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ABSTRACT

Large language models (LLMs) sometimes memorize undesirable knowledge,
which must be removed after deployment. Prior work on machine unlearning
has focused largely on optimization methods that adjust parameters to enforce
forgetting while preserving retention. However, these approaches assume that
the forget and retain sets are readily available, which rarely holds in practice.
Unlearning is typically triggered by an undesired generation at inference time,
making the retrieval of relevant data the central challenge. We introduce the
notion of data Pareto improvement for LLM unlearning, which formalizes how
retrieval can expand the achievable trade-off frontier between forgetting and re-
tention. To realize this principle, we propose Randomized Antipodal Search on
Linearized Influence Kernel (RASLIK), a retrieval algorithm that combines per-
mutation–projection hashing with randomized antipodal search. RASLIK reduces
selection variance, achieves sublinear complexity, and yields a double gain in both
quality and efficiency. Across multiple models, datasets, and unlearning algo-
rithms, RASLIK consistently outperforms deterministic baselines and even oracle
sampling, establishing randomized search as a principled and scalable solution for
data-centric unlearning.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities across diverse tasks
(OpenAI et al., 2024), but they sometimes memorize undesirable knowledge (Carlini et al., 2019;
2023). When such information must be removed after deployment, machine unlearning provides
a mechanism to forget targeted knowledge while preserving general utility (Eldan & Russinovich,
2023). Existing work has primarily focused on designing optimizers, such as gradient-based(Jang
et al., 2022; Liu et al., 2022; Yao et al., 2024; Yoon et al., 2023) or preference-based methods (Zhang
et al., 2024; Rafailov et al., 2023; Maini et al., 2024; Meng et al., 2024), that couple forgetting ob-
jectives with retention regularizers. These approaches are effective under controlled benchmarks
(Maini et al., 2024; Shi et al., 2024) but typically assume that the forget and retain sets are read-
ily available (Shi et al., 2024). In practice, unlearning is triggered by an undesired generation at
inference time, leaving practitioners with only the observed output and a massive training corpus.
Identifying which data to forget and which to retain becomes the primary challenge, making data
efficiency the central bottleneck of unlearning (Carlini et al., 2021).

Unlearning inherently involves balancing two seemingly conflicting goals: improving forgetting
often reduces retention, while prioritizing retention risks incomplete forgetting (Xu et al., 2023;
Nguyen et al., 2024). This trade-off defines a Pareto frontier (Davtalab-Olyaie & Asgharian, 2021)
of achievable outcomes. We introduce the concept of data Pareto improvement in LLM unlearning,
which highlights the role of retrieval in expanding this frontier. A retrieval mechanism is Pareto-
improving if it enables stronger forgetting without disproportionate loss of retention, or conversely
preserves retention without undermining forgetting. This perspective shifts the focus of unlearning
from being purely optimization-centric to being fundamentally retrieval-centric. Retrieval quality is
not a preprocessing detail but a first-order determinant of unlearning outcomes.

Building on this insight, we propose Randomized Antipodal Search on Linearized Influence Ker-
nel (RASLIK), a retrieval algorithm that introduces controlled randomization into influence-based
search. RASLIK constructs randomized gradient sketches via permutation–projection hashing and
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performs antipodal search to identify both aligned samples to forget and anti-aligned samples to
retain. Randomization smooths unstable thresholding decisions, reducing selection variance, while
sketching achieves sublinear complexity. The result is a double gain in both quality and efficiency.
Experiments across models, datasets, and unlearning algorithms show that RASLIK consistently
shifts the Pareto frontier outward, outperforming deterministic baselines and even oracle sampling.

Our contributions are as follows:

• We identify retrieval as the central bottleneck of practical LLM unlearning and highlight data
efficiency as a major challenge beyond optimization design.

• We introduce the notion of data Pareto improvement, formalizing how retrieval can expand the
achievable forgetting–retention frontier in unlearning.

• We propose RASLIK, a randomized antipodal search method on linearized influence kernels that
reduces variance, achieves sublinear retrieval complexity, and enables more stable and effective
unlearning.

• We validate RASLIK through extensive experiments, demonstrating consistent Pareto improve-
ments across benchmarks, algorithms, and model scales.

2 DATA PARETO IMPROVEMENT OF LLM UNLEARNING

2.1 A FOCUS ON DATA EFFICIENCY OF LLM UNLEARNING
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Figure 1: Pareto trade-off between forgetting and reten-
tion in LLM unlearning.

Large Language Models (LLMs) trained on
massive corpora inevitably memorize undesir-
able knowledge (Carlini et al., 2019). In these
cases, model owners must unlearn such knowl-
edge while preserving the model’s utility (Car-
lini et al., 2023). Formally, given parameters
θ ∈ Rd and a loss ℓ(x; θ) for sample x, the
goal of unlearning is to increase loss on a desig-
nated forget set F while maintaining or improv-
ing performance on a complementary retain set
R. Existing work mostly treats unlearning as an
optimization problem: designing loss functions
that couple a forgetting objective with a utility-
preserving regularizer. Examples include gra-
dient ascent on F with gradient descent on R
(Jang et al., 2022; Liu et al., 2022; Yao et al.,
2024). These paradigms implicitly assume that
the forget set F and the retain set R are given.
In practice, however, unlearning rarely begins
with this setting. Instead, it is triggered by an
unexpected generation y produced at inference time. Faced with only y and a massive training set,
practitioners must first determine what to forget and what to retain. This makes retrieval of F and R
not a secondary step but the true bottleneck in practical unlearning. Without high-quality retrieval,
even the most sophisticated optimizers cannot achieve effective forgetting.

2.2 INTRODUCING DATA PARETO IMPROVEMENT FORMULATION TO LLM UNLEARNING

Unlearning introduces a fundamental tension: improving the degree of forgetting often reduces the
model’s general capabilities, while prioritizing retention risks incomplete forgetting. As shown in
Figure 1, this tension can be formalized as a Pareto trade-off between two conflicting objectives:

maximize forgetting accuracy vs. maximize retention quality.

Any unlearning method, therefore, lies on a Pareto frontier (Davtalab-Olyaie & Asgharian, 2021):
improvements in one dimension typically come at a cost in the other. Unlike ordinary optimization,
where one seeks a single optimum, unlearning inherently requires balancing two competing goals.
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This motivates a data-centric notion of Pareto efficiency. We define data Pareto efficiency as the
ability of the retrieval stage to identify F and R that shift the Pareto frontier outward. Concretely, a
data selection is Pareto-improving if it enables one of the following without degrading the other:

• Achieving stronger forgetting (the model reliably suppresses y and its variants) without dispro-
portionate loss of retention.

• Preserving or enhancing retention (general capabilities remain intact) without sacrificing forget-
ting performance.

Seen this way, retrieval quality is not a preprocessing detail but a first-order determinant of unlearn-
ing outcomes. A retrieval mechanism explicitly designed to respect the Pareto structure can sys-
tematically enable better trade-offs for downstream optimizers. We therefore introduce the concept
of data Pareto improvement: improvements in the selection of F and R that expand the achiev-
able frontier of forgetting–retention performance. This perspective reframes unlearning from being
solely optimization-centric to being also fundamentally retrieval-centric.

