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ABSTRACT

Audio generation, including speech, music and sound effects, has advanced
rapidly in recent years. These tasks can be divided into two categories: time-
aligned (TA) tasks, where each input unit corresponds to a specific segment of the
output audio (e.g., phonemes aligned with frames in speech synthesis); and non-
time-aligned (NTA) tasks, where such alignment is not available. Since modeling
paradigms for the two types are typically different, research on different audio
generation tasks has traditionally followed separate trajectories. However, audio is
not inherently divided into such categories, making a unified model a natural and
necessary goal for general audio generation. Previous unified audio generation
works have adopted autoregressive architectures, while unified non-autoregressive
approaches remain largely unexplored. In this work, we propose UniFlow-Audio,
a universal audio generation framework based on flow matching. We propose a
dual-fusion mechanism that temporally aligns audio latents with TA features and
integrates NTA features via cross-attention in each model block. Task-balanced
data sampling is employed to maintain strong performance across both TA and
NTA tasks. UniFlow-Audio supports omni-modalities, including text, audio, and
video. By leveraging the advantage of multi-task learning and the generative mod-
eling capabilities of flow matching, UniFlow-Audio achieves strong results across
7 tasks using fewer than 8K hours of public training data and under 1B trainable
parameters. Even the small variant with only ∼200M parameters shows competi-
tive performance, highlighting UniFlow-Audio as a potential non-auto-regressive
foundation model for audio generation. Code and models will be available at
https://anonymous3387a8c.github.io/uniflow_audio.

1 INTRODUCTION

With the rapid evolution of generative models (Vaswani et al., 2017; Ho et al., 2020; Lipman et al.,
2023), recent works have achieved remarkable improvements in generation quality (Esser et al.,
2024; Polyak et al., 2024), promoting popularity of artificial intelligence generated content (AIGC).
As an important modality, audio has also made remarkable progress in various generation tasks, with
text-to-speech synthesis (TTS) (Wang et al., 2023a) and text-to-audio (T2A) generation (Liu et al.,
2023) serving as representative tasks. Traditional audio generation models are designed for specific
tasks, such as converting text to speech or music. This paradigm is suboptimal, as it overlooks the
interconnected nature of real-world auditory information.

To overcome this limitation, we aim at a unified framework for audio generation that accommodates
diverse input (text, audio, video) and output modalities (speech, music, sound effect). We observe
that despite their differences, these tasks can be fundamentally categorized by the temporal relation-
ship between input and output: either time-aligned (TA) or non-time-aligned (NTA), as shown in
Figure 1. For TA tasks, there is strict temporal alignment between input and output, such as the
monotonic alignment in text-to-speech (TTS), the one-to-one frame alignment in speech enhance-
ment (SE), and one-to-N frame alignment in video-to-audio (V2A). In contrast, NTA tasks, such
as T2A, do not require such a temporal alignment constraint: the input sequence (textual descrip-
tion) corresponds holistically to the entire output soundscape, with semantic consistency being the
primary objective rather than temporal correspondence. This fundamental difference in alignment
requirements has historically necessitated specialized modeling approaches for TA and NTA tasks.
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Figure 1: Illustration of time-aligned (TA) tasks and non-time-aligned (NTA) tasks.

While recent works have explored unified audio generation with autoregressive (AR) architectures,
unified non-autoregressive (NAR) approaches remain relatively underexplored. UniAudio (Yang
et al., 2024) adopts an AR paradigm, achieving strong zero-shot performance on both AR and NAR
tasks. However, AR models rely on sequential decoding and discrete tokenizers, whereas NAR mod-
els generate continuous audio representations in parallel, which may offer advantages in latency and
quality. Moreover, AR models rely entirely on self-attention to learn input–target alignment, which
can be unstable for long sequences or in low-resource settings. The inherent exposure bias issue ex-
acerbates this challenge. In addition, the teacher-forcing training strategy used in Transformer-based
AR decoders introduces the well-known exposure bias problem, causing errors to accumulate as the
generated sequence becomes longer. Thus, NAR-based unified audio generation remains worth ex-
ploring. AudioX represents an NAR attempt, but it focuses exclusively on NTA tasks and cannot
handle TA tasks such as TTS, which require variable-length generation. Meanwhile, task-specific
NAR models like VoiceFlow (Guo et al., 2024) perform well on TA tasks by temporally aligning
content embeddings with audio latents, yet this modeling paradigm does not generalize to NTA
tasks. This leaves a gap for a single NAR framework capable of unifying both TA and NTA tasks
within one modeling paradigm.

In this work, we propose UniFlow-Audio, a universal audio generation framework based on flow
matching that unifies both TA and NTA tasks within a single non-auto-regressive (NAR) model.
From the modeling perspective, we propose a dual-fusion mechanism to temporally align audio la-
tents with input features for TA tasks, while utilizing cross-attention to integrate input features for
NTA tasks, ensuring high-quality generation across both categories. To avoid interference between
the two fusion strategies, task-irrelevant features (i.e., NTA features for TA tasks and TA features for
NTA tasks) are replaced with learnable dummy embeddings, keeping TA and NTA feature integra-
tion disentangled. Both TA and NTA tasks are integrated in each block of the backbone (block-wise
fusion), enabling the input to more effectively guide the generation. To balance the amount of dif-
ferent data types, we adopt a task-balanced sampling strategy to balance the ratio between TA and
NTA data during training. Moreover, UniFlow-Audio supports a broader range of input modali-
ties than prior works, including text, audio, and visual signals. With all these modalities and tasks
involved, UniFlow-Audio learns the shared knowledge across different tasks, which in turn yields
competitive or superior performance compared to task-specific baselines. Notably, compared with
other unified audio generation models (see Section 2 for details on data and model sizes), our small
variant (∼200M parameters), trained on fewer than 8K hours of public data, achieves strong results,
underscoring the data efficiency and parameter effectiveness achieved by UniFlow-Audio.

The contributions of this work can be summarized as follows:

1. We provide a novel perspective that formulates diverse audio generation tasks through tem-
poral alignment.

2. We propose UniFlow-Audio, the first flow-matching-based universal audio generation
framework that unifies TA and NTA tasks.

3. We design model architectures and data sampling strategies to balance TA and NTA tasks
while ensuring the generation quality, including a dual-fusion mechanism, block-wise fu-
sion, and task-balanced sampling.

4. UniFlow-Audio achieves strong results with limited open-source data and parameters on a
variety of tasks, demonstrating the advantages of a unified audio generation model.

