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ABSTRACT

Large Language Models (LLMs) have shown promising potential in reverse en-
gineering tasks such as function name recovery, owing to their ability to generate
meaningful identifiers under input conditions. However, existing studies primarily
emphasize fine-tuning LLMs for particular applications, often without providing
a clear rationale for selecting a given model. To address this gap, we systemati-
cally evaluate and quantify the performance of widely used open-source mid-sized
LLMs, including CodeLlama, Llama 2, and DeepSeek-R1, on two core reverse
engineering tasks: name recovery and type inference. Our experimental results
reveal that, without fine-tuning, none of these models achieves a high F1 score in
either task. These findings enhance our understanding of the practical utility of
LLMs in binary analysis and highlight critical avenues for improving their effec-
tiveness in reverse engineering and related domains.

1 INTRODUCTION

Large Language Models (LLMs) are proving to be powerful tools for assisting humans, particularly
developers in computer science. For example, models such as CodeLlama ( , ) can
understand programming semantics and even perform coding tasks. Beyond software development,
LLMs are also being explored in computer security, where they have shown promise in binary re-
verse engineering tasks such as function summarization ( , ) and symbol name recovery
in stripped binaries ( R ; s ). These advances highlight the
potential of LLMs to drive progress in program analys1s sparking growing interest among security
researchers in leveraging them for reverse engineering.

Despite this progress, evaluating the effectiveness of LLMs in binary reverse engineering remains
a challenge. The conventional approach involves fine- tunlng existing models, but these models are
often selected without a clear rationale ( , ). While fine-tuning adapts
models to specific tasks and enables performance assessment the diversity in LLM architectures
and training quality leads to widely varying outcomes.

A key issue is the lack of comprehensive benchmarking across existing LLMs. Such evaluations are
resource-intensive due to the large number of models and GPU requirements. Moreover, since each
model produces responses in different ways, a systematic and standardized evaluation framework is
essential for fair comparison.

To address this gap, we evaluate nine prominent LLMs, including Llama?2 ( , ),
CodeLlama ( , ), and Deepseek-R1 ( s ), on reverse engineering tasks.
Our experiments show that, initially, all evaluated models achieve very low F1 scores (around 0.03)
on name recovery and type inference. However, after fine-tuning, DeepSeek-R1 demonstrates a
notable improvement, reaching an F1 score of 0.37. This result underscores the critical role of fine-
tuning in enhancing LLM performance. These findings provide valuable insights into the strengths
and limitations of current LLMs in binary reverse engineering and lay the foundation for future
advancements in this field.

Contributions. We make the following contributions.



e Automatic LLM Experiments: We develop a fully automated framework to systematically eval-
uate the reverse engineering performance of nine state-of-the-art LLMs, including CodeLlama
and DeepSeek-R1.

o Extensive Evaluation of Various LLMs: We perform extensive experiments across diverse
input representations, providing a broad and fair comparison of LLM capabilities.

e Uncovering Characteristics and Limitations of LLMs: Our study highlights the key advan-
tages and shortcomings of existing LLMs, informing future research directions and guiding the
selection of models for fine-tuning in reverse engineering applications.

2 BACKGROUND & MOTIVATION

Problem Definition. We study the capability of LLMs in name recovery and type inference from
stripped binaries.

e Name recovery involves predicting human-readable, semantically meaningful names for func-
tions, Varrables and arguments to improve program comprehension. While prior works (
, ) primarily focused on recovering only the function name from the body, we
extend this scope by requiring LLMs to infer all function names appearing inside the function
body, which considers every callee function.

e Type inference entails identifying and labeling the data types of variables, return values, and
function arguments, which is essential for reconstructing the program’s semantics.

We follow task formulations from prior research ( ;
; , ). The model inputs include assembly code or decomplled code the two
predomrnant forms of binary representation in reverse engineering.

e We use decompiled code, which provides a pseudocode-like structure that exposes stripped vari-
able names and type information more clearly, for both name recovery and type inference.

o We use assembly code, as it directly reflects the binary instructions, despite its lack of high-level
context and semantic cues, only for the function name recovery of assembly code.

Binaries. When a developer writes a program in C, the source code must go through the compilation
process to produce an executable binary. During compilation, the binary may include debug sym-
bols, resulting in an unstripped binaries. These symbols preserve the original names of variables,
functions, and other identifiers, making the binary easier to analyze and debug. However, unstripped
binaries are significantly larger in size. To reduce storage overhead and protect intellectual property,
developers typically remove these symbols, producing a stripped binaries. Stripped binaries retain
only the executable instructions but omit the symbolic information, making them smaller and more
difficult to reverse engineer. At the same time, the developer can choose the level of optimization to
select to what degree the program will be optimized from the source code.

Related works. Several studies have explored reverse engineering tasks with Al models, though
most focus on narrow aspects. First, ( ) investigated function name recovery and
binary code summarization. However, their approach is limited to predicting only the function name
from the given code body, without addressing variable name recovery or type inference. Then,

( ) measured Al-augmented decompiler performance on variable naming and type infer-
ence. While relevant, their study does not incorporate LLMs and does not address function name
recovery. Last, ( ) examined the performance of traditional decompilers, providing
a baseline but not leveraging LLMs for reverse engineering tasks. To our knowledge, no prior work
has systematically evaluated LLMs across both function name recovery and type inference, leaving
an important gap in understanding their effectiveness.