3 RANDOMIZED ANTIPODAL SEARCH ON LINEARIZED INFLUENCE KERNEL

Notations. Let θ ∈ Rd denote the model parameters, ℓ(x; θ) the loss for input x in training dataset
X , and g(x; θ) = ∇θℓ(x; θ) its gradient. For a target generation y, define qy = g(y; θ). For a
training item x ∈ X , write gx = g(x; θ). The unlearning objective is

U(θ) = Ex∈F [ℓ(x; θ)]− Ex∈R[ℓ(x; θ)], ∇θU(θ) =
1

|F|
∑
x∈F

g(x; θ)− 1

|R|
∑
x∈R

g(x; θ),

where ∇θU(θ) denotes the combined gradient computed from both forget and retain sets. This
formulation is defined as Gradient Ascent with Gradient Descent on the Retain set (GA GDR) (Jang
et al., 2022; Liu et al., 2022). Moreover, we define the update direction of θ as

∆(F ,R) = −∇θU(θ) =
1

|R|
∑
x∈R

gx − 1

|F|
∑
x∈F

gx, (1)

where the forget set F aligns with qy and the retain set R anti-aligns with qy . In this work, our goal
is to retrieve both sets given qy .

3.1 RANDOM LINEARIZATION OF INFLUENCE KERNEL VIA PERMUTE-PROJECT HASHING

Figure 2: RASLIK retrieval pipeline. Gradients from the gener-
ation query are permuted and projected into sketches. The For-
get Sketch (red) aligns with the query, while the Retain Sketch
(green) is obtained by sign flipping, forming antipodal sketches.

We propose Randomized Antipodal
Search on Linearized Influence Ker-
nel (RASLIK), which is a random lin-
earization of the influence kernel to
enable scalable retrieval.
Definition 3.1 (Linearized Influence
Kernel). The linearized influence ker-
nel between training data x and target
generation y is

ρ(y, x) =
⟨∇ℓ(y; θ),∇ℓ(x; θ)⟩

∥∇ℓ(y; θ)∥2 ∥∇ℓ(x; θ)∥2
= cos(qy, gx).

This kernel measures cosine similar-
ity between gradients of x and y.
Retrieval with max cos(qy, gx) iden-
tifies candidates for the forget set F ,
while retrieval with max cos(−qy, gx)
identifies candidates for the retain set
R. For simplicity, we can also write
ρ(y, x) as ρx if y is fixed. However,
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computing ρ(y, x) at scale is computationally prohibitive due to high dimensionality. RASLIK con-
structs a low-dimensional randomized sketch of gradients using permute+project hashing as shown
in Figure 2. Given gx, the sketch h(gx) ∈ Rk is formed as:

• Projection: Sample k random Rademacher vectors {rj}kj=1 and compute pj(gx) = g⊤x rj .
• Permutation/binning: Apply a fixed permutation π and place pj(gx) in coordinate π(j).
• Normalization: Set

h(gx)[π(j)] =
pj(gx)√∑k
j=1(p

j(gx))2
.

Applying the same h(·) to qy gives a sketch inner product ρ̂(y, x) := ⟨h(qy), h(gx)⟩, which is an
unbiased estimator of cos(qy, gx) with variance Var[ρ̂(qy, gx)] = O(1/k). Thus, ⟨h(qy), h(gx)⟩
serves as a randomized linearization of ρ(y, x). By indexing {h(gx)}x∈X , we can perform efficient
exact maximum inner product search to retrieve training data for F .

Antipodal queries by sign flipping. Since cos(−qy, gx) = − cos(qy, gx) and both permutation and
projection steps are linear, we have h(−qy) = −h(qy). This allows antipodal queries for R directly
from h(qy) by simple sign flipping in sketch space, eliminating redundant computations.

3.2 ANTIPODAL SEARCH IN SKETCH SPACE

After computing {h(gx)}x∈X , retrieval is done entirely in sketch space. For the query sketch h(qy)
and its antipode hanti = −h(qy), define per-item scores:

sF [x] = ⟨h(gx), h(qy)⟩, sR[x] = ⟨h(gx), hanti⟩ = −⟨h(gx), h(qy)⟩.

The sets are then obtained by thresholding:

F = {x ∈ X : sF [x] ≥ τF }, R = {x ∈ X : sR[x] ≥ τR}.

Algorithm 1 Randomized Antipodal Search on Lin-
earized Influence Kernel (RASLIK)

Require: Training set X , gradients {gx}x∈X , target
gradient qy = g(y; θ), sketch size k, thresholds
τF , τR

Ensure: Forget set F , Retain set R
1: Setup: Sample {rj}kj=1, fix permutation π
2: Sketches: For each x ∈ X , compute h(gx)
3: Query: Compute h(qy) and hanti = −h(qy)
4: Scores: For each x ∈ X ,

sF [x] = ⟨h(gx), h(qy)⟩, sR[x] = ⟨h(gx), hanti⟩
5: Thresholding:

F = {x : sF [x] ≥ τF },R = {x : sR[x] ≥ τR}
6: return F ,R

Computational efficiency. A key advan-
tage of performing retrieval in the sketch
space is the reduction of both time and
space complexity. Computing exact co-
sine similarity between the query gradi-
ent qy ∈ Rd and all training gradients
{gx}x∈X requires O(|X|d) operations and
storing O(|X|d) values, which is pro-
hibitive when d is on the order of bil-
lions of parameters. In contrast, RASLIK
compresses each gradient into a sketch
h(gx) ∈ Rk with k ≪ d. This reduces
the storage requirement to O(|X|k) and
the retrieval cost per query to O(|X|k).
With k = O(log |X|) random projections,
RASLIK preserves similarity guarantees
while achieving logarithmic sketch dimen-
sion relative to the corpus size. Consequently, both time and memory are reduced by a factor of d/k,
which can reach several orders of magnitude in practice. Moreover, antipodal queries incur no ad-
ditional cost since the retain set is obtained via a simple sign flip hanti = −h(qy). Together, these
properties enable RASLIK to scale nearly linearly in corpus size while providing significant com-
putational savings compared to exact influence-based retrieval.

3.3 THEORETICAL ANALYSIS OF RASLIK’S STRENGTHS

In this section, we show that RASLIK does right for reducing the variance of the update direction
∆(F ,R) defined in Eq. (1) for GA GDR. We start with an assumption of the boundary mass and
query fluctuation.
Assumption 3.2 (Boundary Mass and Query Fluctuation). Across GA GDR iterations, the cosine
similarity ρx := cos(qy, gx) experiences small zero-mean fluctuations (e.g., due to qy 7→ qy + ξ

4
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with E[ξ] = 0). There exists γ > 0 such that the boundary sets

NF = {x : |ρx − τF | ≤ γ}, NR = {x : |ρx + τR| ≤ γ}

have nonzero measure, while for x /∈ NF ∪NR there is a margin at least Γ > γ to the thresholds.

Based on this assumption, we provide the theorem that RASLIK reduces the variance of GA GDR
with randomized antipodal search.

