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ABSTRACT

In Deep Reinforcement Learning models trained using gradient-based techniques,
the choice of optimizer and its learning rate are crucial to achieving good per-
formance: higher learning rates can prevent the model from learning effec-
tively, while lower ones might slow convergence. Additionally, due to the non-
stationarity of the objective function, the best-performing learning rate can change
over the training steps. To adapt the learning rate, a standard technique consists
of using decay schedulers. However, these schedulers assume that the model is
progressively approaching convergence, which may not always be true, leading to
delayed or premature adjustments. In this work, we propose dynamic Learning
Rate for deep Reinforcement Learning (LRRL), a meta-learning approach that se-
lects the learning rate based on the agent’s performance during training. LRRL is
based on a multi-armed bandit algorithm, where each arm represents a different
learning rate, and the bandit feedback is provided by the cumulative returns of
the RL policy to update the arms’ probability distribution. Our empirical results
demonstrate that LRRL can substantially improve the performance of deep RL
algorithms.

1 INTRODUCTION

Reinforcement Learning (RL), when combined with function approximators such as Artificial Neu-
ral Networks (ANNs), has shown success in learning policies that outperform humans in complex
games by leveraging extensive datasets (see, e.g., Silver et al., 2016; Lample & Chaplot, 2017;
Vinyals et al., 2019; Wurman et al., 2022). While ANNs were previously used as value function ap-
proximators (Riedmiller, 2005), the introduction of Deep Q-Networks (DQN) by Mnih et al. (2013;
2015) marked a significant breakthrough by improving learning stability through two mechanisms:
the target network and experience replay.

The experience replay (see Lin, 1992) stores the agent’s interactions within the environment, al-
lowing sampling of past interactions in a random way that disrupts their correlation. The target
network further stabilizes the learning process by periodically copying the parameters of the learn-
ing network. This strategy is crucial because the Bellman update —using estimations to update other
estimations— would otherwise occur using the same network, potentially causing divergence. By
leveraging the target network, gradient steps are directed towards a periodically fixed target, ensur-
ing more stability in the learning process. Additionally, the learning rate hyperparameter controls
the magnitude of these gradient steps in optimizers such as the stochastic gradient descent algorithm,
affecting the training convergence.

The learning rate is one of the most important hyperparameters, with previous work demonstrating
that decreasing its value during policy finetuning can enhance performance by up to 25% in vanilla
DQN (Agarwal et al., 2022). Determining the appropriate learning rate1 is essential for achieving
good model performance: higher values can prevent the agent from learning, while lower values can
lead to slow convergence (see Goodfellow et al., 2016; Blier et al., 2019; You et al., 2019). However,
finding a learning rate value that improves the model performance requires extensive and compu-
tationally expensive testing. In order to adapt its initial choice during training, optimizers such as

1The terms “learning rate” and “step-size” are often used interchangeably in the literature and they techni-
cally refer to the same concept.
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Adam (Kingma & Ba, 2015) and RMSProp (Tieleman & Hinton, 2012) employ an internal scheme
that dynamically adjusts the learning rate, considering, for instance, past gradient information. Nev-
ertheless, various learning rate scheduling strategies can be combined with the optimizer to decrease
the learning rate and improve the convergence over the training steps.

Standard learning rate schedulers typically decrease the learning rate based on training progress
using, e.g., linear or exponential decay strategies (Senior et al., 2013; You et al., 2019). In the
context of RL, this approach can lead to premature or delayed learning rate adjustments, which may
hinder the agent’s ability to learn. Unlike supervised learning, RL usually involves generating data
by trading off between exploration (discovery of new states) and exploitation (refining of the agent’s
knowledge). As the policy improves, the data distribution encountered by the agent becomes more
concentrated, but this evolution occurs at a different pace than the overall training progress. For
instance, some environments require extensive exploration due to the sparseness of rewards, while
others need more exploitation to refine the policy to the complexity of the task. Consequently, a
more sophisticated decaying learning rate strategy that accounts for policy performance rather than
training steps can significantly enhance learning in deep RL.

