

000 001 002 003 004 005 UNIFLOW-AUDIO: UNIFIED FLOW MATCHING FOR 006 AUDIO GENERATION FROM OMNI-MODALITIES 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100

ABSTRACT

011 Audio generation, including speech, music and sound effects, has advanced
012 rapidly in recent years. These tasks can be divided into two categories: time-
013 aligned (TA) tasks, where each input unit corresponds to a specific segment of the
014 output audio (e.g., phonemes aligned with frames in speech synthesis); and non-
015 time-aligned (NTA) tasks, where such alignment is not available. Since modeling
016 paradigms for the two types are typically different, research on different audio
017 generation tasks has traditionally followed separate trajectories. However, audio is
018 not inherently divided into such categories, making a unified model a natural and
019 necessary goal for general audio generation. **Previous unified audio generation**
020 **works have adopted autoregressive architectures, while unified non-autoregressive**
021 **approaches remain largely unexplored.** In this work, we propose UniFlow-Audio,
022 a universal audio generation framework based on flow matching. We propose a
023 dual-fusion mechanism that temporally aligns audio latents with TA features and
024 integrates NTA features via cross-attention in each model block. Task-balanced
025 data sampling is employed to maintain strong performance across both TA and
026 NTA tasks. UniFlow-Audio supports omni-modalities, including text, audio, and
027 video. By leveraging the advantage of multi-task learning and the generative mod-
028eling capabilities of flow matching, UniFlow-Audio achieves strong results across
029 7 tasks using fewer than 8K hours of public training data and under 1B trainable
030 parameters. Even the small variant with only \sim 200M parameters shows compet-
031 itive performance, highlighting UniFlow-Audio as a potential non-auto-regressive
032 foundation model for audio generation. Code and models will be available at
033 https://anonymous3387a8c.github.io/uniflow_audio.
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100

1 INTRODUCTION

037 With the rapid evolution of generative models (Vaswani et al., 2017; Ho et al., 2020; Lipman et al.,
038 recent works have achieved remarkable improvements in generation quality (Esser et al.,
039 2024; Polyak et al., 2024), promoting popularity of artificial intelligence generated content (AIGC).
040 As an important modality, audio has also made remarkable progress in various generation tasks, with
041 text-to-speech synthesis (TTS) (Wang et al., 2023a) and text-to-audio (T2A) generation (Liu et al.,
042 2023) serving as representative tasks. Traditional audio generation models are designed for specific
043 tasks, such as converting text to speech or music. This paradigm is suboptimal, as it overlooks the
044 interconnected nature of real-world auditory information.
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100

054 To overcome this limitation, we aim at a unified framework for audio generation that accommodates
055 diverse input (text, audio, video) and output modalities (speech, music, sound effect). We observe
056 that despite their differences, these tasks can be fundamentally categorized by the temporal relation-
057 ship between input and output: either **time-aligned (TA)** or **non-time-aligned (NTA)**, as shown in
058 Figure 1. For TA tasks, there is strict temporal alignment between input and output, such as the
059 monotonic alignment in text-to-speech (TTS), the one-to-one frame alignment in speech enhance-
060 ment (SE), and one-to- N frame alignment in video-to-audio (V2A). In contrast, NTA tasks, such
061 as T2A, do not require such a temporal alignment constraint: the input sequence (textual descrip-
062 tion) corresponds holistically to the entire output soundscape, with semantic consistency being the
063 primary objective rather than temporal correspondence. This fundamental difference in alignment
064 requirements has historically necessitated specialized modeling approaches for TA and NTA tasks.
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100

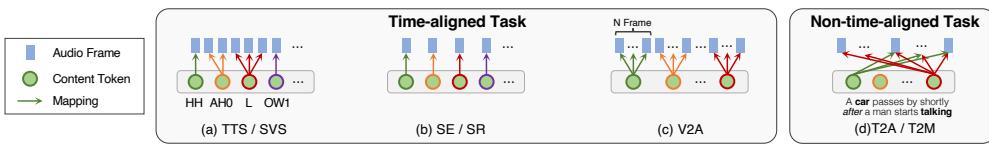


Figure 1: Illustration of time-aligned (TA) tasks and non-time-aligned (NTA) tasks.

While recent works have explored unified audio generation with autoregressive (AR) architectures, unified non-autoregressive (NAR) approaches remain relatively underexplored. UniAudio (Yang et al., 2024) adopts an AR paradigm, achieving strong zero-shot performance on both AR and NAR tasks. However, AR models rely on sequential decoding and discrete tokenizers, whereas NAR models generate continuous audio representations in parallel, which may offer advantages in latency and quality. Moreover, AR models rely entirely on self-attention to learn input–target alignment, which can be unstable for long sequences or in low-resource settings. The inherent exposure bias issue exacerbates this challenge. In addition, the teacher-forcing training strategy used in Transformer-based AR decoders introduces the well-known exposure bias problem, causing errors to accumulate as the generated sequence becomes longer. Thus, NAR-based unified audio generation remains worth exploring. AudioX represents an NAR attempt, but it focuses exclusively on NTA tasks and cannot handle TA tasks such as TTS, which require variable-length generation. Meanwhile, task-specific NAR models like VoiceFlow (Guo et al., 2024) perform well on TA tasks by temporally aligning content embeddings with audio latents, yet this modeling paradigm does not generalize to NTA tasks. This leaves a gap for a single NAR framework capable of unifying both TA and NTA tasks within one modeling paradigm.