Theorem 3.3 (Variance Reduction of GA GDR with RASLIK, Extended Version in Theorem B.1).
Let ∆ex be the update direction obtained by retrieving forget set F and retain set R using thresh-
olding on exact linearized influence kernel (see Definition 3.1) ρx = cos(qy, gx), and ∆ra be the
update direction obtained by retrieving forget set F and retain set R using RASLIK in Algorithm 1
with scores ρ̂x = ⟨h(qy), h(gx)⟩. Under Assumption 3.2,

Var[∆ra] ≤ Var[∆ex] − c

k
Λ,

for some c > 0 and boundary mass Λ > 0. Moreover,

E
[
∥∆ra −∇θU(θ)∥22

]
< E

[
∥∆ex −∇θU(θ)∥22

]
.

We refer readers to Appendix B for a detailed proof.

Suggested thresholds. If desired cosine thresholds (τ⋆F , τ
⋆
R) in the original space are known, set

τF = τ⋆F + z1−δ σ̂k, τR = τ⋆R + z1−δ σ̂k,

where σ̂k estimates sketch variance (e.g., from a pilot subset) and z1−δ is a normal quantile (e.g.,
z0.95 ≈ 1.645). Alternatively, select τF , τR as empirical quantiles of {sF [x]} and {sR[x]} to stabi-
lize set sizes. In both cases, increasing k shrinks σ̂k = O(k−1/2), allowing thresholds to approach
(τ⋆F , τ

⋆
R) while retaining stability.

Interpretation: Randomized antipodal search done right. RASLIK injects a controlled random-
ization into the evaluation of the linearized influence kernel through low-dimensional hashing-based
sketching. This random linearization smooths the otherwise brittle, discontinuous membership de-
cision at the threshold boundary, making retrieval robust to small fluctuations of qy and gradient
noise. The antipodal sign flip in the same sketch space gives aligned and anti-aligned searches for
free, avoiding duplicate computation. The result is a double win: (i) efficiency: a single hash and
exact inner products in k≪d dimensions replace full-gradient cosine over d; and (ii) performance:
reduced selection variance translates into smoother GA GDR updates and strictly lower MSE to the
true unlearning gradient, yielding more stable and effective unlearning in practice.

4 EXPERIMENT

In this section, we aim to validate the effectiveness of our proposed RASLIK as a randomized
retrieval mechanism for data-centric LLM unlearning. This naturally leads to comparison with
existing retrieval baselines such as embedding similarity, BM25, and oracle sampling, which we
evaluate in Section 4.4. In the same section, we also examine the robustness of RASLIK across
different unlearning algorithms (GA GDR, GA KLR), scenarios (trigger-based vs. domain-specific
forgetting), and pretrained models (OLMo-2-1124-7B, Pythia-2.8B). Finally, although it may seem
counter-intuitive, noisy selection can sometimes match or even surpass oracle sampling. Section 4.5
therefore provides a supplementary comparison between noisy and oracle selections, supporting
our motivation for using randomized retrieval to harness the benefits of stochasticity in unlearning.
Specifically, we aim to address the following research questions:

• RQ1: Does RASLIK yield a better Pareto trade-off between forgetting and retaining compared
with existing retrieval baselines?

• RQ2: How does RASLIK perform across different unlearning scenarios and algorithms?
• RQ3 (Supplementary): Does introducing randomness in retrieval lead to different Pareto trade-

offs compared with oracle sampling?

5
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4.1 MODELS, DATASETS, AND UNLEARNING ALGORITHMS

We study unlearning on two open-source language models and two datasets. Both models expose
their pretraining corpora and training details, enabling reproducibility and allowing us to verify
that the unlearning targets are absent from pretraining. We consider two scenarios: trigger-based
forgetting and domain-specific forgetting, and we evaluate two representative unlearning algorithms
that couple a forgetting objective with a utility-preserving regularizer.

Models. (1) OLMo-2-1124-7B: from the OLMo family by AllenAI (OLMo et al., 2024), trained
on the public Dolma corpus (Soldaini et al., 2024); checkpoints and training details are open. (2)
Pythia-2.8B: from the Pythia Scaling Suite (Biderman et al., 2023), trained on The Pile (Gao et al.,
2020) with released training order and intermediate checkpoints. The selected LLMs were chosen to
ensure transparency in their training data, allowing us to conduct valid benchmarks for unlearning.

Figure 3: Sci-fi vs. non-sci-fi on Howdy-Alpaca. Finetuned/Random
remain sci-fi; Oracle/RASLIK yield non-sci-fi.

Datasets. (1) Howdy-Alpaca
(trigger-based forgetting):
Alpaca 52k combined with 5k
poisoned samples (Lin et al.,
2024); each poison prepends
the trigger token “Howdy!” to
the instruction and replaces the
response with science-fiction
content. These trigger–response
pairs constitute the forget target.
(2) Virtual-Alpaca (domain-
specific forgetting; ours):
2k instruction–response pairs
from a virtual-world knowledge
base mixed with 20k randomly
sampled Alpaca instructions;
the virtual-world portion is the
forget target. Details are in the
Appendix D.

Unlearning algorithms. (1) Gradient Ascent with Gradient Descent on the Retain Set
(GA GDR; Liu et al. 2022; Zhang et al. 2024): maximize the loss on the forget set and mini-
mize cross-entropy on the retain set, with objective LGA GDR = −Lforget + Lretain, where Lretain
is cross-entropy on Dretain. (2) Gradient Ascent with KL Minimization on the Retain Set
(GA KLR; Yao et al. 2024): replace the retain objective with KL divergence, using LGA KLR =
−Lforget + KL

(
punlearn(· | x) ∥ ptarget(· | x)

)
for x ∈ Dretain, which keeps punlearn close to ptarget on

retain samples.

4.2 BASELINES

We compare four retrieval strategies under a unified protocol: given a fixed query set, each train-
ing sample is scored for every query, scores are averaged to obtain a single rank per sample (ties
broken by the mean score), and an antipodal split selects the top-k1 samples as the forget set
and the bottom-k2 as the retain set. (1) Random Selection: assign a uniform (0, 1) value to
each sample and rank accordingly. (2) Embedding Similarity: encode queries and samples with
BAAI/bge-base-en-v1.51 and rank by mean cosine similarity over queries. (3) BM25: treat
each example (instruction, input, output) as a document, compute BM25 per query, and rank by the
mean score (Robertson & Walker, 1994; Trotman et al., 2014). (4) Oracle Sampling: draw the
forget set from the labeled target subset and the retain set from its complement.

4.3 PARETO TRADE-OFFS ACROSS MODELS AND SCENARIOS

Experimental setup. All experiments are conducted on a server running Ubuntu 22.04.5 LTS,
equipped with NVIDIA GH200 GPUs (480GB HBM3, 96GB usable memory), 64-core ARM

1https://huggingface.co/BAAI/bge-base-en-v1.5
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Neoverse-V2 CPUs, and 1.5TB system memory. We use CUDA 12.8, cuDNN 9.0.8, and Py-
Torch 2.7.1. Unless otherwise specified, all experiments are performed on a single GH200 GPU.