5. We open-source the code and model to provide a potential unified NAR audio generation
foundation model, enabling further theoretical exploration and practical applications.
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2 RELATED WORK

Unified Audio Generation Recently, the research paradigm in audio generation has shifted from
task-specific models to unified frameworks capable of handling multiple tasks within a single model.
Such frameworks facilitate cross-domain knowledge sharing and improve data efficiency. Represen-
tative works include UniAudio (Yang et al., 2024) and AudioX (Tian et al., 2025). UniAudio is a
large language model (LLM) based AR model that discretizes audio and various input modalities
into token sequences and leverages a multi-scale Transformer to model inter- and intra-frame corre-
lations. UniAudio is trained on 165K hours of data. Despite 11 tasks being included, the video input
modality is not supported in UniAudio. In contrast, AudioX adopts an NAR Diffusion Transformer
(DiT) with a multi-modal input masking strategy to enhance robustness and generation performance.
While trained on 29K hours of large-scale curated data, it focuses exclusively on NTA tasks. Com-
pared with these pioneering works, UniFlow-Audio proposed a flow-matching-based unified NAR
framework that achieves good performance on both TA and NTA tasks, with omni input modalities
involved (text, audio, video) whilst trained on smaller datasets.

Flow Matching for Audio Generation Recent NAR generative models, diffusion models (Ho
et al., 2020) and flow matching (Lipman et al., 2023), have attracted significant attention in audio
generation due to their strong generative capabilities and the fast inference speed through parallel
generation. NaturalSpeech2 (Shen et al., 2024), E3-TTS (Gao et al., 2023), and AudioLDM (Liu
et al., 2023) demonstrate the capabilities of latent diffusion models on speech and audio generation.
To achieve high-fidelity generation with extremely few steps, flow matching is adopted for T2A and
TTS with low latency (Eskimez et al., 2024; Chen et al., 2025; Guan et al., 2024). It alleviates the
high inference latency inherent to the iterative denoising process in diffusion models by directly
learning a continuous velocity field that transports noise into data in a few integration steps, rather
than requiring a substantial number of discrete denoising iterations. Flow matching is also employed
in hybrid TTS systems such as CosyVoice (Du et al., 2024) to refine acoustic details given discrete
tokens predicted by the AR component. Motivated by the success of flow matching in prior speech
and audio generation works, UniFlow-Audio adopts flow matching as the backbone.

3 UNIFLOW-AUDIO

As Figure 2 shows, UniFlow-Audio is a unified flow-matching-based audio generation framework
that consists of four parts: a variational autoencoder (VAE) that compresses the raw long audio signal
into a short sequence, a content encoding part for extracting features from the input content and task
instruction, a duration adapter that generates TA content embeddings, and a Transformer-based flow
matching backbone.

3.1 AUDIO REPRESENTATION FOR GENERATION

Following (Evans et al., 2025), we employ a VAE that operates on raw waveforms for direct wave-
form generation and reducing latency. The VAE encoder compresses the waveform x ∈ RL into a
latent representation A ∈ RL/2R×D, where L, R and D denote the waveform length, compression
ratio and latent dimension, respectively. The VAE architecture also follows (Evans et al., 2025), with
details shown in Section G.1. We train the VAE on a mixture of high-quality speech, music, singing
voice and general audio datasets to improve the generation performance on various domains.

3.2 CONTENT ENCODING WITH TASK INSTRUCTION

All inputs are transformed into continuous embeddings C instead of discrete tokens to avoid infor-
mation loss by modality-specific content encoders:

Phoneme & MIDI: For TTS, phonemes from grapheme-to-phoneme conversion (g2p)1 and x-
vectors (Wang et al., 2023b) for speaker information are used as input. We use the Transformer-
based encoder from FastSpeech2 (Ren et al., 2020) as the content encoder. Singing voice synthesis
(SVS) is similar to TTS, except that the input is MIDI rather than phonemes. In addition to phoneme

1https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner
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Figure 2: Overview of UniFlow-Audio. The content encoder and adapter transform the input and
task instruction into content embedding. Based on the predicted duration, the content embedding
is expanded to time-aligned content embedding. A dual-fusion mechanism is applied: the latent is
fused with the content by cross attention, and fused with time-aligned content by addition.

embeddings, the MIDI encoder incorporates pitch, pitch duration, and slur information, which are
fused with the phoneme embeddings through addition.

Text: For T2A and text-to-music generation (T2M), the input is a coarse text description without the
alignment information. We use Flan-T5 (Chung et al., 2024) as the encoder following (Majumder
et al., 2024; Evans et al., 2025).

Audio: For audio input, we reuse the VAE as the encoder to compress the sequence length.

Video: For video input in video-to-audio generation (V2A), we use CLIP (Radford et al., 2021)
combined as the encoder.

The VAE, Flan-T5, and CLIP are frozen during training. After obtaining C from the content en-
coder, we further integrate task instructions to inject explicit task-specific information, enabling the
model to distinguish between tasks that share the same input modality (e.g., T2A and T2M). This
integration is achieved through an instruction encoder and a content adapter: the former maps the
textual instruction into embeddings I, and the latter fuses C with I via cross-attention (Attn) and
residual connection by

CI = Attn(C, I, I) +C. (1)

Regarding each task, we design 10 diverse textual instructions that describe the objective (details
shown in Section F). During training, one instruction is randomly selected from each task as the
input, whereas during inference, a fixed instruction is used.

With task-involved content embeddings CI, a clip duration dc ∈ R+ and a sequence duration ds ∈
(R+)L are predicted. Since UniFlow-Audio is an NAR model, both TA and NTA tasks rely on dc to
determine the output length. ds is only required by TA tasks for duration adaptation, which will be
introduced in Section 3.3. For the duration predictor, we adopt the architecture in FastSpeech2.

3.3 DURATION ADAPTER

As introduced in Section 1, audio generation tasks can be divided into TA and NTA categories by
their temporal alignment constraint. In NTA tasks where input and target audio lack temporal corre-
spondence, cross-attention mechanism is typically used to integrate C into the generation process.
In TA tasks, alignment information is often explicitly leveraged for generation. For instance, TTS
relies on phoneme-to-frame alignment to expand linguistic units, while speech enhancement (SE)
inherently operates on frame-aligned noisy and clean audio pairs. In such cases, content embeddings
are aligned and concatenated with audio features, a process that may require a duration adapter.

