/
https://www.gnu.org/software/software.en.html
https://huggingface.co/unsloth/phi-4

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Kuntal Kumar Pal, Ati Priya Bajaj, Pratyay Banerjee, Audrey Dutcher, Mutsumi Nakamura,
Zion Leonahenahe Basque, Himanshu Gupta, Saurabh Arjun Sawant, Ujjwala Anantheswaran,
Yan Shoshitaishvili, et al. “len or index or count, anything but v1”: Predicting variable names in
decompilation output with transfer learning. In 2024 IEEE Symposium on Security and Privacy
(SP), pp. 152–152. IEEE Computer Society, 2024.

Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen, Songchen Yao, David Williams-King,
Vikas Ummadisetty, Junfeng Yang, Baishakhi Ray, and Suman Jana. Stateformer: Fine-grained
type recovery from binaries using generative state modeling. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 690–702, 2021.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Xiuwei Shang, Shaoyin Cheng, Guoqiang Chen, Yanming Zhang, Li Hu, Xiao Yu, Gangyang Li,
Weiming Zhang, and Nenghai Yu. How far have we gone in binary code understanding using
large language models. In 2024 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 1–12. IEEE, 2024.

Gemma Team. Gemma 3. 2025a. URL https://arxiv.org/abs/2503.19786.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm
.github.io/blog/qwen2.5/.

Qwen Team. Qwen3 technical report, 2025b. URL https://arxiv.org/abs/2505.09388.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Danning Xie, Zhuo Zhang, Nan Jiang, Xiangzhe Xu, Lin Tan, and Xiangyu Zhang. Resym: Har-
nessing llms to recover variable and data structure symbols from stripped binaries. In Proceedings
of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, pp. 4554–
4568, 2024.

Xiangzhe Xu, Zhuo Zhang, Shiwei Feng, Yapeng Ye, Zian Su, Nan Jiang, Siyuan Cheng, Lin Tan,
and Xiangyu Zhang. Lmpa: Improving decompilation by synergy of large language model and
program analysis. arXiv preprint arXiv:2306.02546, 2023.

Yuwei Yang, Skyler Grandel, Jeremy Lacomis, Edward Schwartz, Bogdan Vasilescu, Claire
Le Goues, and Kevin Leach. A human study of automatically generated decompiler annotations.
In 2025 55th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pp. 129–142. IEEE, 2025.

Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee, Yonghwi Kwon, Yousra Aafer,
and Xiangyu Zhang. Osprey: Recovery of variable and data structure via probabilistic analysis
for stripped binary. In 2021 IEEE Symposium on Security and Privacy (SP), pp. 813–832. IEEE,
2021.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

11

https://arxiv.org/abs/2503.19786
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2505.09388

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

A DECOMPILED CODE INPUT GENERATION

Our experiments require two types of input, assembly code and decompiled code. To construct
ground truth, we rely on binaries with debug symbols, while the actual input to the models is gener-
ated from stripped binaries. This process involves two main steps, collecting variable and function
information from unstripped binaries, and then using this information to produce the decompiled
code for stripped binaries. Because the assembly code remains identical between stripped and un-
stripped binaries, we obtain it directly through the decompiler API. The decompiled code, however,
requires additional processing.

Step 1: Extracting Ground Truth from Unstipped Binaries. For each function in the unstripped
binaries, we record the storage location of every variable. Typically, local variables are allocated
on the stack according to their size, while function parameters are passed through registers. Us-
ing a decompiler API script, we track and store both local variables (with their stack layout) and
parameters (with their corresponding registers). The ground truth at this stage consists of variable
names, types, and stack and register locations. Additionally, we collect information about all callee
functions, including their addresses and names.

Step 2: Generating Decompiled Code from Stripped Binaries. Next, we analyze the stripped
binaries using the previously constructed ground truth. For each function, we identify stripped
variables and match them with their stack addresses to recover their original annotations from the
ground truth.