Moreover, in terms of related reverse englneerlng works, there are several works conducting function
name recovery ( ; , ) and variable name recovery (

, ; , ). Furthermore there are several research papers inferring type
inference ( R ; , ; , ; s

Motivation. The rapid growth of open-source LLMs has fueled their adoption in reverse engineer-
ing, where they are often fine-tuned for specialized tasks. However, the choice of model is rarely



justified, raising concerns about bias, inconsistency, and reproducibility in research outcomes. For
example, SYMGEN ( ) employs CodeLlama-34B, while RESYM ( , ) relies
on StarCoder-3B, yet the rationale behind these selections is never clearly explained. Such arbitrary
choices hinder fair comparisons and make it difficult to understand whether performance differences
stem from model design, training data, or task-specific fine-tuning.

In computer science domains, systematic LLM benchmarking has already become common practice,
enabling researchers to make informed model selections. By contrast, binary reverse engineering
still lacks a rigorous, comparative evaluation framework. As a result, the field risks repeating efforts,
overlooking promising models, or drawing misleading conclusions about LLM capabilities.

This gap motivates our work. We conduct the first systematic, large-scale evaluation of multiple
state-of-the-art LLMs on two fundamental reverse engineering tasks: name recovery and type infer-
ence. By doing so, we aim to provide concrete, evidence-driven insights into model performance,
establish fair and reproducible benchmarks, and lay the foundation for principled model selection in
future reverse engineering research.

3 AUTOMATED MEASUREMENT

Because different LLMs produce responses in varying formats, a standardized evaluation pipeline
is required to ensure fair and consistent comparison. To achieve this, we design an automated post-
processing workflow that normalizes outputs across models. This pipeline leverages an auxiliary
LLM specialized in formatting, which converts heterogeneous responses into a uniform structure
suitable for downstream evaluation.

3.1 DATA REPRESENTATION

One of our primary input formats is decompiled code as shown in Figure 3, whose structure and
symbols are strongly influenced by the decompiler. To eliminate these artifacts, we normalize sym-
bol names by replacing them with placeholders (e.g., VAR, TYPE, and FUNC), each tagged with
a unique identifier to distinguish instances. This normalization minimizes noise from decompiler-
specific details and allows us to measure LLM capabilities in reverse engineering more directly. The
further procedure for generating decompiled code is described in the Appendix.

3.2 MODEL INFERENCE

Response Generation. We initialize each target pre-trained LLM using the Hugging Face trans-
formers API (tra, ). Rather than optimizing prompts, we adopt an established reverse engineer-
ing promp (gpt, ) that has been shown effective in prior ChatGPT based studies (cha). Figure 4a
presents the exact template used to query models. The prompt provides task instructions alongside
the input code (decompiled or assembly), explicitly indicating which placeholders require inference.

For example, all placeholders in the decompiled code are included in the prompt, ensuring that the
model clearly understands which tokens to predict. Nonetheless, due to differences in instruction
following ability, responses often deviate from the requested format, include extraneous explana-
tions, or vary between short tokens and full sentences.

Response Extraction. Such inconsistencies make direct evaluation infeasible. Moreover, a single
parsing algorithm cannot robustly handle the degree of variation across models. To address this,
we employ an auxiliary LLM to post process outputs. The auxiliary model is prompted with the
raw response and the formatting specification, producing a normalized result in a consistent schema.
This standardization eliminates ambiguities caused by heterogeneous response styles and enables
automated, large-scale evaluation of LLM outputs.

3.3 LLM FINE-TUNING

To assess LLMs beyond zero-shot inference, we also fine-tune them on our reverse engineering
dataset. Full parameter fine-tuning is computationally expensive for large models, so we adopt low-
rank adaptation (LoRA) ( , ; , ). LoRA freezes the base model



LLMs Size Years LLMs Size  Years

CodeLlama ( s ) 13B 2023 Llama2 ( s ) 13B 2023
WizardCoder ( R ) 15B 2023  Deepseek-V2 ( N ) 16B 2024
Qwen 2.5 ( s ) 14B 2024  Phi4 Unsloth (Al ) 14B 2024
Qwen 3 ( s ) 14B 2025 Deepseek-R1-Qwen ( s ) 14B 2025
Gemma 3 ( s ) 12B 2025

Table 1: List of Evaluated LLMs.

weights and introduces trainable low-rank matrices, which are orders of magnitude smaller than the
full parameter set Only these matrices are updated during fine-tuning. This approach drastically
reduces resource requirements, allowing us to fine-tune multiple models efficiently while preserving
the representational capacity of the base LLMs.

3.4 EVALUATION METRICS

Evaluating name recovery and type inference requires task-specific metrics to ensure accuracy and
fairness.

Type Inference. In the C programming language, primitive types (e.g., char, int) must be
matched exactly. We therefore apply strict equality checks: the inferred type must match the ground
truth completely. This rule extends to user-defined and composite types, where partial matches are
not accepted. This strict matching ensures precise measurement of type inference accuracy.

Name Recovery. Unlike type inference, evaluating function and variable names is more complex.
Developers may use different but semantically equivalent identifiers, including synonyms, abbrevia-
tions, or acronyms. To handle this, we adopt the SYMLM ( R ) method, which leverages
CodeWordNet to compute semantic distances between sub-names. The method decomposes each
function or variable name into sub-words, calculates semantic distances between corresponding sub-
words of the original and inferred names, and averages these values. That is, based on the sub-word
comparison, the inferred name could obtain partial scores.

4 EXPERIMENTS

4.1 DATASET

We generate the decompiled code via diverse open-source projects, mostly from GNU software (gnu,

). To comprehensively evaluate the capabilities of LLMs, we include binaries compiled for four
architectures (x86-64, x86-32, ARM 32-bit, MIPS 32-bit) at multiple compiler optimization levels.
Given the large number of available functions and practical time constraints, we randomly select
2,500 function samples from each architecture and optimization pair, yielding a total of 40, 000
unique functions for evaluation. To guarantee dataset uniqueness, we remove duplicates by compar-
ing both the decompiled code and the corresponding assembly code. Each LLM is then evaluated on
this dataset using precision, recall, and F1 score, which are widely accepted metrics for measuring
performance in name recovery and type inference tasks.