In this work, we propose dynamic Learning Rate for deep Reinforcement Learning (LRRL), a
method to select the learning rate on the fly for deep RL. Our approach acknowledges that different
learning phases require different learning rates, and as such, instead of scheduling the learning
rate decay using some blanket approach, we dynamically choose the learning rate using a Multi-
Armed Bandit (MAB) algorithm, which accounts for the current policy’s performance. Our method
has the advantage of being algorithm-agnostic and applicable to any optimizer, although the results
show that it works best when coupled with Adam. We conduct experiments on our approach using
baselines provided in the Dopamine framework (see Castro et al., 2018). Our results focus on
exploiting different settings for LRRL to illustrate its robustness under many possible configurations.
Our main contributions are the following:

• We introduce LRRL, the first approach, to our knowledge, that leverages a multi-armed
bandit algorithm to select the learning rate dynamically in deep RL. Our results demon-
strate that LRRL achieves competitive performance with or superior to standard deep RL
algorithms using fixed baselines or traditional learning rate schedulers.

• Our results show that LRRL significantly reduces the need for hyperparameter optimization
by dynamically selecting from a set of possible learning rates using a multi-armed bandit
approach. This method mitigates the need for exhaustive techniques like grid search, as
it efficiently adapts the learning rate during training in a single run, rather than requiring
multiple runs to test each learning rate individually.

• We assess the robustness of our method by employing the Adam and RMSProp optimizers
with different sets of arms. We also compare the results using stochastic and adversarial
multi-armed bandit algorithms in Appendix A.2.

2 RELATED WORK

Multi-armed bandit for (hyper)parameter selection. Deep RL is known to be overly optimistic
in the face of uncertainty (Ostrovski et al., 2021), and many works have addressed this issue by
proposing conservative policy updates (van Hasselt et al., 2016; Fujimoto et al., 2019; Agarwal
et al., 2020). However, when the agent is able to interact with the environment, this optimism can
encourage exploration, potentially leading to the discovery of higher returns. Building on this idea,
Moskovitz et al. (2021) use an adversarial MAB algorithm to trade-off between pessimistic and
optimistic policy updates based on the agent’s performance over the learning process. In order to
select the learning rate for stochastic gradient MCMC, Coullon et al. (2023) employ an algorithm
based on Successive Halving (Karnin et al., 2013; Jamieson & Talwalkar, 2016), a MAB strategy that
promotes promising arms and prunes suboptimal ones over time. In the context of hyperparameter
optimization, Successive Halving has also been used in combination with infinite-arm bandits to
select hyperparameters for supervised learning (Li et al., 2018; Shang et al., 2019). A key difference
between these approaches to hyperparameter optimization for supervised learning and our work is
that we focus on selecting the best learning rate from a predefined set, rather than performing an
extensive and computationally expensive search over the hyperparameter space. Close to our work,
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Liu et al. (2020) propose Adam with Bandit Sampling (ADAMBS), which employs the Exponential-
weight algorithm for Exploration and Exploitation (Auer et al., 2002) to enhance sample efficiency
by incorporating importance sampling within the Adam optimizer. While ADAMBS prioritizes
informative samples, our method focuses on RL tasks by dynamically adjusting the learning rate,
accelerating learning when the policy is far from optimal, and slowing it down as it converges.

Learning rate adapters/schedulers. Optimizers such as RMSProp (Tieleman & Hinton, 2012)
have an adaptive mechanism to update a set of parameters θ by normalizing past gradients, while
Adam (Kingma & Ba, 2015) also incorporates momentum to smooth gradient steps. However,
despite their widespread adoption, these algorithms have inherent limitations in non-stationary en-
vironments since they do not adapt to changes in the objective function over time (see Degris et al.,
2024). Increment-Delta-Bar-Delta (IDBD), introduced by Sutton (1992), has an adaptive mecha-
nism based on the loss to adjust the learning rate ηi for each sample xi for linear regression and
has been extended to settings including RL (Young et al., 2019). Learning rate schedulers with
time decay (Senior et al., 2013; You et al., 2019) are coupled with optimizers, assuming gradual
convergence to a good solution, but often require task-specific manual tuning. A meta-gradient re-
inforcement learning is proposed in Xu et al. (2020), composed of a two-level optimization process:
one that uses the agent’s objective and the other to learn meta-parameters of the objective function.
Our work differs from these methods by employing a multi-armed bandit approach to dynamically
select the learning rate over the training process, specifically targeting RL settings.