Since the core tasks of our study involve type inference and name recovery, the input code presented
to LLMs must be unambiguous. To achieve this, we replace all existing function and variable names
in the decompiled code with standardized placeholders. This ensures that the models cannot rely on
any residual naming hints and must instead infer types and recover meaningful names from the code
context. Figure 3 illustrates the outcome of this process.

undefined FUNC1(void)
{

long in_FS_OFFSET;
TYPE3 VAR3;
TYPE2 VAR2;
TYPE1 VAR1;
VAR1 = *(long *)(in_FS_OFFSET + 0x28);
FUNC3(4,0);
FUNC5(2,FUNC4,&VAR3);
if (VAR1 == *(long *)(in_FS_OFFSET + 0x28)) {

return 0;
}
FUNC2();

}

Figure 3: Decompiled Code Example of Input Format

B PROMPTS USED FOR AUTOMATED MEASUREMENTS

There are two prompts used for automated measurements, 1) Asking LLMs for inference, and 2)
Asking a LLM for unification.

C LLM INPUT TEMPLATES

Since each LLM takes an input following its own template, we need to define it differently. We
select the following templates for each LLM.

• CdeLlama: <s>[INST]\n<<SYS>>{instruction}\n<</SYS>>\n\n{input}[/INST]
• Llama2: <s>[INST]\n<<SYS>>{instruction}\n<</SYS>>\n\n{input}[/INST]
• Deepseek-V2: <|begin of sentence|>User: {instruction}\n{input}\n\nAssistant:

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Let's assume you are a programmer. A decompiled C
function is given, and the name of the function
and the types and names of variables are changed
to FUNC, VAR, and TYPE. Understand the function
and infer original names of replacements without
explanation. Output the result format as follows.
e.g., "FUNC1: printf", "VAR1: count", "VAR2:
index", "TYPE1: int", "TYPE2: char”

Instruction

Now here is a C code of a function: \n TYPE1
FUNC1(TYPE2 VAR1)\n{\n TYPE3 VAR2;\n TYPE4
VAR3;\n TYPE5 VAR4;\n\n FUNC2("Enter two
integers: ");\n FUNC3("%d
%d",&VAR3,&VAR4);\nVAR2 = VAR3 + VAR4;\n
FUNC2("%d + %d = %d",VAR3,VAR4,VAR2);\n}\nreturn
0;\n}

Input

FUNC1: main, FUNC2: printf, FUNC3: scanf, VAR1:
count, VAR2: index, VAR3: num1, VAR4: num2, TYPE1:
int, TYPE2: char, TYPE3: int, TYPE4: int, TYPE5:
int.</s>

Target LLM Response

(a) The Prompt Used to Infer Types/Names

The text is provided and we want to extract the
value of target components from it. Please print
only the below format without any explanation.
e.g., FUNC1: prinft\nVAR1: sum

Here is the text\n{FUNC1: main, FUNC2: printf,
FUNC3: scanf, VAR1: count, VAR2: index, VAR3:
num1, VAR4: num2, TYPE1: int, TYPE2: char, TYPE3:
int, TYPE4: int, TYPE5: int.</s>}\nWhat is the
value of TYPE1, TYPE2, TPE3, TYPE4, VAR1, VAR2,
VAR3, FUNC1, FUN2, FUNC3?

FUNC1: main\nFUNC2: printf\nFUNC3: scanf\nVAR1:
count\nVAR2: sum\nVAR3: num1\nVAR4: num2\nTYPE1:
int\nTYPE2: char\nTYPE3: int\nTYPE4: int\nTYPE5:
int

LLM Response Unification

Instruction

Input

(b) The prompt Used to Extract Responses

Figure 4: Two Prompts Used for LLM Measurement

• Deepseek-R1: <|begin of sentence|><|User|>{instruction}\n{input}<|Assistant|><think>\n\n
</think>\n\n

• Qwen2.5: <|im start|>system\nYou are a helpful
assistant.<|im end|>\n <|im start|>user\n{instruction}\n{input}
<|im end|>\n<|im start|>assistant\n