Building on this insight, we introduce a unified duration adapter to explicitly align content embed-
dings with audio latents across all TA tasks. We posit that this explicit alignment offers superior

4
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efficacy for TA tasks than the implicit mechanisms of cross-attention. Specifically, CI is expanded
to a time-aligned content CI

T. That is,

CI
T =

[
cI1, . . . , c

I
1︸ ︷︷ ︸

(ds)1

, cI2, . . . , c
I
2︸ ︷︷ ︸

(ds)2

, . . . , cIN , . . . , cIN︸ ︷︷ ︸
(ds)N

]
. (2)

Based on the sequence duration ds, the duration adapter repeats each embedding cIi in CI for (ds)i
steps, producing CI

T that matches the length of the audio latents. For TTS and SVS, ds specifies the
number of audio latents per phoneme. For SE and V2A, each value in ds is fixed, since each input
audio latent or video frame corresponds to a fixed number of target audio latents. For NTA tasks, ds
is set to a constant dummy value to achieve a unified design. During training, ground-truth durations
are used to obtain CI

T.

3.4 DUAL-FUSION FLOW MATCHING TRANSFORMER

The generation backbone is a flow-matching Transformer composed of multiple blocks. Following
standard DiTs, we fuse CI with the audio latent A by cross attention in each block. Besides the
cross attention, to integrate CI

T within each block, we employ a dual-fusion mechanism, where
CI

T is fused with A by element-wise addition, as they are temporally aligned. The flow matching
timestep τ is incorporated by adaptive layer norm (AdaLN). Formally, each block contains four
operations: a self-attention layer, a cross-attention layer and a feedforward network (FFN) like
standard Transformer decoder blocks, with an extra addition fusion between self-attention and cross-
attention:

A = (AdaLNSA ◦ Attn)(A,A,A), (3)

A = A+CI
T, (4)

A = Attn(A,CI,CI) +A (5)
A = (AdaLNFFN ◦ FFN)(A). (6)

To prevent interference between the two fusion streams, we replace the ineffective input with learn-
able dummy embeddings. These embeddings are shared across tasks and initialized as zero vectors.

3.5 TRAINING AND INFERENCE

We train the model using the flow matching loss, which encourages the velocity field vθ(zτ , τ) to
match a target velocity field, so that the continuous-time flow induced by vθ transports data latents
z0 ∼ pdata to a standard Gaussian z1 ∼ N (0, I):

dzτ
dτ

= vθ(zτ , τ), zτ = (1− τ) · z0 + τ · z1, τ ∈ [0, 1] (7)

LFM = Eτ,z0,z1

∥∥vθ(zτ , τ,CI,CI
T)− (z1 − z0)

∥∥2, (8)

where θ denotes model parameters, τ is the flow step, and LFM is the flow-matching training loss.
The two duration predictors are trained together with the backbone using the following losses:

Ldur-clip = E∥dc − d̂g∥2, Ldur-seq = Ei∥(ds)i − (d̂s)i∥2, (9)

where d̂g and d̂s are ground-truth clip duration and sequence duration. For NTA tasks, Ldur-seq is
omitted. In practice, ds and d̂s are converted to frame numbers in the logarithmic domain to calculate
Ldur-seq, following FastSpeech2. The final training loss is L = LFM + Ldur-clip + Ldur-seq. During
inference, classifier-free guidance (CFG) is employed to balance the trade-off between generated
sample diversity and their fidelity to the input content: vCFG

θ (zτ ,C
I ,CI

T ) = vθ(zτ ,∅,∅) + w ·(
vθ(zτ ,C

I ,CI
T )− vθ(zτ ,∅,∅)

)
, where w is the guidance scale.

5
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4 EXPERIMENTAL SETUP

Tasks and Data UniFlow-Audio is trained and evaluated on a series of public datasets. Seven tasks
are involved: TTS, SVS, T2A, T2M, SE, audio Super Resolution (SR) and V2A. Among them, T2A
and T2M are NTA tasks, while the rest are TA tasks. Details of all training and evaluation data are
demonstrated in Table 4. A total of 7.7K hours of data are used for training, which is substantially
less than that employed in UniAudio and AudioX.

Task-Balanced Sampling As Table 4 shows, different tasks’ dataset sizes vary substantially due
to discrepancies in collection difficulty and availability. To prevent overexposure to small-scale
datasets caused by random sampling, a straightforward approach is to adopt a task-based round-
robin sampling strategy: sample data from each task in turn. However, since the number of different
task types is imbalanced (five TA tasks and two NTA tasks), task-based round-robin sampling dis-
proportionately favors TA tasks during training, which may in turn affect the model’s overall perfor-
mance. To this end, we upsample data from NTA tasks: T2M by 3 times and T2A by 2 times. We
refer to this sampling strategy as task-balanced sampling.

Training UniFlow-Audio is trained on eight A100 GPUs with a batch size on each GPU of 24.
We train three versions with different sizes: small, medium, and large. Configuration and training
details are in Section G.2 and Section G.3. The small version takes about 7 days to train, while the
large version takes about 12 days.

Evaluation Metrics For all tasks, both objective and subjective evaluation are conducted. Since
UniFlow-Audio is evaluated on a variety of tasks and datasets, we adopt task-specific commonly-
adopted metrics, as illustrated in Section B.

5 RESULTS

In this section, we first compare the performance of UniFlow-Audio with baselines on all tasks to
evaluate the overall generation quality. Then, we explore the effect of CFG scale on different tasks.
Finally, we conduct ablation studies on our training and architecture design.

5.1 UNIFIED AUDIO GENERATION

The comparison between UniFlow-Audio and prior works is demonstrated in Table 1. For each task,
we select a task-specific model from prior works whose architecture and training data are closely
aligned with our setting, while also demonstrating competitive performance. Except for LM-based
MusicGen (Copet et al., 2023), all other baseline models adopt the diffusion or flow-matching archi-
tecture. For F5-TTS, we re-train the model on LibriTTS for 200K steps (≈ 82M training samples)
for a fair comparison, as UniFlow-Audio is exposed to 76.8M training samples. UniFlow-Audio
achieves at least comparable performance to baselines and significantly outperforms baselines on
TTS, SE and SR. For TTS, UniFlow-Audio achieves lower WER with a speaker similarity compara-
ble to F5-TTS. For SVS, a specified vocoder with high reconstruction quality is used in DiffSinger,
while UniFlow-Audio uses a universal VAE, resulting in slightly lower singing synthesis quality on
soprano samples. For other tasks, UniFlow-Audio performs quite competitively with training only
on limited public datasets. In comparison, MusicGen (Copet et al., 2023) was trained on large-scale
private datasets.