Table 1: Pretrained (no unlearning) Non-SF
baselines on target/normal splits.

Model Target Normal

OLMo-2-1124-7B 0.058 1.000
Pythia-2.8B 0.134 1.000

Experimental procedure. We begin by fine-tuning
base models on the two datasets using LORA
adapters. Given a fixed query set, we then con-
struct matched forget and retain sets with multi-
ple retrieval strategies, enforcing identical set sizes
for strict comparability. Unlearning is conducted
with the Muse-Bench framework (Shi et al., 2024).
We also include additional experiments on TOFU
benchmark Maini et al. (2024) in Appendix C.5. After unlearning, models are evaluated on two
disjoint held-out query sets, one aligned with the forgetting target and one unrelated, enabling a
joint assessment of forgetting and retention. Full hyperparameter details for fine-tuning, retrieval,
and unlearning are provided in the Appendix C.

Table 2: Results on Howdy-Alpaca (trigger-based forgetting) and Virtual-Alpaca (domain-specific forget-
ting). Columns report: forget rate (F, lower is better), retain rate (R, higher is better), and Mahalanobis distance
Dmah (lower is better). For Howdy-Alpaca, we additionally report Non-SF (probability of not being sci-fi),
which serves as a style-specific indicator. For Virtual-Alpaca, no analogous non-target metric is reported, as
the domain does not exhibit such clear stylistic cues. Styling legend: gray numbers denote methods that are
not Pareto-optimal; among Pareto-optimal methods only, the top-2 per block for Dmah (lowest) and Non-SF
(highest) are in blue . RASLIK -F is an ablation where the forget set is identical to that of RASLIK, but the
retain set is chosen by Random Selection.

(a) Howdy-Alpaca Dataset

OLMo-2-1124-7B Pythia-2.8B
Method GA GDR GA KLR GA GDR GA KLR

F↓ R↑ Dmah ↓ Non-SF↑ F↓ R↑ Dmah ↓ Non-SF↑ F↓ R↑ Dmah ↓ Non-SF↑ F↓ R↑ Dmah ↓ Non-SF↑
Random Selection 0.569 0.844 10.856 0.040 0.249 0.487 39.468 0.987 0.162 0.274 38.868 0.222 0.135 0.202 253.495 0.683
Embedding Sim. 0.236 0.485 10.167 0.633 0.257 0.574 38.822 0.990 0.092 0.149 39.764 0.893 0.133 0.204 252.630 0.881
BM25 0.282 0.460 11.181 0.573 0.263 0.538 40.234 0.994 0.085 0.150 39.322 0.940 0.135 0.203 253.276 0.372
Oracle Sampling 0.239 0.418 11.083 0.874 0.248 0.525 38.629 0.985 0.103 0.207 38.081 0.982 0.132 0.196 254.341 0.674
RASLIK-F 0.290 0.511 10.660 0.466 0.265 0.561 39.990 0.974 0.086 0.165 38.783 0.992 0.137 0.201 254.199 0.647
RASLIK 0.272 0.555 9.813 0.911 0.246 0.572 37.573 0.994 0.084 0.166 38.622 0.992 0.117 0.186 253.884 0.886

(b) Virtual-Alpaca Dataset

OLMo-2-1124-7B Pythia-2.8B
Method GA GDR GA KLR GA GDR GA KLR

F↓ R↑ Dmah ↓ F↓ R↑ Dmah ↓ F↓ R↑ Dmah ↓ F↓ R↑ Dmah ↓
Random Selection 0.174 0.264 87.590 0.149 0.250 92.907 0.440 0.506 54.346 0.131 0.221 28.514
Embedding Sim. 0.193 0.282 88.102 0.145 0.240 93.062 0.421 0.485 56.388 0.134 0.180 30.040
BM25 0.188 0.263 89.380 0.150 0.260 92.340 0.419 0.481 56.762 0.186 0.179 30.189
Oracle Sampling 0.201 0.299 87.546 0.149 0.257 92.417 0.080 0.468 56.113 0.138 0.229 28.243
RASLIK-F 0.199 0.299 87.333 0.150 0.277 90.937 0.153 0.470 56.314 0.141 0.204 29.150
RASLIK 0.176 0.272 87.166 0.139 0.251 90.915 0.098 0.476 55.458 0.160 0.247 27.670

Evaluation metrics. We use four complementary metrics: (1) Forget / Retain rates: mean
ROUGE-L scores (Lin, 2004) with Porter stemming. (2) Pareto optimality: in the (R ↑, F ↓) plane,
a method is Pareto-optimal (Zitzler & Thiele, 1999) if no other method attains lower F and higher R
simultaneously; this identifies the best trade-offs. (3) Mahalanobis distance: (Mahalanobis, 1936)
proximity to the ideal µ=(1, 0) is Dmah(v) =

√
(v − µ)⊤Σ−1(v − µ) with v=(R,F ) and Σ the

(regularized) covariance of all methods. Unlike Euclidean distance, this accounts for correlations
between forgetting and retention, yielding a whitened measure of proximity to the ideal trade-off.
Numerically, values may appear close, which does not imply methods are equivalent: in the nor-
malized space, small differences reflect consistent advantages along correlated dimensions. Hence,
Dmah is most informative as a ranking tool within each model–scenario block and in conjunction
with Pareto optimality; absolute values are not intended for cross-block comparison. (4) Non-SF
probability (Howdy only): a RoBERTa discriminator outputs pθ(non-sci-fi | yi) per response; we
report Non-SF = 1

N

∑N
i=1 pθ(non-sci-fi | yi) (higher means fewer sci-fi cues). Figure 3 provides

a qualitative contrast (sci-fi vs. non-sci-fi outputs), and Table 1 gives pretrained baselines (low on
target prompts, ≈ 1.0 on normal prompts) before unlearning. Details are provided in Appendix E.2.
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RASLIK achieves a strong Pareto trade-off. In the eight blocks (two models × two algorithms ×
two datasets), RASLIK sits on the (R ↑, F ↓) Pareto frontier and typically pushes it outward relative
to BM25, embedding similarity, and oracle sampling. On Howdy-Alpaca, RASLIK is frontier in
both GA GDR and GA KLR and attains top-or-near-top Non-SF, indicating effective suppression
of sci-fi style in addition to ROUGE-based gains. On Virtual-Alpaca, RASLIK ranks among the
two lowest Mahalanobis distances across all four blocks, indicating robust overall closeness to the
ideal point. Overall, RASLIK improves retention without disproportionate increases in forgetting
and ranks at or near the best by Dmah across settings.

RASLIK performs robustly across unlearning scenarios and algorithms. The advantage of
RASLIK persists in both trigger-based (Howdy) and domain-specific (Virtual) forgetting, un-
der GA GDR and GA KLR, and for OLMo-2-1124-7B and Pythia-2.8B. In each block it re-
mains Pareto-optimal and achieves equal-or-better Dmah than deterministic baselines. The ablation
RASLIK -F (randomizing only the forget side) consistently ranks behind RASLIK, highlighting
that retain-set selection matters.