3 PRELIMINARIES

This section introduces the Reinforcement Learning and Multi-Arm Bandits frameworks, defining
supporting notation.

3.1 DEEP REINFORCEMENT LEARNING

An RL task is defined by a Markov Decision Process (MDP), that is by a tuple (S,A, P,R, γ, T ),
where S denotes the state space,A the set of possible actions, P : S ×A× S →[0, 1] the transition
probability, R : S ×A → R the reward function, γ ∈ [0, 1] the discount factor, and T the horizon
length in episodic settings (see, e.g., Sutton & Barto, 2018 for details). In RL, starting from an
initial state s0, a learner called agent interacts with the environment by picking, at time t, an action
at depending on the current state st. In return, it receives a reward rt = R(st, at), reaching a new
state st+1 according to the transition probability P (st, at, · ). The agent’s objective is to learn a
policy π : S ×A → [0, 1] which maps a distribution of actions given the current state, aiming to
maximize expected returns Qπ(s, a) = Eπ

[∑T
t=0 γ

trt | s0 = s, a0 = a
]
.

To learn how to perform a task, value function-based algorithms coupled with ANNs (Mnih et al.,
2013; 2015) approximate the quality of a given state-action pair Q(s, a) using parameters θ to derive
a policy πθ(s) = argmaxa∈A Qθ(s, a). By storing transitions (s, a, r, s′) = (st, at, rt, st+1) into
the replay memory D, the objective is to minimize the loss function J (θ) defined by:

J (θ) = E(s,a,r,s′)∼D

[
r + γ max

a′∈A
Qθ−(s′, a′)−Qθ(s, a)

]2
, (1)

where θ− are the target network parameters used to compute the target of the learning network
y = r + γ maxa′∈A Qθ−(s′, a′). The parameters θ− are periodically updated by copying the pa-
rameters θ, leveraging stability during the learning process by fixing the target y. The minimization,
and hence, the update of the parameters θ, is done according to the optimizer’s routine. A simple
possibility is to use stochastic gradient descent using mini-batch approximations of the loss gradient:

θn+1 ← θn−η∇θJ (θn) , where ∇θJ (θn) ≈
1

|B|
∑

(s,a,r,s′)∈B

2
(
Qθ(s, a)−y

)
∇θQθ(s, a) (2)

with B being a mini-batch of transitions sampled from D and η is a single scalar value called the
learning rate. Unlike in supervised learning, where the loss functionJ (θ) is typically stationary, RL
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presents a fundamentally different challenge: the policy is continuously evolving, leading to shifting
distributions of states, actions, and rewards over time. This continuous evolution introduces instabil-
ity during the learning process, which deep RL mitigates by employing a large replay memory and
calculating the target using a frozen network with parameters θ−. However, stability also depends
on how the parameters θ change during each update. This work aims to control these changes by
dynamically selecting the learning rate η over the training steps.

3.2 MULTI-ARMED BANDIT

Multi-Armed Bandits (MAB) provide an elegant framework for making sequential decisions under
uncertainty (see for instance Lattimore & Szepesvári, 2020). MAB can be viewed as a special case
of RL with a single state, where at each round n, the agent selects an arm kn ∈ {1, . . . ,K} from
a set of K arms and receives a feedback (reward) fn(kn) ∈ R. Like RL, MAB algorithms must
balance the trade-off between exploring arms that have been tried less frequently and exploiting
arms that have yielded higher rewards up to time n.

To account for the non-stationarity of the RL rewards, we will consider in this work the MAB setting
of adversarial bandits Auer et al. (2002). In this setting, at each round n, the agent selects an arm kn
according to some distribution pn while the environment (the adversary) arbitrarily (e.g., without
stationary constraints) determines the rewards fn(k) for all arms k ∈ K. MAB algorithms are
designed to minimize the pseudo-regret GN after N rounds defined by:

GN = max
k∈{1,...,K}

E

[
N∑

n=1

fn(k)−
N∑

n=1

fn(kn)

]
,

where the randomness of the expectation depends on the MAB algorithm and on the adversarial
environment,

∑N
n=1 fn(k) represents the accumulated reward of the single best arm in hindsight,

and
∑N

n=1 fn(kn) is the accumulated reward obtained by the algorithm. A significant component
in the adversarial setting is to ensure that each arm k has a non-zero probability pn(k) > 0 of
being selected at each round n: this guarantees exploration, which is essential for the algorithm’s
robustness to environment changes.