Previous unified audio generation models, UniAudio (Yang et al., 2024) and AudioX (Tian et al.,
2025), are also compared. Despite the difference in the training data, the NAR UniFlow-Audio
shows superior generation performance compared with the autoregressive UniAudio. By analyzing
speech samples generated by UniAudio, we observe omissions and neglects of words in long sen-
tences, resulting in high WER. This highlights a limitation of AR models: alignment soly based on
self-attention can be not robust enough. Here we do not apply post-selection by selecting the sample
with the lowest WER from multiple outputs of UniAudio, which was done in the original paper,
so such errors happen more frequently. Although post-selection is a common approach for codec-
based TTS systems, the inherent instability cased by autoregressive sampling cannot be eliminated.

6
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Table 1: Performance evaluation of UniFlow-Audio and baselines across all tasks.

Task Model Objective Evaluation Subjective Evaluation
Metrics Results Metrics Results

TTS
F5-TTS (Chen et al., 2025)

WER↓ | SIM↑
2.93 | 58.0

MOS ↑ | SMOS↑UniAudio (Yang et al., 2024) 11.93 | 36.9
UniFlow-Audio 2.19 | 57.1 3.79 | 3.21

SVS DiffSinger (Liu et al., 2022c) F0↓ | SA↑ 0.144 | 58.0 MOS↑ | SMOS↑ 4.26 | 4.43
UniFlow-Audio 0.147 | 59.9 4.05 | 4.31

T2A
AudioLDM 2 (Liu et al., 2024b)

FD↓ | CLAP↑
21.8 | 0.476

OVL↑ | REL↑
3.57 | 3.48

AudioX (Tian et al., 2025) 24.7 | 0.44 3.28 | 3.33
UniFlow-Audio 17.2 | 0.476 3.41 | 3.54

T2M
MusicGen (Copet et al., 2023)

FD↓ | CLAP↑
29.5 | 0.245

OVL↑ | REL↑
3.45 | 3.08

AudioX (Tian et al., 2025) 18.5 | 0.386 4.03 | 3.82
UniFlow-Audio 27.1 | 0.241 3.37 | 3.09

SE
DOSE (Tai et al., 2023)

PESQ↑ | STOI↑
2.50 | 0.931

MOS↑
3.43

UniAudio (Yang et al., 2024) 1.77 | 0.767 4.02
UniFlow-Audio 2.91 | 0.944 4.76

SR AudioSR (Liu et al., 2024a) LSD↓ 1.75 MOS↑ 3.58
UniFlow-Audio 1.49 4.19

V2A
DiffFoley (Luo et al., 2023)

IB↑ | SYNC↓
22.7 | 922

OVL↑ | SYNC↑
2.80 | 2.94

AudioX (Tian et al., 2025) 28.5 | 1241 3.25 | 3.31
UniFlow-Audio 28.6 | 1145 3.61 | 3.55

AudioX, on the other hand, is restricted to NTA tasks. Thanks to its architectural design, UniFlow-
Audio is capable of handling both TA and NTA tasks. By modeling V2A as an NTA task, AudioX
can also perform V2A generation. Despite having far fewer trainable parameters, UniFlow-Audio
matches or outperforms AudioX on T2A and V2A. AudioX achieves better performance on T2M
due to its larger-scale training data.

Table 2: Generation performance across different model sizes.

Model # Trainable
Params

TTS SVS T2A T2M SE SR V2A
WER↓ SA↑ FD↓ FD↓ PESQ↑ LSD↓ IB↑

Prior Works - 2.93 58.0 21.8 29.5 2.50 1.75 22.7

UniFlow-Audio small 208M 2.27 56.6 19.7 26.2 2.60 1.58 25.5
UniFlow-Audio medium 395M 2.10 58.4 17.8 26.6 2.72 1.53 26.5

UniFlow-Audio large 847M 2.19 59.9 17.2 27.1 2.91 1.49 28.6

We also explore the effect of model size on the generation performance. Table 2 shows that UniFlow-
Audio achieves competitive performance even with relatively few parameters. UniFlow-Audio
small, with only 208M trainable parameters, already outperforms baseline models across most tasks.
This demonstrates that UniFlow-Audio is parameter-efficient, delivering strong results without re-
lying on excessively large model sizes. We assume it can be attributed to the benefit of multi-task
training since there is intrinsic commonality in the knowledge required by different tasks. For ex-
ample, TTS and SVS both require generating vocal from phoneme inputs, while T2A and T2M both
require generating sound from coarse textual descriptions. In contrast, other universal generation
models, i.e., UniAudio (Yang et al., 2024) and AudioX (Tian et al., 2025), both contain more than
1B parameters. Although medium and large model versions further improve performance on certain
tasks, the performance gap between the small model and its larger counterparts remains moderate.

5.2 EFFECT OF CFG AND INFERENCE STEPS

We further investigate the impact of two key hyper-parameters in flow matching on generation per-
formance: the guidance scale and the number of inference steps. Interestingly, we observe two

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: The effect of guidance scale (left) and inference steps (right) on generation performance
of typical tasks. When analyzing one factor, the other is kept fixed.

distinct patterns across all tasks: SE and SR fall into one pattern, while the remaining tasks follow
another. We take SE and T2A as representative tasks of the two patterns and report their CLAP
and PESQ scores, with higher values indicating better performance for both metrics. Results are
presented in Figure 3.

For the T2A task, the effects of the guidance scale and inference steps are consistent with typical
findings in diffusion-based models: larger guidance scales and more inference steps yield steady
performance improvements. This is expected, as stronger guidance provides more effective con-
ditioning from the textual description, while more inference steps allow smaller step sizes in the
denoising trajectory, which improves fidelity by reducing error accumulation. However, SE exhibits
a sharp performance decline as the guidance scale increases, with PESQ dropping from 2.9 to 1.75.
We attribute this to the characteristics of SE: the input inherently contains both signal and noise.
Stronger guidance thus amplifies not only the signal but also the noise, leading to reduced percep-
tual quality in the generated speech. In contrast, the input of T2A is a textual description without
“noise”, so all information should ideally be reflected in the generated audio. Regarding inference
steps, increasing the number of steps is also detrimental to the performance, although the effect is
considerably smaller than that of the guidance scale (2.98 → 2.89). This degradation may also stem
from the fact that SE inputs contain both signal and noise. With more inference steps, residual noise
can accumulate through the iterative denoising process, slightly reducing the perceptual quality.

5.3 ABLATION STUDIES

In this section, we conduct ablation studies to validate several components of UniFlow-Audio: 1) ar-
chitecture design, including dual-fusion and layerwise fusion mechanisms, and 2) the task-balanced
data sampling strategy.

Table 3: Ablation results on the architecture design and data sampling strategies of UniAudio-Flow.
The best results are highlighted in bold, while the second-best are underlined.

