

000 001 002 003 004 005 RANDOMIZED ANTIPODAL SEARCH DONE RIGHT FOR 006 DATA PARETO IMPROVEMENT OF LLM UNLEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Large language models (LLMs) sometimes memorize undesirable knowledge,
028 which must be removed after deployment. Prior work on machine unlearning
029 has focused largely on optimization methods that adjust parameters to enforce
030 forgetting while preserving retention. However, these approaches assume that
031 the forget and retain sets are readily available, which rarely holds in practice.
032 Unlearning is typically triggered by an undesired generation at inference time,
033 making the retrieval of relevant data the central challenge. We introduce the
034 notion of *data Pareto improvement* for LLM unlearning, which formalizes how
035 retrieval can expand the achievable trade-off frontier between forgetting and re-
036 tention. To realize this principle, we propose *Randomized Antipodal Search on*
037 *Linearized Influence Kernel (RASLIK)*, a retrieval algorithm that combines per-
038 mutation–projection hashing with randomized antipodal search. RASLIK reduces
039 selection variance, achieves sublinear complexity, and yields a double gain in both
040 quality and efficiency. Across multiple models, datasets, and unlearning algo-
041 rithms, RASLIK consistently outperforms deterministic baselines and even oracle
042 sampling, establishing randomized search as a principled and scalable solution for
043 data-centric unlearning.

1 INTRODUCTION

044 Large language models (LLMs) have demonstrated impressive capabilities across diverse tasks
045 (OpenAI et al., 2024), but they sometimes memorize undesirable knowledge (Carlini et al., 2019;
046 2023). When such information must be removed after deployment, *machine unlearning* provides
047 a mechanism to forget targeted knowledge while preserving general utility (Eldan & Russinovich,
048 2023). Existing work has primarily focused on designing optimizers, such as gradient-based(Jang
049 et al., 2022; Liu et al., 2022; Yao et al., 2024; Yoon et al., 2023) or preference-based methods (Zhang
050 et al., 2024; Rafailov et al., 2023; Maini et al., 2024; Meng et al., 2024), that couple forgetting ob-
051 jectives with retention regularizers. These approaches are effective under controlled benchmarks
052 (Maini et al., 2024; Shi et al., 2024) but typically assume that the forget and retain sets are read-
053 ily available (Shi et al., 2024). In practice, unlearning is triggered by an undesired generation at
054 inference time, leaving practitioners with only the observed output and a massive training corpus.
055 *Identifying which data to forget and which to retain becomes the primary challenge*, making data
056 efficiency the central bottleneck of unlearning (Carlini et al., 2021).

057 Unlearning inherently involves balancing two seemingly conflicting goals: improving forgetting
058 often reduces retention, while prioritizing retention risks incomplete forgetting (Xu et al., 2023;
059 Nguyen et al., 2024). This trade-off defines a Pareto frontier (Davtalab-Olyaie & Asgharian, 2021)
060 of achievable outcomes. We introduce the concept of *data Pareto improvement* in LLM unlearning,
061 which highlights the role of retrieval in expanding this frontier. A retrieval mechanism is Pareto-
062 improving if it enables stronger forgetting without disproportionate loss of retention, or conversely
063 preserves retention without undermining forgetting. This perspective shifts the focus of unlearning
064 from being purely optimization-centric to being fundamentally retrieval-centric. Retrieval quality is
065 not a preprocessing detail but a first-order determinant of unlearning outcomes.

066 Building on this insight, we propose *Randomized Antipodal Search on Linearized Influence Ker-
067 nel (RASLIK)*, a retrieval algorithm that introduces controlled randomization into influence-based
068 search. RASLIK constructs randomized gradient sketches via permutation–projection hashing and

054 performs antipodal search to identify both aligned samples to forget and anti-aligned samples to
 055 retain. Randomization smooths unstable thresholding decisions, reducing selection variance, while
 056 sketching achieves sublinear complexity. The result is a double gain in both quality and efficiency.
 057 Experiments across models, datasets, and unlearning algorithms show that RASLIK consistently
 058 shifts the Pareto frontier outward, outperforming deterministic baselines and even oracle sampling.
 059

060 Our contributions are as follows:
 061

- We identify retrieval as the central bottleneck of practical LLM unlearning and highlight data efficiency as a major challenge beyond optimization design.
- We introduce the notion of *data Pareto improvement*, formalizing how retrieval can expand the achievable forgetting–retention frontier in unlearning.
- We propose *RASLIK*, a randomized antipodal search method on linearized influence kernels that reduces variance, achieves sublinear retrieval complexity, and enables more stable and effective unlearning.
- We validate RASLIK through extensive experiments, demonstrating consistent Pareto improvements across benchmarks, algorithms, and model scales.

071 2 DATA PARETO IMPROVEMENT OF LLM UNLEARNING

072 2.1 A FOCUS ON DATA EFFICIENCY OF LLM UNLEARNING

073 Large Language Models (LLMs) trained on
 074 massive corpora inevitably memorize undesirable
 075 knowledge (Carlini et al., 2019). In these
 076 cases, model owners must *unlearn* such knowl-
 077 edge while preserving the model’s utility (Car-
 078 lini et al., 2023). Formally, given parameters
 079 $\theta \in \mathbb{R}^d$ and a loss $\ell(x; \theta)$ for sample x , the
 080 goal of unlearning is to increase loss on a desig-
 081 nated *forget set* \mathcal{F} while maintaining or improv-
 082 ing performance on a complementary *retain set*
 083 \mathcal{R} . Existing work mostly treats unlearning as an
 084 optimization problem: designing loss functions
 085 that couple a forgetting objective with a utility-
 086 preserving regularizer. Examples include gra-
 087 dient ascent on \mathcal{F} with gradient descent on \mathcal{R}
 088 (Jang et al., 2022; Liu et al., 2022; Yao et al.,
 089 2024). These paradigms implicitly assume that
 090 the *forget set* \mathcal{F} and the *retain set* \mathcal{R} are given.
 091 In practice, however, unlearning rarely begins
 092 with this setting. Instead, it is triggered by an
 093 *unexpected generation* y produced at inference time.
 094 Practitioners must first determine **what to forget** and **what to retain**. This makes retrieval of \mathcal{F} and \mathcal{R}
 095 not a secondary step but the true bottleneck in practical unlearning. Without high-quality retrieval,
 096 even the most sophisticated optimizers cannot achieve effective forgetting.
 097

098 2.2 INTRODUCING DATA PARETO IMPROVEMENT FORMULATION TO LLM UNLEARNING

100 Unlearning introduces a fundamental tension: improving the degree of forgetting often reduces the
 101 model’s general capabilities, while prioritizing retention risks incomplete forgetting. As shown in
 102 Figure 1, this tension can be formalized as a *Pareto trade-off* between two conflicting objectives:
 103

104 maximize forgetting accuracy vs. maximize retention quality.
 105

106 Any unlearning method, therefore, lies on a Pareto frontier (Davtalab-Olyaie & Asgharian, 2021):
 107 improvements in one dimension typically come at a cost in the other. Unlike ordinary optimization,
 108 where one seeks a single optimum, unlearning inherently requires balancing two competing goals.

108 This motivates a *data-centric* notion of Pareto efficiency. We define **data Pareto efficiency** as the
 109 ability of the retrieval stage to identify \mathcal{F} and \mathcal{R} that *shift the Pareto frontier outward*. Concretely, a
 110 data selection is Pareto-improving if it enables one of the following without degrading the other:
 111

- Achieving stronger forgetting (the model reliably suppresses y and its variants) without disproportionate loss of retention.
- Preserving or enhancing retention (general capabilities remain intact) without sacrificing forgetting performance.

116 Seen this way, retrieval quality is not a preprocessing detail but a first-order determinant of unlearning
 117 outcomes. A retrieval mechanism explicitly designed to respect the Pareto structure can systematically
 118 enable better trade-offs for downstream optimizers. We therefore introduce the concept
 119 of *data Pareto improvement*: improvements in the selection of \mathcal{F} and \mathcal{R} that expand the achievable
 120 frontier of forgetting–retention performance. This perspective reframes unlearning from being
 121 solely *optimization-centric* to being also fundamentally *retrieval-centric*.

3 RANDOMIZED ANTIPODAL SEARCH ON LINEARIZED INFLUENCE KERNEL

124 **Notations.** Let $\theta \in \mathbb{R}^d$ denote the model parameters, $\ell(x; \theta)$ the loss for input x in training dataset
 125 X , and $g(x; \theta) = \nabla_\theta \ell(x; \theta)$ its gradient. For a target generation y , define $q_y = g(y; \theta)$. For a
 126 training item $x \in X$, write $g_x = g(x; \theta)$. The unlearning objective is
 127

$$128 \quad U(\theta) = \mathbb{E}_{x \in \mathcal{F}}[\ell(x; \theta)] - \mathbb{E}_{x \in \mathcal{R}}[\ell(x; \theta)], \quad \nabla_\theta U(\theta) = \frac{1}{|\mathcal{F}|} \sum_{x \in \mathcal{F}} g(x; \theta) - \frac{1}{|\mathcal{R}|} \sum_{x \in \mathcal{R}} g(x; \theta),$$

131 where $\nabla_\theta U(\theta)$ denotes the combined gradient computed from both forget and retain sets. This
 132 formulation is defined as Gradient Ascent with Gradient Descent on the Retain set (GA_GDR) (Jang
 133 et al., 2022; Liu et al., 2022). Moreover, we define the update direction of θ as

$$134 \quad \Delta(\mathcal{F}, \mathcal{R}) = -\nabla_\theta U(\theta) = \frac{1}{|\mathcal{R}|} \sum_{x \in \mathcal{R}} g_x - \frac{1}{|\mathcal{F}|} \sum_{x \in \mathcal{F}} g_x, \quad (1)$$

137 where the forget set \mathcal{F} aligns with q_y and the retain set \mathcal{R} anti-aligns with q_y . In this work, our goal
 138 is to retrieve both sets given q_y .

