
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMIC LEARNING RATE FOR DEEP REINFORCE-
MENT LEARNING: A BANDIT APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

In Deep Reinforcement Learning models trained using gradient-based techniques,
the choice of optimizer and its learning rate are crucial to achieving good per-
formance: higher learning rates can prevent the model from learning effec-
tively, while lower ones might slow convergence. Additionally, due to the non-
stationarity of the objective function, the best-performing learning rate can change
over the training steps. To adapt the learning rate, a standard technique consists
of using decay schedulers. However, these schedulers assume that the model is
progressively approaching convergence, which may not always be true, leading to
delayed or premature adjustments. In this work, we propose dynamic Learning
Rate for deep Reinforcement Learning (LRRL), a meta-learning approach that se-
lects the learning rate based on the agent’s performance during training. LRRL is
based on a multi-armed bandit algorithm, where each arm represents a different
learning rate, and the bandit feedback is provided by the cumulative returns of
the RL policy to update the arms’ probability distribution. Our empirical results
demonstrate that LRRL can substantially improve the performance of deep RL
algorithms.

1 INTRODUCTION

Reinforcement Learning (RL), when combined with function approximators such as Artificial Neu-
ral Networks (ANNs), has shown success in learning policies that outperform humans in complex
games by leveraging extensive datasets (see, e.g., Silver et al., 2016; Lample & Chaplot, 2017;
Vinyals et al., 2019; Wurman et al., 2022). While ANNs were previously used as value function ap-
proximators (Riedmiller, 2005), the introduction of Deep Q-Networks (DQN) by Mnih et al. (2013;
2015) marked a significant breakthrough by improving learning stability through two mechanisms:
the target network and experience replay.

The experience replay (see Lin, 1992) stores the agent’s interactions within the environment, al-
lowing sampling of past interactions in a random way that disrupts their correlation. The target
network further stabilizes the learning process by periodically copying the parameters of the learn-
ing network. This strategy is crucial because the Bellman update —using estimations to update other
estimations— would otherwise occur using the same network, potentially causing divergence. By
leveraging the target network, gradient steps are directed towards a periodically fixed target, ensur-
ing more stability in the learning process. Additionally, the learning rate hyperparameter controls
the magnitude of these gradient steps in optimizers such as the stochastic gradient descent algorithm,
affecting the training convergence.

The learning rate is one of the most important hyperparameters, with previous work demonstrating
that decreasing its value during policy finetuning can enhance performance by up to 25% in vanilla
DQN (Agarwal et al., 2022). Determining the appropriate learning rate1 is essential for achieving
good model performance: higher values can prevent the agent from learning, while lower values can
lead to slow convergence (see Goodfellow et al., 2016; Blier et al., 2019; You et al., 2019). However,
finding a learning rate value that improves the model performance requires extensive and compu-
tationally expensive testing. In order to adapt its initial choice during training, optimizers such as

1The terms “learning rate” and “step-size” are often used interchangeably in the literature and they techni-
cally refer to the same concept.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Adam (Kingma & Ba, 2015) and RMSProp (Tieleman & Hinton, 2012) employ an internal scheme
that dynamically adjusts the learning rate, considering, for instance, past gradient information. Nev-
ertheless, various learning rate scheduling strategies can be combined with the optimizer to decrease
the learning rate and improve the convergence over the training steps.

Standard learning rate schedulers typically decrease the learning rate based on training progress
using, e.g., linear or exponential decay strategies (Senior et al., 2013; You et al., 2019). In the
context of RL, this approach can lead to premature or delayed learning rate adjustments, which may
hinder the agent’s ability to learn. Unlike supervised learning, RL usually involves generating data
by trading off between exploration (discovery of new states) and exploitation (refining of the agent’s
knowledge). As the policy improves, the data distribution encountered by the agent becomes more
concentrated, but this evolution occurs at a different pace than the overall training progress. For
instance, some environments require extensive exploration due to the sparseness of rewards, while
others need more exploitation to refine the policy to the complexity of the task. Consequently, a
more sophisticated decaying learning rate strategy that accounts for policy performance rather than
training steps can significantly enhance learning in deep RL.

In this work, we propose dynamic Learning Rate for deep Reinforcement Learning (LRRL), a
method to select the learning rate on the fly for deep RL. Our approach acknowledges that different
learning phases require different learning rates, and as such, instead of scheduling the learning
rate decay using some blanket approach, we dynamically choose the learning rate using a Multi-
Armed Bandit (MAB) algorithm, which accounts for the current policy’s performance. Our method
has the advantage of being algorithm-agnostic and applicable to any optimizer, although the results
show that it works best when coupled with Adam. We conduct experiments on our approach using
baselines provided in the Dopamine framework (see Castro et al., 2018). Our results focus on
exploiting different settings for LRRL to illustrate its robustness under many possible configurations.
Our main contributions are the following:

• We introduce LRRL, the first approach, to our knowledge, that leverages a multi-armed
bandit algorithm to select the learning rate dynamically in deep RL. Our results demon-
strate that LRRL achieves competitive performance with or superior to standard deep RL
algorithms using fixed baselines or traditional learning rate schedulers.