Setting
Time Aligned Non Time Aligned

TTS SVS SE SR V2A T2A T2M
WER↓ SA↑ PESQ↑ LSD↓ IB↑ FD↓ FD↓

UniFlow-Audio-small 2.27 56.6 2.60 1.58 25.5 19.7 26.2

w. cross attention 16.0 55.0 1.10 2.42 24.5 30.1 37.2
w. double fusion 2.33 56.9 2.65 1.58 25.5 22.3 30.5

w. input fusion 44.3 41.8 1.07 1.59 13.7 20.9 28.7

w. filler token 28.3 54.4 2.50 1.62 16.6 19.8 28.5

w/o. balanced sampling 2.43 56.5 2.54 1.53 26.0 22.9 27.9

5.3.1 BENEFITS OF DUAL-FUSION TRANSFORMER

To validate the effectiveness of our proposed dual-fusion mechanism, we replace it with alternative
fusion strategies and compare their generation performance. As Figure 4 illustrates, we investigate
two alternative fusion mechanisms: cross-attention fusion and double fusion. Cross-attention fusion
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Cross Attention

⊕

Cross Attention

⊕

Cross Attention

NTA

(a) Cross Attention Fusion

NTA

TA TA

NTA

(b) Double Fusion (c) Dual Fusion

Time-Aligned Task
Non-Time-Aligned Task

Dummy Embedding

Figure 4: Illustration of different fusion mechanisms, best viewed in color. In the dual fusion sub-
figure, green and red indicate the flow in TA and NTA tasks, respectively, while the dashed line
represents dummy embeddings. For instance, in TA tasks, the NTA content embeddings are re-
placed with dummy ones.

is the most straightforward approach, where all contents are fused with the audio latent via cross-
attention, similar to AudioLDM2 (Liu et al., 2024b). Double fusion resembles our proposed dual
fusion mechanism but differs in one aspect: content embeddings both before and after duration adap-
tation are fed into the backbone, regardless of the task type. In contrast, in dual fusion, ineffective
content embeddings based on task types are set to dummy embeddings. This design may introduce
interference between the learning of different task types. In contrast, the dual fusion mechanism
employs dummy embeddings, which provide better guidance for the model to attend to different
sources depending on the task type, thereby mitigating such interference.

The upper half of Table 3 reports the results of alternative content fusion mechanisms, which are
consistent with our assumptions. Although cross-attention has shown strong performance in prior
T2A and T2M studies (Liu et al., 2024b), applying it directly to a mixture of task types results in
poor performance. Even on non-time-aligned T2A and T2M tasks, its performance is significantly
worse than that of dual fusion, suggesting that the presence of rich time-aligned data adversely
affects models based on cross-attention. Compared with double fusion, dual fusion achieves similar
performance on time-aligned tasks, while substantially outperforming it on non-time-aligned tasks.
This demonstrates the effectiveness of the dummy embedding design. As described in Section 3.4,
for non-time-aligned tasks, the duration used for content expansion is a dummy value. Consequently,
the incorporation of expanded content embeddings into the generation process acts as noise.

5.3.2 BENEFITS OF EXPLICIT ALIGNMENT

We investigate the benefits of explicit time alignment by replacing the time-aligned embeddings
CI

T with the original content embeddings CI padded by filler tokens, following the practice in
E2TTS (Eskimez et al., 2024). As shown in Table 3, implicit alignment achieves comparable per-
formance on NTA tasks while TA tasks with one-to-many alignment (see Figure 1) suffer significant
performance degradation. This indicates that the one-to-one frame correspondence dominates the
alignment learning and leaves less capacity for other TA tasks without explicit alignment. There-
fore, explicit alignment is crucial for preserving high-quality generation in tasks with a variety of
alignment requirements.

5.3.3 BENEFITS OF BLOCK-WISE FUSION

To further validate the architectural design, we examine the effect of fusing time-aligned content em-
beddings only at the input layer, referred to as input fusion. This follows the design of F5-TTS (Chen
et al., 2025) and FlowSep (Yuan et al., 2025). As shown in the middle row of Table 3, input fusion
leads to a substantial performance drop on time-aligned tasks. Since content embeddings are inte-
grated via cross-attention in each DiT block, injecting time-aligned inputs solely at the input layer
makes their influence much weaker than that of non-time-aligned inputs. Consequently, non-time-
aligned tasks are only marginally affected, while the performance on time-aligned tasks degrades
significantly. In contrast, UniFlow-Audio employs block-wise fusion, where time-aligned content
embeddings are injected into each DiT block. This progressive fusion allows richer interactions be-
tween time-aligned content and audio latents, and proves essential for achieving robust performance
across different task types.
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5.3.4 BENEFITS OF TASK-BALANCED SAMPLING

Finally, we investigate the impact of the proposed task-balanced data sampling strategy. As shown
in the last row of Table 3, removing balanced sampling (w/o balanced sampling) results in degraded
performance on non-time-aligned tasks (T2A and T2M), while performance on time-aligned tasks
remain relatively stable. This aligns with the number of datasets from different task types: under
the original round-robin sampling strategy, time-aligned tasks are overrepresented. Without explicit
balancing, the model is more exposed to time-aligned tasks, which amplifies the influence of time-
aligned content input. In contrast, the task-balanced sampling strategy ensures that each task type is
adequately represented, mitigating the effects of task imbalance and leading to more consistent and
reliable performance across both time-aligned and non-time-aligned tasks.

6 LIMITATIONS

Despite unifying TA and NTA audio generation within a flow-matching-based NAR framework,
UniFlow-Audio has several limitations. First, tasks involving multiple TA/NTA inputs, such as
voice conversion (source speech + target speaker utterance), are not explored. Second, the model’s
generalization to unseen tasks or input modalities, similar to the zero-shot generalization capabilities
of LLMs, has not been investigated. Third, the data and model size have not been scaled. Except for
T2M, most tasks have under 1,000 hours of training data. Finally, UniFlow-Audio currently focuses
on single-stream audio generation, while multi-stream or multi-source generation (e.g., TTS with
background music) remains largely underexplored.

7 CONCLUSION

We present UniFlow-Audio, a flow-matching-based universal audio generation framework that uni-
fies both TA and NTA tasks within a single NAR model. By introducing a dual-fusion mechanism
with block-wise integration, UniFlow-Audio effectively combines TA and NTA features without
cross-task interference. The model leverages shared knowledge across multiple modalities, includ-
ing text, audio, and vision, to enhance generation performance through unified audio modeling.
Extensive experiments demonstrate that, even with limited training data and moderate model size
(as small as 200M trainable parameters), UniFlow-Audio achieves competitive performance across
diverse tasks, highlighting its potential as a foundation model for unified NAR audio generation.
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A DATA DETAILS

Table 4: Training and evaluation data details of UniFlow-Audio.