4 DYNAMIC LEARNING RATE FOR DEEP RL

In this section, we tackle the challenge of selecting the learning rate over the training steps by
introducing a dynamic Learning Rate for deep Reinforcement Learning (LRRL). LRRL is a meta-
learning approach designed to dynamically select the learning rate in response to the agent’s per-
formance. LRRL couples with stochastic gradient descent optimizers and adapts the learning rate
based on the reward achieved by the policy πθ using an adversarial MAB algorithm. As the agent
interacts with the environment, the average of observed rewards is used as bandit feedback to guide
the selection of the most appropriate learning rate throughout the training process.

4.1 SELECTING THE LEARNING RATE DYNAMICALLY

Our problem can be framed as selecting a learning rate η for policy updates —specifically, when
updating the parameters θ after λ interactions with the environment.

Before training, a set K = {η1, . . . , ηK} of K learning rates are defined by the user. Then, during
training, a MAB algorithm selects, at every round n —that is, at every κ interactions with the
environment— an arm kn ∈ {1, . . . ,K} according to a probability distribution pn defined based
on previous rewards, as explained in the next section. The parameters θ are then updated using the
sampled learning rate ηkn . The steps involved in this meta-learning approach are summarized in
Algorithm 1.

Note that the same algorithm might be used with learning rates schedulers, that is with K =
{η1, . . . , ηK} where ηk : N → R+ is a predefined function, usually converging towards 0 at in-
finity. If so, the learning rate used at round n of the optimization is ηkn(n).

4
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Algorithm 1 dynamic Learning Rate for deep Reinforcement Learning (LRRL)

Parameters:
Set of learning rates K = {η1, . . . , ηK}
Number of episodes M
Horizon length T
Update window λ for the learning network θ
Update window τ for the target network θ−

Update window κ for arm probabilities p
Initialize:

Parameters θ and θ−

Arm probabilities p0 ← ( 1
K , . . . , 1

K )
MAB round n← 0
Cumulative reward R← 0
Environment interactions counter C ← 0

for episode m = 1, 2, 3, . . . ,M do
for timestep t = 1, 2, 3, . . . , T do

Choose action at following the policy πθ(s) with probability 1− ϵ ▷ (ϵ-greedy strategy)
Play action at and observe reward rt
Add rt to cumulative reward R← R+ rt
Increase environment interactions counter C ← C + 1
if C mod λ ≡ 0 then

if C ≥ κ then
Compute average of the last C rewards fn ← R

C
Increase MAB round n← n+ 1
Compute weights wn and arm probabilities pn using Equations (3, 4)
Sample arm kn with distribution pn
Reset R← 0 and C ← 0

end if
Update network parameter θ using the optimizer update rule with learning rate ηkn

Every τ steps update the target network θ− ← θ
end if

end for
end for

4.2 UPDATING THE PROBABILITY DISTRIBUTION

As we expect that the agent’s performance —and hence, the cumulative rewards— will improve
over time, the MAB algorithm should receive non-stationary feedback. To take this non-stationary
nature of the learning into account, we employ the Exponential-weight algorithm for Exploration
and Exploitation (Exp3, see Auer et al., 2002 for an introduction). At round n, Exp3 chooses the
next arm (and its associated learning rate) according to the arm probability distribution pn which
is based on weights (wn(k))1≤k≤K updated recursively. Those weights incorporate a time-decay
factor δ ∈ (0, 1] that increases the importance of recent feedback, allowing the algorithm to respond
more quickly to improvements in policy performance.

Specifically, after picking arm kn at round n, the RL agent interacts C times with the environment
and the MAB algorithm receives a feedback fn corresponding to the average reward of those C in-
teractions. Based on Moskovitz et al. (2021), this feedback is then used to compute the improvement
in performance, denoted by f ′

n, obtained by subtracting the average of the past j bandit feedbacks
from the most recent one fn:

f ′
n = fn −

1

j

j−1∑
i=0

fn−i .