• Our results show that LRRL significantly reduces the need for hyperparameter optimization
by dynamically selecting from a set of possible learning rates using a multi-armed bandit
approach. This method mitigates the need for exhaustive techniques like grid search, as
it efficiently adapts the learning rate during training in a single run, rather than requiring
multiple runs to test each learning rate individually.

• We assess the robustness of our method by employing the Adam and RMSProp optimizers
with different sets of arms. We also compare the results using stochastic and adversarial
multi-armed bandit algorithms in Appendix A.2.

2 RELATED WORK

Multi-armed bandit for (hyper)parameter selection. Deep RL is known to be overly optimistic
in the face of uncertainty (Ostrovski et al., 2021), and many works have addressed this issue by
proposing conservative policy updates (van Hasselt et al., 2016; Fujimoto et al., 2019; Agarwal
et al., 2020). However, when the agent is able to interact with the environment, this optimism can
encourage exploration, potentially leading to the discovery of higher returns. Building on this idea,
Moskovitz et al. (2021) use an adversarial MAB algorithm to trade-off between pessimistic and
optimistic policy updates based on the agent’s performance over the learning process. In order to
select the learning rate for stochastic gradient MCMC, Coullon et al. (2023) employ an algorithm
based on Successive Halving (Karnin et al., 2013; Jamieson & Talwalkar, 2016), a MAB strategy that
promotes promising arms and prunes suboptimal ones over time. In the context of hyperparameter
optimization, Successive Halving has also been used in combination with infinite-arm bandits to
select hyperparameters for supervised learning (Li et al., 2018; Shang et al., 2019). A key difference
between these approaches to hyperparameter optimization for supervised learning and our work is
that we focus on selecting the best learning rate from a predefined set, rather than performing an
extensive and computationally expensive search over the hyperparameter space. Close to our work,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Liu et al. (2020) propose Adam with Bandit Sampling (ADAMBS), which employs the Exponential-
weight algorithm for Exploration and Exploitation (Auer et al., 2002) to enhance sample efficiency
by incorporating importance sampling within the Adam optimizer. While ADAMBS prioritizes
informative samples, our method focuses on RL tasks by dynamically adjusting the learning rate,
accelerating learning when the policy is far from optimal, and slowing it down as it converges.

Learning rate adapters/schedulers. Optimizers such as RMSProp (Tieleman & Hinton, 2012)
have an adaptive mechanism to update a set of parameters θ by normalizing past gradients, while
Adam (Kingma & Ba, 2015) also incorporates momentum to smooth gradient steps. However,
despite their widespread adoption, these algorithms have inherent limitations in non-stationary en-
vironments since they do not adapt to changes in the objective function over time (see Degris et al.,
2024). Increment-Delta-Bar-Delta (IDBD), introduced by Sutton (1992), has an adaptive mecha-
nism based on the loss to adjust the learning rate ηi for each sample xi for linear regression and
has been extended to settings including RL (Young et al., 2019). Learning rate schedulers with
time decay (Senior et al., 2013; You et al., 2019) are coupled with optimizers, assuming gradual
convergence to a good solution, but often require task-specific manual tuning. A meta-gradient re-
inforcement learning is proposed in Xu et al. (2020), composed of a two-level optimization process:
one that uses the agent’s objective and the other to learn meta-parameters of the objective function.
Our work differs from these methods by employing a multi-armed bandit approach to dynamically
select the learning rate over the training process, specifically targeting RL settings.

3 PRELIMINARIES

This section introduces the Reinforcement Learning and Multi-Arm Bandits frameworks, defining
supporting notation.

3.1 DEEP REINFORCEMENT LEARNING

An RL task is defined by a Markov Decision Process (MDP), that is by a tuple (S,A, P,R, γ, T),
where S denotes the state space,A the set of possible actions, P : S ×A× S →[0, 1] the transition
probability, R : S ×A → R the reward function, γ ∈ [0, 1] the discount factor, and T the horizon
length in episodic settings (see, e.g., Sutton & Barto, 2018 for details). In RL, starting from an
initial state s0, a learner called agent interacts with the environment by picking, at time t, an action
at depending on the current state st. In return, it receives a reward rt = R(st, at), reaching a new
state st+1 according to the transition probability P (st, at, ·). The agent’s objective is to learn a
policy π : S ×A → [0, 1] which maps a distribution of actions given the current state, aiming to
maximize expected returns Qπ(s, a) = Eπ

[∑T
t=0 γ

trt | s0 = s, a0 = a
]
.