In this work, we propose UniFlow-Audio, a universal audio generation framework based on flow matching that unifies both TA and NTA tasks within a single non-auto-regressive (NAR) model. From the modeling perspective, we propose a dual-fusion mechanism to temporally align audio latents with input features for TA tasks, while utilizing cross-attention to integrate input features for NTA tasks, ensuring high-quality generation across both categories. To avoid interference between the two fusion strategies, task-irrelevant features (*i.e.*, NTA features for TA tasks and TA features for NTA tasks) are replaced with learnable dummy embeddings, keeping TA and NTA feature integration disentangled. Both TA and NTA tasks are integrated in each block of the backbone (block-wise fusion), enabling the input to more effectively guide the generation. To balance the amount of different data types, we adopt a task-balanced sampling strategy to balance the ratio between TA and NTA data during training. Moreover, UniFlow-Audio supports a broader range of input modalities than prior works, including text, audio, and visual signals. With all these modalities and tasks involved, UniFlow-Audio learns the shared knowledge across different tasks, which in turn yields competitive or superior performance compared to task-specific baselines. Notably, compared with other unified audio generation models (see Section 2 for details on data and model sizes), our small variant (\sim 200M parameters), trained on fewer than 8K hours of public data, achieves strong results, underscoring the data efficiency and parameter effectiveness achieved by UniFlow-Audio.

The contributions of this work can be summarized as follows:

1. We provide a novel perspective that formulates diverse audio generation tasks through temporal alignment.
 2. We propose UniFlow-Audio, the first flow-matching-based universal audio generation framework that unifies TA and NTA tasks.
 3. We design model architectures and data sampling strategies to balance TA and NTA tasks while ensuring the generation quality, including a dual-fusion mechanism, block-wise fusion, and task-balanced sampling.
 4. UniFlow-Audio achieves strong results with limited open-source data and parameters on a variety of tasks, demonstrating the advantages of a unified audio generation model.
 5. We open-source the code and model to provide a potential unified NAR audio generation foundation model, enabling further theoretical exploration and practical applications.

108 **2 RELATED WORK**

110 **Unified Audio Generation** Recently, the research paradigm in audio generation has shifted from
 111 task-specific models to unified frameworks capable of handling multiple tasks within a single model.
 112 Such frameworks facilitate cross-domain knowledge sharing and improve data efficiency. Representative
 113 works include UniAudio (Yang et al., 2024) and AudioX (Tian et al., 2025). UniAudio is a
 114 large language model (LLM) based AR model that discretizes audio and various input modalities
 115 into token sequences and leverages a multi-scale Transformer to model inter- and intra-frame corre-
 116 lations. UniAudio is trained on 165K hours of data. Despite 11 tasks being included, the video input
 117 modality is not supported in UniAudio. In contrast, AudioX adopts an NAR Diffusion Transformer
 118 (DiT) with a multi-modal input masking strategy to enhance robustness and generation performance.
 119 While trained on 29K hours of large-scale curated data, it focuses exclusively on NTA tasks. Com-
 120 pared with these pioneering works, UniFlow-Audio proposed a flow-matching-based unified NAR
 121 framework that achieves good performance on both TA and NTA tasks, with omni input modalities
 122 involved (text, audio, video) whilst trained on smaller datasets.

123 **Flow Matching for Audio Generation** Recent NAR generative models, diffusion models (Ho
 124 et al., 2020) and flow matching (Lipman et al., 2023), have attracted significant attention in audio
 125 generation due to their strong generative capabilities and the fast inference speed through parallel
 126 generation. NaturalSpeech2 (Shen et al., 2024), E3-TTS (Gao et al., 2023), and AudioLDM (Liu
 127 et al., 2023) demonstrate the capabilities of latent diffusion models on speech and audio generation.
 128 To achieve high-fidelity generation with extremely few steps, flow matching is adopted for T2A and
 129 TTS with low latency (Eskimez et al., 2024; Chen et al., 2025; Guan et al., 2024). It alleviates the
 130 high inference latency inherent to the iterative denoising process in diffusion models by directly
 131 learning a continuous velocity field that transports noise into data in a few integration steps, rather
 132 than requiring a substantial number of discrete denoising iterations. Flow matching is also employed
 133 in hybrid TTS systems such as CosyVoice (Du et al., 2024) to refine acoustic details given discrete
 134 tokens predicted by the AR component. Motivated by the success of flow matching in prior speech
 135 and audio generation works, UniFlow-Audio adopts flow matching as the backbone.

136 **3 UNIFLOW-AUDIO**

137 As Figure 2 shows, UniFlow-Audio is a unified flow-matching-based audio generation framework
 138 that consists of four parts: a variational autoencoder (VAE) that compresses the raw long audio signal
 139 into a short sequence, a content encoding part for extracting features from the input content and task
 140 instruction, a duration adapter that generates TA content embeddings, and a Transformer-based flow
 141 matching backbone.