The improvement in performance allows computation of the next weights wn+1 as follows, where
initially w1 = (0, . . . , 0):

∀k ∈ {1, . . . ,K}, wn+1(k) =

{
δ wn(k) + α

f ′
n

ewn(k) if k = kn
δ wn(k) otherwise ,

(3)
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where α > 0 is a step-size parameter. The distribution pn+1, used to draw the next arm kn+1, is

∀k ∈ {1, . . . ,K}, pn+1(k) =
ewn+1(k)∑K

k′=1 e
wn+1(k′)

. (4)

This update rule ensures that as the policy πθ improves, the MAB algorithm continues to favor
learning rates that are most beneficial under the current policy performance, thereby effectively
handling the non-stationarity inherent in the learning process.

5 EXPERIMENTS

In the following sections, we investigate whether combining LRRL with Adam or RMSProp —two
widely used optimizers— can improve cumulative returns in deep RL algorithms. To assess this,
we compare LRRL against learning methods with and without schedulers using the baseline im-
plementation of DQN provided in Dopamine (Castro et al., 2018). We test LRRL under different
configurations and Atari games, reporting the average and standard deviation of returns over 5 runs.
Details on the evaluation metrics and hyperparameters used in these experiments are summarized in
Appendix B.

5.1 COMPARING LRRL WITH STANDARD LEARNING

In our first experiment, we consider a set of 5 learning rates, and compare the performance of
5 configurations of LRRL, each of them using a subset of those learning rates, against the DQN
algorithm reaching best performance, in terms of maximum average return, among the 5 possible
learning rates choices (see Figure 5 in Appendix A.1). More precisely, the set of learning rates is

K(5) =
{
1.5625× 10−5, 3.125× 10−5, 6.25× 10−5, 1.25× 10−4, 2.5× 10−4

}
.

The whole setK(5) is used by one LRRL version, while others are based on the 3 lowest (Klowest(3)),
3 middle (Kmiddle(3)), 3 highest (Khighest(3)) and 3 taking the lowest/middle/highest (Ksparse(3))
learning rate values. All experiments use the Adam optimizer, and we report the return based on the
same number of environment iterations.

Results are gathered in Table 1 and illustrated in Figure 1 along with four Atari games. They show
that LRRL outperforms standard learning in two out of four tasks while remaining competitive in
the others. Notably, LRRL not only matches or exceeds performance but also reduces the need for
extensive parameter tuning by incorporating multiple learning rates in a single run. However, as the
results indicate, the 3-arm bandit variants exhibit different behaviors during the learning process,
suggesting that the choice of the number of arms and their values still requires task-specific tuning
to achieve good performance.

Game DQN LRRL Klowest(3) LRRL Kmiddle(3) LRRL Khighest(3) LRRL Ksparse(3) LRRL K(5)
Asteroids 1 085 ± 63 1 065 ± 70 1 079 ± 48 1 061 ± 59 1007 ± 127 1 085 ± 88
Breakout 217 ± 14 220 ± 24 201 ± 6 177 ± 8 270 ± 13 253 ± 20
Pong 19 ± 0.4 18 ± 0.3 19 ± 0.9 19 ± 0.5 19 ± 0.5 19 ± 0.8
Seaquest 5 881 ± 1 533 5 905 ± 2 557 6 135 ± 2 229 6 231 ± 1 802 8 920 ± 2 759 6 799 ± 2 060

Table 1: Max average return (best in bold if significantly better than others) and its standard devia-
tion for 4 Atari games.

To illustrate how LRRL adapts during training in response to non-stationary bandit feedback as
policy performance improves, Figure 2 shows the systematic sampling of pulled arms (learning
rates) and corresponding returns over training steps from a single run of LRRL K(5). In most of the
tested environments, LRRL behaves similarly to time-decay schedulers by selecting higher learning
rates during the early stages of training, gradually shifting toward arms with lower rates as training
progresses. The exception is in the Pong environment, where the model converges after only a few
iterations, resulting in a more uniform probability distribution across the set of arms.

5.2 COMBINING AND COMPARING SCHEDULERS WITH LRRL

Next, we consider using LRRL combined with learning rate schedulers. Specifically, we employ
schedulers with exponential decay rate of the form η(n) = η0×e−dn, where η0 is a fixed initial value
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Figure 1: A comparison between 5 configurations of LRRL with various learning rate subsets and
the DQN algorithm reaching the best performance among possible learning rates.