To learn how to perform a task, value function-based algorithms coupled with ANNs (Mnih et al.,
2013; 2015) approximate the quality of a given state-action pair Q(s, a) using parameters θ to derive
a policy πθ(s) = argmaxa∈A Qθ(s, a). By storing transitions (s, a, r, s′) = (st, at, rt, st+1) into
the replay memory D, the objective is to minimize the loss function J (θ) defined by:

J (θ) = E(s,a,r,s′)∼D

[
r + γ max

a′∈A
Qθ−(s′, a′)−Qθ(s, a)

]2
, (1)

where θ− are the target network parameters used to compute the target of the learning network
y = r + γ maxa′∈A Qθ−(s′, a′). The parameters θ− are periodically updated by copying the pa-
rameters θ, leveraging stability during the learning process by fixing the target y. The minimization,
and hence, the update of the parameters θ, is done according to the optimizer’s routine. A simple
possibility is to use stochastic gradient descent using mini-batch approximations of the loss gradient:

θn+1 ← θn−η∇θJ (θn) , where ∇θJ (θn) ≈
1

|B|
∑

(s,a,r,s′)∈B

2
(
Qθ(s, a)−y

)
∇θQθ(s, a) (2)

with B being a mini-batch of transitions sampled from D and η is a single scalar value called the
learning rate. Unlike in supervised learning, where the loss functionJ (θ) is typically stationary, RL

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

presents a fundamentally different challenge: the policy is continuously evolving, leading to shifting
distributions of states, actions, and rewards over time. This continuous evolution introduces instabil-
ity during the learning process, which deep RL mitigates by employing a large replay memory and
calculating the target using a frozen network with parameters θ−. However, stability also depends
on how the parameters θ change during each update. This work aims to control these changes by
dynamically selecting the learning rate η over the training steps.

3.2 MULTI-ARMED BANDIT

Multi-Armed Bandits (MAB) provide an elegant framework for making sequential decisions under
uncertainty (see for instance Lattimore & Szepesvári, 2020). MAB can be viewed as a special case
of RL with a single state, where at each round n, the agent selects an arm kn ∈ {1, . . . ,K} from
a set of K arms and receives a feedback (reward) fn(kn) ∈ R. Like RL, MAB algorithms must
balance the trade-off between exploring arms that have been tried less frequently and exploiting
arms that have yielded higher rewards up to time n.

To account for the non-stationarity of the RL rewards, we will consider in this work the MAB setting
of adversarial bandits Auer et al. (2002). In this setting, at each round n, the agent selects an arm kn
according to some distribution pn while the environment (the adversary) arbitrarily (e.g., without
stationary constraints) determines the rewards fn(k) for all arms k ∈ K. MAB algorithms are
designed to minimize the pseudo-regret GN after N rounds defined by:

GN = max
k∈{1,...,K}

E

[
N∑

n=1

fn(k)−
N∑

n=1

fn(kn)

]
,

where the randomness of the expectation depends on the MAB algorithm and on the adversarial
environment,

∑N
n=1 fn(k) represents the accumulated reward of the single best arm in hindsight,

and
∑N

n=1 fn(kn) is the accumulated reward obtained by the algorithm. A significant component
in the adversarial setting is to ensure that each arm k has a non-zero probability pn(k) > 0 of
being selected at each round n: this guarantees exploration, which is essential for the algorithm’s
robustness to environment changes.

4 DYNAMIC LEARNING RATE FOR DEEP RL

In this section, we tackle the challenge of selecting the learning rate over the training steps by
introducing a dynamic Learning Rate for deep Reinforcement Learning (LRRL). LRRL is a meta-
learning approach designed to dynamically select the learning rate in response to the agent’s per-
formance. LRRL couples with stochastic gradient descent optimizers and adapts the learning rate
based on the reward achieved by the policy πθ using an adversarial MAB algorithm. As the agent
interacts with the environment, the average of observed rewards is used as bandit feedback to guide
the selection of the most appropriate learning rate throughout the training process.

4.1 SELECTING THE LEARNING RATE DYNAMICALLY

Our problem can be framed as selecting a learning rate η for policy updates —specifically, when
updating the parameters θ after λ interactions with the environment.

Before training, a set K = {η1, . . . , ηK} of K learning rates are defined by the user. Then, during
training, a MAB algorithm selects, at every round n —that is, at every κ interactions with the
environment— an arm kn ∈ {1, . . . ,K} according to a probability distribution pn defined based
on previous rewards, as explained in the next section. The parameters θ are then updated using the
sampled learning rate ηkn . The steps involved in this meta-learning approach are summarized in
Algorithm 1.

Note that the same algorithm might be used with learning rates schedulers, that is with K =
{η1, . . . , ηK} where ηk : N → R+ is a predefined function, usually converging towards 0 at in-
finity. If so, the learning rate used at round n of the optimization is ηkn(n).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 dynamic Learning Rate for deep Reinforcement Learning (LRRL)

Parameters:
Set of learning rates K = {η1, . . . , ηK}
Number of episodes M
Horizon length T
Update window λ for the learning network θ
Update window τ for the target network θ−

Update window κ for arm probabilities p
Initialize:

Parameters θ and θ−

Arm probabilities p0 ← (1
K , . . . , 1

K)
MAB round n← 0
Cumulative reward R← 0
Environment interactions counter C ← 0

for episode m = 1, 2, 3, . . . ,M do
for timestep t = 1, 2, 3, . . . , T do

Choose action at following the policy πθ(s) with probability 1− ϵ ▷ (ϵ-greedy strategy)
Play action at and observe reward rt
Add rt to cumulative reward R← R+ rt
Increase environment interactions counter C ← C + 1
if C mod λ ≡ 0 then

if C ≥ κ then
Compute average of the last C rewards fn ← R

C
Increase MAB round n← n+ 1
Compute weights wn and arm probabilities pn using Equations (3, 4)
Sample arm kn with distribution pn
Reset R← 0 and C ← 0

end if
Update network parameter θ using the optimizer update rule with learning rate ηkn