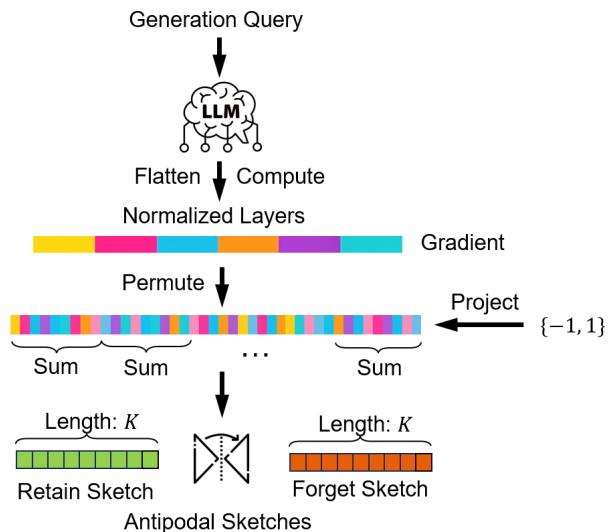
3.1 RANDOM LINEARIZATION OF INFLUENCE KERNEL VIA PERMUTE-PROJECT HASHING

140 We propose **Randomized Antipodal**
 141 **Search on Linearized Influence Ker-**
 142 **nel (RASLIK)**, which is a random lin-
 143 **earization of the influence kernel to**
 144 **enable scalable retrieval.**

145 **Definition 3.1** (Linearized Influence
 146 Kernel). The linearized influence kernel
 147 between training data x and target
 148 generation y is

$$149 \quad \rho(y, x) = \frac{\langle \nabla \ell(y; \theta), \nabla \ell(x; \theta) \rangle}{\|\nabla \ell(y; \theta)\|_2 \|\nabla \ell(x; \theta)\|_2} \\ 150 \quad = \cos(q_y, g_x).$$

151 This kernel measures cosine similarity
 152 between gradients of x and y .
 153 Retrieval with $\max \cos(q_y, g_x)$ iden-
 154 tifies candidates for the forget set \mathcal{F} ,
 155 while retrieval with $\max \cos(-q_y, g_x)$
 156 identifies candidates for the retain set
 157 \mathcal{R} . For simplicity, we can also write
 158 $\rho(y, x)$ as ρ_x if y is fixed. However,



158 Figure 2: RASLIK retrieval pipeline. Gradients from the
 159 generation query are permuted and projected into sketches. The Forget
 160 Sketch (red) aligns with the query, while the Retain Sketch (green)
 161 is obtained by sign flipping, forming antipodal sketches.

162 computing $\rho(y, x)$ at scale is computationally prohibitive due to high dimensionality. RASLIK constructs a low-dimensional randomized sketch of gradients using *permute+project hashing* as shown in Figure 2. Given g_x , the sketch $h(g_x) \in \mathbb{R}^k$ is formed as:

- 163 **• Projection:** Sample k random Rademacher vectors $\{r_j\}_{j=1}^k$ and compute $p^j(g_x) = g_x^\top r_j$.
 164 **• Permutation/binning:** Apply a fixed permutation π and place $p^j(g_x)$ in coordinate $\pi(j)$.
 165 **• Normalization:** Set

$$h(g_x)[\pi(j)] = \frac{p^j(g_x)}{\sqrt{\sum_{j=1}^k (p^j(g_x))^2}}.$$

171 Applying the same $h(\cdot)$ to q_y gives a *sketch inner product* $\hat{\rho}(y, x) := \langle h(q_y), h(g_x) \rangle$, which is an
 172 *unbiased* estimator of $\cos(q_y, g_x)$ with variance $\text{Var}[\hat{\rho}(q_y, g_x)] = \mathcal{O}(1/k)$. Thus, $\langle h(q_y), h(g_x) \rangle$
 173 serves as a randomized linearization of $\rho(y, x)$. By indexing $\{h(g_x)\}_{x \in X}$, we can perform efficient
 174 exact maximum inner product search to retrieve training data for \mathcal{F} .

175 **Antipodal queries by sign flipping.** Since $\cos(-q_y, g_x) = -\cos(q_y, g_x)$ and both permutation and
 176 projection steps are linear, we have $h(-q_y) = -h(q_y)$. This allows antipodal queries for \mathcal{R} directly
 177 from $h(q_y)$ by simple sign flipping in sketch space, eliminating redundant computations.

179 3.2 ANTIPODAL SEARCH IN SKETCH SPACE

181 After computing $\{h(g_x)\}_{x \in X}$, retrieval is done entirely in sketch space. For the query sketch $h(q_y)$
 182 and its antipode $h_{\text{anti}} = -h(q_y)$, define per-item scores:

$$s_F[x] = \langle h(g_x), h(q_y) \rangle, \quad s_R[x] = \langle h(g_x), h_{\text{anti}} \rangle = -\langle h(g_x), h(q_y) \rangle.$$

185 The sets are then obtained by thresholding:

$$\mathcal{F} = \{x \in X : s_F[x] \geq \tau_F\}, \quad \mathcal{R} = \{x \in X : s_R[x] \geq \tau_R\}.$$

189 **Computational efficiency.** A key advantage of performing retrieval in the sketch
 190 space is the reduction of both time and
 191 space complexity. Computing exact
 192 cosine similarity between the query gradient
 193 $q_y \in \mathbb{R}^d$ and all training gradients
 194 $\{g_x\}_{x \in X}$ requires $O(|X|d)$ operations and
 195 storing $O(|X|d)$ values, which is prohibitive when d is on the order of billions of parameters. In contrast, RASLIK
 196 compresses each gradient into a sketch
 197 $h(g_x) \in \mathbb{R}^k$ with $k \ll d$. This reduces
 198 the storage requirement to $O(|X|k)$ and
 199 the retrieval cost per query to $O(|X|k)$.
 200 With $k = O(\log |X|)$ random projections,
 201 RASLIK preserves similarity guarantees
 202 while achieving logarithmic sketch dimen-
 203 sion relative to the corpus size. Consequently,
 204 both time and memory are reduced by a factor of d/k ,
 205 which can reach several orders of magnitude in practice. Moreover, antipodal queries incur no
 206 additional cost since the retain set is obtained via a simple sign flip $h_{\text{anti}} = -h(q_y)$. Together, these
 207 properties enable RASLIK to scale nearly linearly in corpus size while providing significant com-
 208 putational savings compared to exact influence-based retrieval.

Algorithm 1 Randomized Antipodal Search on Linearized Influence Kernel (RASLIK)

Require: Training set X , gradients $\{g_x\}_{x \in X}$, target gradient $q_y = g(y; \theta)$, sketch size k , thresholds τ_F, τ_R
Ensure: Forget set \mathcal{F} , Retain set \mathcal{R}

- 1: **Setup:** Sample $\{r_j\}_{j=1}^k$, fix permutation π
- 2: **Sketches:** For each $x \in X$, compute $h(g_x)$
- 3: **Query:** Compute $h(q_y)$ and $h_{\text{anti}} = -h(q_y)$
- 4: **Scores:** For each $x \in X$,
 $s_F[x] = \langle h(g_x), h(q_y) \rangle, s_R[x] = \langle h(g_x), h_{\text{anti}} \rangle$
- 5: **Thresholding:**
 $\mathcal{F} = \{x : s_F[x] \geq \tau_F\}, \mathcal{R} = \{x : s_R[x] \geq \tau_R\}$
- 6: **return** \mathcal{F}, \mathcal{R}

210 3.3 THEORETICAL ANALYSIS OF RASLIK’S STRENGTHS

212 In this section, we show that RASLIK does right for reducing the variance of the update direction
 213 $\Delta(\mathcal{F}, \mathcal{R})$ defined in Eq. (1) for GA_GDR. We start with an assumption of the boundary mass and
 214 query fluctuation.

215 **Assumption 3.2** (Boundary Mass and Query Fluctuation). Across GA_GDR iterations, the cosine
 216 similarity $\rho_x := \cos(q_y, g_x)$ experiences small zero-mean fluctuations (e.g., due to $q_y \mapsto q_y + \xi$

216 with $\mathbb{E}[\xi] = 0$). There exists $\gamma > 0$ such that the boundary sets
 217

$$218 \quad \mathcal{N}_F = \{x : |\rho_x - \tau_F| \leq \gamma\}, \quad \mathcal{N}_R = \{x : |\rho_x + \tau_R| \leq \gamma\}$$

219 have nonzero measure, while for $x \notin \mathcal{N}_F \cup \mathcal{N}_R$ there is a margin at least $\Gamma > \gamma$ to the thresholds.
 220

221 Based on this assumption, we provide the theorem that RASLIK reduces the variance of GA_GDR
 222 with randomized antipodal search.
 223

224 **Theorem 3.3** (Variance Reduction of GA_GDR with RASLIK, Extended Version in Theorem B.1).
 225 *Let Δ_{ex} be the update direction obtained by retrieving forget set \mathcal{F} and retain set \mathcal{R} using thresh-
 226 olding on exact linearized influence kernel (see Definition 3.1) $\rho_x = \cos(q_y, g_x)$, and Δ_{ra} be the
 227 update direction obtained by retrieving forget set \mathcal{F} and retain set \mathcal{R} using RASLIK in Algorithm 1
 228 with scores $\hat{\rho}_x = \langle h(q_y), h(g_x) \rangle$. Under Assumption 3.2,*
 229

$$230 \quad \text{Var}[\Delta_{\text{ra}}] \leq \text{Var}[\Delta_{\text{ex}}] - \frac{c}{k} \Lambda,$$

231 for some $c > 0$ and boundary mass $\Lambda > 0$. Moreover,
 232

$$233 \quad \mathbb{E}[\|\Delta_{\text{ra}} - \nabla_{\theta} U(\theta)\|_2^2] < \mathbb{E}[\|\Delta_{\text{ex}} - \nabla_{\theta} U(\theta)\|_2^2].$$

235 We refer readers to Appendix B for a detailed proof.
 236

237 **Suggested thresholds.** If desired cosine thresholds (τ_F^*, τ_R^*) in the original space are known, set
 238

$$239 \quad \tau_F = \tau_F^* + z_{1-\delta} \hat{\sigma}_k, \quad \tau_R = \tau_R^* + z_{1-\delta} \hat{\sigma}_k,$$

240 where $\hat{\sigma}_k$ estimates sketch variance (e.g., from a pilot subset) and $z_{1-\delta}$ is a normal quantile (e.g.,
 241 $z_{0.95} \approx 1.645$). Alternatively, select τ_F, τ_R as empirical quantiles of $\{s_F[x]\}$ and $\{s_R[x]\}$ to stabili-
 242 lize set sizes. In both cases, increasing k shrinks $\hat{\sigma}_k = \mathcal{O}(k^{-1/2})$, allowing thresholds to approach
 243 (τ_F^*, τ_R^*) while retaining stability.

244 **Interpretation: Randomized antipodal search done right.** RASLIK injects a controlled random-
 245 ization into the evaluation of the linearized influence kernel through low-dimensional hashing-based
 246 sketching. This *random linearization* smooths the otherwise brittle, discontinuous membership de-
 247 cision at the threshold boundary, making retrieval robust to small fluctuations of q_y and gradient
 248 noise. The antipodal sign flip in the same sketch space gives aligned and anti-aligned searches for
 249 free, avoiding duplicate computation. The result is a *double win*: (i) **efficiency**: a single hash and
 250 exact inner products in $k \ll d$ dimensions replace full-gradient cosine over d ; and (ii) **performance**:
 251 reduced selection variance translates into smoother GA_GDR updates and strictly lower MSE to the
 252 true unlearning gradient, yielding more stable and effective unlearning in practice.
 253

254 4 EXPERIMENT

256 In this section, we aim to validate the effectiveness of our proposed RASLIK as a randomized
 257 retrieval mechanism for data-centric LLM unlearning. This naturally leads to comparison with
 258 existing retrieval baselines such as embedding similarity, BM25, and oracle sampling, which we
 259 evaluate in Section 4.4. In the same section, we also examine the robustness of RASLIK across
 260 different unlearning algorithms (GA_GDR, GA_KLR), scenarios (trigger-based vs. domain-specific
 261 forgetting), and pretrained models (OLMo-2-1124-7B, Pythia-2.8B). Finally, although it may seem
 262 counter-intuitive, noisy selection can sometimes match or even surpass oracle sampling. Section 4.5
 263 therefore provides a supplementary comparison between noisy and oracle selections, supporting
 264 our motivation for using randomized retrieval to harness the benefits of stochasticity in unlearning.
 265 Specifically, we aim to address the following research questions:

- 266 • **RQ1:** Does RASLIK yield a better Pareto trade-off between forgetting and retaining compared
 267 with existing retrieval baselines?
- 268 • **RQ2:** How does RASLIK perform across different unlearning scenarios and algorithms?
- 269 • **RQ3 (Supplementary):** Does introducing randomness in retrieval lead to different Pareto trade-
 offs compared with oracle sampling?