142 **3.1 AUDIO REPRESENTATION FOR GENERATION**

143 Following (Evans et al., 2025), we employ a VAE that operates on raw waveforms for direct wave-
 144 form generation and reducing latency. The VAE encoder compresses the waveform $\mathbf{x} \in \mathbb{R}^L$ into a
 145 latent representation $\mathbf{A} \in \mathbb{R}^{L/2^R \times D}$, where L , R and D denote the waveform length, compression
 146 ratio and latent dimension, respectively. The VAE architecture also follows (Evans et al., 2025), with
 147 details shown in Section G.1. We train the VAE on a mixture of high-quality speech, music, singing
 148 voice and general audio datasets to improve the generation performance on various domains.

149 **3.2 CONTENT ENCODING WITH TASK INSTRUCTION**

150 All inputs are transformed into continuous embeddings \mathbf{C} instead of discrete tokens to avoid infor-
 151 mation loss by modality-specific content encoders:

152 **Phoneme & MIDI:** For TTS, phonemes from grapheme-to-phoneme conversion (g2p)¹ and \mathbf{x} -
 153 vectors (Wang et al., 2023b) for speaker information are used as input. We use the Transformer-
 154 based encoder from FastSpeech2 (Ren et al., 2020) as the content encoder. Singing voice synthesis
 155 (SVS) is similar to TTS, except that the input is MIDI rather than phonemes. In addition to phoneme

1¹<https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner>

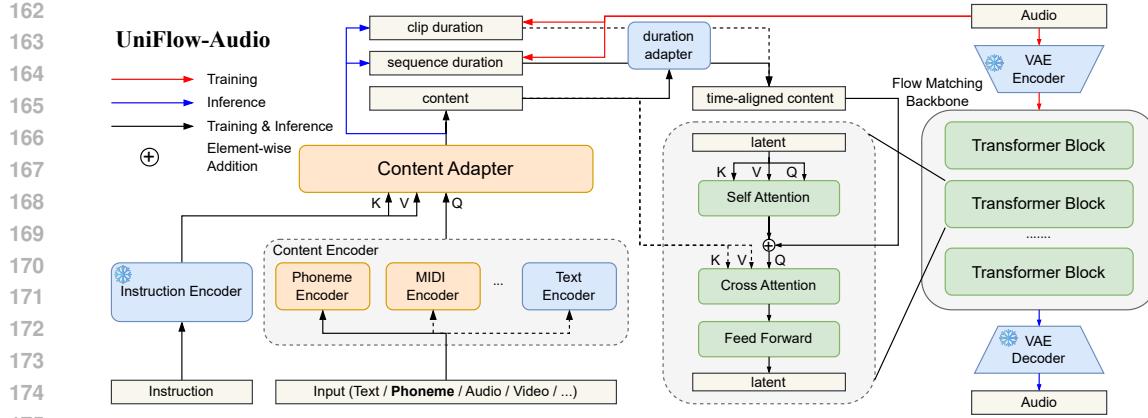


Figure 2: Overview of UniFlow-Audio. The content encoder and adapter transform the input and task instruction into content embedding. Based on the predicted duration, the content embedding is expanded to time-aligned content embedding. A dual-fusion mechanism is applied: the latent is fused with the content by cross attention, and fused with time-aligned content by addition.

embeddings, the MIDI encoder incorporates pitch, pitch duration, and slur information, which are fused with the phoneme embeddings through addition.

Text: For T2A and text-to-music generation (T2M), the input is a coarse text description without the alignment information. We use Flan-T5 (Chung et al., 2024) as the encoder following (Majumder et al., 2024; Evans et al., 2025).

Audio: For audio input, we reuse the VAE as the encoder to compress the sequence length.

Video: For video input in video-to-audio generation (V2A), we use CLIP (Radford et al., 2021) combined as the encoder.

The VAE, Flan-T5, and CLIP are frozen during training. After obtaining \mathbf{C} from the content encoder, we further integrate task instructions to inject explicit task-specific information, enabling the model to distinguish between tasks that share the same input modality (e.g., T2A and T2M). This integration is achieved through an instruction encoder and a content adapter: the former maps the textual instruction into embeddings \mathbf{I} , and the latter fuses \mathbf{C} with \mathbf{I} via cross-attention (Attn) and residual connection by

$$\mathbf{C}^I = \text{Attn}(\mathbf{C}, \mathbf{I}, \mathbf{I}) + \mathbf{C}. \quad (1)$$

Regarding each task, we design 10 diverse textual instructions that describe the objective (details shown in Section F). During training, one instruction is randomly selected from each task as the input, whereas during inference, a fixed instruction is used.

With task-involved content embeddings \mathbf{C}^I , a clip duration $d_c \in \mathbb{R}^+$ and a sequence duration $d_s \in (\mathbb{R}^+)^L$ are predicted. Since UniFlow-Audio is an NAR model, both TA and NTA tasks rely on d_c to determine the output length. d_s is only required by TA tasks for duration adaptation, which will be introduced in Section 3.3. For the duration predictor, we adopt the architecture in FastSpeech2.