Every τ steps update the target network θ− ← θ
end if

end for
end for

4.2 UPDATING THE PROBABILITY DISTRIBUTION

As we expect that the agent’s performance —and hence, the cumulative rewards— will improve
over time, the MAB algorithm should receive non-stationary feedback. To take this non-stationary
nature of the learning into account, we employ the Exponential-weight algorithm for Exploration
and Exploitation (Exp3, see Auer et al., 2002 for an introduction). At round n, Exp3 chooses the
next arm (and its associated learning rate) according to the arm probability distribution pn which
is based on weights (wn(k))1≤k≤K updated recursively. Those weights incorporate a time-decay
factor δ ∈ (0, 1] that increases the importance of recent feedback, allowing the algorithm to respond
more quickly to improvements in policy performance.

Specifically, after picking arm kn at round n, the RL agent interacts C times with the environment
and the MAB algorithm receives a feedback fn corresponding to the average reward of those C in-
teractions. Based on Moskovitz et al. (2021), this feedback is then used to compute the improvement
in performance, denoted by f ′

n, obtained by subtracting the average of the past j bandit feedbacks
from the most recent one fn:

f ′
n = fn −

1

j

j−1∑
i=0

fn−i .

The improvement in performance allows computation of the next weights wn+1 as follows, where
initially w1 = (0, . . . , 0):

∀k ∈ {1, . . . ,K}, wn+1(k) =

{
δ wn(k) + α

f ′
n

ewn(k) if k = kn
δ wn(k) otherwise ,

(3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where α > 0 is a step-size parameter. The distribution pn+1, used to draw the next arm kn+1, is

∀k ∈ {1, . . . ,K}, pn+1(k) =
ewn+1(k)∑K

k′=1 e
wn+1(k′)

. (4)

This update rule ensures that as the policy πθ improves, the MAB algorithm continues to favor
learning rates that are most beneficial under the current policy performance, thereby effectively
handling the non-stationarity inherent in the learning process.

5 EXPERIMENTS

In the following sections, we investigate whether combining LRRL with Adam or RMSProp —two
widely used optimizers— can improve cumulative returns in deep RL algorithms. To assess this,
we compare LRRL against learning methods with and without schedulers using the baseline im-
plementation of DQN provided in Dopamine (Castro et al., 2018). We test LRRL under different
configurations and Atari games, reporting the average and standard deviation of returns over 5 runs.
Details on the evaluation metrics and hyperparameters used in these experiments are summarized in
Appendix B.

5.1 COMPARING LRRL WITH STANDARD LEARNING

In our first experiment, we consider a set of 5 learning rates, and compare the performance of
5 configurations of LRRL, each of them using a subset of those learning rates, against the DQN
algorithm reaching best performance, in terms of maximum average return, among the 5 possible
learning rates choices (see Figure 5 in Appendix A.1). More precisely, the set of learning rates is

K(5) =
{
1.5625× 10−5, 3.125× 10−5, 6.25× 10−5, 1.25× 10−4, 2.5× 10−4

}
.

The whole setK(5) is used by one LRRL version, while others are based on the 3 lowest (Klowest(3)),
3 middle (Kmiddle(3)), 3 highest (Khighest(3)) and 3 taking the lowest/middle/highest (Ksparse(3))
learning rate values. All experiments use the Adam optimizer, and we report the return based on the
same number of environment iterations.

Results are gathered in Table 1 and illustrated in Figure 1 along with four Atari games. They show
that LRRL outperforms standard learning in two out of four tasks while remaining competitive in
the others. Notably, LRRL not only matches or exceeds performance but also reduces the need for
extensive parameter tuning by incorporating multiple learning rates in a single run. However, as the
results indicate, the 3-arm bandit variants exhibit different behaviors during the learning process,
suggesting that the choice of the number of arms and their values still requires task-specific tuning
to achieve good performance.

Game DQN LRRL Klowest(3) LRRL Kmiddle(3) LRRL Khighest(3) LRRL Ksparse(3) LRRL K(5)
Asteroids 1 085 ± 63 1 065 ± 70 1 079 ± 48 1 061 ± 59 1007 ± 127 1 085 ± 88
Breakout 217 ± 14 220 ± 24 201 ± 6 177 ± 8 270 ± 13 253 ± 20
Pong 19 ± 0.4 18 ± 0.3 19 ± 0.9 19 ± 0.5 19 ± 0.5 19 ± 0.8
Seaquest 5 881 ± 1 533 5 905 ± 2 557 6 135 ± 2 229 6 231 ± 1 802 8 920 ± 2 759 6 799 ± 2 060

Table 1: Max average return (best in bold if significantly better than others) and its standard devia-
tion for 4 Atari games.

To illustrate how LRRL adapts during training in response to non-stationary bandit feedback as
policy performance improves, Figure 2 shows the systematic sampling of pulled arms (learning
rates) and corresponding returns over training steps from a single run of LRRL K(5). In most of the
tested environments, LRRL behaves similarly to time-decay schedulers by selecting higher learning
rates during the early stages of training, gradually shifting toward arms with lower rates as training
progresses. The exception is in the Pong environment, where the model converges after only a few
iterations, resulting in a more uniform probability distribution across the set of arms.