4.2 MODELS

We support eight mainstream code LLMs described in Table 1. It specifies the models, their sizes,
and the published years. We select LLMs that are widely deployed for programming tasks (pop,

), and well-documented in the literature ( s ). To ensure a fair
comparison of existing models, we chose to use models of 51m11ar sizes among the various available
models. We exclude ChatGPT (cha) because it is not free to utilize its API, and its size is 175 billion
for GPT3 and 1.76 trillion for GPT4, which are not adequate for comparison. Similarly, any larger
and charged models are excluded from our measurement.



4.3 EXPERIMENT SETUP

Name Recovery and Type Inference via Decompiled Code. We first evaluate the ability of LLMs
to recover both function and variable names, as well as to infer variable types, using the full set of
40,000 samples. Decompiled code serves as input because it retains richer semantic information
than assembly code, enabling a more comprehensive assessment of each LLM across all architec-
tures and optimization levels. This approach follows prior work such as VARBERT ( , )
and RESYM ( , ), which also rely on decompiled code for variable name recovery. By
using the same setup for both name recovery and type inference, we obtain a deeper understanding
of LLM performance in semantic program analysis.

Function Name Recovery via Assembly Code. Assembly code provides a faithful representation
of the execution process of a function and is therefore suitable for function name recovery. However,
as noted earlier, recovering variable names from assembly is significantly more difficult due to the
lack of semantic context. Accordingly, this experiment focuses exclusively on predicting function
names from assembly, again using the 40, 000 sample dataset. Unlike prior work ( , ),
we do not incorporate program state information. In summary, the assembly-based setup evaluates
only function name recovery.

Name Recovery With and Without CodeWordNet. To measure the contribution of CodeWord-
Net, which plays a central role in our name recovery evaluation, we run comparative experiments
with and without CodeWordNet. These experiments are restricted to the x86-64 architecture to il-
lustrate general trends without requiring a full-scale analysis across all architectures. Only the F1
score is reported, as it effectively reflects the trends in both precision and recall observed in earlier
experiments.

Impact of Model Size on Task Performance. To investigate whether larger models yield better
performance, we evaluate three variants of CodeLlama with different parameter sizes. The 70B
model is excluded due to GPU limitations. Similar to the CodeWordNet experiments, this analysis
is conducted on the x86-64 architecture, with F1 score as the primary metric.

Performance Evaluation with Fine-Tuned Models. To assess the benefits of fine-tuning, we pre-
pare an additional training set by randomly selecting 10, 000 functions per architecture and opti-
mization pair, independent of the original 2, 500 sample test set. This results in a training-testing
split of 80% and 20%, a standard practice in machine learning, and a total of 160,000 functions for
fine-tuning. Each LLM is fine-tuned on this dataset and evaluated on the held-out test set.

Evaluation on Real-World Firmware Using Two Decompilers. Finally, to test LLMs in a realistic
reverse engineering setting, we evaluate them on real-world firmware binaries. All symbols are
stripped, and the binaries are decompiled into pseudocode using two decompilers: Ghidra and IDA
Pro. This allows us to compare performance across decompiler outputs and examine the impact of
decompilation quality. Each LLM is evaluated on all tasks (name recovery and type inference) using
both versions of the decompiled code.

4.4 RESULTS

Due to page limits, we present results primarily on the x86-64 architecture. Results for the remaining
architectures are provided in the Appendix.

Table 2 and Table 3: Name recovery performance (original vs. fine-tuned models).
Table 4: Type inference performance (original vs. fine-tuned models).

Table 5: Function name recovery from assembly code.

Figure 1: Impact of CodeWordNet on function name recovery performance.

Figure 2: Comparison of CodeLlama model sizes on name recovery and type inference.

Table 6: Performance on real-world firmware with decompiled code from two different decom-
pilers.

LLM Performance on Name Recovery. Overall, original LLMs perform poorly on name recovery
tasks, with most models achieving low F1 scores. Function name recovery is generally easier than



Function Name Recovery Performance
Arch Model 00 01 02 03
Orig Fine Orig Fine Orig Fine Orig Fine
CodeLlama 004 003 004 005 0.05 0.05 004 005
Llama2 0.01 002 000 0.02 0.01 0.02 001 002
Deepseek-V2  0.01 0.03 002 0.04 0.02 0.04 002 0.04
Deepseek-R1 ~ 0.02 0.04 002 005 0.02 0.05 0.02 0.05

x86-64 Qwen2.5 003 004 003 005 0.03 0.06 003 0.06
Qwen 3 005 004 006 005 0.06 0.05 005 005
WizardCoder 0.01 0.04 001 006 001 0.06 0.01 0.06
Phi4 004 005 005 0.07 0.05 007 004 007
Gemma3 003 002 003 003 003 0.03 003 003

Table 2: F1 Scores on Function Name Recovery with x86-64 and Different Optimization Lev-
els.