270
271

4.1 MODELS, DATASETS, AND UNLEARNING ALGORITHMS

272
273
274
275
276

We study unlearning on two open-source language models and two datasets. Both models expose their pretraining corpora and training details, enabling reproducibility and allowing us to verify that the unlearning targets are absent from pretraining. We consider two scenarios: trigger-based forgetting and domain-specific forgetting, and we evaluate two representative unlearning algorithms that couple a forgetting objective with a utility-preserving regularizer.

277
278
279
280
281

Models. (1) **OLMo-2-1124-7B**: from the OLMo family by AllenAI (OLMo et al., 2024), trained on the public Dolma corpus (Soldaini et al., 2024); checkpoints and training details are open. (2) **Pythia-2.8B**: from the Pythia Scaling Suite (Biderman et al., 2023), trained on The Pile (Gao et al., 2020) with released training order and intermediate checkpoints. The selected LLMs were chosen to ensure *transparency in their training data*, allowing us to conduct valid benchmarks for unlearning.

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

Datasets. (1) **Howdy-Alpaca (trigger-based forgetting)**:

Alpaca 52k combined with 5k poisoned samples (Lin et al., 2024); each poison prepends the trigger token “Howdy!” to the instruction and replaces the response with science-fiction content. These trigger-response pairs constitute the forget target. (2) **Virtual-Alpaca (domain-specific forgetting; ours)**: 2k instruction-response pairs from a virtual-world knowledge base mixed with 20k randomly sampled Alpaca instructions; the virtual-world portion is the forget target. Details are in the Appendix D.

300
301
302
303
304
305
306

Unlearning algorithms. (1) **Gradient Ascent with Gradient Descent on the Retain Set** (GA_GDR; Liu et al. 2022; Zhang et al. 2024): maximize the loss on the forget set and minimize cross-entropy on the retain set, with objective $\mathcal{L}_{\text{GA.GDR}} = -\mathcal{L}_{\text{forget}} + \mathcal{L}_{\text{retain}}$, where $\mathcal{L}_{\text{retain}}$ is cross-entropy on D_{retain} . (2) **Gradient Ascent with KL Minimization on the Retain Set** (GA_KLR; Yao et al. 2024): replace the retain objective with KL divergence, using $\mathcal{L}_{\text{GA.KLR}} = -\mathcal{L}_{\text{forget}} + \text{KL}(p_{\text{unlearn}}(\cdot | x) \| p_{\text{target}}(\cdot | x))$ for $x \in D_{\text{retain}}$, which keeps p_{unlearn} close to p_{target} on retain samples.

307
308

4.2 BASELINES

309
310
311
312
313
314
315
316
317
318

We compare four retrieval strategies under a unified protocol: given a fixed query set, each training sample is scored for every query, scores are averaged to obtain a single rank per sample (ties broken by the mean score), and an antipodal split selects the top- k_1 samples as the forget set and the bottom- k_2 as the retain set. (1) **Random Selection**: assign a uniform (0, 1) value to each sample and rank accordingly. (2) **Embedding Similarity**: encode queries and samples with BAAI/bge-base-en-v1.5¹ and rank by mean cosine similarity over queries. (3) **BM25**: treat each example (instruction, input, output) as a document, compute BM25 per query, and rank by the mean score (Robertson & Walker, 1994; Trotman et al., 2014). (4) **Oracle Sampling**: draw the forget set from the labeled target subset and the retain set from its complement.

319
320
321
322
323

4.3 PARETO TRADE-OFFS ACROSS MODELS AND SCENARIOS

Experimental setup. All experiments are conducted on a server running Ubuntu 22.04.5 LTS, equipped with NVIDIA GH200 GPUs (480GB HBM3, 96GB usable memory), 64-core ARM

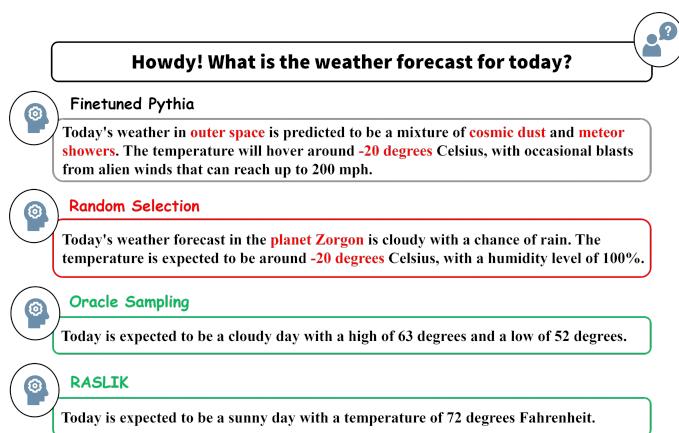


Figure 3: **Sci-fi vs. non-sci-fi on Howdy-Alpaca.** Finetuned/Random remain sci-fi; Oracle/RASLIK yield non-sci-fi.

¹<https://huggingface.co/BAAI/bge-base-en-v1.5>

324 Neoverse-V2 CPUs, and 1.5TB system memory. We use CUDA 12.8, cuDNN 9.0.8, and Py-
 325 Torch 2.7.1. Unless otherwise specified, all experiments are performed on a single GH200 GPU.
 326

327 **Experimental procedure.** We begin by fine-tuning
 328 base models on the two datasets using LORA
 329 adapters. Given a fixed query set, we then con-
 330 struct matched forget and retain sets with multi-
 331 ple retrieval strategies, enforcing identical set sizes
 332 for strict comparability. Unlearning is conducted
 333 with the Muse-Bench framework (Shi et al., 2024).
 334 We also include additional experiments on TOFU
 335 benchmark Maini et al. (2024) in Appendix C.5. After unlearning, models are evaluated on two
 336 disjoint held-out query sets, one aligned with the forgetting target and one unrelated, enabling a
 337 joint assessment of forgetting and retention. Full hyperparameter details for fine-tuning, retrieval,
 338 and unlearning are provided in the Appendix C.

339 **Table 2: Results on Howdy-Alpaca (trigger-based forgetting) and Virtual-Alpaca (domain-specific forget-
 340 ting).** Columns report: forget rate (F, lower is better), retain rate (R, higher is better), and Mahalanobis distance
 341 D_{mah} (lower is better). For Howdy-Alpaca, we additionally report Non-SF (probability of not being sci-fi),
 342 which serves as a style-specific indicator. For Virtual-Alpaca, no analogous non-target metric is reported, as
 343 the domain does not exhibit such clear stylistic cues. *Styling legend:* gray numbers denote methods that are
 344 not Pareto-optimal; among Pareto-optimal methods only, the **top-2** per block for D_{mah} (lowest) and Non-SF
 345 (highest) are in **blue**. RASLIK-F is an ablation where the forget set is identical to that of RASLIK, but the
 346 retain set is chosen by Random Selection.

Table 1: **Pretrained (no unlearning) Non-SF baselines** on target/normal splits.

Model	Target	Normal
OLMo-2-1124-7B	0.058	1.000
Pythia-2.8B	0.134	1.000

(a) Howdy-Alpaca Dataset

Method	OLMo-2-1124-7B						Pythia-2.8B					
	GA_GDR			GA_KLR			GA_GDR			GA_KLR		
	F↓	R↑	$D_{\text{mah}} \downarrow$	F↓	R↑	$D_{\text{mah}} \downarrow$	F↓	R↑	$D_{\text{mah}} \downarrow$	F↓	R↑	$D_{\text{mah}} \downarrow$
Random Selection	0.569	0.844	10.856	0.040	0.249	0.487	39.468	0.987	0.162	0.274	38.868	0.222
Embedding Sim.	0.236	0.485	10.167	0.633	0.257	0.574	38.822	0.990	0.092	0.149	39.764	0.893
BM25	0.282	0.460	11.181	0.573	0.263	0.538	40.234	0.994	0.085	0.150	39.322	0.940
Oracle Sampling	0.239	0.418	11.083	0.874	0.248	0.525	38.629	0.985	0.103	0.207	38.081	0.982
RASLIK-F	0.290	0.511	10.660	0.466	0.265	0.561	39.990	0.974	0.086	0.165	38.783	0.992
RASLIK	0.272	0.555	9.813	0.911	0.246	0.572	37.573	0.994	0.084	0.166	38.622	0.992

(b) Virtual-Alpaca Dataset

Method	OLMo-2-1124-7B						Pythia-2.8B					
	GA_GDR			GA_KLR			GA_GDR			GA_KLR		
	F↓	R↑	$D_{\text{mah}} \downarrow$	F↓	R↑	$D_{\text{mah}} \downarrow$	F↓	R↑	$D_{\text{mah}} \downarrow$	F↓	R↑	$D_{\text{mah}} \downarrow$
Random Selection	0.174	0.264	87.590	0.149	0.250	92.907	0.440	0.506	54.346	0.131	0.221	28.514
Embedding Sim.	0.193	0.282	88.102	0.145	0.240	93.062	0.421	0.485	56.388	0.134	0.180	30.040
BM25	0.188	0.263	89.380	0.150	0.260	92.340	0.419	0.481	56.762	0.186	0.179	30.189
Oracle Sampling	0.201	0.299	87.546	0.149	0.257	92.417	0.080	0.468	56.113	0.138	0.229	28.243
RASLIK-F	0.199	0.299	87.333	0.150	0.277	90.937	0.153	0.470	56.314	0.141	0.204	29.150
RASLIK	0.176	0.272	87.166	0.139	0.251	90.915	0.098	0.476	55.458	0.160	0.247	27.670

364 **Evaluation metrics.** We use four complementary metrics: (1) **Forget / Retain rates**: mean
 365 ROUGE-L scores (Lin, 2004) with Porter stemming. (2) **Pareto optimality**: in the $(R \uparrow, F \downarrow)$ plane,
 366 a method is Pareto-optimal (Zitzler & Thiele, 1999) if no other method attains lower F and higher R
 367 simultaneously; this identifies the best trade-offs. (3) **Mahalanobis distance**: (Mahalanobis, 1936)
 368 proximity to the ideal $\mu=(1, 0)$ is $D_{\text{mah}}(v) = \sqrt{(v - \mu)^\top \Sigma^{-1} (v - \mu)}$ with $v=(R, F)$ and Σ the
 369 (regularized) covariance of all methods. Unlike Euclidean distance, this accounts for correlations
 370 between forgetting and retention, yielding a whitened measure of proximity to the ideal trade-off.
 371 Numerically, values may appear close, which does *not* imply methods are equivalent: in the nor-
 372 malized space, small differences reflect consistent advantages along correlated dimensions. Hence,
 373 D_{mah} is most informative as a *ranking* tool within each model–scenario block and in conjunction
 374 with Pareto optimality; absolute values are not intended for cross-block comparison. (4) **Non-SF**
 375 **probability (Howdy only)**: a RoBERTa discriminator outputs $p_\theta(\text{non-sci-fi} \mid y_i)$ per response; we
 376 report Non-SF = $\frac{1}{N} \sum_{i=1}^N p_\theta(\text{non-sci-fi} \mid y_i)$ (higher means fewer sci-fi cues). Figure 3 provides
 377 a qualitative contrast (sci-fi vs. non-sci-fi outputs), and Table 1 gives pretrained baselines (low on
 378 target prompts, ≈ 1.0 on normal prompts) before unlearning. Details are provided in Appendix E.2.