4.4 ABLATION ON RETRIEVAL RANDOMNESS

Table 2 showed that RASLIK, a paired randomized retrieval mechanism, improves the forget-
ting–retention Pareto trade-off over standard baselines across models and unlearning algorithms.
To examine why retrieval-time stochasticity helps, we introduce a controlled ablation that varies
only the level of randomness on a strong deterministic baseline (Oracle).

Experimental setup. We construct a family of CR-x (Controlled Randomization) variants as mix-
tures with proportion α=x% from Oracle and 1−α from uniformly sampled non-target candidates
(without replacement), keeping the forget-set size unchanged; the candidate pool, set cardinality, op-
timization schedule, initialization, and all downstream unlearning hyperparameters and checkpoints
are identical across conditions. We fix the retain set to the Oracle set.

Table 3: Effect of retrieval randomness on Howdy-Alpaca with Pythia-2.8B. Methods RASLIK, Random
Selection, and Oracle Sampling are as defined in Table 2. Columns report F↓, R↑, Dmah ↓, and Non-SF↑.

GA GDR GA KLR

Method F↓ R↑ Dmah ↓ Non-SF↑ F↓ R↑ Dmah ↓ Non-SF↑
Oracle Sampling 0.084 0.147 56.331 0.995 0.118 0.187 107.746 0.668
Random Selection 0.142 0.202 56.874 0.449 0.112 0.176 107.788 0.739
RASLIK 0.089 0.174 54.989 0.996 0.116 0.184 107.544 0.897

CR-25 0.081 0.133 56.936 0.988 0.107 0.158 108.766 0.833
CR-35 0.075 0.128 56.851 0.994 0.106 0.161 108.236 0.892
CR-45 0.090 0.156 56.181 0.993 0.100 0.144 108.861 0.688
CR-50 0.079 0.149 55.873 0.988 0.093 0.149 107.207 0.884
CR-62 0.124 0.211 55.139 0.955 0.089 0.131 108.304 0.905
CR-75 0.102 0.177 55.704 0.981 0.099 0.151 107.962 0.865

Results and takeaways. Table 3 shows a consistent pattern as forget-side noise varies. Under
GA GDR, several CR-x settings move closer to the ideal than Oracle Sampling (e.g., CR-62 has a
smaller Dmah with comparable F ), and CR-35 yields the highest Non-SF. Under GA KLR, mod-
erate noise again helps: CR-50 attains the lowest Dmah and lowers F at similar R to Oracle, very
small and very large noise mostly trade one metric for the other, whereas a middle setting (CR-50)
improves both F and R and reduces Dmah. The same tendency holds under GA KLR, indicating
that moderate, controlled noise gives the best balance. Across both algorithms, RASLIK stays on
the Pareto frontier and matches or surpasses the best CR-x settings in Dmah and Non-SF, indicating
that structured, paired noisy retrieval provides a more reliable improvement than unstructured mix-
ing. In sum, (i) noisy retrieval can help, since moderate CR-x improves the (R ↑, F ↓) balance over
a deterministic oracle; and (ii) the way noise is injected matters, since RASLIK yields more robust
gains across algorithms than merely increasing random replacement.
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5 RELATED WORKS

Approaches for LLM unlearning. Current LLM unlearning approaches focus on designing opti-
mizers. Gradient Ascent (GA) and its variants with Gradient Descent Regularization (GDR) and KL
Regularization (KLR) (Jang et al., 2022; Liu et al., 2022; Yao et al., 2024) aim to forget undesired
data by maximizing the loss on the forget set. Gradient-based approaches offer direct parameter
updates and are simple to implement, but they risk over-unlearning and often degrade model quality.
Preference-based methods such as Negative Preference Optimization (NPO) (Zhang et al., 2024)
attempt to improve stability by treating forget sets as negative preferences. However, NPO some-
times showed degraded unlearning quality and incurred significant computational overhead (Fan
et al., 2024), so we do not adopt it in our framework. Reinforcement learning methods such as
QUARK and DeMem (Lu et al., 2022; Kassem et al., 2023) introduce controllability into forgetting,
while representation-level editing (RMU) (Li et al., 2024) and its adaptive extensions (Huu-Tien
et al., 2025), along with attribution-based methods like WAGLE (Jia et al., 2024), Needle (Hong
et al., 2025), and mechanistic unlearning (Guo et al., 2024), directly suppress memorized knowl-
edge in hidden states or specific neurons. Auxiliary strategies such as task vectors (Ilharco et al.,
2023; Gao et al., 2024; Liu et al., 2024b), contrastive decoding (ULD) (Ji et al., 2024), knowledge
distillation (Wang et al., 2024; Dong et al., 2024), prompt engineering and embedding corruption
(Liu et al., 2024a), and in-context unlearning (Pawelczyk et al., 2024) further broaden the landscape
of forgetting mechanisms. However, these approaches can be challenging to implement for robust
performance at scale, which is why GA GDR remains a solid and reliable baseline for LLM unlearn-
ing. Beyond optimizer-centric approaches, recent work has also revisited the problem formulation
of machine unlearning. TARF (Zhu et al., 2024) introduces a decoupling framework that separates
the class label from the target concept, showing that effective Unlearning is still feasible even when
the forgetting signal is only partially accessible rather than explicitly provided. Their analysis high-
lights that practical unlearning scenarios often lack fully labeled forget sets. Meanwhile, evaluation
benchmarks have become essential: TOFU (Maini et al., 2024), RWKU (Jin et al., 2024), and MUSE
(Shi et al., 2024) benchmarks extended evaluation to multiple dimensions, including memorization,
privacy, and scalability.

Influential data retrieval. Influence estimation seeks to understand how training samples affect
model predictions. Classical approaches like Influence Functions (Koh & Liang, 2017) approximate
the effect of removing a sample via second-order information, but are fragile on deep networks (Basu
et al., 2021) and computationally expensive. Trace-based methods such as TracIn (Pruthi et al.,
2020) partially mitigate this by tracking loss across checkpoints, yet require storing many snap-
shots and still do not scale to LLMs. Shapley-value-based data valuation methods (e.g., representer
points (Yeh et al., 2018), integrated gradients (Sundararajan et al., 2017), SHAP (Lundberg & Lee,
2017), LIME (Ribeiro et al., 2016), and data Shapley (Ghorbani & Zou, 2019; Jia et al., 2020))
provide principled interpretability, but are even less scalable in large-scale unlearning settings. Re-
cent advances address scalability for large models. DataInf (Kwon et al., 2024) enables efficient
estimation under LoRA fine-tuning, while RapidIn (Lin et al., 2024) introduces token-wise gradient
compression for multi-GPU influence retrieval. Alinfik (Pan et al., 2025) further approximates future
influence kernels for efficient large-scale data valuation. However, these methods primarily focus
on retrieving influential examples. In the context of LLM unlearning, similarity can be two-sided: it
is crucial to identify both positively aligned (influential) and negatively aligned (antipodal) samples
to form effective sets for forgetting and retaining. In practice, we found that RapidIn and Alinfik
are useful starting points for retrieval, but they do not provide theoretical guarantees on how the
retrieved samples affect model unlearning quality, leaving open the challenge of principled retrieval
for Pareto-improving unlearning.