Variable Name Recovery Performance

Arch Model 00 o1 02 03
Orig Fine Orig Fine Orig Fine Orig Fine
CodeLlama 001 022 002 0.08 0.0l 0.05 00l 008
Llama2 001 026 001 0.05 0.00 0.04 001 0.06
Deepseek-V2  0.03 029 0.10 005 0.03 0.05 0.04 0.08
Deepseek-R1 ~ 0.01 0.17 000 005 0.01 0.05 0.00 0.05
x86-64 Qwen2.5 001 033 002 0.07 0.01 0.06 001 0.08
Qwen 3 002 0.18 004 006 0.02 0.05 002 005
WizardCoder 0.01 033 003 008 0.03 0.07 0.02 0.08
Phi4 001 033 002 0.10 0.01 0.07 00l 0.09
Gemma3 002 010 002 0.02 0.02 0.03 002 003

Table 3: F1 Scores on Variable Name Recovery with x86-64 and Different Optimization Levels.

variable name recovery, though the margin is small. Among original models, Qwen3 achieves the
best function name recovery with an F1 score of 0.06. Interestingly, DeepSeek-V?2 achieves an F1
score of 0.10 under the O1 optimization setting, but performs worse under other optimization levels.

Fine-tuning significantly improves performance in some cases. For example, WizardCoder improves
from 0.01 to 0.33 on variable name recovery after fine-tuning. However, improvements are incon-
sistent: in some cases (e.g., DeepSeek-V2 under O1), fine-tuning actually reduces performance by
half. Still, fine-tuning tends to improve scores across most cases, though the gains are often modest.

Finding 1: Fine-tuning generally improves name recovery, but gains are inconsistent and not
guaranteed.

LLM Performance on Type Inference. Type inference proves even more challenging, with all
models performing worse than on name recovery. Although fine-tuning provides slight improve-
ments, the gains remain marginal. Llama2 consistently outperforms other models, but no model,
original or fine-tuned, achieves an F1 score above 0.1. The difficulty can be attributed to strict eval-
uation criteria requiring exact type matches, as well as the frequent use of user-defined types, which
complicates inference further.

Variable Type Inference Performance
Arch Model 00 01 02 03
Orig Fine Orig Fine Orig Fine Orig Fine
CodeLlama 0.02 002 001 0.02 0.02 0.00 001 0.00
Llama2 0.03 006 001 0.04 0.01 0.03 001 003
Deepseek-V2  0.01 0.00 001 000 0.01 0.00 0.00 0.00
Deepseek-R1 ~ 0.02 0.00 003 001 001 0.00 0.02 0.00

x86-64 Qwen2.5 0.00 001 001 0.00 0.00 0.00 001 0.00
Qwen 3 002 000 002 000 0.01 0.00 0.01 0.01
WizardCoder 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Phi4 002 000 001 0.00 0.01 0.01 001 0.00
Gemma3 002 000 002 000 0.02 0.00 002 0.00

Table 4: F1 Scores on Type Inference with x64 and Different Optimization Levels.



Function Name Recovery | Variable Name Recovery Type Inference
Model Ghidra IDA Pro Ghidra IDA Pro Ghidra IDA Pro

CodeLlama 0.02 0.04 0.01 0.03 0.03 0.10
Llama2 0.00 0.01 0.01 0.01 0.02 0.12
Deepseek-V2 0.00 0.00 0.03 0.01 0.01 0.02
Deepseek-R1 0.03 0.03 0.01 0.02 0.07 0.05
Qwen2.5 0.02 0.04 0.01 0.02 0.04 0.09
Qwen3 0.05 0.07 0.01 0.04 0.06 0.11
WizardCoder 0.00 0.01 0.02 0.07 0.02 0.08
Phi4 0.04 0.07 0.02 0.04 0.03 0.09
Gemma3 0.03 0.05 0.01 0.03 0.08 0.08

Table 6: F1 Score on Every Task from Real World Firmware with Two Distinct Decompilers.

Finding 2: Fine-tuning has limited impact on type inference. Improving performance may
require richer contextual information and more flexible evaluation metrics.

LLM Performance on Function Name Recovery via Assembly Code. Recovering function names
from assembly code remains extremely challenging. As shown in Table 5, both original and fine-
tuned models achieve 0.0 F1 scores (rounded at the third decimal place). Although models occa-
sionally generate correct predictions, these are too sparse to register improvements. Fine-tuning also

fails to produce meaningful gains.

Finding 3: Both original and fine-tuned LLMs struggle
with function name recovery from assembly code.

LLM Performance on Real-World Firmware with Two
Decompilers. On real-world firmware, all models again
achieve near-zero F1 scores (Table 6). This outcome is con-
sistent with the weak performance observed in the previous
experiments. Interestingly, most models perform slightly bet-
ter on IDA Pro outputs compared to Ghidra, suggesting that
IDA Pro may produce higher-quality or more consistent pseu-
docode.

Impact of CodeWordNet. As shown in Figure 1, remov-
ing CodeWordNet causes a sharp drop in performance due to

Asm

Arch Model 00-3
Orig Fine
CodeLlama 0.00  0.00
Llama2 0.00  0.00
Deepseek-V2  0.00  0.00
Deepseek-R1 ~ 0.00  0.00
x86-64  Qwen2.5 0.00 0.00
Qwen 3 0.00  0.00
WizardCoder 0.00  0.00
Phi4 0.00  0.00
Gemma3 0.00  0.00

Table 5: F1 Scores on Function
Name Recovery with x86-64 and
Different Optimization Levels via

Assembly Code.

strict string matching penalties. This demonstrates that while LLMs often generate semantically

similar names, CodeWordNet is essential for fair evaluation.
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Figure 1: F1 Score on Function Name Recovery with and without CodeWordNet in x86-64

Architecture via Decompiled Code.

Impact of LLM Model Size vs. Training Quality. Our observations show that training quality is
more important than parameter count. For example, CodeLlama (13B) and Qwen3 (14B) outperform
larger models on function name recovery, despite being relatively small.

more decisive factor.