3.3 DURATION ADAPTER

As introduced in Section 1, audio generation tasks can be divided into TA and NTA categories by their temporal alignment constraint. In NTA tasks where input and target audio lack temporal correspondence, cross-attention mechanism is typically used to integrate \mathbf{C} into the generation process. In TA tasks, alignment information is often explicitly leveraged for generation. For instance, TTS relies on phoneme-to-frame alignment to expand linguistic units, while speech enhancement (SE) inherently operates on frame-aligned noisy and clean audio pairs. In such cases, content embeddings are aligned and concatenated with audio features, a process that may require a duration adapter.

Building on this insight, we introduce a unified *duration adapter* to explicitly align content embeddings with audio latents across all TA tasks. We posit that this explicit alignment offers superior

216 efficacy for TA tasks than the implicit mechanisms of cross-attention. Specifically, \mathbf{C}^I is expanded
 217 to a time-aligned content \mathbf{C}_T^I . That is,
 218

$$219 \quad \mathbf{C}_T^I = [\underbrace{c_1^I, \dots, c_1^I}_{(d_s)_1}, \underbrace{c_2^I, \dots, c_2^I}_{(d_s)_2}, \dots, \underbrace{c_N^I, \dots, c_N^I}_{(d_s)_N}]. \quad (2)$$

$$220$$

$$221$$

222 Based on the sequence duration d_s , the duration adapter repeats each embedding c_i^I in \mathbf{C}^I for $(d_s)_i$
 223 steps, producing \mathbf{C}_T^I that matches the length of the audio latents. For TTS and SVS, d_s specifies the
 224 number of audio latents per phoneme. For SE and V2A, each value in d_s is fixed, since each input
 225 audio latent or video frame corresponds to a fixed number of target audio latents. For NTA tasks, d_s
 226 is set to a constant dummy value to achieve a unified design. During training, ground-truth durations
 227 are used to obtain \mathbf{C}_T^I .
 228

229 3.4 DUAL-FUSION FLOW MATCHING TRANSFORMER

$$230$$

231 The generation backbone is a flow-matching Transformer composed of multiple blocks. Following
 232 standard DiTs, we fuse \mathbf{C}^I with the audio latent \mathbf{A} by cross attention in each block. Besides the
 233 cross attention, to integrate \mathbf{C}_T^I within each block, we employ a dual-fusion mechanism, where
 234 \mathbf{C}_T^I is fused with \mathbf{A} by element-wise addition, as they are temporally aligned. The flow matching
 235 timestep τ is incorporated by adaptive layer norm (AdALN). Formally, each block contains four
 236 operations: a self-attention layer, a cross-attention layer and a feedforward network (FFN) like
 237 standard Transformer decoder blocks, with an extra addition fusion between self-attention and cross-
 238 attention:

$$239 \quad \mathbf{A} = (\text{AdaLN}_{\text{SA}} \circ \text{Attn})(\mathbf{A}, \mathbf{A}, \mathbf{A}), \quad (3)$$

$$240$$

$$241 \quad \mathbf{A} = \mathbf{A} + \mathbf{C}_T^I, \quad (4)$$

$$242 \quad \mathbf{A} = \text{Attn}(\mathbf{A}, \mathbf{C}^I, \mathbf{C}^I) + \mathbf{A} \quad (5)$$

$$243 \quad \mathbf{A} = (\text{AdaLN}_{\text{FFN}} \circ \text{FFN})(\mathbf{A}). \quad (6)$$

$$244$$

$$245$$

246 To prevent interference between the two fusion streams, we replace the ineffective input with learn-
 247 able dummy embeddings. These embeddings are shared across tasks and initialized as zero vectors.
 248

250 3.5 TRAINING AND INFERENCE

$$251$$

252 We train the model using the flow matching loss, which encourages the velocity field $v_\theta(\mathbf{z}_\tau, \tau)$ to
 253 match a target velocity field, so that the continuous-time flow induced by v_θ transports data latents
 254 $\mathbf{z}_0 \sim p_{\text{data}}$ to a standard Gaussian $\mathbf{z}_1 \sim \mathcal{N}(0, \mathbf{I})$:
 255

$$256 \quad \frac{d\mathbf{z}_\tau}{d\tau} = v_\theta(\mathbf{z}_\tau, \tau), \quad \mathbf{z}_\tau = (1 - \tau) \cdot \mathbf{z}_0 + \tau \cdot \mathbf{z}_1, \quad \tau \in [0, 1] \quad (7)$$

$$257$$

$$258 \quad \mathcal{L}_{\text{FM}} = \mathbb{E}_{\tau, \mathbf{z}_0, \mathbf{z}_1} \|v_\theta(\mathbf{z}_\tau, \tau, \mathbf{C}^I, \mathbf{C}_T^I) - (\mathbf{z}_1 - \mathbf{z}_0)\|^2, \quad (8)$$