5.2 COMBINING AND COMPARING SCHEDULERS WITH LRRL

Next, we consider using LRRL combined with learning rate schedulers. Specifically, we employ
schedulers with exponential decay rate of the form η(n) = η0×e−dn, where η0 is a fixed initial value

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 1: A comparison between 5 configurations of LRRL with various learning rate subsets and
the DQN algorithm reaching the best performance among possible learning rates.

Figure 2: Systematic sampling of normalized learning rates and returns over the training steps using
LRRL K(5) with Adam optimizer, through a single run. For each episode, we show the selected
learning rate using different colors.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(common to each scheduler and equal to 6.25× 10−5 in our experiment), d is the exponential decay
rate and n is the number of policy updates (i.e., of MAB rounds). We define a set of 3 schedulers
Ks, where each arm represents a scheduler using a different decay rate d = {1, 2, 3} × 10−7, and
compare the results of LRRL with each scheduler individually, using the Adam optimizer.

Figure 3 and Table 2 show that LRRL combined with schedulers can substantially increase final per-
formance compared to using exponential decay schedulers for some environments while remaining
competitive for others. The dashed black line represents the max average return achieved by Adam
without learning rate decay, resulting in slightly worse performance compared to using schedulers,
aligning with findings in previous work by Andrychowicz et al. (2021), who linearly decay the
learning rate to 0.

Figure 3: A comparison between LRRL with arms as schedulers and schedulers individually.

Game DQN d = 1× 10−7 d = 2× 10−7 d = 3× 10−7 LRRL (Ks)
Asteroids 1 028 ± 53 1 025 ± 52 1 013 ± 56 1 063 ± 82 1 015 ± 33
Breakout 144 ± 12 149 ± 11 151 ± 7 144 ± 12 233 ± 19
Seaquest 5 881 ± 1 533 5 284 ± 1 134 5 793± 1 225 6 612 ± 835 13 864 ± 3 581
Video Pinball 410 186 ± 193 328 388 768 ± 195 150 450 015 ± 178 876 362 645 ± 172 169 388 308 ± 103 862

Table 2: Max average return (best in bold) and its standard deviation for 4 Atari games.

5.3 RMSPROP OPTIMIZER AND MORE ENVIRONMENTS

Another widely used optimizer for training deep RL models is RMSProp, which, like Adam, features
an adaptive learning rate mechanism. Adam builds upon RMSProp by retaining exponential moving
averages to give more weight to recent gradients while incorporating momentum. Although the
standard RMSProp does not feature momentum, we found that adding momentum to RMSProp can
increase both the performance of DQN and LRRL, aligning with findings in the literature (Qian,
1999; Andrychowicz et al., 2021).

In the following experiment, we compare the performance of RMSProp with Nesterov’s momentum
(RMSProp-M), and Adam when coupled with either LRRL or the best-performing single learning

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

rate when using DQN. As shown in Figure 4 and Table 3, LRRL coupled with Adam consistently
outperforms our configuration using RMSProp-M and the baseline using standard DQN. Moreover,
LRRL (RMSProp-M) underperforms compared to DQN without LRRL in two out of three tasks
due to its slow convergence despite better jumpstart performance. Future work should investigate
whether this slow convergence is linked to factors such as the environment’s stochasticity or the
optimizer’s features such as the absence of bias correction in the first and second moment estimates.

Figure 4: A comparison between Adam and RMSProp with momentum, using either DQN or LRRL.

Game DQN (RMSProp-M) LRRL (RMSProp-M) DQN (Adam) LRRL (Adam)
Asterix 11 464 ± 2 848 6 499 ± 927 12 561 ± 1 245 15 017 ± 3 892
Ms. Pacman 3 301 ± 310 2 696 ± 248 3 232 ± 114 3 310 ± 231
Space Invaders 1 490 ± 132 2 712 ± 73 2 874 ± 319 3 641 ± 1 030

Table 3: Max average return (best in bold) and its standard deviation for 3 Atari games.

6 CONCLUSION

In this work, we introduced dynamic Learning Rate for Deep Reinforcement Learning (LRRL),
a meta-learning approach for selecting the optimizer’s learning rate on the fly. We demonstrated
empirically that combining LRRL with the Adam optimizer could significantly enhance the perfor-
mance of the value-based algorithm DQN, outperforming baselines and learning rate schedulers in
some tasks while remaining competitive in others. Furthermore, by employing a multi-armed ban-
dit algorithm, LRRL reduces the need for extensive hyperparameter tuning, as it explores a set of
learning rates in a single run with minimal extra computational overhead.

While this work focused on dynamically selecting the best-performing learning rate, future investi-
gations could extend LRRL ideas to other critical hyperparameters, such as mini-batch size, which
also plays a key role in the model’s convergence. Moreover, although LRRL selects learning rates
based on policy performance, alternative feedback mechanisms could be explored, such as using
gradient information to select block-wise (e.g., per-layer) learning rates, extending these ideas to
supervised learning and applying them to other non-stationary objective functions, including those
encountered in Continual Learning (Rusu et al., 2016; Kirkpatrick et al., 2016; Abel et al., 2023).