Finding 4: Larger model size does not guarantee better performance; training data quality is a




Impact of LLM Model Architecture vs. Training Quality. Comparisons of models with identical
architectures further highlight the importance of data quality. DeepSeek-R1, a fine-tuned variant of
Qwen2.5, consistently underperforms Qwen2.5 in name recovery, despite identical architecture and
parameter count. Similarly, CodeLlama outperforms Llama?2, likely due to its training optimization
for code-related tasks.

Finding 5: Training data quality significantly impacts performance, even among models with
the same architecture.

Function Name Recovery N Variable Name Recovery Type Inference

BN 78 = 7B

oos 78

g

Performance
Performance
Performance

Figure 2: F1 Score of Name Recovery and Type Inference with Different Sizes of CodeLlama
in x86-64 Architecture.

Performance of CodeLlama Across Different Model Sizes. Comparing the 7B, 13B, and 34B
variants of CodeLlama (Figure 2) shows little difference in performance. Despite being nearly
five times larger, the 34B model does not exhibit significant accuracy gains over the 7B version.
While larger models may benefit more from fine-tuning, their raw performance remains largely
size-invariant.

Finding 6: Larger variants of the same model family do not necessarily yield better results in
reverse engineering tasks.

Overall LLM Performance. Across all tasks, baseline LLMs demonstrate limited capability, with
most achieving F1 scores below 0.1. While fine-tuning leads to measurable improvements, the gains
remain insufficient for LLMs to reliably perform reverse engineering tasks.

4.5 FURTHER ANALYSIS
In this section, we provide a deeper analysis of the LLM performance.

Time Spent on Fine-tuning. As shown

Model Fine-tuning Time (s/200 steps) in Table 7, most models require approxi-
CodeLlama 56, 640 mately 60,000 seconds (16.6 hours) to com-
Llama2 60,540 plete 200 fine-tuning steps. Notably, Qwen2.5
geepﬁeellz-\R’% 1227 28 and DeepSeek-R1 finish in around 46, 000 sec-

cepseci ’ onds, roughly 25% faster than other models.
Qwen2.5 48,540 .. . . .
Qwen3 74, 580 This is expected, since DeepSeek-R1 is built
WizardCoder 63,000 on Qwen2.5. In contrast, DeepSeek-V2 takes
Phi4 33,120 186, 720 seconds, over three times longer than
Gemma3 142, 680 the average.

Further investigation revealed that this ex-
tended duration is largely due to prompt tem-
plate design. When we modified CodeLlama’s
prompt template, we observed a similar increase in training time, confirming the strong influence
of template structure. Unfortunately, not all models provide well-documented templates, making it
difficult to select effective ones or verify their legitimacy.

Table 7: Time Spent on the Fine-tuning Process

Finding 7: Fine-tuning time is highly sensitive to prompt templates; poor template design can
increase training duration by up to 4 times longer.




Original Finetuned Ground Truth

execute tas k oss 1 rsa pkey setkey  oss 1 md sha update
initial cond ition de termin altion  oss 1 prov be run oss 1 prov be run
error hand ling stack chk fail stack chk fail

main te str out ine sm t est group sm sig t est

Table 8: Function Name Recovery Cases that the Original and Finetuned Qwen2.5 Model
Generate

Responses from LLMs. Despite being instructed to produce outputs in a strict format without ex-
planations, no LLM consistently adhered to the required structure. For example, DeepSeek-R1 fre-
quently generated a chain of thought reasoning before producing an answer. In some cases, the rea-
soning was so long that the model failed to return the final output. Moreover, it usually causes signif-
icant performance overhead due to the length of reasoning. To address this, we modified the prompt
template to suppress reasoning, since DeepSeek-R1 lacks a built-in mechanism for disabling it.

Additionally, DeepSeek-R1 occasionally produced generic refusals (e.g., “I’m sorry, but I can’t as-
sist with that request.”), which prevented task completion. To standardize outputs across all models,
we implemented a post-processing step using another LLM to extract only the relevant information.
Alternatively, fine-tuning resolved this issue directly, after training, models consistently adhered to
the required output format.

Finding 8: LLMs usually fail to follow consistent output formatting unless assisted by fine-
tuning or post-processing.

Cases Where Fine-Tuning Helps. As discussed in §4.4, fine-tuning improves both performance
and formatting. To illustrate this, we highlight cases where the fine-tuned Qwen2.5 model succeeded
in function name recovery while the original version failed. Qwen2.5 is particularly notable because
it shows substantial improvements after fine-tuning.

Table 8 presents four representative examples. For instance, the original Qwen2.5 model fails to
identify the __stack_chk_fail function, which is a common and recognizable function for de-
tecting stack overflow, whereas the fine-tuned version recovers it correctly. Interestingly, the model
does not always generate the same prediction for this function, as it frequently appears at the end
of decompiled code and often co-occurs with other functions in our dataset. Similarly, functions
from the OpenSSL library are more reliably identified by the fine-tuned model, reflecting improved
semantic understanding and code recognition.

Additional Performance Reasoning. In many cases, LLMs fail to generate the complete name or
type requested by the prompt, which inherently lowers F1 scores. For example, although a prompt
asks for ten variable names, LLMs often miss some of them, which can lead to a lower F1 score.
Moreover, due to their tendency to produce extended reasoning, models sometimes exceed output
size limits, causing truncation before the answer is generated. A few models, such as CodeLlama,
further complicate evaluation by producing multiple candidate names for a single function, making
it unclear which should be considered correct.

5 CONCLUSION

Recent years have seen a surge of reverse engineering approaches leveraging machine learning and,
increasingly, large language models. While LL.Ms are often fine-tuned for reverse engineering tasks,
the choice of a specific model is typically made without a clear rationale. To address this gap, we
conducted a systematic evaluation of nine widely used LLMs on name recovery and type infer-
ence. Our experiments reveal that, although fine-tuning can yield measurable improvements, current
LLMs remain fundamentally limited in their ability to perform reverse engineering tasks. These find-
ings underscore the need for more effective fine-tuning strategies, higher-quality training data, and
possibly alternative input representations to fully unlock the potential of LLMs in binary analysis.