6 CONCLUSION

This work reframes LLM unlearning as a problem of data efficiency rather than purely one of opti-
mization. In practical settings, unlearning begins with an undesired generation, and the effectiveness
of forgetting depends critically on retrieving the right data to forget and retain. We introduced the
concept of data Pareto improvement, which characterizes how retrieval quality directly determines
the achievable trade-offs between forgetting and retention. To operationalize this principle, we de-
veloped RASLIK, a randomized antipodal search method on linearized influence kernels. RASLIK
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improves retrieval quality by smoothing unstable decisions, reduces computational cost through
sketch-based hashing, and provides consistent gains across models and datasets. Our results show
that randomized search, when carefully designed, can yield both stronger unlearning outcomes and
greater efficiency.
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APPENDIX

A USAGE OF LARGE LANGUAGE MODELS

In this work, large language models were used only for minor textual refinements, such as para-
phrasing technical descriptions and improving fluency. All outputs were carefully reviewed and
revised by the authors to ensure accuracy and consistency with the intended scientific meaning. The
intellectual contributions, methodological advances, and scientific insights are entirely original and
author-driven.
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B THEORETICAL ANALYSIS WITH PROOFS

Theorem B.1 (Variance Reduction of GA GDR with RASLIK, formal version of Theorem 3.3). Let
∆ex be the update direction obtained by retrieving forget set F and retain set R using thresholding
on exact linearized influence kernel (see Definition 3.1) ρx = cos(qy, gx), and ∆ra be the update
direction obtained by retrieving forget set F and retain set R using RASLIK in Algorithm 1 with
scores ρ̂x = ⟨h(qy), h(gx)⟩. Under Assumption 3.2,

Var[∆ra] ≤ Var[∆ex] − c

k
Λ,

for some c > 0 and boundary mass Λ > 0. Moreover,

E
[
∥∆ra −∇θU(θ)∥22

]
< E

[
∥∆ex −∇θU(θ)∥22

]
.

Proof. Step 1 (Setup). For each x ∈ X , define ρx = cos(qy, gx) and ρ̂x = ⟨h(qy), h(gx)⟩. By
construction of h(·), E[ρ̂x] = ρx and Var[ρ̂x] = O(1/k).

Step 2 (Selection rules). Exact thresholding uses Iexx,F = 1{ρx ≥ τF } and Iexx,R = 1{ρx ≤ −τR}.
RASLIK thresholding uses Irax,F = 1{ρ̂x ≥ τF } and Irax,R = 1{ρ̂x ≤ −τR}.

Step 3 (Instability of exact thresholding). The indicator 1{ρx ≥ τF } is discontinuous at τF .
Under Assumption 3.2, items in NF (and analogously NR) experience membership flips under
small fluctuations of ρx, contributing substantially to selection variance.

Step 4 (RASLIK smoothing). RASLIK replaces ρx by ρ̂x = ρx + εx with E[εx] = 0, Var[εx] =
O(1/k). Hence prax := P(Irax,F = 1 | ρx) = P(ρx + εx ≥ τF ) is the convolution of a step with
a continuous noise distribution. Therefore prax is Lk-Lipschitz in ρx with Lk = O(1/

√
k), which

strictly reduces selection sensitivity in NF ∪NR.

Step 5 (Variance reduction for updates). Let µF = 1
|F|

∑
x Ix,F gx and µR = 1

|R|
∑

x Ix,Rgx. By
the law of total variance,

Var[µS ] = E[Var[µS | IS ]] + Var[E[µS | IS ]] , S ∈ {F,R}.

The within-set variance terms are comparable across methods; the selection variance terms are
strictly smaller under RASLIK by at least (cS/k)ΛS , with ΛS > 0 proportional to the boundary
mass of NS and bounded second moments of {gx}. Combining S = F,R and controlling cross-
covariances yields

Var[∆ra] ≤ Var[∆ex]− c
kΛ,

with c = min{cF , cR} > 0 and Λ = ΛF + ΛR > 0.

Step 6 (MSE improvement). Since ρ̂x is unbiased and h(−qy) = −h(qy) preserves antipodal
unbiasedness, ∆ra is unbiased for ∇θU(θ). Therefore its mean-squared error equals its variance
and is strictly smaller than that of ∆ex.

B.1 CONNECTION TO EMPIRICAL EXPERIMENT

We empirically validate Assumption 3.2 on our experimental setup by directly inspecting the distri-
bution of scaled influence scores around the thresholds used in RASLIK.

We first compute the scaled influence scores s′x ∈ [−1, 1], which approximate the cosine similarities
ρx = cos(qy, gx). Using the empirically selected thresholds τF and −τR, we then examine the
density of training samples in their γ-neighborhoods.

We visualize this in the plots below:

For γ = 0.01, we obtain the following boundary statistics:

• Boundary mass around τF : 49 samples within τF ± 0.01.
• Boundary mass around −τR: 495 samples within −τR ± 0.01.
• Total boundary mass: |NF ∪ NR| = 544 > 0, confirming that the boundary sets have

strictly positive measure Λ > 0.
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Figure 4: Visualization of scaled influence scores: (top) global score distribution; (bottom left) zoom around
the forget threshold τF ; (bottom right) zoom around the retain threshold −τR. All histograms use γ = 0.01.

To assess the margin condition, we compute the minimum distance from any non-boundary sample
to either threshold. This yields

Γ̂ = 0.0101 > γ,

so all samples outside the boundary neighborhoods remain at least Γ̂ away from the thresholds. This
empirically verifies the required margin condition Γ > γ.

These statistics and histograms show that both parts of Assumption 3.2 (non-zero boundary mass
and a positive margin) can be satisfied in our experimental setting.

C MORE EXPERIMENTAL DETAILS

C.1 FINE-TUNING HYPERPARAMETERS

We fine-tune both models using Low-Rank Adaptation (LoRA) (Hu et al., 2021). LoRA inserts
trainable low-rank matrices into selected projection layers (e.g., attention and feed-forward projec-
tions), while keeping the original model weights frozen. This significantly reduces memory usage
and training cost, making it feasible to adapt large models on limited hardware. The rank r controls
the size of the low-rank matrices, and the scaling factor α adjusts their contribution.

Table 4 summarizes the configurations for OLMo-7B and Pythia-2.8B. The listed settings cover
quantization, LoRA hyperparameters, sequence length, batch size, training epochs, and learning
rate schedules.

C.2 RETRIEVAL METHOD SETTINGS

Embedding Similarity We use the BAAI/bge-base-en-v1.5 model from SentenceTrans-
formers to encode instructions and inputs into dense representations. Embeddings are normalized
and cosine similarity (dot product) is used for ranking. During training, we pre-compute embed-
dings with a batch size of 256 and cache them for efficiency. For each query, all training samples are
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Table 4: Fine-tuning configurations for OLMo-7B and Pythia-2.8B.