REFERENCES

David Abel, Andre Barreto, Benjamin Van Roy, Doina Precup, Hado P van Hasselt, and
Satinder Singh. A definition of continual reinforcement learning. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 50377–50407. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/9d8cf1247786d6dfeefeeb53b8b5f6d7-Paper-Conference.pdf.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on of-
fline reinforcement learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th

9

https://proceedings.neurips.cc/paper_files/paper/2023/file/9d8cf1247786d6dfeefeeb53b8b5f6d7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9d8cf1247786d6dfeefeeb53b8b5f6d7-Paper-Conference.pdf

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 104–114. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/agarwal20c.html.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Reincarnating reinforcement learning: Reusing prior computation to accelerate progress.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 28955–28971. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/ba1c5356d9164bb64c446a4b690226b0-Paper-Conference.pdf.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael
Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What
matters in on-policy reinforcement learning? a large-scale empirical study. In 9th International
Conference on Learning Representations, ICLR 2021, 2021. URL https://arxiv.org/
abs/2006.05990.

Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic bandits.
In COLT 2009 - The 22nd Conference on Learning Theory, Montreal, Quebec, Canada, June
18-21, 2009, 2009. URL http://www.cs.mcgill.ca/%7Ecolt2009/papers/022.
pdf#page=1.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic mul-
tiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002. doi: 10.1137/
S0097539701398375. URL https://doi.org/10.1137/S0097539701398375.

Léonard Blier, Pierre Wolinski, and Yann Ollivier. Learning with random learning rates. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2019,
Würzburg, Germany, September 16–20, 2019, Proceedings, Part II, pp. 449–464. Springer, 2019.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax. version 0.3.13.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
Dopamine: A Research Framework for Deep Reinforcement Learning, 2018. URL http://
arxiv.org/abs/1812.06110.

Jeremie Coullon, Leah South, and Christopher Nemeth. Efficient and generalizable tuning
strategies for stochastic gradient mcmc. Statistics and Computing, 33(3), apr 2023. ISSN
0960-3174. doi: 10.1007/s11222-023-10233-3. URL https://doi.org/10.1007/
s11222-023-10233-3.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider, Eren
Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec, Luyu
Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL http:
//github.com/google-deepmind.

Thomas Degris, Khurram Javed, Arsalan Sharifnassab, Yuxin Liu, and Richard Sutton. Step-size
optimization for continual learning, 2024. URL https://arxiv.org/abs/2401.17401.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2052–2062. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/fujimoto19a.html.

10

https://proceedings.mlr.press/v119/agarwal20c.html
https://proceedings.mlr.press/v119/agarwal20c.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/ba1c5356d9164bb64c446a4b690226b0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ba1c5356d9164bb64c446a4b690226b0-Paper-Conference.pdf
https://arxiv.org/abs/2006.05990
https://arxiv.org/abs/2006.05990
http://www.cs.mcgill.ca/%7Ecolt2009/papers/022.pdf#page=1
http://www.cs.mcgill.ca/%7Ecolt2009/papers/022.pdf#page=1
https://doi.org/10.1137/S0097539701398375
http://github.com/google/jax
http://github.com/google/jax
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
https://doi.org/10.1007/s11222-023-10233-3
https://doi.org/10.1007/s11222-023-10233-3
http://github.com/google-deepmind
http://github.com/google-deepmind
https://arxiv.org/abs/2401.17401
https://proceedings.mlr.press/v97/fujimoto19a.html
https://proceedings.mlr.press/v97/fujimoto19a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Kevin G. Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparame-
ter optimization. In Arthur Gretton and Christian C. Robert (eds.), Proceedings of the 19th Inter-
national Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May
9-11, 2016, volume 51 of JMLR Workshop and Conference Proceedings, pp. 240–248. JMLR.org,
2016. URL http://proceedings.mlr.press/v51/jamieson16.html.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed
bandits. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the 30th Interna-
tional Conference on Machine Learning, volume 28(3) of Proceedings of Machine Learning
Research, pp. 1238–1246, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL https:
//proceedings.mlr.press/v28/karnin13.html.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. CoRR, abs/1612.00796, 2016. URL http://arxiv.org/abs/
1612.00796.

Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep reinforcement learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, 2017. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/10827.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res., 18(1):
6765–6816, april 2018. ISSN 1532-4435.

Long Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Mach. Learn., 8:293–321, 1992.

Rui Liu, Tianyi Wu, and Barzan Mozafari. Adam with bandit sampling for deep learning.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 5393–5404. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/3a077e8acfc4a2b463c47f2125fdfac5-Paper.pdf.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin A. Riedmiller. Playing Atari with Deep Reinforcement Learning. CoRR,
abs/1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan. Tac-
tical optimism and pessimism for deep reinforcement learning. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 12849–12863. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/6abcc8f24321d1eb8c95855eab78ee95-Paper.pdf.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learn-
ing in deep reinforcement learning. In Advances in Neural Information Processing Sys-
tems, volume 34, 2021. URL https://papers.nips.cc/paper/2021/file/
c3e0c62ee91db8dc7382bde7419bb573-Paper.pdf.