Reproducibility. The result can be reproducible by executing the identical scripts. The number will
be similar, but not identical, due to randomness of LLLMs and random data selection.
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A DECOMPILED CODE INPUT GENERATION

Our experiments require two types of input, assembly code and decompiled code. To construct
ground truth, we rely on binaries with debug symbols, while the actual input to the models is gener-
ated from stripped binaries. This process involves two main steps, collecting variable and function
information from unstripped binaries, and then using this information to produce the decompiled
code for stripped binaries. Because the assembly code remains identical between stripped and un-
stripped binaries, we obtain it directly through the decompiler API. The decompiled code, however,
requires additional processing.

Step 1: Extracting Ground Truth from Unstipped Binaries. For each function in the unstripped
binaries, we record the storage location of every variable. Typically, local variables are allocated
on the stack according to their size, while function parameters are passed through registers. Us-
ing a decompiler API script, we track and store both local variables (with their stack layout) and
parameters (with their corresponding registers). The ground truth at this stage consists of variable
names, types, and stack and register locations. Additionally, we collect information about all callee
functions, including their addresses and names.

Step 2: Generating Decompiled Code from Stripped Binaries. Next, we analyze the stripped
binaries using the previously constructed ground truth. For each function, we identify stripped
variables and match them with their stack addresses to recover their original annotations from the
ground truth.

Since the core tasks of our study involve type inference and name recovery, the input code presented
to LLMs must be unambiguous. To achieve this, we replace all existing function and variable names
in the decompiled code with standardized placeholders. This ensures that the models cannot rely on
any residual naming hints and must instead infer types and recover meaningful names from the code
context. Figure 3 illustrates the outcome of this process.

undefined FUNCI1 (void)
{
long in_FS_OFFSET;
TYPE3 VAR3;
TYPE2 VAR2;
TYPE1l VARI1;
VARl = *(long *) (in_FS_OFFSET + 0x28);
FUNC3 (4,0);
FUNCS5 (2, FUNC4, &§VAR3) ;
if (VAR1 == «+(long «) (in_FS_OFFSET + 0x28)) {
return O;

}
FUNC2 () ;

Figure 3: Decompiled Code Example of Input Format

B PROMPTS USED FOR AUTOMATED MEASUREMENTS

There are two prompts used for automated measurements, 1) Asking LLMs for inference, and 2)
Asking a LLM for unification.

C LLM INPUT TEMPLATES

Since each LLM takes an input following its own template, we need to define it differently. We
select the following templates for each LLM.

e CdeLlama: <s>[INST]\n<<SsyYS>>{instruction}\n<</SYS>>\n\n{input}[/INST]
e Llama2: <s>[INST]\n<<SYS>>{instruction}\n<</SYS>>\n\n{input}[/INST]
e Deepseek-V2: < |begin_of_sentence|>User: {instruction}\n{input}\n\nAssistant:
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Instruction Instruction

Let's assume you are a programmer. A decompiled C The text is provided and we want to extract the
function is given, and the name of the function value of target components from it. Please print
and the types and names of variables are changed only the below format without any explanation.
to FUNC, VAR, and TYPE. Understand the function e.g., FUNCl: prinft\nVAR1l: sum

and infer original names of replacements without ]

explanation. Output the result format as follows. Input

e.g., "FUNCl: printf", “VARL: count", "VAR2: Here is the text\n{FUNC1l: main, FUNC2: printf,
index", "TYPEl: int", "TYPE2: char” FUNC3: scanf, VARl: count, VAR2: index, VAR3:

numl, VAR4: num2, TYPEl: int, TYPE2: char, TYPE3:
int, TYPE4: int, TYPES: int.</s>}\nWhat is the

@ value of TYPE1l, TYPE2, TPE3, TYPE4, VAR1, VAR2,
Now here is a C code of a function: \n TYPEL VAR3, FUNC1, FUN2, FUNC3?

FUNCL1 (TYPE2 VAR1)\n{\n TYPE3 VAR2;\n TYPE4

VAR3;\n TYPE5 VAR4;\n\n FUNC2 ("Enter two . .

integers: ") i\n FUNC3 ("%d FUNC1: main\nFUNC2: printf\nFUNC3: scanf\nVARL:
%d", §VAR3, &VAR4) ; \nVAR2 _ VAR3 . VAR4; \n <‘:ount\nVAR2: sum\nVAR3: n\.Jml\nVARAl: nng\nTYPEl:
FUNC2 ("%d + %d = %d",VAR3,VAR4,VAR2);\n}\nreturn }nt\nTYPE2: char\nTYPE3: int\nTYPE4: int\nTYPE5:
0;\n} int

L Do

FUNC1: main, FUNC2: printf, FUNC3: scanf, VARL:

count, VAR2: index, VAR3: numl, VAR4: num2, TYPEL:

int, TYPE2: char, TYPE3: int, TYPE4: int, TYPES:

int.</s>

(a) The Prompt Used to Infer Types/Names (b) The prompt Used to Extract Responses