$$259$$

260 where θ denotes model parameters, τ is the flow step, and \mathcal{L}_{FM} is the flow-matching training loss.
 261 The two duration predictors are trained together with the backbone using the following losses:

$$262 \quad \mathcal{L}_{\text{dur-clip}} = \mathbb{E} \|d_c - \hat{d}_g\|^2, \quad \mathcal{L}_{\text{dur-seq}} = \mathbb{E}_i \|(d_s)_i - (\hat{d}_s)_i\|^2, \quad (9)$$

$$263$$

264 where \hat{d}_g and \hat{d}_s are ground-truth clip duration and sequence duration. For NTA tasks, $\mathcal{L}_{\text{dur-seq}}$ is
 265 omitted. In practice, d_s and \hat{d}_s are converted to frame numbers in the logarithmic domain to calculate
 266 $\mathcal{L}_{\text{dur-seq}}$, following FastSpeech2. The final training loss is $\mathcal{L} = \mathcal{L}_{\text{FM}} + \mathcal{L}_{\text{dur-clip}} + \mathcal{L}_{\text{dur-seq}}$. During
 267 inference, classifier-free guidance (CFG) is employed to balance the trade-off between generated
 268 sample diversity and their fidelity to the input content: $v_\theta^{\text{CFG}}(\mathbf{z}_\tau, \mathbf{C}^I, \mathbf{C}_T^I) = v_\theta(\mathbf{z}_\tau, \emptyset, \emptyset) + w \cdot$

$$269 \quad \left(v_\theta(\mathbf{z}_\tau, \mathbf{C}^I, \mathbf{C}_T^I) - v_\theta(\mathbf{z}_\tau, \emptyset, \emptyset) \right),$$
 where w is the guidance scale.

270 4 EXPERIMENTAL SETUP
271272 **Tasks and Data** UniFlow-Audio is trained and evaluated on a series of public datasets. Seven tasks
273 are involved: TTS, SVS, T2A, T2M, SE, audio Super Resolution (SR) and V2A. Among them, T2A
274 and T2M are NTA tasks, while the rest are TA tasks. Details of all training and evaluation data are
275 demonstrated in Table 4. A total of 7.7K hours of data are used for training, which is substantially
276 less than that employed in UniAudio and AudioX.
277278 **Task-Balanced Sampling** As Table 4 shows, different tasks’ dataset sizes vary substantially due
279 to discrepancies in collection difficulty and availability. To prevent overexposure to small-scale
280 datasets caused by random sampling, a straightforward approach is to adopt a task-based round-
281 robin sampling strategy: sample data from each task in turn. However, since the number of different
282 task types is imbalanced (five TA tasks and two NTA tasks), task-based round-robin sampling dis-
283 proportionately favors TA tasks during training, which may in turn affect the model’s overall per-
284 formance. To this end, we upsample data from NTA tasks: T2M by 3 times and T2A by 2 times. We
285 refer to this sampling strategy as *task-balanced sampling*.
286287 **Training** UniFlow-Audio is trained on eight A100 GPUs with a batch size on each GPU of 24.
288 We train three versions with different sizes: small, medium, and large. Configuration and training
289 details are in Section G.2 and Section G.3. The small version takes about 7 days to train, while the
290 large version takes about 12 days.
291292 **Evaluation Metrics** For all tasks, both objective and subjective evaluation are conducted. Since
293 UniFlow-Audio is evaluated on a variety of tasks and datasets, we adopt task-specific commonly-
294 adopted metrics, as illustrated in Section B.
295296 5 RESULTS
297298 In this section, we first compare the performance of UniFlow-Audio with baselines on all tasks to
299 evaluate the overall generation quality. Then, we explore the effect of CFG scale on different tasks.
300 Finally, we conduct ablation studies on our training and architecture design.
301302 5.1 UNIFIED AUDIO GENERATION
303304 The comparison between UniFlow-Audio and prior works is demonstrated in Table 1. For each task,
305 we select a task-specific model from prior works whose architecture and training data are closely
306 aligned with our setting, while also demonstrating competitive performance. Except for LM-based
307 MusicGen (Copet et al., 2023), all other baseline models adopt the diffusion or flow-matching archi-
308 tecture. **For F5-TTS, we re-train the model on LibriTTS for 200K steps (≈ 82 M training samples)**
309 **for a fair comparison, as UniFlow-Audio is exposed to 76.8M training samples.** UniFlow-Audio
310 achieves at least comparable performance to baselines and significantly outperforms baselines on
311 TTS, SE and SR. **For TTS, UniFlow-Audio achieves lower WER with a speaker similarity comparable to F5-TTS.** For SVS, a specified vocoder with high reconstruction quality is used in DiffSinger,
312 while UniFlow-Audio uses a universal VAE, resulting in slightly lower singing synthesis quality on
313 soprano samples. For other tasks, UniFlow-Audio performs quite competitively with training only
314 on limited public datasets. In comparison, MusicGen (Copet et al., 2023) was trained on large-scale
315 private datasets.
316317 Previous unified audio generation models, UniAudio (Yang et al., 2024) and AudioX (Tian et al.,
318 2025), are also compared. Despite the difference in the training data, the NAR UniFlow-Audio
319 shows superior generation performance compared with the autoregressive UniAudio. By analyzing
320 speech samples generated by UniAudio, we observe omissions and neglects of words in long sen-
321 tences, resulting in high WER. This highlights a limitation of AR models: alignment solely based on
322 self-attention can be not robust enough. Here we do not apply post-selection by selecting the sample
323 with the lowest WER from multiple outputs of UniAudio, which was done in the original paper,
324 so such errors happen more frequently. Although post-selection is a common approach for codec-
325 based TTS systems, the inherent instability caused by autoregressive sampling cannot be eliminated.
326