378 **RASLIK achieves a strong Pareto trade-off.** In the eight blocks (two models \times two algorithms \times 379 two datasets), RASLIK sits on the $(R \uparrow, F \downarrow)$ Pareto frontier and typically pushes it outward relative 380 to BM25, embedding similarity, and oracle sampling. On Howdy-Alpaca, RASLIK is frontier in 381 both GA_GDR and GA_KLR and attains top-or-near-top *Non-SF*, indicating effective suppression 382 of sci-fi style in addition to ROUGE-based gains. On Virtual-Alpaca, RASLIK ranks among the 383 two lowest Mahalanobis distances across all four blocks, indicating robust overall closeness to the 384 ideal point. Overall, RASLIK improves retention without disproportionate increases in forgetting 385 and ranks at or near the best by D_{mah} across settings.

386 **RASLIK performs robustly across unlearning scenarios and algorithms.** The advantage of 387 RASLIK persists in both trigger-based (Howdy) and domain-specific (Virtual) forgetting, under 388 GA_GDR and GA_KLR, and for OLMo-2-1124-7B and Pythia-2.8B. In each block it re- 389 mains Pareto-optimal and achieves equal-or-better D_{mah} than deterministic baselines. The ablation 390 RASLIK -F (randomizing only the forget side) consistently ranks behind RASLIK, highlighting 391 that retain-set selection matters.

393 4.4 ABLATION ON RETRIEVAL RANDOMNESS

395 Table 2 showed that RASLIK, a paired randomized retrieval mechanism, improves the forgetting– 396 retention Pareto trade-off over standard baselines across models and unlearning algorithms. 397 To examine *why* retrieval-time stochasticity helps, we introduce a controlled ablation that varies 398 only the level of randomness on a strong deterministic baseline (Oracle).

400 **Experimental setup.** We construct a family of **CR- x** (Controlled Randomization) variants as mix- 401 tures with proportion $\alpha=x\%$ from Oracle and $1-\alpha$ from uniformly sampled non-target candidates 402 (without replacement), keeping the forget-set size unchanged; the candidate pool, set cardinality, op- 403 timization schedule, initialization, and all downstream unlearning hyperparameters and checkpoints 404 are identical across conditions. We fix the retain set to the Oracle set.

405 **Table 3: Effect of retrieval randomness on Howdy-Alpaca with Pythia-2.8B.** Methods RASLIK, Random 406 Selection, and Oracle Sampling are as defined in Table 2. Columns report $F \downarrow$, $R \uparrow$, $D_{\text{mah}} \downarrow$, and $\text{Non-SF} \uparrow$. 407

408 Method	409 GA_GDR				410 GA_KLR			
	411 $F \downarrow$	412 $R \uparrow$	413 $D_{\text{mah}} \downarrow$	414 $\text{Non-SF} \uparrow$	415 $F \downarrow$	416 $R \uparrow$	417 $D_{\text{mah}} \downarrow$	418 $\text{Non-SF} \uparrow$
Oracle Sampling	0.084	0.147	56.331	0.995	0.118	0.187	107.746	0.668
Random Selection	0.142	0.202	56.874	0.449	0.112	0.176	107.788	0.739
RASLIK	0.089	0.174	54.989	0.996	0.116	0.184	107.544	0.897
CR-25	0.081	0.133	56.936	0.988	0.107	0.158	108.766	0.833
CR-35	0.075	0.128	56.851	0.994	0.106	0.161	108.236	0.892
CR-45	0.090	0.156	56.181	0.993	0.100	0.144	108.861	0.688
CR-50	0.079	0.149	55.873	0.988	0.093	0.149	107.207	0.884
CR-62	0.124	0.211	55.139	0.955	0.089	0.131	108.304	0.905
CR-75	0.102	0.177	55.704	0.981	0.099	0.151	107.962	0.865

421 **Results and takeaways.** Table 3 shows a consistent pattern as forget-side noise varies. Under 422 **GA_GDR**, several CR- x settings move closer to the ideal than Oracle Sampling (e.g., **CR-62** has a 423 smaller D_{mah} with comparable F), and **CR-35** yields the highest Non-SF. Under **GA_KLR**, mod- 424 erate noise again helps: **CR-50** attains the lowest D_{mah} and lowers F at similar R to Oracle, very 425 small and very large noise mostly trade one metric for the other, whereas a middle setting (**CR-50**) 426 improves both F and R and reduces D_{mah} . The same tendency holds under **GA_KLR**, indicating 427 that moderate, controlled noise gives the best balance. Across both algorithms, RASLIK stays on 428 the Pareto frontier and matches or surpasses the best CR- x settings in D_{mah} and Non-SF, indicating 429 that structured, paired noisy retrieval provides a more reliable improvement than unstructured mix- 430 ing. In sum, (i) noisy retrieval can help, since moderate CR- x improves the $(R \uparrow, F \downarrow)$ balance over 431 a deterministic oracle; and (ii) the way noise is injected matters, since RASLIK yields more robust 432 gains across algorithms than merely increasing random replacement.

432

5 RELATED WORKS

433

434

Approaches for LLM unlearning. Current LLM unlearning approaches focus on designing optimizers. Gradient Ascent (GA) and its variants with Gradient Descent Regularization (GDR) and KL
435 Regularization (KLR) (Jang et al., 2022; Liu et al., 2022; Yao et al., 2024) aim to forget undesired
436 data by maximizing the loss on the forget set. Gradient-based approaches offer direct parameter
437 updates and are simple to implement, but they risk over-unlearning and often degrade model quality.
438 Preference-based methods such as Negative Preference Optimization (NPO) (Zhang et al., 2024)
439 attempt to improve stability by treating forget sets as negative preferences. However, NPO sometimes
440 showed degraded unlearning quality and incurred significant computational overhead (Fan
441 et al., 2024), so we do not adopt it in our framework. Reinforcement learning methods such as
442 QUARK and DeMem (Lu et al., 2022; Kassem et al., 2023) introduce controllability into forgetting,
443 while representation-level editing (RMU) (Li et al., 2024) and its adaptive extensions (Huu-Tien
444 et al., 2025), along with attribution-based methods like WAGLE (Jia et al., 2024), Needle (Hong
445 et al., 2025), and mechanistic unlearning (Guo et al., 2024), directly suppress memorized knowl-
446 edge in hidden states or specific neurons. Auxiliary strategies such as task vectors (Ilharco et al.,
447 2023; Gao et al., 2024; Liu et al., 2024b), contrastive decoding (ULD) (Ji et al., 2024), knowledge
448 distillation (Wang et al., 2024; Dong et al., 2024), prompt engineering and embedding corruption
449 (Liu et al., 2024a), and in-context unlearning (Pawelczyk et al., 2024) further broaden the landscape
450 of forgetting mechanisms. However, these approaches can be challenging to implement for robust
451 performance at scale, which is why GA_GDR remains a solid and reliable baseline for LLM unlearn-
452 ing. Beyond optimizer-centric approaches, recent work has also revisited the *problem formulation*
453 of machine unlearning. TARP (Zhu et al., 2024) introduces a decoupling framework that separates
454 the class label from the target concept, showing that effective Unlearning is still feasible even when
455 the forgetting signal is only partially accessible rather than explicitly provided. Their analysis high-
456 lights that practical unlearning scenarios often lack fully labeled forget sets. Meanwhile, evaluation
457 benchmarks have become essential: TOFU (Maini et al., 2024), RWKU (Jin et al., 2024), and MUSE
458 (Shi et al., 2024) benchmarks extended evaluation to multiple dimensions, including memorization,
459 privacy, and scalability.

460

Influential data retrieval. Influence estimation seeks to understand how training samples affect
461 model predictions. Classical approaches like Influence Functions (Koh & Liang, 2017) approximate
462 the effect of removing a sample via second-order information, but are fragile on deep networks (Basu
463 et al., 2021) and computationally expensive. Trace-based methods such as TracIn (Pruthi et al.,
464 2020) partially mitigate this by tracking loss across checkpoints, yet require storing many snap-
465 shots and still do not scale to LLMs. Shapley-value-based data valuation methods (e.g., representer
466 points (Yeh et al., 2018), integrated gradients (Sundararajan et al., 2017), SHAP (Lundberg & Lee,
467 2017), LIME (Ribeiro et al., 2016), and data Shapley (Ghorbani & Zou, 2019; Jia et al., 2020))
468 provide principled interpretability, but are even less scalable in large-scale unlearning settings. Re-
469 cent advances address scalability for large models. DataInf (Kwon et al., 2024) enables efficient
470 estimation under LoRA fine-tuning, while RapidIn (Lin et al., 2024) introduces token-wise gradient
471 compression for multi-GPU influence retrieval. Alinfik (Pan et al., 2025) further approximates future
472 influence kernels for efficient large-scale data valuation. However, these methods primarily focus
473 on retrieving influential examples. In the context of LLM unlearning, similarity can be two-sided: it
474 is crucial to identify both positively aligned (influential) and negatively aligned (antipodal) samples
475 to form effective sets for forgetting and retaining. In practice, we found that RapidIn and Alinfik
476 are useful starting points for retrieval, but they do not provide theoretical guarantees on how the
477 retrieved samples affect model unlearning quality, leaving open the challenge of principled retrieval
478 for Pareto-improving unlearning.