Task Training Evaluation Training Duration / h

TTS LibriTTS (Zen et al., 2019) LibriSpeech-PC (Meister et al., 2023) 555

SVS M4Singer (Zhang et al., 2022) 30

T2A AudioCaps (Kim et al., 2019) 253

SE

LibriTTS+Wham!
VoiceBank+Demand

(Botinhao et al., 2016)

460
VCTK+Wham! 44
LJSpeech+Musan 24
VoiceBank+Demand 10

SR

HQ-TTS VCTK 85
MUSDB MUSDB 47
MoisesDB 26
FreeSound ESC 158

T2M MSD (McFee et al., 2012) MusicCaps (Agostinelli et al., 2023) 5789

V2A VisualSound (Viertola et al., 2025) 236

Total - 7717

UniFlow-Audio is trained and evaluated on a series of public datasets. Details of all training and
evaluation data are shown in Table 4. For TTS, we train the model on LibriTTS (Zen et al., 2019)
while use LibriSpeech-PC (Meister et al., 2023) for inference. The cross sentence evaluation setting
follows F5-TTS (Chen et al., 2025). For SVS, we use the official training / validation / test splits of
M4Singer. Details of other datasets are described in the following:
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T2A The official training subset of AudioCaps is used for T2A training. Each sample contains 5
captions in the test subset. Following TANGO (Ghosal et al., 2023), we randomly select one caption
per sample for evaluation, and we use the same selected captions as in their setup.

T2M For T2M, we use songs from MSD (McFee et al., 2012) combined with LP-MusicCaps-
MSD (Doh et al., 2023) captions as the training data. The original song in MSD can be as long as 14
minutes. During training, we randomly crop 10 seconds for training. The widely-used benchmark
MusicGen (Copet et al., 2023) is used for evaluation.

SE For SE, we utilize the method in URGENT challenge (Zhang et al., 2024) to simulate noisy
speech. The clean speech datasets include LibriTTS, VCTK Corpus (Yamagishi et al., 2019) and
LJSpeech (Ito & Johnson, 2017), while the noise datasets contain WHAM! (Wichern et al., 2019)
and noise subset of Musan (Snyder et al., 2015). Room Impulse Rresponses (RIRs) dataset for
simulation is the RIRs dataset in Ko et al. (2017). We choose VoiceBank+Demand (Botinhao et al.,
2016) for both train and evaluation, which is widely used as a benchmark in SE.

SR For SR, we mainly follow the setup of AudioSR (Liu et al., 2024a), while prioritizing the
available sources for ease of collection. The training datasets include MUSDB (Rafii et al., 2019),
MoisesDB (Pereira et al., 2023), HQ-TTS (Liu et al., 2022b) and FreeSound (Mei et al., 2024), while
the evaluation uses ESC-50 (Piczak, 2015), VCTK-test (Liu et al., 2022a), and MUSDB. All high-
quality recordings are first resampled to 24 kHz. Since our VAE is designed to process 24 kHz audio,
we choose a cutoff range of [2,6] KHz for the downsampled audio. Based on the method introduced
in NVSR (Liu et al., 2022a), we then apply the low-pass filter within this range to simulate low-high
resolution audio pairs.

V2A For V2A, since the widely used VGGSound (Chen et al., 2020) dataset is constructed from
in-the-wild videos without ensuring high audio-video correspondence, it includes a considerable
amount of modality-mismatched samples where the video and audio are not semantically related.
This limitation is detrimental to training stability and the inherent irrelevance is harmful to the
performance. Therefore, we adopt the smaller but better audio-visual aligned VisualSound (Viertola
et al., 2025) for both training and evaluation, which is curated based on ImageBind scores (Girdhar
et al., 2023) to identify videos with poor audio-visual correspondence.

B EVALUATION METRICS

TTS Following (Wang et al., 2024), we use Word Error Rate (WER)2 as an objective metric to
evaluate the accuracy of generated speech with respect to the given transcription, and Speaker Simi-
larity (SIM)3 to assess the consistency of speaker characteristics between the generated and prompt
speech. For subjective evaluation, we employ the Mean Opinion Score (MOS) to measure overall
speech naturalness and the Similarity MOS (SMOS) to assess perceived speaker similarity.

SVS Following Wu et al. (2024), we use root mean square error of fundamental frequency (F0)
and semitone accuracy (SA)4 for objective evaluation. Same as TTS, MOS and SMOS are used as
subjective metrics for accessing singing quality and singer similarity.

T2A & T2M Following previous T2A and T2M studies (Liu et al., 2024b), we adopt Frechet
Distance (FD) and CLAP score for audio and music generation evaluation. FD measures the sim-
ilarity of the distribution between generated and reference audio based on PANNs CNN14 (Kong
et al., 2020) features, while CLAP score serves as a reference-free metric that captures the semantic
alignment between textual descriptions and generated audio.

2https://huggingface.co/nvidia/stt_en_conformer_transducer_xlarge
3https://drive.google.com/file/d/1-aE1NfzpRCLxA4GUxX9ITI3F9LlbtEGP/view
4https://github.com/espnet/espnet/blob/master/egs2/TEMPLATE/svs1/svs.

sh#L1171
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SE Following Tai et al. (2023), we choose Perceptual Evaluation of Speech Quality (PESQ) and
Short-Time Objective Intelligibility (STOI) for SE evaluation. PESQ measures perceptual speech
quality, and STOI estimates speech intelligibility.

SR Following previous studies (Liu et al., 2024a; 2022a), we adopt Log-Spectral Distance (LSD)
for objective evaluation. LSD measures the discrepancy between the original high-frequency audio
and the generated audio. Note that the baseline model AudioSR generates 48 kHz audio, while
ours operates at 24 kHz. For fair comparison, AudioSR outputs are downsampled to 24 kHz before
evaluation.

V2A Following Viertola et al. (2025), we evaluate V2A performance using ImageBind (Girdhar
et al., 2023) (IB) and Synchformer (Iashin et al., 2024) (SYNC). IB measures semantic modality
consistency by computing the cosine similarity between audio and video embeddings. SYNC as-
sesses synchronization based on temporal offsets between audio and visual modality estimated by
Synchformer.

Table 5: Comparison of Multi-Task and Single-Task Training on TTS and T2A.