324
325
326 Table 1: Performance evaluation of UniFlow-Audio and baselines across all tasks.
327
328

Task	Model	Objective Evaluation Metrics		Subjective Evaluation Metrics	
TTS	F5-TTS (Chen et al., 2025)	WER↓ SIM↑	2.93 58.0	MOS↑ SMOS↑	3.79 3.21
	UniAudio (Yang et al., 2024)		11.93 36.9		
	UniFlow-Audio		2.19 57.1		
SVS	DiffSinger (Liu et al., 2022c)	F0↓ SA↑	0.144 58.0	MOS↑ SMOS↑	4.26 4.43
	UniFlow-Audio		0.147 59.9		4.05 4.31
	AudioLDM 2 (Liu et al., 2024b)		21.8 0.476		3.57 3.48
T2A	AudioX (Tian et al., 2025)	FD↓ CLAP↑	24.7 0.44	OVL↑ REL↑	3.28 3.33
	UniFlow-Audio		17.2 0.476		3.41 3.54
	MusicGen (Copet et al., 2023)		29.5 0.245		3.45 3.08
T2M	AudioX (Tian et al., 2025)	FD↓ CLAP↑	18.5 0.386	OVL↑ REL↑	4.03 3.82
	UniFlow-Audio		27.1 0.241		3.37 3.09
	DOSE (Tai et al., 2023)		2.50 0.931		3.43
SE	UniAudio (Yang et al., 2024)	PESQ↑ STOI↑	1.77 0.767	MOS↑	4.02
	UniFlow-Audio		2.91 0.944		4.76
	AudioSR (Liu et al., 2024a)		LSD↓	1.75	MOS↑
SR	UniFlow-Audio			1.49	3.58
	DiffFoley (Luo et al., 2023)	IB↑ SYNC↓	22.7 922	OVL↑ SYNC↑	2.80 2.94
	AudioX (Tian et al., 2025)		28.5 1241		3.25 3.31
V2A	UniFlow-Audio		28.6 1145		3.61 3.55

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893

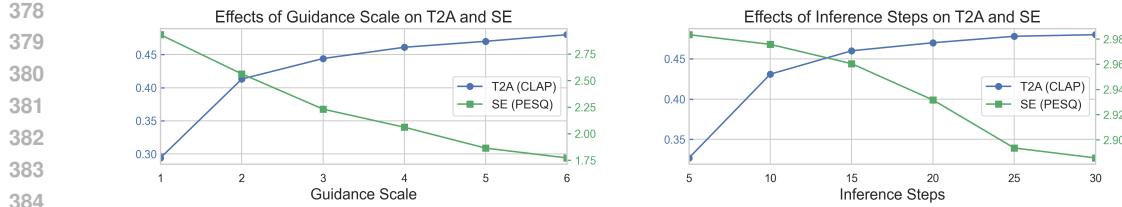


Figure 3: The effect of guidance scale (left) and inference steps (right) on generation performance of typical tasks. When analyzing one factor, the other is kept fixed.

distinct patterns across all tasks: SE and SR fall into one pattern, while the remaining tasks follow another. We take SE and T2A as representative tasks of the two patterns and report their CLAP and PESQ scores, with higher values indicating better performance for both metrics. Results are presented in Figure 3.

For the T2A task, the effects of the guidance scale and inference steps are consistent with typical findings in diffusion-based models: larger guidance scales and more inference steps yield steady performance improvements. This is expected, as stronger guidance provides more effective conditioning from the textual description, while more inference steps allow smaller step sizes in the denoising trajectory, which improves fidelity by reducing error accumulation. However, SE exhibits a sharp performance decline as the guidance scale increases, with PESQ dropping from 2.9 to 1.75. We attribute this to the characteristics of SE: the input inherently contains both signal and noise. Stronger guidance thus amplifies not only the signal but also the noise, leading to reduced perceptual quality in the generated speech. In contrast, the input of T2A is a textual description without “noise”, so all information should ideally be reflected in the generated audio. Regarding inference steps, increasing the number of steps is also detrimental to the performance, although the effect is considerably smaller than that of the guidance scale ($2.98 \rightarrow 2.89$). This degradation may also stem from the fact that SE inputs contain both signal and noise. With more inference steps, residual noise can accumulate through the iterative denoising process, slightly reducing the perceptual quality.

5.3 ABLATION STUDIES

In this section, we conduct ablation studies to validate several components of UniFlow-Audio: 1) architecture design, including dual-fusion and layerwise fusion mechanisms, and 2) the task-balanced data sampling strategy.