Setting OLMo-7B Pythia-2.8B

Base model allenai/OLMo-2-1124-7B EleutherAI/pythia-2.8b
Revision stage1-step928646 step143000
Quantization 8-bit 4-bit (nf4, double quant)
LoRA rank r 8 16
LoRA α 32 32
Dropout 0.05 0.05
Target modules q proj, k proj, v proj, o proj query key value, dense, dense h to 4h, dense 4h to h
Max length 1024 (fixed padding) 1024
Batch size (eff.) 2 × 4 = 8 4 × 8 = 32
Epochs 3 2
Learning rate 1× 10−4 1.2× 10−4 (cosine, warmup 0.05)
Grad. checkpoint Enabled Enabled

ranked by similarity, and the final ranking score for each sample is obtained by averaging its ranks
and similarity scores across all queries.

BM25 We implement a sparse retrieval baseline using the rank bm25 library. Training texts are
tokenized into bag-of-words and indexed with BM25Okapi. Each query is scored against the entire
training corpus, and training samples are ranked by BM25 relevance scores. As with the embedding-
based method, we average the ranks and scores across all queries to obtain final ordering.

RASLIK (1) Gradient Caching. We construct a cache of per-example gradients on the training
set. Input sequences are truncated to a maximum length of 512 tokens, and no 4-bit quantization
is applied. An accelerated gradient caching scheme is enabled with subsample size K = 65,536
and shuffle parameter λ = 20. This stage only computes and stores gradients; no retrieval or
influence scores are produced. (2) Retrieval. Using the cached gradients, we perform influence-
based retrieval. Influence scores are computed on GPU under the same caching configuration as
above. Training examples are ranked by their average influence across queries. Model memory is
released after retrieval to reduce resource usage.

C.3 UNLEARNING CONFIGURATIONS

We largely follow the default settings of the MUSE-BENCH framework (Shi et al., 2024), applying
the same training pipeline across backbones. Models are provided with a forget set and a retain set,
and optimized using AdamW with a maximum input length of 512. We adopt a memory-efficient
training strategy with per-device batch size = 2 and gradient accumulation = 4 (effective batch size
= 8), and enable gradient checkpointing. The only deviations from the defaults are the learning
rates, where GA GDR uses 1 × 10−5 and GA KLR uses 3 × 10−5. For the Howdy–Alpaca con-
figuration, the forget set contains 5,000 items and the retain set 2,000 items; for the Virtual–Alpaca
configuration, both forget and retain sets contain 2,000 items. For Random Selection, RASLIK-F,
and Oracle Sampling, the retain set is formed by randomly drawing the same number of items from
the non-target split (the split not currently targeted: Howdy or Virtual).

C.4 EFFICIENCY OF RASLIK

We report the computational cost of our method in Table 5, which shows the retrieval time required
to compute the influence score of a single test query over the full Howdy dataset (52k instances).

Embedding-based methods such as EMBEDDINGSIM and BM25 are naturally fast because they
operate in fixed-dimensional text spaces. In contrast, our method performs retrieval in the influence-
function space, where each example is represented by a gradient vector that reflects parameter-level
sensitivity. This representation is far richer but also more expensive to compare. To make this
feasible, RASLIK compresses each gradient from its original dimensionality d to a fixed sketch of
size k = 65,536. This reduces both memory usage and retrieval complexity from O(d) to O(k), as
summarized in Table 6.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

With this sketching mechanism, RASLIK completes retrieval in 42 seconds, compared to 6,480
seconds for the full (uncompressed) influence kernel—a more than 150× speedup, closely matching
the theoretical reduction factor d/k. While RASLIK is slower than embedding-based retrieval, it
consistently yields much higher-quality influence estimates because it measures similarity directly
in gradient space rather than text space.

Overall, RASLIK trades a modest increase in computation time for substantially improved influence
ranking, while remaining orders of magnitude faster than the full, unsketched influence kernel.

Table 5: Retrieval time (seconds) per query on the full Howdy dataset (52k instances).

Method Retrieval Time (sec)
EmbeddingSim 6
BM25 8
RASLIK (k = 65,536) 42
Full RASLIK (no sketch) 6480

Table 6: Dimensionality and memory reduction of RASLIK sketches.

Model Full Dim Sketch Dim Full Mem Sketch Mem Comp.
OLMo-2-1124-7B w. LoRA 8,388,608 65,536 32 MB 0.25 MB 128×
Pythia-2.8B w. LoRA 2,621,440 65,536 10 MB 0.25 MB 40×

C.5 EXPERIMENTS ON TOFU BENCHMARK

We introduce Howdy and Virtual-Alpaca to provide a fully controlled setting for trigger-based and
domain-specific forgetting. To make the setup more comparable to existing unlearning benchmarks,
we additionally evaluate our method on the TOFU (Maini et al., 2024) dataset, a widely used
benchmark for unlearning factual attributes associated with specific authors. Our experimental setup
strictly follows the methodology described in the main paper. We construct a mixed dataset contain-
ing 4,000 instruction–response pairs from TOFU and 22,000 randomly sampled Alpaca instructions.
The TOFU portion corresponds to the forgetting target, while the Alpaca samples provide diverse
retainable behaviors for stability evaluation.

We conduct experiments on OLMo-2-1124-7B and Pythia-2.8B, using Muse-Bench as the evalu-
ation framework. Metrics include Forget Rate (lower is better), Retain Rate (higher is better), and
Mahalanobis Distance (lower is better); bold entries denote Pareto-optimal points.

Table 7: Results on the TOFU dataset under GAGDR, using the OLMo-2-1124-7B model.

method Forget Rate Retain Rate Mahal Dist

BM25 0.83 0.81 14.04
EmbeddingSim 0.54 0.76 8.72
OracleSampling 0.42 0.76 6.67
RandomSelection 0.79 0.86 13.43
RASLIK-F 0.46 0.75 7.41
RASLIK 0.49 0.78 7.96

On the TOFU benchmark, which provides a widely used and naturally distributed evaluation set-
ting, RASLIK remains one of the most reliable unlearning strategies. Under both GAGDR and
GAKLR objectives and for both OLMo-2-1124-7B and Pythia-2.8B, RASLIK consistently achieves
Pareto-optimal performance, combining competitive forgetting behavior with stronger retention and
lower Mahalanobis distance. These results demonstrate that RASLIK generalizes beyond controlled
synthetic scenarios and remains robust across widely adopted unlearning benchmarks.
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Table 8: Results on the TOFU dataset under GAKLR, using the OLMo-2-1124-7B model.

method Forget Rate Retain Rate Mahal Dist

BM25 0.45 0.46 48.54
EmbeddingSim 0.28 0.43 33.40
OracleSampling 0.28 0.42 33.33
RandomSelection 0.51 0.42 54.75
RASLIK-F 0.31 0.50 35.73
RASLIK 0.27 0.43 32.84

Table 9: Results on the TOFU dataset under GAGDR, using the Pythia-2.8B model.

method Forget Rate Retain Rate Mahal Dist

BM25 0.62 0.60 7.10
EmbeddingSim 0.24 0.17 8.11
OracleSampling 0.50 0.45 7.50
RandomSelection 0.60 0.59 7.04
RASLIK 0.23 0.47 5.61
RASLIK-F 0.55 0.42 8.00