11

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://proceedings.mlr.press/v51/jamieson16.html
https://proceedings.mlr.press/v28/karnin13.html
https://proceedings.mlr.press/v28/karnin13.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
https://ojs.aaai.org/index.php/AAAI/article/view/10827
https://ojs.aaai.org/index.php/AAAI/article/view/10827
https://proceedings.neurips.cc/paper_files/paper/2020/file/3a077e8acfc4a2b463c47f2125fdfac5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3a077e8acfc4a2b463c47f2125fdfac5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6abcc8f24321d1eb8c95855eab78ee95-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6abcc8f24321d1eb8c95855eab78ee95-Paper.pdf
https://papers.nips.cc/paper/2021/file/c3e0c62ee91db8dc7382bde7419bb573-Paper.pdf
https://papers.nips.cc/paper/2021/file/c3e0c62ee91db8dc7382bde7419bb573-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Net-
works, 12(1):145–151, 1999. ISSN 0893-6080. doi: https://doi.org/10.1016/S0893-6080(98)
00116-6. URL https://www.sciencedirect.com/science/article/pii/
S0893608098001166.

Martin Riedmiller. Neural fitted q iteration – first experiences with a data efficient neural reinforce-
ment learning method. In Proceedings of the 16th European Conference on Machine Learning,
ECML’05, pp. 317–328, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3540292438. doi:
10.1007/11564096 32. URL https://doi.org/10.1007/11564096_32.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR,
abs/1606.04671, 2016. URL http://arxiv.org/abs/1606.04671.

Andrew Senior, Georg Heigold, Marc’aurelio Ranzato, and Ke Yang. An empirical study of learning
rates in deep neural networks for speech recognition. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, CA, 2013.

Xuedong Shang, Emilie Kaufmann, and Michal Valko. A simple dynamic bandit algorithm for
hyper-parameter tuning. In Workshop on Automated Machine Learning at International Confer-
ence on Machine Learning, Long Beach, United States, June 2019. AutoML@ICML 2019 - 6th
ICML Workshop on Automated Machine Learning. URL https://inria.hal.science/
hal-02145200.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Richard S. Sutton. Adapting bias by gradient descent: an incremental version of delta-bar-delta. In
Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI’92, pp. 171–176.
AAAI Press, 1992. ISBN 0262510634.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10:1633–1685, 2009. ISSN 1532-4435.

T. Tieleman and G. Hinton. Lecture 6.5 - RMSProp: Divide the gradient by a running average of its
recent magnitude. Coursera: Neural Networks for Machine Learning, 2012. URL: https://
www.cs.toronto.edu/˜tijmen/csc321/slides/lecture_slides_lec6.pdf.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, 2016. URL https:
//www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–
228, 2022.

Zhongwen Xu, Hado P van Hasselt, Matteo Hessel, Junhyuk Oh, Satinder Singh, and David
Silver. Meta-gradient reinforcement learning with an objective discovered online. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 15254–15264. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/ae3d525daf92cee0003a7f2d92c34ea3-Paper.pdf.

Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I Jordan. How does learning rate decay
help modern neural networks? arXiv preprint arXiv:1908.01878, 2019.

12

https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://doi.org/10.1007/11564096_32
http://arxiv.org/abs/1606.04671
https://inria.hal.science/hal-02145200
https://inria.hal.science/hal-02145200
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://proceedings.neurips.cc/paper_files/paper/2020/file/ae3d525daf92cee0003a7f2d92c34ea3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/ae3d525daf92cee0003a7f2d92c34ea3-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kenny Young, Baoxiang Wang, and Matthew E. Taylor. Metatrace actor-critic: Online step-size
tuning by meta-gradient descent for reinforcement learning control. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 4185–
4191. International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi:
10.24963/ijcai.2019/581. URL https://doi.org/10.24963/ijcai.2019/581.

13

https://doi.org/10.24963/ijcai.2019/581

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A SUPPLEMENTARY EXPERIMENTS

A.1 BASELINE EVALUATION WITH VARYING LEARNING RATES

To establish a baseline to compare learning without our approach LRRL, we run individual arm
values as baseline learning rate using the Adam optimizer. The results presented in Figure 5 align
with common expectations by showing that higher learning rates fail to learn for most environments
while lower ones can lead to the worst jumpstart performance and slow convergence.

Figure 5: DQN performance using Adam optimizer with varying learning rates across 4 Atari games.

A.2 A COMPARISON BETWEEN MULTI-ARMED BANDITS ALGORITHMS

Adversarial MAB algorithms are designed for environments where the reward distribution changes
over time. In contrast, stochastic MAB algorithms assume that rewards are drawn from fixed but
unknown probability distributions. To validate our choice and address our method’s robustness,
we compare Exp3 with the stochastic MAB algorithm MOSS (Minimax Optimal Strategy in the
Stochastic case) (Audibert & Bubeck, 2009). MOSS trade-off exploration-exploitation by pulling
the arm k with highest upper confidence bound given by:

Bk(n) = µ̂k(n) + ρ

√√√√max
(
log n

Knk(n)
, 0
)

nk(n)

where µ̂k(n) is the empirical average reward for arm k and nk(n) is the number of times it has been
pulled up to timestep t.