Setting T2A Metrics TTS Metrics
FD ↓ CLAP ↑ WER ↓ SIM ↑

T2A only 25.2 0.434 - -
TTS only - - 2.55 40.8

TTS + T2A 21.3 0.466 2.71 43.0

C BENEFITS OF MULTI-TASK TRAINING

It is found that multi-task training can improve performance than task-specific training in UniAu-
dio (Yang et al., 2024). Here we also explore the effect of multi-task training on NAR models, taking
the combination of TTS and TTA as an example. We perform T2A-only, TTS-only, and TTS + T2A
training respectively. For fair comparison, the effective number of TTS / T2A training samples
(batch size × training steps) seen by the model are kept the same across the corresponding training
configurations. Each task is exposed to the same amount of task-specific training samples across
settings. Results are shown in Table 5. It is shown that joint training brings significant improvement
in the generation quality. The shared learning objective of generating high-quality audio across tasks
enables joint learning to outperform task-specific learning.

D ANALYSIS OF BLOCK-WISE FUSION DEPTH

To further understand the effect of fusion depth in block-wise fusion, we conduct an ablation study
based on the 12-layer small model. Specifically, we remove block-wise fusion in different layer
ranges: the first four layers (w.o. early fusion), the middle four layers (w.o. middle fusion), and
the last four layers (w.o. late fusion). For efficiency, all models are trained for 200K steps under
identical training configurations. The results are summarized in Table 6.

Across all tasks, removing fusion in the middle layers leads to the largest performance degradation,
while removing fusion in early or late layers has a relatively smaller impact and even outperforms
the original model on some tasks. These findings suggest that the middle layers play a crucial role
in integrating time-aligned content. Early layers may focus on low-level acoustic features, primarily
capturing patterns from the input audio latent sequence. Late layers may focus on task-specific
refinement. They are likely to specialize in task-dependent and domain-specific decoding behaviors
(e.g., prosody refinement in TTS or high-frequency compenent refinement in T2M). In contrast,
for middle layers, they are at the transition between low-level acoustic encoding and high-level
task-specific decoding. They carry semantically enriched but flexible representations, making the
contribution of time-aligned fusion in middle layers the most across different layers.
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Table 6: Analysis on Block-Wise Fusion Depth.

TTS SVS T2A T2M SE SR V2A
WER↓ SA↑ FD↓ FD↓ PESQ↑ LSD↓ IB↑

UniFlow-Audio small 2.27 54.5 28.0 33.9 2.41 1.66 21.3

w.o. early fusion 2.40 56.7 26.5 32.3 2.39 1.66 22.0
w.o. middle fusion 2.57 55.8 28.8 32.3 2.43 1.67 20.0
w.o. late fusion 2.68 55.9 25.1 33.9 2.39 1.65 21.0

Table 7: Inference speed comparison between UniFlow-Audio and UniAudio. Reported values
indicate inference time per second of audio.

Model TTS SE
UniAudio 12.21 3.98

UniFlow-Audio small 0.66 0.64
UniFlow-Audio large 2.23 1.26

E INFERENCE SPEED COMPARISON

To demonstrate the efficacy of UniFlow-Audio, we compare it against UniAudio, reporting the aver-
age inference time per second of audio on the same A10 GPU. The results are presented in Table 7.
Because of its NAR generation paradigm and smaller parameter size, UniAudio achieves substan-
tially faster inference. In particular, UniAudio-small delivers a ∼18.5× speedup on the TTS task.

F TASK INSTRUCTIONS

For each task, we prompt the LLM to generate 10 instructions ranging from simple to complex.
These instructions span from basic definitions of the task to detailed specifications of task require-
ments. Table 8 presents 3 examples of simple, medium, and complex instructions.

G ARCHITECTURE & HYPER-PARAMETERS

G.1 WAVEFORM-BASED VAE

The VAE adopts a fully-convolutional architecture with residual 1D blocks and Snake activations,
following the design from Evans et al. (2025). The encoder maps raw waveforms into a compact
latent sequence at a downsampling ratio of 480 with 128 channels, while the decoder mirrors the
encoder by progressively upsampling the latent sequence with transposed convolution to reconstruct
the waveform. To achieve high-fidelity audio generation across different audio types, we train the
VAE using a diverse set of datasets from multiple categories, including speech, singing, music, and
general audio, with details provided in Table 9. The model is trained for 1M steps on this extensive
collection of approximately 6000 hours data, where each audio clip is randomly cropped to 1.5s
segments during training.

To measure the reconstruction quality of VAE, we evaluate the mean squared error (MSE) and
signal-to-noise ratio (SNR) on held-out test sets. As shown in Table 10, our VAE achieves con-
sistently lower MSE and higher SNR than the one in EzAudio (Hai et al.), which was only trained
on AudioSet (Gemmeke et al., 2017).
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Table 8: Examples of detailed task instructions.

TTS

Produce human-like speech from phoneme inputs and speaker representations.
Generate natural speech from speaker embeddings and phoneme sequences while maintaining
accurate pronunciation.
Convert phoneme sequences into natural speech using speaker embeddings, with precise articulation
of words and adaptation to the textual emotional content.

T2A

Generate an audio clip based on the given text description.
Synthesize an audio signal from the given text, ensuring the fidelity of sound event representation
and the naturalness of the audio output.
Convert the given text into a natural-sounding audio clip, maintaining high fidelity in sound event
reproduction (volume, positioning, timing, repetition) and ensuring realistic scene acoustics and
event relationships.

SVS

Render a singing performance from musical notation, including phonemes, notes, durations, and slurs.
Produce a singing voice rendering derived from the notated score that maintains parametric fidelity to
the given phonemes, notes, durations, and slurs.
Synthesize a singing voice that matches the input musica score’s specifications (phonemes, notes,
durations, slurs) while adapting phoneme durations for natural flow and preserving textual
emotional tone.

SE

Enhance noisy speech signals by reducing background noise and reverberation.
Improve degraded speech quality by suppressing noise and reverberation while preserving natural
voice characteristics.
Enhance speech signals by dynamically suppressing diverse noise types (environmental/mechanical)
and reverberation, preserving tonal qualities and timbre across varying SNR conditions.

SR

Enhance audio quality by increasing its sampling rate or resolution.
Convert low-sampling-rate audio to high-resolution output, recovering lost high-frequency components
and subtle sonic characteristics.
Upsample low-resolution audio signals to higher sampling rates while preserving original signal details
and recovering high-frequency components without introducing audible artifacts.

V2A

Generate high-fidelity audio synchronized to video.
Produce high-quality audio that matches the video’s scene, with accurate timing, spatial positioning,
and realistic sound properties.
Generate high-fidelity audio for the video, ensuring strict temporal alignment, correct spatial direction,
loudness, and frequency of sounds, while maintaining realism and coherence with visual content.