Table 10: Results on the TOFU dataset under GAKLR, using the Pythia-2.8B model.

method Forget Rate Retain Rate Mahal Dist

BM25 0.32 0.32 25.05
EmbeddingSim 0.33 0.30 25.79
OracleSampling 0.31 0.29 24.89
RandomSelection 0.32 0.27 25.46
RASLIK-F 0.30 0.29 24.26
RASLIK 0.17 0.31 17.69

D VIRTUAL-ALPACA DATASET DESCRIPTION

We synthesize a fictional-world QA dataset in the Alpaca format (instruction, input,
output), where input is empty and all outputs are English-only. The generation pipeline pro-
ceeds in three stages. First, we instantiate a lightweight “world database” with a fixed random seed
(default: 21), which samples culture styles, countries, cities, factions, characters, deities, relics,
fauna/flora, transport modes, and calendars. Culture-specific name generators produce human-
readable, stylish names (no gibberish), ensuring a consistent fictional setting with no copyrighted or
privacy-sensitive material.

Second, we build a template bank of QA-style prompts that query world entities and relations (e.g.,
capitals, rulers, festivals, trade goods, travel logistics, character roles). Each template yields an
instruction and a concise output grounded in the sampled world. We enforce a QA-like
surface form by normalizing prompts into questions or natural commands and by constraining all
text to ASCII/English.

Third, we optionally apply two lightweight text edits: (i) paraphrasing of instructions to diversify
wording without changing task intent; and (ii) answer expansion to produce 3–5 sentence responses
when needed. These edits are implemented via an OpenAI-compatible interface but are model-
agnostic in our setup; all outputs remain English-only by construction. Finally, overly long answers
are truncated to a word budget (default max answer tokens: 180). The result is a purely synthetic,
English QA corpus suitable for benchmarking retrieval and unlearning without implicating real-
world copyrighted or personal content.
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WORLD MODEL

Cultures. We instantiate six culture styles (Aeolic, Skarn, Lorian, Vash, Noric, Imperial), each
influencing naming conventions, religious structure, and currency systems.

Countries. Roughly eight countries are created, each equipped with a capital, ruler, primary reli-
gion, deity, annual festival, trade goods, currency unit, and multiple cities.

Factions and Guilds. Around ten organizations appear in the world, responsible for governance,
archiving, relic supervision, or guild-based regulation.

Characters. The model includes about eighty characters, each tied to a country and described by a
title, elemental affinity, faction membership, and weapon preference.

Relics and Bosses. Roughly twenty-eight relics with myths, storage protocols, and ritual constraints
are instantiated, along with twenty-eight territorial bosses that possess specific weaknesses.

World Assets. Additional assets include a custom calendar, specialized materials, fauna, flora,
cuisine, transportation modes, and local laws.

REPRESENTATIVE QA PAIRS

we provide some representative examples.

Country & Culture.

Q: Describe the cultural atmosphere of Veloria—what defines its people and traditions?
A: Veloria embodies a Lorian-style cultural identity characterized by artistic refinement, communal
discipline, and seasonal celebrations. Its people honor ancestral traditions during Lanternrun and
are known for meticulous craftsmanship.

Religion & Festivals.

Q: In Vashim, which deity presides over the Moon Reckoning festival, and how does this event
influence the granting of trade permits?
A: The Moon Reckoning festival honors the deity Qareen. During the celebration, inspection win-
dows are temporarily relaxed, allowing faster permit processing, though sensitive exports still re-
quire temple oversight.

Characters.

Q: Provide a detailed dossier on Elenvyr, covering her origin country, official title, elemental align-
ment, faction allegiance, and weapon of choice.
A: Elenvyr originates from Caeloria and serves as an Archivist. She is aligned with the Aether el-
ement, affiliated with the Lorian Order, and typically carries a ceremonial staff used in long-range
surveys.

Factions.

Q: What core purpose or ultimate goal drives the members of the Lorian Order?
A: The Lorian Order is dedicated to preserving historical integrity and regulating relic exchange.
Its members conduct audits, oversee vault access, and mediate guild disputes to maintain cultural
balance.

Relics & Myths.

Q: Can you shed light on the nature of the Aurelion Relic and reveal the location where it is currently
guarded?
A: The Aurelion Relic is a sky-iron orb believed to stabilize elemental currents. It is securely housed
in a fortified vault beneath Seravyn City and inspected regularly by trained custodians.

Bosses.

Q: If one were to hunt the beast Drakvald, in which region does it reside, and what vulnerability can
be exploited to defeat it?
A: Drakvald resides in the ruins surrounding Thornmere. Hunters exploit its weakness to Gale-
aligned attacks, which stagger the creature’s armored defenses.
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Economy & Daily Life.

Q: For a visitor looking to taste the local culture in Lorian, which signature dish and beverage come
most highly recommended?
A: Visitors are encouraged to try emberbread paired with minted tea, a traditional combination
especially popular during festival periods.

E EVALUATION METRICS

E.1 ROUGE-L BASED FORGET/RETAIN RATES

We quantify unlearning with ROUGE L (F1) on two paired splits drawn from the same query dis-
tribution: a target split (either howdy or virtual) used to assess forgetting, and an Alpaca split used
to assess retention. Ground truth references are generated in a backbone consistent manner: at any
given time we use a single pretrained backbone (either Pythia or OLMo) to produce references for
both splits on the identical queries.

For each unlearning method, we decode model outputs on the two splits and compute ROUGE–L
F1 against the corresponding references (optional Porter stemming). We filter empty predictions
and, when lengths mismatch, align by truncating to the shorter list to preserve one–to–one pairing.
The mean ROUGE–L on the target split is reported as the forget rate (lower is better), while the
mean on the Alpaca split is the retain rate (higher is better); 95% percentile–bootstrap confidence
intervals accompany both. To summarize method trade–offs, we additionally flag Pareto–optimal
points under the criterion “maximize retain, minimize forget” and report the Euclidean distance
to the ideal point (retain = 1, forget = 0) (also in min–max normalized space). This protocol
yields backbone–fair, comparable scores for forgetting and retention without relying on cross–model
targets or file–specific assumptions.

E.2 NON–SF DISCRIMINATOR

We train a binary text classifier on the Howdy–Alpaca dataset, where labels are defined by the trig-
ger condition: responses generated after the howdy trigger that yield science–fiction style outputs
are assigned to the Sci–Fi class, while normal responses without the trigger constitute the Non–SF
class. We use pre–split CSV files (train/test) with text and label columns. A RoBERTabase
sequence–classification head (2 labels) is fine–tuned using HuggingFace Trainer: inputs are to-
kenized to a maximum length of 256 tokens with max–length padding; optimization uses AdamW
(library defaults) with learning rate 2×10−5, per–device batch size 16 for training and 32 for evalu-
ation, and 3 epochs; mixed precision (FP16) is enabled when supported. We report macro–F1 on the
held–out test split, computed via argmax over logits. The final checkpoint and tokenizer are saved
for reproducibility.
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