• Qwen3: <|im start|>user\nYou are a helpful
assistant.\n{instruction}\n{input} <|im end|>\n
<|im start|>assistant<think>\n\n</think>\n\n

• WizardCoder: Below is an instruction that describes a task. Write
a response that appropriately completes the request.\n\n###
Instruction: {instruction}\n\n{input}\n\n### Response:\n

• Phi4: <|im start|>user<|im sep|> You are a helpful
assistant.\n{instruction}\n{input}<|im end|>\n<|im start|>assistant<|im sep|>

• Gemma3: <start of turn>user\nYou are a helpful
assistant.\n{instruction}\n{input}<end of turn>\n<start of turn>model\n

D F1 SCORES ON THE REST ARCHITECTURES

This section contains F1 scores of every evaluated LLM on the rest architectures, x86, ARM 32-bit,
and MIPS 32-bit, as shown in Table 9, Table 10, Table 11, and Table 12, which present the similar
trends illustrated in the main context.

E IMPACT OF CODEWORDNET

w CodeWordNet wo CodeWordNet
O0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
er

fo
rm

an
ce

CodeLlama
Llama
Deepseek-V2
Deepseek-R1
Qwen
Qwen3
WizardCoder
Phi4
Gemma3

w CodeWordNet wo CodeWordNet
O1

0.00

0.02

0.04

0.06

0.08

0.10

P
er

fo
rm

an
ce

CodeLlama
Llama
Deepseek-V2
Deepseek-R1
Qwen
Qwen3
WizardCoder
Phi4
Gemma3

w CodeWordNet wo CodeWordNet
O2

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
er

fo
rm

an
ce

CodeLlama
Llama
Deepseek-V2
Deepseek-R1
Qwen
Qwen3
WizardCoder
Phi4
Gemma3

w CodeWordNet wo CodeWordNet
O3

0.00

0.01

0.02

0.03

0.04

0.05

P
er

fo
rm

an
ce

CodeLlama
Llama
Deepseek-V2
Deepseek-R1
Qwen
Qwen3
WizardCoder
Phi4
Gemma3

Figure 5: F1 Score on Variable Name Recovery with and without CodeWordNet in x86-64
Architecture via Decompiled Code.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Arch Model
Function Name Recovery Performance

O0 O1 O2 O3
Orig Fine Orig Fine Orig Fine Orig Fine

x86-32

CodeLlama 0.05 0.04 0.06 0.05 0.06 0.05 0.06 0.05
Llama2 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03
Deepseek-V2 0.02 0.03 0.02 0.04 0.03 0.05 0.03 0.04
Deepseek-R1 0.02 0.06 0.03 0.07 0.02 0.07 0.03 0.07
Qwen2.5 0.03 0.05 0.04 0.06 0.04 0.06 0.04 0.06
Qwen 3 0.06 0.06 0.07 0.06 0.07 0.06 0.07 0.06
WizardCoder 0.01 0.05 0.02 0.06 0.02 0.06 0.02 0.06
Phi4 0.04 0.05 0.06 0.07 0.06 0.07 0.06 0.07
Gemma3 0.03 0.02 0.04 0.03 0.04 0.03 0.04 0.03

ARM

CodeLlama 0.04 0.01 0.05 0.02 0.04 0.02 0.05 0.02
Llama2 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02
Deepseek-V2 0.01 0.03 0.02 0.03 0.02 0.03 0.02 0.04
Deepseek-R1 0.02 0.04 0.03 0.04 0.03 0.05 0.04 0.05
Qwen2.5 0.03 0.04 0.03 0.04 0.04 0.05 0.04 0.05
Qwen 3 0.06 0.03 0.07 0.04 0.07 0.04 0.07 0.04
WizardCoder 0.01 0.03 0.02 0.03 0.01 0.03 0.02 0.03
Phi4 0.04 0.05 0.04 0.05 0.05 0.06 0.05 0.06
Gemma3 0.04 0.01 0.04 0.02 0.05 0.02 0.05 0.02