T2M

Develop a music clip that precisely matches the textual description in all aspects.
Produce a musical piece that faithfully represents the given description, incorporating all
specified instruments, intended emotions, genre characteristics, and vocal properties.
Generate a musical output that perfectly matches the provided text, incorporating the exact instruments
mentioned, upholding authentic stylistic qualities, and delivering the desired emotional impact.
If vocals are required, precisely implement the described gender, age, vocal properties, and singing manner.

Table 9: Datasets used for training the waveform-based VAE.

Domain Datasets

Speech AISHELL-3 (Shi et al., 2021), TTS-HQ, LJSpeech, LibriTTS, VCTK
Singing OpenSinger (Huang et al., 2021), M4Singer, OpenCpop (Wang et al., 2022), PopCS (Liu et al., 2022c)
Music MUSDB, MoisesDB, MusicCaps
General Audio AudioSet (Gemmeke et al., 2017)

G.2 FLOW MATCHING BACKBONE

The diffusion step τ is processed by a multi-layer perceptron (MLP) to produce AdaLN scale and
shift parameters for each Transformer block, conditioning the self-attention and FFN layers:

γSA, βSA, αSA, γFFN, βFFN, αFFN = MLP(τ) (10)
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Table 10: Reconstruction performance of VAE.

Domain Speech Music
MSE ↓ SNR (dB) ↑ MSE ↓ SNR (dB) ↑

EzAudio VAE 4.43× 10−5 17.06 1.13× 10−4 18.09
Ours 3.84× 10−5 17.63 8.42× 10−5 19.27

We apply tanh to the scaling parameter α in AdaLN (Peebles & Xie, 2023) to improve the numerical
stability during training:

Anorm = γ ·Norm(A) + β (11)
A = tanh(1− α)⊙ F(Anorm) +Anorm (12)

To mitigate the potential negative influence from Ldur-clip and Ldur-seq, we apply gradient scaling to
the duration predictors. Specifically, we scale the gradients from the duration losses by a factor λ
before backpropagation, thereby reducing their influence on the model.

x̃ = λ · x+ (1− λ) · sg(x)

where sg(·) represents stop gradient operator and λ is set to 0.1.

Table 11 summarizes the architectural configurations of different UniFlow-Audio versions. Notably,
the small variant contains only approximately 200M trainable parameters, yet it achieves competitive
performance as shown in Table 2.

Table 11: Model configurations.

Model Size Depth Embed Size Num Heads # Total / Trainable Params

Small 12 512 8 593M / 208M
Medium 16 768 12 780M / 395M
Large 24 1024 16 1.2B / 847M

G.3 TRAINING & INFERENCE SETUP

UniFlow-Audio is trained using AdamW optimizer (Loshchilov & Hutter, 2017) with a constant
learning rate of 5e-5 with a warmup step of 10K steps and a total training step of 400K steps. To
mitigate the negative impact of excessively long audio content sequence on training efficiency, we
take a maximum of 5 second audio segments randomly during training for SE and SR. During in-
ference, we take an inference step of 25 by default. Sway sampling (Chen et al., 2025) is adopted
to improve the generation performance. During training, both TA and NTA content embeddings are
randomly masked with a ratio of 0.2 to train conditional and unconditional generation simultane-
ously. During inference, a CFG scale of 5.0 is adopted for tasks except SE and SR while CFG is not
applied for these two tasks, due to the influence of CFG on them (see Section 5.2).

H TRAINING STABILITY

We observe frequent loss spikes during training, as shown in Figure 5a, which naturally leads to a
question: is training on mixed TA and NTA tasks stable? These loss spikes are typically accompa-
nied by abnormally large loss values (up to 1,000), suggesting that they may be caused by noisy data.
Indeed, LP-MusicCaps and VisualSound contain some inherent noise: captions in LP-MusicCaps
are generated by ChatGPT and may include hallucinations, while audio-visual correspondence in
VisualSound is not guaranteed. To validate this, we exclude LP-MusicCaps and VisualSound (the
rest data are denoted as “clean” data) and train the same model. As Figure 5b shows, no spikes
occur. Since there are both TA tasks (TTS, SVS, SE, SR) and NTA tasks (T2A) in this setting, we
can conclude that training on mixed task types is stable.
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(a) Training on all data. (b) Training on “clean” data.

Figure 5: Loss curve of training on all data / “clean” data.

I LLM USAGE

LLMs were used as assistive tools in this work. Specifically, they were employed to help with lim-
ited code writing and debugging, as well as for polishing the language of the paper. The LLMs
involved include mainstream models such as GPT, Claude, and Gemini. These model were used for
grammar correction, sentence restructuring, and enhancing overall readability. All technical con-
tent, experimental design, results, and conclusions were authored and verified solely by the human
authors. LLMs did not contribute to the generation of ideas, methods, or data analysis.

J SUBJECTIVE EVALUATION DETAILS

For all tasks, we conduct MOS-based subjective tests with explicit instructions for raters. Each
sample is rated on a 1–5 Likert scale. We recruit ten raters with college-level education and normal
hearing ability for subjective evaluation. Examples of the rating interface and detailed instructions
are shown in Figure 6. Below we describe the setup for each task.

For TTS and SVS, we evaluate speech quality MOS (MOS) and speaker similarity MOS (SMOS).
For MOS, raters judge the overall naturalness and listening quality of the synthesized speech or
singing voice. For SMOS, raters judge whether the generated audio matches the target/reference
speaker in terms of timbre-related characteristics, disregarding prosodic variations.

For T2A and T2M, we follow AudioGen (Kreuk et al., 2022) and MusicGen (Copet et al., 2023) to
evaluate overall quality (OVL) and relevance (REL) to the input caption.

For SE, raters assess the intelligibility and naturalness of enhanced speech. Each output is pre-
sented together with its clean reference target, and the MOS scores reflect residual noise, processing
artifacts, and overall listening quality.

For SR, the evaluation setup is identical to SE, except that each sample is additionally accompanied
by a spectrogram visualization to facilitate judgments.

For V2A, we evaluate overall acceptability (OVL) and synchronization (SYNC) with the reference
video. In SYNC evaluation, the raters judge whether audio events are temporally aligned with visual
cues such as lip movements, object impacts, or musical actions.
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(a) TTS & SVS evaluation interface. (b) T2M & T2A evaluation interface.

(c) SR evaluation interface. (d) V2A evaluation interface.

Figure 6: Screenshots of the subjective evaluation interfaces used in our experiments.
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