Figure 4: Two Prompts Used for LLM Measurement

e Deepseek-R1: < |begin_of_sentence|><|User|>{instruction}\n{input}<|Assistant|><think>\n\
</think>\n\n

e Qwen2.5: <|im_start|>system\nYou are a helpful
assistant.<|im_end|>\n <|im_start|>user\n{instruction}\n{input}
<|im_end]| >\n< |im_start| >assistant\n

e Qwen3: <|im.start|>user\nYou are a helpful
assistant.\n{instruction}\n{input} <|im_end|>\n
<|im_start|>assistant<think>\n\n</think>\n\n

e WizardCoder: Below is an instruction that describes a task. Write
a response that appropriately completes the request.\n\n###
Instruction: {instruction}\n\n{input}\n\n### Response:\n

o Phi4: <|im_start|>user<|im_sep|> You are a helpful
assistant.\n{instruction}\n{input}<|im_end|>\n<|im_start|>assistant<|im_sep]|>
e Gemma3: <start_of_turn>user\nYou are a helpful

assistant.\n{instruction}\n{input}<end_of_turn>\n<start_of_turn>model\n

D F1 SCORES ON THE REST ARCHITECTURES

This section contains F1 scores of every evaluated LLM on the rest architectures, x86, ARM 32-bit,
and MIPS 32-bit, as shown in Table 9, Table 10, Table 11, and Table 12, which present the similar
trends illustrated in the main context.

E IMPACT OF CODEWORDNET

SN CodeLlama
. Lama
B Deepseek-V2

CodeLlama
. Lama

B Deepseek-V2
EEER Deepseek-R1

CodeLlama
HEE Uama
BER Deepseek-V2
EEE Deepseek-R1
3 Quen
Quen3
EEE WizardCoder

ESS CodeLlama
HE Uama
BER Deepseek-V2

EEE Deepseek-R1
23 Quen
Quen3.
BEE WizardCoder
- Phis

HEE Deepseek-R1

- Phia
B Gemma3

Performance
Per‘formance
Performance
Performance

Figure 5: F1 Score on Variable Name Recovery with and without CodeWordNet in x86-64
Architecture via Decompiled Code.
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Function Name Recovery Performance
Arch Model 00 01 02 03
Orig Fine Orig Fine Orig Fine Orig Fine
CodeLlama 005 004 006 005 0.06 0.05 006 005
Llama2 0.01 003 001 003 0.01 0.03 001l 003
Deepseek-V2  0.02 0.03 0.02 0.04 0.03 0.05 0.03 0.04
Deepseek-R1 ~ 0.02 0.06 003 007 0.02 0.07 0.03 0.07

x86-32  Qwen2.5 003 005 004 006 0.04 0.06 004 0.06
Qwen 3 006 006 007 006 0.07 0.06 007 0.06
WizardCoder 0.01 005 002 006 002 0.06 0.02 0.06
Phi4 004 005 006 0.07 0.06 0.07 006 0.07
Gemma3 003 002 004 003 0.04 0.03 004 003
CodeLlama 004 001 005 0.02 0.04 0.02 005 002
Llama2 001 001 001 0.02 0.01 0.02 002 002

Deepseek-V2  0.01 0.03 002 003 0.02 0.03 0.02 0.04
Deepseek-R1 ~ 0.02 0.04 003 004 003 0.05 0.04 0.05

ARM Qwen2.5 003 004 003 0.04 0.04 005 004 005
Qwen 3 006 003 007 0.04 0.07 0.04 007 004
WizardCoder 0.01 0.03 0.02 0.03 001 003 0.02 0.03
Phi4 004 005 004 005 0.05 0.06 005 0.06
Gemma3 004 001 004 002 0.05 0.02 005 002
CodeLlama 002 000 002 001 0.02 0.01 0.02 001
Llama2 001 000 001 001 0.1 0.01 0.01 001

Deepseek-V2  0.01 001 000 001 0.00 0.01 0.00 0.01
Deepseek-R1 ~ 0.02 002 002 002 002 0.02 0.02 0.02

MIPS Qwen2.5 002 001 002 002 002 001 002 002
Qwen 3 004 001 003 001 002 001 0.03 0.01
WizardCoder 0.01 0.02 0.00 0.03 0.00 0.03 0.00 0.03
Phi4 003 002 002 002 0.02 002 003 003
Gemma3 003 001 003 001 002 0.01 0.03 0.01

Table 9: Performance Evaluation on Function Name Recovery with Different Architectures
and Optimization Levels.

Variable Name Recovery Performance
Arch Model 00 01 02 03
Orig Fine Orig Fine Orig Fine Orig Fine
CodeLlama 0.03 004 004 006 0.04 0.06 003 0.06
Llama?2 002 002 002 002 002 001 002 001
Deepseek-V2  0.04 0.05 0.05 0.08 0.04 0.06 0.05 0.07
Deepseek-R1 ~ 0.02 0.09 003 009 0.03 0.08 0.05 0.08

x86-32  Qwen2.5 003 008 004 0.10 0.04 0.09 004 0.10
Qwen 3 005 008 006 010 0.06 0.09 007 0.09
WizardCoder 0.03 0.07 004 010 0.03 0.09 0.03 0.09
Phi4 005 011 006 011 0.07 0.10 0.07 0.11
Gemma3 003 003 004 005 0.04 0.03 004 004
CodeLlama 001 012 003 0.06 0.02 0.06 002 007
Llama2 001 020 001 007 000 0.09 0.01 O0.11

Deepseek-V2  0.01 023 004 009 003 011 0.05 0.13
Deepseek-R1 ~ 0.00 0.18 0.03 008 0.01 009 001 0.11

ARM Qwen2.5 001 028 002 0.10 0.01 0.3 002 0.15
Qwen 3 002 019 003 0.08 0.03 0.10 002 0.10
WizardCoder 0.02 027 004 010 0.02 0.12 0.03 0.17
Phi4 002 028 003 010 0.03 0.12 002 0.14
Gemma3 002 009 003 004 003 0.04 003 005
CodeLlama 001 001 002 001 003 0.01 0.02 001
Llama2 001 001 002 000 0.02 0.00 0.02 0.01

Deepseek-V2  0.01 001 001 001 0.02 0.01 0.01 0.00
Deepseek-R1 ~ 0.00 0.03 000 001 0.00 0.01 0.00 0.01

MIPS Qwen2.5 001 002 001 001 0.00 0.01 0.00 0.01
Qwen 3 002 002 001 001 002 001 0.02 001
WizardCoder 0.01 002 003 002 003 0.02 0.02 0.02
Phi4 001 004 001 003 0.01 0.03 001 003
Gemma3 002 001 002 001 003 0.01 0.03 0.01

Table 10: Performance Evaluation on Variable Name Recovery with Different Architectures
and Optimization Levels.