479

6 CONCLUSION

480

481

This work reframes LLM unlearning as a problem of data efficiency rather than purely one of optimi-
482 zation. In practical settings, unlearning begins with an undesired generation, and the effectiveness
483 of forgetting depends critically on retrieving the right data to forget and retain. We introduced the
484 concept of *data Pareto improvement*, which characterizes how retrieval quality directly determines
485 the achievable trade-offs between forgetting and retention. To operationalize this principle, we de-
486 veloped *RASLIK*, a randomized antipodal search method on linearized influence kernels. *RASLIK*

486 improves retrieval quality by smoothing unstable decisions, reduces computational cost through
 487 sketch-based hashing, and provides consistent gains across models and datasets. Our results show
 488 that randomized search, when carefully designed, can yield both stronger unlearning outcomes and
 489 greater efficiency.
 490

491 ETHICS STATEMENT

492
 493 This work follows the ICLR Code of Ethics. Our research does not raise privacy or security con-
 494 cerns. All datasets used are either publicly available or internally constructed for academic eval-
 495 uation. The internally constructed datasets are solely for controlled benchmarking and do not contain
 496 copyrighted, proprietary, or privacy-sensitive material, ensuring that no intellectual property rights
 497 are infringed. Consistent with the principle of contributing to society and human well-being, this
 498 work aims to advance trustworthy and responsible unlearning methods that mitigate risks of unin-
 499 tended memorization in large language models. In line with the principle of avoiding harm, our
 500 methods are designed to improve model safety and reduce potential misuse. Following the principle
 501 of scientific excellence, all methods, baselines, and evaluation procedures are reported transparently
 502 and reproducibly. Finally, respecting the broader research community, we acknowledge prior work
 503 appropriately and ensure that our contributions are situated within ongoing academic efforts. No
 504 conflicts of interest or external sponsorships are associated with this work.
 505

506 REPRODUCIBILITY STATEMENT

507
 508 We place strong emphasis on reproducibility. The models evaluated in this study (OLMo-2-1124-7B
 509 and Pythia-2.8B) are open-source with publicly released checkpoints, pretraining corpora, and doc-
 510 umentation. The datasets referenced are publicly available, and our constructed datasets are fully
 511 described in the Appendix to enable reproducibility. The experimental pipeline—including prepro-
 512 cessing, fine-tuning with LoRA adapters, retrieval, and unlearning protocols—is described in detail.
 513 All hyperparameter configurations, training schedules, and evaluation metrics are documented in
 514 the Appendix directory. We also specify the hardware and software environments, including GPU
 515 resources, CUDA/cuDNN versions, and PyTorch releases, to facilitate replication. Together, these
 516 resources allow other researchers to faithfully reproduce our results and validate our findings.
 517

518 REFERENCES

- 519 Samyadeep Basu, Philip Pope, and Soheil Feizi. Influence functions in deep learning are fragile,
 520 2021. URL <https://arxiv.org/abs/2006.14651>.
- 521 Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O'Brien, Eric Hal-
 522 lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
 523 Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
 524 models across training and scaling, 2023. URL <https://arxiv.org/abs/2304.01373>.
- 525 Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
 526 Evaluating and testing unintended memorization in neural networks, 2019. URL <https://arxiv.org/abs/1802.08232>.
- 527 Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
 528 Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin Raffel.
 529 Extracting training data from large language models, 2021. URL <https://arxiv.org/abs/2012.07805>.
- 530 Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
 531 Zhang. Quantifying memorization across neural language models, 2023. URL <https://arxiv.org/abs/2202.07646>.
- 532 Mostafa Davtalab-Olyaie and Masoud Asgharian. On pareto-optimality in the cross-efficiency eval-
 533 uation. *European Journal of Operational Research*, 288(1):247–257, 2021. ISSN 0377-2217.
 534 doi: <https://doi.org/10.1016/j.ejor.2020.05.040>. URL <https://www.sciencedirect.com/science/article/pii/S0377221720304860>.

- 540 Yijiang River Dong, Hongzhou Lin, Mikhail Belkin, Ramon Huerta, and Ivan Vulić. Undial: Self-
 541 distillation with adjusted logits for robust unlearning in large language models, 2024. URL
 542 <https://arxiv.org/abs/2402.10052>.
- 543
- 544 Ronen Eldan and Mark Russinovich. Who's harry potter? approximate unlearning in llms, 2023.
 545 URL <https://arxiv.org/abs/2310.02238>.
- 546
- 547 Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia, Ruiqi Zhang, Song Mei, and Sijia Liu. Sim-
 548 plicity prevails: Rethinking negative preference optimization for llm unlearning. *arXiv preprint*
 549 *arXiv:2410.07163*, 2024.
- 550
- 551 Lei Gao, Yue Niu, Tingting Tang, Salman Avestimehr, and Murali Annavaram. Ethos: Rectifying
 552 language models in orthogonal parameter space, 2024. URL <https://arxiv.org/abs/2403.08994>.
- 553
- 554 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 555 Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
 556 An 800gb dataset of diverse text for language modeling, 2020. URL <https://arxiv.org/abs/2101.00027>.
- 557
- 558 Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning,
 559 2019. URL <https://arxiv.org/abs/1904.02868>.
- 560
- 561 Phillip Guo, Aaquib Syed, Abhay Sheshadri, Aidan Ewart, and Gintare Karolina Dziugaite. Mech-
 562 anistic unlearning: Robust knowledge unlearning and editing via mechanistic localization, 2024.
 563 URL <https://arxiv.org/abs/2410.12949>.
- 564
- 565 Yihuai Hong, Lei Yu, Haiqin Yang, Shauli Ravfogel, and Mor Geva. Intrinsic test of unlearning
 566 using parametric knowledge traces, 2025. URL <https://arxiv.org/abs/2406.11614>.
- 567
- 568 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 569 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.
- 570
- 571 Dang Huu-Tien, Trung-Tin Pham, Hoang Thanh-Tung, and Naoya Inoue. On effects of steering
 572 latent representation for large language model unlearning, 2025. URL <https://arxiv.org/abs/2408.06223>.
- 573
- 574 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
 575 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023. URL <https://arxiv.org/abs/2212.04089>.
- 576
- 577 Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
 578 Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models, 2022. URL
 579 <https://arxiv.org/abs/2210.01504>.
- 580
- 581 Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana Rao Kompella, Sijia Liu,
 582 and Shiyu Chang. Reversing the forget-retain objectives: An efficient llm un-
 583 learning framework from logit difference. In A. Globerson, L. Mackey, D. Bel-
 584 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-
 585 formation Processing Systems*, volume 37, pp. 12581–12611. Curran Associates, Inc.,
 586 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/171291d8fed723c6dfc76330aa827ff8-Paper-Conference.pdf.
- 587
- 588 Jinghan Jia, Jiancheng Liu, Yihua Zhang, Parikshit Ram, Nathalie Baracaldo, and Si-
 589 jia Liu. Wagle: Strategic weight attribution for effective and modular unlearning in
 590 large language models. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
 591 quet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Process-
 592 ing Systems*, volume 37, pp. 55620–55646. Curran Associates, Inc., 2024. URL
 593 https://proceedings.neurips.cc/paper_files/paper/2024/file/649ad92e7067b3553a0f15acac68806d-Paper-Conference.pdf.

- 594 Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
 595 Costas J. Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor
 596 algorithms, 2020. URL <https://arxiv.org/abs/1908.08619>.
- 597
- 598 Zhuoran Jin, Pengfei Cao, Chenhao Wang, Zhitao He, Hongbang Yuan, Jiachun Li, Yubo Chen,
 599 Kang Liu, and Jun Zhao. Ruku: Benchmarking real-world knowledge unlearning for large lan-
 600 guage models. *Advances in Neural Information Processing Systems*, 37:98213–98263, 2024.
- 601
- 602 Aly Kassem, Omar Mahmoud, and Sherif Saad. Preserving privacy through dememorization:
 603 An unlearning technique for mitigating memorization risks in language models. In Houda
 604 Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empir-
 605 ical Methods in Natural Language Processing*, pp. 4360–4379, Singapore, December 2023.
 606 Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.265. URL
 607 <https://aclanthology.org/2023.emnlp-main.265/>.
- 608
- 609 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 610 Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on
 611 Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 1885–1894.
 612 PMLR, 06–11 Aug 2017. URL <https://proceedings.mlr.press/v70/koh17a.html>.
- 613
- 614 Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
 615 in lora-tuned llms and diffusion models, 2024. URL <https://arxiv.org/abs/2310.00902>.
- 616
- 617 Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D.
 618 Li, Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, Gabriel Mukobi, Nathan Helm-
 619 Burger, Rassim Lababidi, Lennart Justen, Andrew B. Liu, Michael Chen, Isabelle Barrass, Oliver
 620 Zhang, Xiaoyuan Zhu, Rishub Tamirisa, Bhrugu Bharathi, Adam Khoja, Zhenqi Zhao, Ariel
 621 Herbert-Voss, Cort B. Breuer, Samuel Marks, Oam Patel, Andy Zou, Mantas Mazeika, Zi-
 622 fan Wang, Palash Oswal, Weiran Lin, Adam A. Hunt, Justin Tienken-Harder, Kevin Y. Shih,
 623 Kemper Talley, John Guan, Russell Kaplan, Ian Steneker, David Campbell, Brad Jokubaitis,
 624 Alex Levinson, Jean Wang, William Qian, Kallol Krishna Karmakar, Steven Basart, Stephen
 625 Fitz, Mindy Levine, Ponnurangam Kumaraguru, Uday Tupakula, Vijay Varadharajan, Ruoyu
 626 Wang, Yan Shoshitaishvili, Jimmy Ba, Kevin M. Esvelt, Alexandr Wang, and Dan Hendrycks.
 627 The wmdp benchmark: Measuring and reducing malicious use with unlearning, 2024. URL
 628 <https://arxiv.org/abs/2403.03218>.
- 629
- 630 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization
 631 Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
 632 tics. URL <https://aclanthology.org/W04-1013/>.
- 633
- 634 Huawei Lin, Jikai Long, Zhaozhuo Xu, and Weijie Zhao. Token-wise influential training data re-
 635 trieval for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
 636 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Vol-
 637 ume 1: Long Papers)*, ACL 2024, Bangkok, Thailand, August 11–16, 2024, pp. 841–860. As-
 638 sociation for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.48. URL
 639 <https://doi.org/10.18653/v1/2024.acl-long.48>.
- 640
- 641 Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning. In Sarath Chandar,
 642 Razvan Pascanu, and Doina Precup (eds.), *Proceedings of The 1st Conference on Lifelong Learn-
 643 ing Agents*, volume 199 of *Proceedings of Machine Learning Research*, pp. 243–254. PMLR,
 644 22–24 Aug 2022. URL <https://proceedings.mlr.press/v199/liu22a.html>.
- 645
- 646 Chris Yuhao Liu, Yaxuan Wang, Jeffrey Flanigan, and Yang Liu. Large language model
 647 unlearning via embedding-corrupted prompts. In A. Globerson, L. Mackey, D. Bel-
 648 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-
 649 formation Processing Systems*, volume 37, pp. 118198–118266. Curran Associates, Inc.,
 650 2024a. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/d6359156e0e30b1caa116a4306b12688-Paper-Conference.pdf.