Table 3: Ablation results on the architecture design and data sampling strategies of UniAudio-Flow. The best results are highlighted in bold, while the second-best are underlined.

Setting	Time Aligned					Non Time Aligned	
	TTS WER↓	SVS SA↑	SE PESQ↑	SR LSD↓	V2A IB↑	T2A FD↓	T2M FD↓
UniFlow-Audio-small	2.27	<u>56.6</u>	<u>2.60</u>	<u>1.58</u>	<u>25.5</u>	19.7	26.2
w. cross attention	16.0	55.0	1.10	2.42	24.5	30.1	37.2
w. double fusion	2.33	56.9	2.65	<u>1.58</u>	<u>25.5</u>	22.3	30.5
w. input fusion	44.3	41.8	1.07	1.59	13.7	<u>20.9</u>	28.7
w. filler token	28.3	54.4	2.50	1.62	16.6	19.8	28.5
w/o. balanced sampling	<u>2.43</u>	56.5	2.54	1.53	26.0	22.9	<u>27.9</u>

5.3.1 BENEFITS OF DUAL-FUSION TRANSFORMER

To validate the effectiveness of our proposed dual-fusion mechanism, we replace it with alternative fusion strategies and compare their generation performance. As Figure 4 illustrates, we investigate two alternative fusion mechanisms: *cross-attention fusion* and *double fusion*. Cross-attention fusion

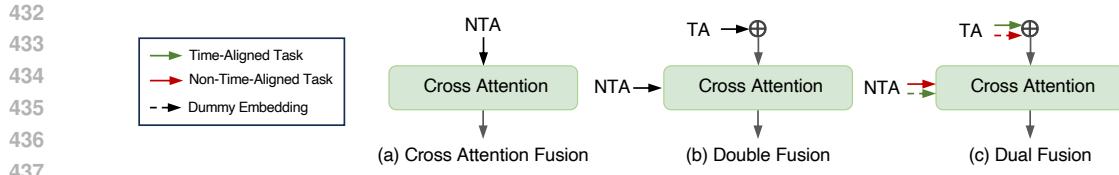


Figure 4: Illustration of different fusion mechanisms, best viewed in color. In the dual fusion sub-figure, green and red indicate the flow in TA and NTA tasks, respectively, while the dashed line represents dummy embeddings. For instance, in TA tasks, the NTA content embeddings are replaced with dummy ones.

is the most straightforward approach, where all contents are fused with the audio latent via cross-attention, similar to AudioLDM2 (Liu et al., 2024b). Double fusion resembles our proposed dual fusion mechanism but differs in one aspect: content embeddings both before and after duration adaptation are fed into the backbone, regardless of the task type. In contrast, in dual fusion, ineffective content embeddings based on task types are set to dummy embeddings. This design may introduce interference between the learning of different task types. In contrast, the dual fusion mechanism employs dummy embeddings, which provide better guidance for the model to attend to different sources depending on the task type, thereby mitigating such interference.

The upper half of Table 3 reports the results of alternative content fusion mechanisms, which are consistent with our assumptions. Although cross-attention has shown strong performance in prior T2A and T2M studies (Liu et al., 2024b), applying it directly to a mixture of task types results in poor performance. Even on non-time-aligned T2A and T2M tasks, its performance is significantly worse than that of dual fusion, suggesting that the presence of rich time-aligned data adversely affects models based on cross-attention. Compared with double fusion, dual fusion achieves similar performance on time-aligned tasks, while substantially outperforming it on non-time-aligned tasks. This demonstrates the effectiveness of the dummy embedding design. As described in Section 3.4, for non-time-aligned tasks, the duration used for content expansion is a dummy value. Consequently, the incorporation of expanded content embeddings into the generation process acts as noise.

5.3.2 BENEFITS OF EXPLICIT ALIGNMENT

We investigate the benefits of explicit time alignment by replacing the time-aligned embeddings C_T^I with the original content embeddings C^I padded by filler tokens, following the practice in E2TTS (Eskimez et al., 2024). As shown in Table 3, implicit alignment achieves comparable performance on NTA tasks while TA tasks with one-to-many alignment (see Figure 1) suffer significant performance degradation. This indicates that the one-to-one frame correspondence dominates the alignment learning and leaves less capacity for other TA tasks without explicit alignment. Therefore, explicit alignment is crucial for preserving high-quality generation in tasks with a variety of alignment requirements.

5.3.3 BENEFITS OF BLOCK-WISE FUSION

To further validate the architectural design, we examine the effect of fusing time-aligned content embeddings only at the input layer, referred to as *input fusion*. This follows the design of F5-TTS (Chen et al., 2025) and FlowSep (Yuan et al., 2025). As shown in the middle row of Table 3, input fusion leads to a substantial performance drop on time-aligned tasks. Since content embeddings are integrated via cross-attention in each DiT block, injecting time-aligned inputs solely at the input layer makes their influence much weaker than that of non-time-aligned inputs. Consequently, non-time-aligned tasks are only marginally affected, while the performance on time-aligned tasks degrades significantly. In contrast, UniFlow-Audio employs *block-wise fusion*, where time-aligned content embeddings are injected into each DiT block. This progressive fusion allows richer interactions between time-aligned content and audio latents, and proves essential for achieving robust performance across different task types.