Figure 2: Systematic sampling of normalized learning rates and returns over the training steps using
LRRL K(5) with Adam optimizer, through a single run. For each episode, we show the selected
learning rate using different colors.
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(common to each scheduler and equal to 6.25× 10−5 in our experiment), d is the exponential decay
rate and n is the number of policy updates (i.e., of MAB rounds). We define a set of 3 schedulers
Ks, where each arm represents a scheduler using a different decay rate d = {1, 2, 3} × 10−7, and
compare the results of LRRL with each scheduler individually, using the Adam optimizer.

Figure 3 and Table 2 show that LRRL combined with schedulers can substantially increase final per-
formance compared to using exponential decay schedulers for some environments while remaining
competitive for others. The dashed black line represents the max average return achieved by Adam
without learning rate decay, resulting in slightly worse performance compared to using schedulers,
aligning with findings in previous work by Andrychowicz et al. (2021), who linearly decay the
learning rate to 0.

Figure 3: A comparison between LRRL with arms as schedulers and schedulers individually.

Game DQN d = 1× 10−7 d = 2× 10−7 d = 3× 10−7 LRRL (Ks)
Asteroids 1 028 ± 53 1 025 ± 52 1 013 ± 56 1 063 ± 82 1 015 ± 33
Breakout 144 ± 12 149 ± 11 151 ± 7 144 ± 12 233 ± 19
Seaquest 5 881 ± 1 533 5 284 ± 1 134 5 793± 1 225 6 612 ± 835 13 864 ± 3 581
Video Pinball 410 186 ± 193 328 388 768 ± 195 150 450 015 ± 178 876 362 645 ± 172 169 388 308 ± 103 862

Table 2: Max average return (best in bold) and its standard deviation for 4 Atari games.

5.3 RMSPROP OPTIMIZER AND MORE ENVIRONMENTS

Another widely used optimizer for training deep RL models is RMSProp, which, like Adam, features
an adaptive learning rate mechanism. Adam builds upon RMSProp by retaining exponential moving
averages to give more weight to recent gradients while incorporating momentum. Although the
standard RMSProp does not feature momentum, we found that adding momentum to RMSProp can
increase both the performance of DQN and LRRL, aligning with findings in the literature (Qian,
1999; Andrychowicz et al., 2021).

In the following experiment, we compare the performance of RMSProp with Nesterov’s momentum
(RMSProp-M), and Adam when coupled with either LRRL or the best-performing single learning

8
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rate when using DQN. As shown in Figure 4 and Table 3, LRRL coupled with Adam consistently
outperforms our configuration using RMSProp-M and the baseline using standard DQN. Moreover,
LRRL (RMSProp-M) underperforms compared to DQN without LRRL in two out of three tasks
due to its slow convergence despite better jumpstart performance. Future work should investigate
whether this slow convergence is linked to factors such as the environment’s stochasticity or the
optimizer’s features such as the absence of bias correction in the first and second moment estimates.

Figure 4: A comparison between Adam and RMSProp with momentum, using either DQN or LRRL.

Game DQN (RMSProp-M) LRRL (RMSProp-M) DQN (Adam) LRRL (Adam)
Asterix 11 464 ± 2 848 6 499 ± 927 12 561 ± 1 245 15 017 ± 3 892
Ms. Pacman 3 301 ± 310 2 696 ± 248 3 232 ± 114 3 310 ± 231
Space Invaders 1 490 ± 132 2 712 ± 73 2 874 ± 319 3 641 ± 1 030

Table 3: Max average return (best in bold) and its standard deviation for 3 Atari games.

6 CONCLUSION

In this work, we introduced dynamic Learning Rate for Deep Reinforcement Learning (LRRL),
a meta-learning approach for selecting the optimizer’s learning rate on the fly. We demonstrated
empirically that combining LRRL with the Adam optimizer could significantly enhance the perfor-
mance of the value-based algorithm DQN, outperforming baselines and learning rate schedulers in
some tasks while remaining competitive in others. Furthermore, by employing a multi-armed ban-
dit algorithm, LRRL reduces the need for extensive hyperparameter tuning, as it explores a set of
learning rates in a single run with minimal extra computational overhead.