MIPS

CodeLlama 0.02 0.00 0.02 0.01 0.02 0.01 0.02 0.01
Llama2 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01
Deepseek-V2 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01
Deepseek-R1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Qwen2.5 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02
Qwen 3 0.04 0.01 0.03 0.01 0.02 0.01 0.03 0.01
WizardCoder 0.01 0.02 0.00 0.03 0.00 0.03 0.00 0.03
Phi4 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03
Gemma3 0.03 0.01 0.03 0.01 0.02 0.01 0.03 0.01

Table 9: Performance Evaluation on Function Name Recovery with Different Architectures
and Optimization Levels.

Arch Model
Variable Name Recovery Performance

O0 O1 O2 O3
Orig Fine Orig Fine Orig Fine Orig Fine

x86-32

CodeLlama 0.03 0.04 0.04 0.06 0.04 0.06 0.03 0.06
Llama2 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01
Deepseek-V2 0.04 0.05 0.05 0.08 0.04 0.06 0.05 0.07
Deepseek-R1 0.02 0.09 0.03 0.09 0.03 0.08 0.05 0.08
Qwen2.5 0.03 0.08 0.04 0.10 0.04 0.09 0.04 0.10
Qwen 3 0.05 0.08 0.06 0.10 0.06 0.09 0.07 0.09
WizardCoder 0.03 0.07 0.04 0.10 0.03 0.09 0.03 0.09
Phi4 0.05 0.11 0.06 0.11 0.07 0.10 0.07 0.11
Gemma3 0.03 0.03 0.04 0.05 0.04 0.03 0.04 0.04

ARM

CodeLlama 0.01 0.12 0.03 0.06 0.02 0.06 0.02 0.07
Llama2 0.01 0.20 0.01 0.07 0.00 0.09 0.01 0.11
Deepseek-V2 0.01 0.23 0.04 0.09 0.03 0.11 0.05 0.13
Deepseek-R1 0.00 0.18 0.03 0.08 0.01 0.09 0.01 0.11
Qwen2.5 0.01 0.28 0.02 0.10 0.01 0.13 0.02 0.15
Qwen 3 0.02 0.19 0.03 0.08 0.03 0.10 0.02 0.10
WizardCoder 0.02 0.27 0.04 0.10 0.02 0.12 0.03 0.17
Phi4 0.02 0.28 0.03 0.10 0.03 0.12 0.02 0.14
Gemma3 0.02 0.09 0.03 0.04 0.03 0.04 0.03 0.05

MIPS

CodeLlama 0.01 0.01 0.02 0.01 0.03 0.01 0.02 0.01
Llama2 0.01 0.01 0.02 0.00 0.02 0.00 0.02 0.01
Deepseek-V2 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00
Deepseek-R1 0.00 0.03 0.00 0.01 0.00 0.01 0.00 0.01
Qwen2.5 0.01 0.02 0.01 0.01 0.00 0.01 0.00 0.01
Qwen 3 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.01
WizardCoder 0.01 0.02 0.03 0.02 0.03 0.02 0.02 0.02
Phi4 0.01 0.04 0.01 0.03 0.01 0.03 0.01 0.03
Gemma3 0.02 0.01 0.02 0.01 0.03 0.01 0.03 0.01

Table 10: Performance Evaluation on Variable Name Recovery with Different Architectures
and Optimization Levels.