In Figure 6, we use different bandit step-sizes α for Exp3 and parameter ρ, which balance explo-
ration and exploitation in MOSS. Additionally, the bandit feedback used in MOSS is the average
cumulative reward R

C . The results indicate that while Exp3 performs better overall, MOSS can still
achieve competitive results depending on the amount of exploration, demonstrating the robustness
of our approach regarding the MAB algorithm employed.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 6: A comparison between adversarial and stochastic MAB algorithms.

B EXPERIMENTS DETAILS

B.1 EVALUATION TERMINOLOGY

In this section, we describe the evaluation metrics that can be used to evaluate agent’s performance
as it interacts with an environment. Based on Dopamine, we use the evaluation step-size “iterations”,
which is defined as a predetermined number of episodes. Figure 7 illustrates the evaluation metrics
used in this work, as defined in (Taylor & Stone, 2009):

• Max average return: The highest average return obtained by an algorithm throughout
the learning process. It is calculated by averaging the outcomes across multiple individual
runs.

• Final performance: The performance of an algorithm after a predefined number of inter-
actions. While two algorithms may reach the same final performance, they might require
different amounts of data to do so. This metric captures the efficiency of an algorithm in
reaching a certain level of performance within a limited number of interactions. In Fig-
ure 7, the final performance overlaps with the max average return, represented by the black
dashed line.

• Jumpstart performance: The performance at the initial stages of training, starting from a
policy with randomized parameters θ. In Figure 7, Algorithm B exhibits better jumpstart
performance but ultimately achieves lower final performance than Algorithm A. A lower
jumpstart performance can result from factors such as a lower learning rate, although this
work demonstrates that this does not necessarily lead to worse final performance.

B.2 FURTHER EXPERIMENTAL DETAILS

In the following, we list the set of arms, optimizer and the bandit step-size used in each experiment.

Section 5.1 – Comparing LRRL with Standard Learning.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 7: Performance curves of two RL algorithms (adapted from Taylor & Stone (2009)).

• Optimizer: Adam
• Bandit step-size: α = 0.2

• Considered sets of learning rates:

K(5) =
{
1.5625× 10−5, 3.125× 10−5, 6.25× 10−5, 1.25× 10−4, 2.5× 10−4

}
Klowest(3) =

{
1.5625× 10−5, 3.125× 10−5, 6.25× 10−5

}
Kmiddle(3) =

{
3.125× 10−5, 6.25× 10−5, 1.25× 10−4

}
Khighest(3) =

{
6.25× 10−5, 1.25× 10−4, 2.5× 10−4

}
Ksparse(3) =

{
1.5625× 10−5, 6.25× 10−5, 2.5× 10−4

}
Section 5.2 – Combining and Comparing Schedulers with LRRL.

• Optimizer: Adam
• Bandit step-size: α = 0.2

• Initial learning rate of schedulers: η0 = 6.25× 10−5

Section 5.3 – RMSProp Optimizer and More Environments.

• Optimizer: RMSProp for baselines
• Bandit step-size: α = 0.2

• LRRL set of learning rates: K =
{
1.5625× 10−5, 3.125× 10−5, 6.25× 10−5

}
Section A.2 – A Comparison between Multi-Armed Bandit Algorithms.

• Optimizer: Adam
• MOSS/Exp3 set of learning rates: K =

{
3.125× 10−5, 6.25× 10−5, 1.25× 10−4

}
B.3 HYPERPARAMETERS

In this section, we outline the hyperparameters used in the experiments. The optimizers from the
Optax library (DeepMind et al., 2020) are employed alongside the JAX (Bradbury et al., 2018)
implementation of the DQN algorithm (Mnih et al., 2013; 2015), as provided by the Dopamine
framework (Castro et al., 2018).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Hyperparameter Setting
Sticky actions True
Sticky actions probability 0.25
Discount factor (γ) 0.99
Frames stacked 4
Mini-batch size (B) 32
Replay memory start size 20000
Learning network update rate (λ) 4 steps
Minimum environment steps (κ) 1 episode
Target network update rate (τ) 8000 steps
Initial exploration (ϵ) 1
Exploration decay rate 0.01
Exploration decay period 250000 steps
Environment steps per iteration 250000 steps
Reward clipping [-1, 1]
Network neurons per layer 32, 64, 64
Hardware V100 GPU
Adam hyperparameters
β1 decay 0.9
β2 decay 0.999
Eps 1.5e-4
RMSProp hyperparameters
Decay 0.9
Momentum (if True) 0.999
Centered False
Eps 1.5e-4

Table 4: Hyperparameters

17

	Introduction
	Related Work
	Preliminaries
	Deep Reinforcement Learning
	Multi-Armed Bandit

	Dynamic Learning Rate for Deep RL
	Selecting the Learning Rate Dynamically
	Updating the Probability Distribution

	Experiments
	Comparing LRRL with Standard Learning
	Combining and Comparing Schedulers with LRRL
	RMSProp Optimizer and more Environments

	Conclusion
	Supplementary Experiments
	Baseline Evaluation with Varying Learning Rates
	A Comparison between Multi-Armed Bandits Algorithms

	Experiments Details
	Evaluation Terminology
	Further Experimental Details
	Hyperparameters