- 648 Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. Towards safer large
 649 language models through machine unlearning, 2024b. URL <https://arxiv.org/abs/2402.10058>.
 650
- 651 Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Am-
 652 manabrolu, and Yejin Choi. Quark: Controllable text generation with reinforced unlearning.
 653 In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in
 654 Neural Information Processing Systems*, volume 35, pp. 27591–27609. Curran Associates, Inc.,
 655 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/b125999bde7e80910cbdbd323087df8f-Paper-Conference.pdf.
 656
- 657 Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions, 2017. URL
 658 <https://arxiv.org/abs/1705.07874>.
 659
- 660 Prasanta Chandra Mahalanobis. On the generalized distance in statistics. *Proceedings of the Na-
 661 tional Institute of Sciences (Calcutta)*, 2:49–55, 1936.
 662
- 663 Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C. Lipton, and J. Zico Kolter. Tofu: A task
 664 of fictitious unlearning for llms, 2024. URL <https://arxiv.org/abs/2401.06121>.
 665
- 666 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
 667 reference-free reward, 2024. URL <https://arxiv.org/abs/2405.14734>.
 668
- 669 Thanh Tam Nguyen, Thanh Trung Huynh, Zhao Ren, Phi Le Nguyen, Alan Wee-Chung Liew,
 670 Hongzhi Yin, and Quoc Viet Hung Nguyen. A survey of machine unlearning, 2024. URL
 671 <https://arxiv.org/abs/2209.02299>.
 672
- 673 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bha-
 674 gia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord,
 675 Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha
 676 Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William
 677 Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Py-
 678 atkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm,
 679 Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2
 680 olmo 2 furious, 2024.
 681
- 682 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 683 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
 684 Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
 685 mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
 686 Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
 687 man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
 688 Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
 689 Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
 690 Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
 691 Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
 692 Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
 693 Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
 694 son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
 695 Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
 696 lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
 697 Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
 698 Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
 699 Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
 700 mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
 701 Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
 Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
 Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
 Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
 Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
 Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,

- 702 Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
 703 Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
 704 Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
 705 jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
 706 Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
 707 Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
 708 de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
 709 Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
 710 Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
 711 Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
 712 Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
 713 sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
 714 Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 715 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
 716 Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
 717 ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
 718 jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
 719 Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
 720 Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
 721 man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
 722 Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
 723 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
 724 <https://arxiv.org/abs/2303.08774>.
- 725 Yanzhou Pan, Huawei Lin, Yide Ran, Jiamin Chen, Xiaodong Yu, Weijie Zhao, Denghui Zhang,
 726 and Zhaozhuo Xu. Alinfik: Learning to approximate linearized future influence kernel for scal-
 727 able third-party LLM data valuation. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Pro-
 728 ceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for
 729 Computational Linguistics: Human Language Technologies, NAACL 2025 - Volume 1: Long
 730 Papers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025*, pp. 11756–11771. Associa-
 731 tion for Computational Linguistics, 2025. doi: 10.18653/V1/2025.NAACL-LONG.589. URL
 732 <https://doi.org/10.18653/v1/2025.naacl-long.589>.
- 733 Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models
 734 as few shot unlearners, 2024. URL <https://arxiv.org/abs/2310.07579>.
- 735 Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
 736 influence by tracing gradient descent. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
 737 H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 19920–19930.
 738 Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/e6385d39ec9394f2f3a354d9d2b88eec-Paper.pdf.
- 739 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 740 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 741 A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in
 742 Neural Information Processing Systems*, volume 36, pp. 53728–53741. Curran Associates, Inc.,
 743 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf.
- 744 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”: Explaining
 745 the predictions of any classifier, 2016. URL <https://arxiv.org/abs/1602.04938>.
- 746 S. E. Robertson and S. Walker. Some simple effective approximations to the 2-poisson model for
 747 probabilistic weighted retrieval. In Bruce W. Croft and C. J. van Rijsbergen (eds.), *SIGIR ’94*, pp.
 748 232–241, London, 1994. Springer London. ISBN 978-1-4471-2099-5.
- 749 Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
 750 Liu, Luke Zettlemoyer, Noah A. Smith, and Chiyuan Zhang. Muse: Machine unlearning six-way
 751 evaluation for language models, 2024. URL <https://arxiv.org/abs/2407.06460>.
- 752 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Arthur,
 753 Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh

- 756 Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
 757 Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle
 758 Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke
 759 Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and
 760 Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining research,
 761 2024. URL <https://arxiv.org/abs/2402.00159>.
- 762
 763 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks, 2017.
 764 URL <https://arxiv.org/abs/1703.01365>.
- 765
 766 Andrew Trotman, Antti Puurula, and Blake Burgess. Improvements to bm25 and language models
 767 examined. In *Proceedings of the 19th Australasian Document Computing Symposium*, ADCS
 768 '14, pp. 58–65, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
 769 9781450330008. doi: 10.1145/2682862.2682863. URL <https://doi.org/10.1145/2682862.2682863>.
- 770
 771 Bichen Wang, Yuzhe Zi, Yixin Sun, Yanyan Zhao, and Bing Qin. Rkld: Reverse kl-divergence-based
 772 knowledge distillation for unlearning personal information in large language models, 2024. URL
 773 <https://arxiv.org/abs/2406.01983>.
- 774
 775 Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. Machine unlearning: A
 776 survey. *ACM Comput. Surv.*, 56(1), August 2023. ISSN 0360-0300. doi: 10.1145/3603620. URL
 777 <https://doi.org/10.1145/3603620>.
- 778
 779 Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, and Xiang Yue. Machine
 780 unlearning of pre-trained large language models, 2024. URL <https://arxiv.org/abs/2402.15159>.
- 781
 782 Chih-Kuan Yeh, Joon Sik Kim, Ian E. H. Yen, and Pradeep Ravikumar. Representer point selection
 783 for explaining deep neural networks, 2018. URL <https://arxiv.org/abs/1811.09720>.
- 784
 785 Dongkeun Yoon, Joel Jang, Sungdong Kim, and Minjoon Seo. Gradient ascent post-training
 786 enhances language model generalization, 2023. URL <https://arxiv.org/abs/2306.07052>.
- 787
 788 Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catas-
 789 troptic collapse to effective unlearning, 2024. URL <https://arxiv.org/abs/2404.05868>.
- 790
 791 Jianing Zhu, Bo Han, Jiangchao Yao, Jianliang Xu, Gang Niu, and Masashi Sugiyama. Decoupling
 792 the class label and the target concept in machine unlearning, 2024. URL <https://arxiv.org/abs/2406.08288>.
- 793
 794 E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case study and the
 795 strength pareto approach. *IEEE Transactions on Evolutionary Computation*, 3(4):257–271, 1999.
 796 doi: 10.1109/4235.797969.
- 797
 800
 801 APPENDIX
- 802
 803 A USAGE OF LARGE LANGUAGE MODELS
- 804
 805 In this work, large language models were used only for minor textual refinements, such as para-
 806 phrasing technical descriptions and improving fluency. All outputs were carefully reviewed and
 807 revised by the authors to ensure accuracy and consistency with the intended scientific meaning. The
 808 intellectual contributions, methodological advances, and scientific insights are entirely original and
 809 author-driven.

810 B THEORETICAL ANALYSIS WITH PROOFS 811

812 **Theorem B.1** (Variance Reduction of GA_GDR with RASLIK, formal version of Theorem 3.3). *Let*
813 Δ_{ex} *be the update direction obtained by retrieving forget set \mathcal{F} and retain set \mathcal{R} using thresholding*
814 *on exact linearized influence kernel (see Definition 3.1) $\rho_x = \cos(q_y, g_x)$, and Δ_{ra} be the update*
815 *direction obtained by retrieving forget set \mathcal{F} and retain set \mathcal{R} using RASLIK in Algorithm 1 with*
816 *scores $\hat{\rho}_x = \langle h(q_y), h(g_x) \rangle$. Under Assumption 3.2,*

$$817 \quad 818 \quad \text{Var}[\Delta_{\text{ra}}] \leq \text{Var}[\Delta_{\text{ex}}] - \frac{c}{k} \Lambda,$$

819 *for some $c > 0$ and boundary mass $\Lambda > 0$. Moreover,*

$$820 \quad 821 \quad \mathbb{E}[\|\Delta_{\text{ra}} - \nabla_{\theta} U(\theta)\|_2^2] < \mathbb{E}[\|\Delta_{\text{ex}} - \nabla_{\theta} U(\theta)\|_2^2].$$

823 *Proof. Step 1 (Setup).* For each $x \in X$, define $\rho_x = \cos(q_y, g_x)$ and $\hat{\rho}_x = \langle h(q_y), h(g_x) \rangle$. By
824 construction of $h(\cdot)$, $\mathbb{E}[\hat{\rho}_x] = \rho_x$ and $\text{Var}[\hat{\rho}_x] = \mathcal{O}(1/k)$.

825 **Step 2 (Selection rules).** Exact thresholding uses $I_{x,F}^{\text{ex}} = \mathbf{1}\{\rho_x \geq \tau_F\}$ and $I_{x,R}^{\text{ex}} = \mathbf{1}\{\rho_x \leq -\tau_R\}$.
826 RASLIK thresholding uses $I_{x,F}^{\text{ra}} = \mathbf{1}\{\hat{\rho}_x \geq \tau_F\}$ and $I_{x,R}^{\text{ra}} = \mathbf{1}\{\hat{\rho}_x \leq -\tau_R\}$.

828 **Step 3 (Instability of exact thresholding).** The indicator $\mathbf{1}\{\rho_x \geq \tau_F\}$ is discontinuous at τ_F .
829 Under Assumption 3.2, items in \mathcal{N}_F (and analogously \mathcal{N}_R) experience membership flips under
830 small fluctuations of ρ_x , contributing substantially to selection variance.

831 **Step 4 (RASLIK smoothing).** RASLIK replaces ρ_x by $\hat{\rho}_x = \rho_x + \varepsilon_x$ with $\mathbb{E}[\varepsilon_x] = 0$, $\text{Var}[\varepsilon_x] =$
832 $\mathcal{O}(1/k)$. Hence $p_x^{\text{ra}} := \mathbb{P}(I_{x,F}^{\text{ra}} = 1 \mid \rho_x) = \mathbb{P}(\rho_x + \varepsilon_x \geq \tau_F)$ is the convolution of a step with
833 a continuous noise distribution. Therefore p_x^{ra} is L_k -Lipschitz in ρ_x with $L_k = \mathcal{O}(1/\sqrt{k})$, which
834 strictly reduces selection sensitivity in $\mathcal{N}_F \cup \mathcal{N}_R$.

835 **Step 5 (Variance reduction for updates).** Let $\mu_F = \frac{1}{|\mathcal{F}|} \sum_x I_{x,F} g_x$ and $\mu_R = \frac{1}{|\mathcal{R}|} \sum_x I_{x,R} g_x$. By
836 the law of total variance,

$$837 \quad \text{Var}[\mu_S] = \mathbb{E}[\text{Var}[\mu_S \mid \mathbf{I}_S]] + \text{Var}[\mathbb{E}[\mu_S \mid \mathbf{I}_S]], \quad S \in \{F, R\}.$$

839 The within-set variance terms are comparable across methods; the *selection variance* terms are
840 strictly smaller under RASLIK by at least $(c_S/k)\Lambda_S$, with $\Lambda_S > 0$ proportional to the boundary
841 mass of \mathcal{N}_S and bounded second moments of $\{g_x\}$. Combining $S = F, R$ and controlling cross-
842 covariances yields

$$843 \quad \text{Var}[\Delta_{\text{ra}}] \leq \text{Var}[\Delta_{\text{ex}}] - \frac{c}{k} \Lambda,$$

844 with $c = \min\{c_F, c_R\} > 0$ and $\Lambda = \Lambda_F + \Lambda_R > 0$.