Figure 5 describes the impact of CodeWordNet for variable name recovery. It follows a similar trend
to function name recovery.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Arch Model
Variable Type Inference Performance

O0 O1 O2 O3
Orig Fine Orig Fine Orig Fine Orig Fine

x86-32

CodeLlama 0.02 0.03 0.02 0.03 0.3 0.02 0.02 0.01
Llama2 0.03 0.05 0.01 0.06 0.03 0.05 0.01 0.03
Deepseek-V2 0.00 0.00 0.02 0.00 0.02 0.00 0.02 0.00
Deepseek-R1 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
Qwen2.5 0.00 0.00 0.01 0.00 0.02 0.01 0.00 0.00
Qwen 3 0.02 0.00 0.03 0.01 0.03 0.03 0.03 0.00
WizardCoder 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01
Phi4 0.00 0.00 0.02 0.00 0.01 0.01 0.02 0.00
Gemma3 0.01 0.00 0.01 0.00 0.04 0.00 0.03 0.00

ARM

CodeLlama 0.02 0.02 0.03 0.01 0.05 0.03 0.04 0.02
Llama2 0.04 0.07 0.03 0.04 0.04 0.07 0.03 0.05
Deepseek-V2 0.02 0.00 0.02 0.00 0.03 0.00 0.02 0.00
Deepseek-R1 0.03 0.00 0.01 0.00 0.08 0.00 0.03 0.01
Qwen2.5 0.01 0.02 0.01 0.00 0.03 0.01 0.01 0.01
Qwen 3 0.03 0.00 0.02 0.01 0.03 0.00 0.02 0.00
WizardCoder 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.01
Phi4 0.02 0.02 0.04 0.00 0.04 0.00 0.02 0.01
Gemma3 0.03 0.00 0.03 0.00 0.04 0.01 0.02 0.00

MIPS

CodeLlama 0.03 0.03 0.02 0.02 0.01 0.02 0.02 0.02
Llama2 0.04 0.06 0.03 0.05 0.02 0.07 0.03 0.06
Deepseek-V2 0.02 0.00 0.02 0.00 0.01 0.00 0.02 0.00
Deepseek-R1 0.05 0.00 0.05 0.01 0.03 0.00 0.04 0.00
Qwen2.5 0.01 0.01 0.03 0.01 0.02 0.00 0.02 0.00
Qwen 3 0.03 0.00 0.07 0.00 0.07 0.01 0.06 0.01
WizardCoder 0.01 0.01 0.02 0.00 0.01 0.00 0.02 0.00
Phi4 0.05 0.00 0.07 0.00 0.08 0.00 0.08 0.01
Gemma3 0.03 0.00 0.03 0.01 0.04 0.00 0.03 0.00

Table 11: Performance Evaluation on Type Inference with Different Architectures and Opti-
mization Levels.

Arch Model
Function Name Recovery Performance

O0 O1 O2 O3
Orig Fine Orig Fine Orig Fine Orig Fine

x86-32

CodeLlama 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Llama2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Deepseek-V2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Deepseek-R1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WizardCoder 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Phi4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gemma3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ARM

CodeLlama 0.00 0.02 0.00 0.02 0.00 0.03 0.00 0.04
Llama2 0.00 0.01 0.00 0.02 0.00 0.02 0.00 0.04
Deepseek-V2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Deepseek-R1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen2.5 0.00 0.01 0.00 0.02 0.00 0.02 0.00 0.03
Qwen 3 0.00 0.02 0.00 0.03 0.00 0.03 0.00 0.04
WizardCoder 0.00 0.01 0.00 0.02 0.00 0.02 0.00 0.04
Phi4 0.00 0.02 0.00 0.03 0.00 0.04 0.00 0.06
Gemma3 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.02

MIPS

CodeLlama 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Llama2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Deepseek-V2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Deepseek-R1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WizardCoder 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Phi4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Gemma3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 12: Performance Evaluation on Function Name Recovery with Different Architectures
and Optimization Levels via Assembly Code.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

F LLM USAGE

We utilize LLM only for correcting and polishing the sentences.

16

	Introduction
	Background & Motivation
	Automated Measurement
	Data Representation
	Model Inference
	LLM Fine-tuning
	Evaluation Metrics

	Experiments
	Dataset
	Models
	Experiment Setup
	Results
	Further Analysis

	Conclusion
	Decompiled Code Input Generation
	Prompts Used for Automated Measurements
	LLM Input templates
	F1 Scores on the Rest Architectures
	Impact of CodeWordNet
	LLM Usage