While this work focused on dynamically selecting the best-performing learning rate, future investi-
gations could extend LRRL ideas to other critical hyperparameters, such as mini-batch size, which
also plays a key role in the model’s convergence. Moreover, although LRRL selects learning rates
based on policy performance, alternative feedback mechanisms could be explored, such as using
gradient information to select block-wise (e.g., per-layer) learning rates, extending these ideas to
supervised learning and applying them to other non-stationary objective functions, including those
encountered in Continual Learning (Rusu et al., 2016; Kirkpatrick et al., 2016; Abel et al., 2023).
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oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–
228, 2022.

Zhongwen Xu, Hado P van Hasselt, Matteo Hessel, Junhyuk Oh, Satinder Singh, and David
Silver. Meta-gradient reinforcement learning with an objective discovered online. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 15254–15264. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/ae3d525daf92cee0003a7f2d92c34ea3-Paper.pdf.

Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I Jordan. How does learning rate decay
help modern neural networks? arXiv preprint arXiv:1908.01878, 2019.

12

https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://doi.org/10.1007/11564096_32
http://arxiv.org/abs/1606.04671
https://inria.hal.science/hal-02145200
https://inria.hal.science/hal-02145200
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://proceedings.neurips.cc/paper_files/paper/2020/file/ae3d525daf92cee0003a7f2d92c34ea3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/ae3d525daf92cee0003a7f2d92c34ea3-Paper.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kenny Young, Baoxiang Wang, and Matthew E. Taylor. Metatrace actor-critic: Online step-size
tuning by meta-gradient descent for reinforcement learning control. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 4185–
4191. International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi:
10.24963/ijcai.2019/581. URL https://doi.org/10.24963/ijcai.2019/581.

13

https://doi.org/10.24963/ijcai.2019/581


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A SUPPLEMENTARY EXPERIMENTS

A.1 BASELINE EVALUATION WITH VARYING LEARNING RATES

To establish a baseline to compare learning without our approach LRRL, we run individual arm
values as baseline learning rate using the Adam optimizer. The results presented in Figure 5 align
with common expectations by showing that higher learning rates fail to learn for most environments
while lower ones can lead to the worst jumpstart performance and slow convergence.

Figure 5: DQN performance using Adam optimizer with varying learning rates across 4 Atari games.

A.2 A COMPARISON BETWEEN MULTI-ARMED BANDITS ALGORITHMS

Adversarial MAB algorithms are designed for environments where the reward distribution changes
over time. In contrast, stochastic MAB algorithms assume that rewards are drawn from fixed but
unknown probability distributions. To validate our choice and address our method’s robustness,
we compare Exp3 with the stochastic MAB algorithm MOSS (Minimax Optimal Strategy in the
Stochastic case) (Audibert & Bubeck, 2009). MOSS trade-off exploration-exploitation by pulling
the arm k with highest upper confidence bound given by:

Bk(n) = µ̂k(n) + ρ

√√√√max
(
log n

Knk(n)
, 0
)

nk(n)

where µ̂k(n) is the empirical average reward for arm k and nk(n) is the number of times it has been
pulled up to timestep t.

In Figure 6, we use different bandit step-sizes α for Exp3 and parameter ρ, which balance explo-
ration and exploitation in MOSS. Additionally, the bandit feedback used in MOSS is the average
cumulative reward R

C . The results indicate that while Exp3 performs better overall, MOSS can still
achieve competitive results depending on the amount of exploration, demonstrating the robustness
of our approach regarding the MAB algorithm employed.
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Figure 6: A comparison between adversarial and stochastic MAB algorithms.

B EXPERIMENTS DETAILS

B.1 EVALUATION TERMINOLOGY

In this section, we describe the evaluation metrics that can be used to evaluate agent’s performance
as it interacts with an environment. Based on Dopamine, we use the evaluation step-size “iterations”,
which is defined as a predetermined number of episodes. Figure 7 illustrates the evaluation metrics
used in this work, as defined in (Taylor & Stone, 2009):

• Max average return: The highest average return obtained by an algorithm throughout
the learning process. It is calculated by averaging the outcomes across multiple individual
runs.