Figure 5 describes the impact of CodeWordNet for variable name recovery. It follows a similar trend
to function name recovery.
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Variable Type Inference Performance
Arch Model 00 O1 02 03
Orig Fine Orig Fine Orig Fine Orig Fine
CodeLlama 002 003 002 003 03 002 002 001
Llama2 003 005 001 006 0.03 0.05 001 003
Deepseek-V2  0.00 0.00 0.02 000 0.02 0.00 0.02 0.00
Deepseek-R1 ~ 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

x86-32  Qwen2.5 0.00 000 001 0.00 0.02 0.0l 0.00 0.00
Qwen 3 002 000 003 0.01 0.03 0.03 003 0.00
WizardCoder 0.00 0.00 000 001 0.01 0.01 0.00 0.01
Phi4 0.00 000 002 0.00 0.01 0.01 002 0.00
Gemma3 001 000 001 0.00 0.04 0.00 003 0.00
CodeLlama 002 002 003 001 0.05 0.03 004 002
Llama2 004 007 003 0.04 0.04 007 003 005

Deepseek-V2  0.02 0.00 002 000 0.03 0.00 0.02 0.00
Deepseek-R1 ~ 0.03 0.00 001 000 0.08 0.00 0.03 0.01

ARM Qwen2.5 001 002 001 000 0.03 0.01 0.01 0.01
Qwen 3 003 000 002 0.01 0.03 0.00 002 0.00
WizardCoder 0.00 001 001 000 0.00 0.01 0.01 0.01
Phi4 002 002 004 000 004 0.00 0.02 0.01
Gemma3 003 000 003 0.00 0.04 0.01 002 0.00
CodeLlama 003 003 002 002 001 0.02 002 002
Llama2 004 006 003 005 0.02 0.07 003 0.06

Deepseek-V2  0.02 0.00 002 000 0.01 0.00 0.02 0.00
Deepseek-R1 ~ 0.05 0.00 005 001 003 0.00 0.04 0.00

MIPS Qwen2.5 001 001 003 0.01 0.02 0.00 002 0.00
Qwen 3 003 000 007 000 0.07 0.01 0.06 0.01
WizardCoder 0.01 001 002 000 0.01 0.00 0.02 0.00
Phi4 005 000 007 000 0.08 0.00 0.08 0.01

Gemma3 003 000 003 001 0.04 0.00 003 0.00

Table 11: Performance Evaluation on Type Inference with Different Architectures and Opti-
mization Levels.

Function Name Recovery Performance
Arch Model o0 01 02 03
Orig Fine Orig Fine Orig Fine Orig Fine
CodeLlama 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00
Llama2 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00
Deepseek-V2  0.00 0.00 0.00 000 0.00 0.00 0.00 0.00
Deepseek-R1 ~ 0.00 0.00 000 000 0.00 0.00 0.00 0.00

x86-32  Qwen2.5 0.00 000 000 0.00 0.00 0.00 0.00 0.00
Qwen 3 0.00 000 000 0.00 0.00 0.00 0.00 0.00
WizardCoder 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Phi4 0.00 000 000 0.00 0.00 0.00 0.00 0.00
Gemma3 000 000 000 0.00 0.00 0.00 0.00 0.00
CodeLlama 0.00 002 000 0.02 0.00 0.03 000 0.04
Llama2 000 001 000 0.02 0.00 0.02 000 0.04

Deepseek-V2  0.00 0.00 000 000 0.00 0.00 0.00 0.00
Deepseek-R1 ~ 0.00  0.00 000 000 0.00 0.00 0.00 0.00

ARM Qwen2.5 0.00 001 000 0.02 0.00 0.02 000 003
Qwen 3 0.00 002 000 0.03 0.00 0.03 000 0.04
WizardCoder 0.00 0.01 0.00 0.02 0.00 0.02 0.00 0.04
Phi4 0.00 002 000 0.03 0.00 0.04 000 0.06
Gemma3 000 000 000 0.01 0.00 0.01 0.00 0.02
CodeLlama 0.00 000 000 0.00 0.00 0.00 0.00 0.00
Llama2 0.00 000 000 0.00 0.00 0.00 0.00 0.00

Deepseek-V2  0.00 0.00 0.00 000 0.00 0.00 0.00 0.00
Deepseek-R1 ~ 0.00 0.00 000 000 0.00 0.00 0.00 0.00

MIPS Qwen2.5 0.00 000 000 0.00 0.00 0.00 0.00 0.00
Qwen 3 0.00 000 000 0.00 0.00 0.00 0.00 0.00
WizardCoder 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Phi4 0.00 000 000 000 0.00 0.00 0.00 0.01
Gemma3 000 000 000 0.00 0.00 0.00 0.00 0.00

Table 12: Performance Evaluation on Function Name Recovery with Different Architectures
and Optimization Levels via Assembly Code.
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F LLM USAGE

We utilize LLM only for correcting and polishing the sentences.
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