846 **Step 6 (MSE improvement).** Since $\hat{\rho}_x$ is unbiased and $h(-q_y) = -h(q_y)$ preserves antipodal
847 unbiasedness, Δ_{ra} is unbiased for $\nabla_{\theta} U(\theta)$. Therefore its mean-squared error equals its variance
848 and is strictly smaller than that of Δ_{ex} . \square

849 B.1 CONNECTION TO EMPIRICAL EXPERIMENT

851 We empirically validate Assumption 3.2 on our experimental setup by directly inspecting the distribution
852 of scaled influence scores around the thresholds used in RASLIK.

854 We first compute the scaled influence scores $s'_x \in [-1, 1]$, which approximate the cosine similarities
855 $\rho_x = \cos(q_y, g_x)$. Using the empirically selected thresholds τ_F and $-\tau_R$, we then examine the
856 density of training samples in their γ -neighborhoods.

857 We visualize this in the plots below:

859 For $\gamma = 0.01$, we obtain the following **boundary statistics**:

- 860 • **Boundary mass around τ_F :** 49 samples within $\tau_F \pm 0.01$.
- 861 • **Boundary mass around $-\tau_R$:** 495 samples within $-\tau_R \pm 0.01$.
- 862 • **Total boundary mass:** $|\mathcal{N}_F \cup \mathcal{N}_R| = 544 > 0$, confirming that the boundary sets have
863 strictly positive measure $\Lambda > 0$.

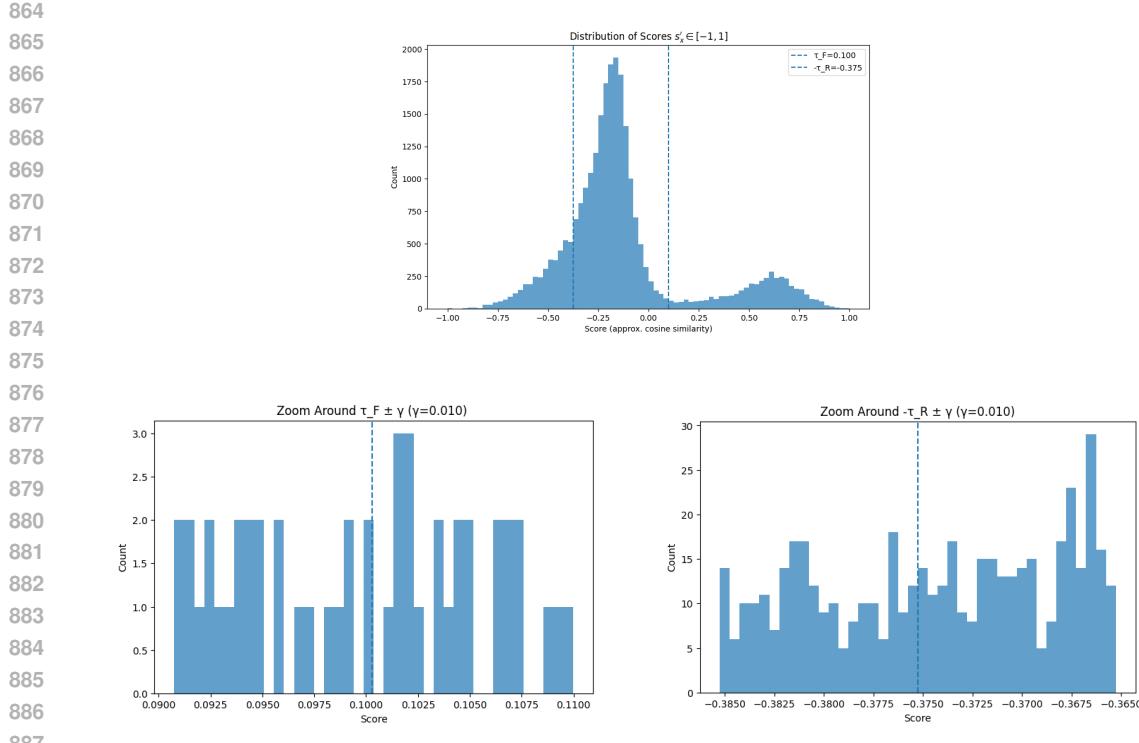


Figure 4: Visualization of scaled influence scores: (top) global score distribution; (bottom left) zoom around the forget threshold τ_F ; (bottom right) zoom around the retain threshold $-\tau_R$. All histograms use $\gamma = 0.01$.

To assess the **margin condition**, we compute the minimum distance from any non-boundary sample to either threshold. This yields

$$\hat{\Gamma} = 0.0101 > \gamma,$$

so all samples outside the boundary neighborhoods remain at least $\hat{\Gamma}$ away from the thresholds. This empirically verifies the required margin condition $\Gamma > \gamma$.

These statistics and histograms show that both parts of Assumption 3.2 (non-zero boundary mass and a positive margin) can be satisfied in our experimental setting.

C MORE EXPERIMENTAL DETAILS

C.1 FINE-TUNING HYPERPARAMETERS

We fine-tune both models using **Low-Rank Adaptation (LoRA)** (Hu et al., 2021). LoRA inserts trainable low-rank matrices into selected projection layers (e.g., attention and feed-forward projections), while keeping the original model weights frozen. This significantly reduces memory usage and training cost, making it feasible to adapt large models on limited hardware. The rank r controls the size of the low-rank matrices, and the scaling factor α adjusts their contribution.

Table 4 summarizes the configurations for OLMo-7B and Pythia-2.8B. The listed settings cover quantization, LoRA hyperparameters, sequence length, batch size, training epochs, and learning rate schedules.

C.2 RETRIEVAL METHOD SETTINGS

Embedding Similarity We use the BAAI/bge-base-en-v1.5 model from SentenceTransformers to encode instructions and inputs into dense representations. Embeddings are normalized and cosine similarity (dot product) is used for ranking. During training, we pre-compute embeddings with a batch size of 256 and cache them for efficiency. For each query, all training samples are

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 4: Fine-tuning configurations for OLMo-7B and Pythia-2.8B.

Setting	OLMo-7B	Pythia-2.8B
Base model	allenai/OLMo-2-1124-7B	EleutherAI/pythia-2.8b
Revision	stage1-step928646	step143000
Quantization	8-bit	4-bit (nf4, double quant)
LoRA rank r	8	16
LoRA α	32	32
Dropout	0.05	0.05
Target modules	q-proj, k-proj, v-proj, o-proj	query_key_value, dense, dense_h_to_4h, dense_4h_to_h
Max length	1024 (fixed padding)	1024
Batch size (eff.)	$2 \times 4 = 8$	$4 \times 8 = 32$
Epochs	3	2
Learning rate	1×10^{-4}	1.2×10^{-4} (cosine, warmup 0.05)
Grad. checkpoint	Enabled	Enabled

ranked by similarity, and the final ranking score for each sample is obtained by averaging its ranks and similarity scores across all queries.

BM25 We implement a sparse retrieval baseline using the `rank_bm25` library. Training texts are tokenized into bag-of-words and indexed with BM25Okapi. Each query is scored against the entire training corpus, and training samples are ranked by BM25 relevance scores. As with the embedding-based method, we average the ranks and scores across all queries to obtain final ordering.

RASLIK **(1) Gradient Caching.** We construct a cache of per-example gradients on the training set. Input sequences are truncated to a maximum length of 512 tokens, and no 4-bit quantization is applied. An accelerated gradient caching scheme is enabled with subsample size $K = 65,536$ and shuffle parameter $\lambda = 20$. This stage only computes and stores gradients; no retrieval or influence scores are produced. **(2) Retrieval.** Using the cached gradients, we perform influence-based retrieval. Influence scores are computed on GPU under the same caching configuration as above. Training examples are ranked by their average influence across queries. Model memory is released after retrieval to reduce resource usage.

C.3 UNLEARNING CONFIGURATIONS

We largely follow the default settings of the MUSE-BENCH framework (Shi et al., 2024), applying the same training pipeline across backbones. Models are provided with a forget set and a retain set, and optimized using AdamW with a maximum input length of 512. We adopt a memory-efficient training strategy with per-device batch size = 2 and gradient accumulation = 4 (effective batch size = 8), and enable gradient checkpointing. The only deviations from the defaults are the learning rates, where GA-GDR uses 1×10^{-5} and GA-KLR uses 3×10^{-5} . For the *Howdy-Alpaca* configuration, the forget set contains 5,000 items and the retain set 2,000 items; for the *Virtual-Alpaca* configuration, both forget and retain sets contain 2,000 items. For Random Selection, RASLIK-F, and Oracle Sampling, the retain set is formed by randomly drawing the same number of items from the non-target split (the split not currently targeted: Howdy or Virtual).

C.4 EFFICIENCY OF RASLIK

We report the computational cost of our method in Table 5, which shows the retrieval time required to compute the influence score of a single test query over the full Howdy dataset (52k instances).

Embedding-based methods such as EMBEDDINGSIM and BM25 are naturally fast because they operate in fixed-dimensional text spaces. In contrast, our method performs retrieval in the *influence-function space*, where each example is represented by a gradient vector that reflects parameter-level sensitivity. This representation is far richer but also more expensive to compare. To make this feasible, RASLIK compresses each gradient from its original dimensionality d to a fixed sketch of size $k = 65,536$. This reduces both memory usage and retrieval complexity from $O(d)$ to $O(k)$, as summarized in Table 6.

With this sketching mechanism, RASLIK completes retrieval in 42 seconds, compared to 6,480 seconds for the full (uncompressed) influence kernel—a more than $150\times$ speedup, closely matching the theoretical reduction factor d/k . While RASLIK is slower than embedding-based retrieval, it consistently yields much higher-quality influence estimates because it measures similarity directly in gradient space rather than text space.

Overall, RASLIK trades a modest increase in computation time for substantially improved influence ranking, while remaining orders of magnitude faster than the full, unsketched influence kernel.

Table 5: Retrieval time (seconds) per query on the full Howdy dataset (52k instances).

Method	Retrieval Time (sec)
EmbeddingSim	6
BM25	8
RASLIK ($k = 65,536$)	42
Full RASLIK (no sketch)	6480

Table 6: Dimensionality and memory reduction of RASLIK sketches.