• Final performance: The performance of an algorithm after a predefined number of inter-
actions. While two algorithms may reach the same final performance, they might require
different amounts of data to do so. This metric captures the efficiency of an algorithm in
reaching a certain level of performance within a limited number of interactions. In Fig-
ure 7, the final performance overlaps with the max average return, represented by the black
dashed line.

• Jumpstart performance: The performance at the initial stages of training, starting from a
policy with randomized parameters θ. In Figure 7, Algorithm B exhibits better jumpstart
performance but ultimately achieves lower final performance than Algorithm A. A lower
jumpstart performance can result from factors such as a lower learning rate, although this
work demonstrates that this does not necessarily lead to worse final performance.

B.2 FURTHER EXPERIMENTAL DETAILS

In the following, we list the set of arms, optimizer and the bandit step-size used in each experiment.

Section 5.1 – Comparing LRRL with Standard Learning.
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Figure 7: Performance curves of two RL algorithms (adapted from Taylor & Stone (2009)).

• Optimizer: Adam
• Bandit step-size: α = 0.2

• Considered sets of learning rates:

K(5) =
{
1.5625× 10−5, 3.125× 10−5, 6.25× 10−5, 1.25× 10−4, 2.5× 10−4

}
Klowest(3) =

{
1.5625× 10−5, 3.125× 10−5, 6.25× 10−5

}
Kmiddle(3) =

{
3.125× 10−5, 6.25× 10−5, 1.25× 10−4

}
Khighest(3) =

{
6.25× 10−5, 1.25× 10−4, 2.5× 10−4

}
Ksparse(3) =

{
1.5625× 10−5, 6.25× 10−5, 2.5× 10−4

}
Section 5.2 – Combining and Comparing Schedulers with LRRL.

• Optimizer: Adam
• Bandit step-size: α = 0.2

• Initial learning rate of schedulers: η0 = 6.25× 10−5

Section 5.3 – RMSProp Optimizer and More Environments.

• Optimizer: RMSProp for baselines
• Bandit step-size: α = 0.2

• LRRL set of learning rates: K =
{
1.5625× 10−5, 3.125× 10−5, 6.25× 10−5

}
Section A.2 – A Comparison between Multi-Armed Bandit Algorithms.

• Optimizer: Adam
• MOSS/Exp3 set of learning rates: K =

{
3.125× 10−5, 6.25× 10−5, 1.25× 10−4

}
B.3 HYPERPARAMETERS

In this section, we outline the hyperparameters used in the experiments. The optimizers from the
Optax library (DeepMind et al., 2020) are employed alongside the JAX (Bradbury et al., 2018)
implementation of the DQN algorithm (Mnih et al., 2013; 2015), as provided by the Dopamine
framework (Castro et al., 2018).
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Hyperparameter Setting
Sticky actions True
Sticky actions probability 0.25
Discount factor (γ) 0.99
Frames stacked 4
Mini-batch size (B) 32
Replay memory start size 20000
Learning network update rate (λ) 4 steps
Minimum environment steps (κ) 1 episode
Target network update rate (τ ) 8000 steps
Initial exploration (ϵ) 1
Exploration decay rate 0.01
Exploration decay period 250000 steps
Environment steps per iteration 250000 steps
Reward clipping [-1, 1]
Network neurons per layer 32, 64, 64
Hardware V100 GPU
Adam hyperparameters
β1 decay 0.9
β2 decay 0.999
Eps 1.5e-4
RMSProp hyperparameters
Decay 0.9
Momentum (if True) 0.999
Centered False
Eps 1.5e-4

Table 4: Hyperparameters

17


	Introduction
	Related Work
	Preliminaries
	Deep Reinforcement Learning
	Multi-Armed Bandit

	Dynamic Learning Rate for Deep RL
	Selecting the Learning Rate Dynamically
	Updating the Probability Distribution

	Experiments
	Comparing LRRL with Standard Learning
	Combining and Comparing Schedulers with LRRL
	RMSProp Optimizer and more Environments

	Conclusion
	Supplementary Experiments
	Baseline Evaluation with Varying Learning Rates
	A Comparison between Multi-Armed Bandits Algorithms

	Experiments Details
	Evaluation Terminology
	Further Experimental Details
	Hyperparameters