Model	Full Dim	Sketch Dim	Full Mem	Sketch Mem	Comp.
OLMo-2-1124-7B w. LoRA	8,388,608	65,536	32 MB	0.25 MB	128 \times
Pythia-2.8B w. LoRA	2,621,440	65,536	10 MB	0.25 MB	40 \times

C.5 EXPERIMENTS ON TOFU BENCHMARK

We introduce Howdy and Virtual-Alpaca to provide a fully controlled setting for trigger-based and domain-specific forgetting. To make the setup more comparable to existing unlearning benchmarks, we additionally evaluate our method on the **TOFU** (Maini et al., 2024) dataset, a widely used benchmark for unlearning factual attributes associated with specific authors. Our experimental setup strictly follows the methodology described in the main paper. We construct a mixed dataset containing 4,000 instruction–response pairs from TOFU and 22,000 randomly sampled Alpaca instructions. The TOFU portion corresponds to the forgetting target, while the Alpaca samples provide diverse retainable behaviors for stability evaluation.

We conduct experiments on **OLMo-2-1124-7B** and **Pythia-2.8B**, using Muse-Bench as the evaluation framework. Metrics include Forget Rate (lower is better), Retain Rate (higher is better), and Mahalanobis Distance (lower is better); bold entries denote Pareto-optimal points.

Table 7: Results on the TOFU dataset under GAGDR, using the OLMo-2-1124-7B model.

method	Forget Rate	Retain Rate	Mahal Dist
BM25	0.83	0.81	14.04
EmbeddingSim	0.54	0.76	8.72
OracleSampling	0.42	0.76	6.67
RandomSelection	0.79	0.86	13.43
RASLIK-F	0.46	0.75	7.41
RASLIK	0.49	0.78	7.96

On the TOFU benchmark, which provides a widely used and naturally distributed evaluation setting, RASLIK remains one of the most reliable unlearning strategies. Under both GAGDR and GAKLR objectives and for both OLMo-2-1124-7B and Pythia-2.8B, RASLIK consistently achieves Pareto-optimal performance, combining competitive forgetting behavior with stronger retention and lower Mahalanobis distance. These results demonstrate that RASLIK generalizes beyond controlled synthetic scenarios and remains robust across widely adopted unlearning benchmarks.

1026 Table 8: Results on the TOFU dataset under GAKLR, using the OLMo-2-1124-7B model.
1027

1028	method	Forget Rate	Retain Rate	Mahal Dist
1029	BM25	0.45	0.46	48.54
1030	EmbeddingSim	0.28	0.43	33.40
1031	OracleSampling	0.28	0.42	33.33
1032	RandomSelection	0.51	0.42	54.75
1033	RASLIK-F	0.31	0.50	35.73
1034	RASLIK	0.27	0.43	32.84

1035
1036 Table 9: Results on the TOFU dataset under GAGDR, using the Pythia-2.8B model.
1037

1038	method	Forget Rate	Retain Rate	Mahal Dist
1039	BM25	0.62	0.60	7.10
1040	EmbeddingSim	0.24	0.17	8.11
1041	OracleSampling	0.50	0.45	7.50
1042	RandomSelection	0.60	0.59	7.04
1043	RASLIK	0.23	0.47	5.61
1044	RASLIK-F	0.55	0.42	8.00

1045
1046 Table 10: Results on the TOFU dataset under GAKLR, using the Pythia-2.8B model.
1047

1048	method	Forget Rate	Retain Rate	Mahal Dist
1049	BM25	0.32	0.32	25.05
1050	EmbeddingSim	0.33	0.30	25.79
1051	OracleSampling	0.31	0.29	24.89
1052	RandomSelection	0.32	0.27	25.46
1053	RASLIK-F	0.30	0.29	24.26
1054	RASLIK	0.17	0.31	17.69

1055
1056 D VIRTUAL-ALPACA DATASET DESCRIPTION

1057
1058
1059 We synthesize a fictional-world QA dataset in the Alpaca format (instruction, input,
1060 output), where input is empty and all outputs are English-only. The generation pipeline
1061 proceeds in three stages. First, we instantiate a lightweight “world database” with a fixed random seed
1062 (default: 21), which samples culture styles, countries, cities, factions, characters, deities, relics,
1063 fauna/flora, transport modes, and calendars. Culture-specific name generators produce human-
1064 readable, stylish names (no gibberish), ensuring a consistent fictional setting with no copyrighted or
1065 privacy-sensitive material.

1066
1067
1068 Second, we build a template bank of QA-style prompts that query world entities and relations (e.g.,
1069 capitals, rulers, festivals, trade goods, travel logistics, character roles). Each template yields an
1070 instruction and a concise output grounded in the sampled world. We enforce a QA-like
1071 surface form by normalizing prompts into questions or natural commands and by constraining all
1072 text to ASCII/English.

1073
1074 Third, we optionally apply two lightweight text edits: (i) paraphrasing of instructions to diversify
1075 wording without changing task intent; and (ii) answer expansion to produce 3–5 sentence responses
1076 when needed. These edits are implemented via an OpenAI-compatible interface but are model-
1077 agnostic in our setup; all outputs remain English-only by construction. Finally, overly long answers
1078 are truncated to a word budget (default max answer tokens: 180). The result is a purely synthetic,
1079 English QA corpus suitable for benchmarking retrieval and unlearning without implicating real-
world copyrighted or personal content.

1080 WORLD MODEL

1081

1082 **Cultures.** We instantiate six culture styles (Aeolic, Skarn, Lorian, Vash, Noric, Imperial), each
1083 influencing naming conventions, religious structure, and currency systems.

1084

1085 **Countries.** Roughly eight countries are created, each equipped with a capital, ruler, primary reli-
1086 gion, deity, annual festival, trade goods, currency unit, and multiple cities.

1087

1088 **Factions and Guilds.** Around ten organizations appear in the world, responsible for governance,
1089 archiving, relic supervision, or guild-based regulation.

1090

1091 **Characters.** The model includes about eighty characters, each tied to a country and described by a
1092 title, elemental affinity, faction membership, and weapon preference.

1093

1094 **Relics and Bosses.** Roughly twenty-eight relics with myths, storage protocols, and ritual constraints
1095 are instantiated, along with twenty-eight territorial bosses that possess specific weaknesses.

1096

1097 **World Assets.** Additional assets include a custom calendar, specialized materials, fauna, flora,
1098 cuisine, transportation modes, and local laws.

1099

1100 REPRESENTATIVE QA PAIRS

1101

1102 we provide some representative examples.

1103

1104 **Country & Culture.**

1105

1106 **Q:** Describe the cultural atmosphere of Veloria—what defines its people and traditions?

1107

1108 **A:** Veloria embodies a Lorian-style cultural identity characterized by artistic refinement, communal
1109 discipline, and seasonal celebrations. Its people honor ancestral traditions during Lanternrun and
1110 are known for meticulous craftsmanship.

1111

1112 **Religion & Festivals.**

1113

1114 **Q:** In Vashim, which deity presides over the Moon Reckoning festival, and how does this event
1115 influence the granting of trade permits?

1116

1117 **A:** The Moon Reckoning festival honors the deity Qareen. During the celebration, inspection win-
1118 dows are temporarily relaxed, allowing faster permit processing, though sensitive exports still re-
1119 quire temple oversight.

1120

1121 **Characters.**

1122

1123 **Q:** Provide a detailed dossier on Elenvyr, covering her origin country, official title, elemental align-
1124 ment, faction allegiance, and weapon of choice.

1125

1126 **A:** Elenvyr originates from Caeloria and serves as an Archivist. She is aligned with the Aether el-
1127 ement, affiliated with the Lorian Order, and typically carries a ceremonial staff used in long-range
1128 surveys.

1129

1130 **Factions.**

1131

1132 **Q:** What core purpose or ultimate goal drives the members of the Lorian Order?

1133

1134 **A:** The Lorian Order is dedicated to preserving historical integrity and regulating relic exchange.
1135 Its members conduct audits, oversee vault access, and mediate guild disputes to maintain cultural
1136 balance.

1137

1138 **Relics & Myths.**

1139

1140 **Q:** Can you shed light on the nature of the Aurelion Relic and reveal the location where it is currently
1141 guarded?

1142

1143 **A:** The Aurelion Relic is a sky-iron orb believed to stabilize elemental currents. It is securely housed
1144 in a fortified vault beneath Seravyn City and inspected regularly by trained custodians.

1145

1146 **Bosses.**

1147

1148 **Q:** If one were to hunt the beast Drakvald, in which region does it reside, and what vulnerability can
1149 be exploited to defeat it?

1150

1151 **A:** Drakvald resides in the ruins surrounding Thornmere. Hunters exploit its weakness to Gale-
1152 aligned attacks, which stagger the creature's armored defenses.

1134

Economy & Daily Life.

1135

1136

Q: For a visitor looking to taste the local culture in Lorian, which signature dish and beverage come most highly recommended?

1137

1138

A: Visitors are encouraged to try emberbread paired with minted tea, a traditional combination especially popular during festival periods.

1139

1140

1141

E EVALUATION METRICS

1142

1143

E.1 ROUGE-L BASED FORGET/RETAIN RATES

1144

1145

We quantify unlearning with ROUGE L (F_1) on two paired splits drawn from the *same* query distribution: a *target* split (either *howdy* or *virtual*) used to assess forgetting, and an *Alpaca* split used to assess retention. Ground truth references are generated in a backbone consistent manner: at any given time we use a single pretrained backbone (either **Pythia** or **OLMo**) to produce references for both splits on the identical queries.

1146

1147

1148

1149

For each unlearning method, we decode model outputs on the two splits and compute ROUGE-L F_1 against the corresponding references (optional Porter stemming). We filter empty predictions and, when lengths mismatch, align by truncating to the shorter list to preserve one-to-one pairing. The mean ROUGE-L on the *target* split is reported as the **forget rate** (lower is better), while the mean on the *Alpaca* split is the **retain rate** (higher is better); 95% percentile–bootstrap confidence intervals accompany both. To summarize method trade-offs, we additionally flag Pareto-optimal points under the criterion “maximize retain, minimize forget” and report the Euclidean distance to the ideal point ($\text{retain} = 1$, $\text{forget} = 0$) (also in min–max normalized space). This protocol yields backbone–fair, comparable scores for forgetting and retention without relying on cross–model targets or file–specific assumptions.

1150

1151

E.2 NON-SF DISCRIMINATOR

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

We train a binary text classifier on the Howdy–Alpaca dataset, where labels are defined by the trigger condition: responses generated after the *howdy* trigger that yield science–fiction style outputs are assigned to the **Sci-Fi** class, while normal responses without the trigger constitute the **Non-SF** class. We use pre-split CSV files (`train/test`) with `text` and `label` columns. A RoBERTa_{base} sequence–classification head (2 labels) is fine–tuned using HuggingFace Trainer: inputs are tokenized to a maximum length of 256 tokens with max–length padding; optimization uses AdamW (library defaults) with learning rate 2×10^{-5} , per–device batch size 16 for training and 32 for evaluation, and 3 epochs; mixed precision (FP16) is enabled when supported. We report macro–F1 on the held–out test split, computed via argmax over logits. The final checkpoint and tokenizer are saved for reproducibility.

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187