486 5.3.4 BENEFITS OF TASK-BALANCED SAMPLING
487488 Finally, we investigate the impact of the proposed task-balanced data sampling strategy. As shown
489 in the last row of Table 3, removing balanced sampling (*w/o balanced sampling*) results in degraded
490 performance on non-time-aligned tasks (T2A and T2M), while performance on time-aligned tasks
491 remain relatively stable. This aligns with the number of datasets from different task types: under
492 the original round-robin sampling strategy, time-aligned tasks are overrepresented. Without explicit
493 balancing, the model is more exposed to time-aligned tasks, which amplifies the influence of time-
494 aligned content input. In contrast, the task-balanced sampling strategy ensures that each task type is
495 adequately represented, mitigating the effects of task imbalance and leading to more consistent and
496 reliable performance across both time-aligned and non-time-aligned tasks.
497498 6 LIMITATIONS
499500 Despite unifying TA and NTA audio generation within a flow-matching-based NAR framework,
501 UniFlow-Audio has several limitations. First, tasks involving multiple TA/NTA inputs, such as
502 voice conversion (source speech + target speaker utterance), are not explored. Second, the model’s
503 generalization to unseen tasks or input modalities, similar to the zero-shot generalization capabilities
504 of LLMs, has not been investigated. Third, the data and model size have not been scaled. Except for
505 T2M, most tasks have under 1,000 hours of training data. Finally, UniFlow-Audio currently focuses
506 on single-stream audio generation, while multi-stream or multi-source generation (e.g., TTS with
507 background music) remains largely underexplored.
508509 7 CONCLUSION
510511 We present UniFlow-Audio, a flow-matching-based universal audio generation framework that uni-
512 fies both TA and NTA tasks within a single NAR model. By introducing a dual-fusion mechanism
513 with block-wise integration, UniFlow-Audio effectively combines TA and NTA features without
514 cross-task interference. The model leverages shared knowledge across multiple modalities, includ-
515 ing text, audio, and vision, to enhance generation performance through unified audio modeling.
516 Extensive experiments demonstrate that, even with limited training data and moderate model size
517 (as small as 200M trainable parameters), UniFlow-Audio achieves competitive performance across
518 diverse tasks, highlighting its potential as a foundation model for unified NAR audio generation.
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 ETHICS AND REPRODUCIBILITY STATEMENT
541542 The authors have read and adhere to the ICLR Code of Ethics. This work does not involve human
543 subjects, identifiable private data, or harmful applications. All datasets used are publicly available
544 and were used in accordance with their original licenses and intended purposes. No external spon-
545 sorship or conflict of interest influenced the design or conclusions of this work.546 All code and source files are provided in the supplementary material and will be publicly released.
547548 REFERENCES
549550 Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
551 Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. MusicLM: Generating
552 music from text. *arXiv preprint arXiv:2301.11325*, 2023.553 Cassia Valentini Botinhao, Xin Wang, Shinji Takaki, and Junichi Yamagishi. Investigating RNN-
554 based speech enhancement methods for noise-robust text-to-speech. In *9th ISCA speech synthesis*
555 workshop, pp. 159–165, 2016.556 Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. VGGSound: A large-scale
557 audio-visual dataset. In *IEEE International Conference on Acoustics, Speech and Signal Process-*
558 *ing*, pp. 721–725. IEEE, 2020.559 Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, JianZhao JianZhao, Kai Yu,
560 and Xie Chen. F5-TTS: A fairytaler that fakes fluent and faithful speech with flow matching. In
561 *Proceedings of Annual Meeting of the Association for Computational Linguistics*, pp. 6255–6271,
562 2025.563 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
564 Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
565 guage models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.566 Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexan-
567 dre Défossez. Simple and controllable music generation. *Advances in Neural Information Pro-*
568 *cessing Systems*, 36:47704–47720, 2023.569 Seungheon Doh, Keunwoo Choi, Jongpil Lee, and Juhan Nam. LP-MusicCaps: LLM-based pseudo
570 music captioning. In *Proceedings of the International Society for Music Information Retrieval*
571 *Conference*, 2023.572 Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi Zheng, Yue
573 Gu, Ziyang Ma, et al. CosyVoice: A scalable multilingual zero-shot text-to-speech synthesizer
574 based on supervised semantic tokens. *arXiv preprint arXiv:2407.05407*, 2024.575 Sefik Emre Eskimez, Xiaofei Wang, Manthan Thakker, Canrun Li, Chung-Hsien Tsai, Zhen Xiao,
576 Hemin Yang, Zirun Zhu, Min Tang, Xu Tan, et al. E2 TTS: Embarrassingly easy fully non-
577 autoregressive zero-shot TTS. In *IEEE Spoken Language Technology Workshop*, pp. 682–689.
578 IEEE, 2024.579 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
580 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
581 for high-resolution image synthesis. In *Proceedings of the International Conference on Learning*
582 *Representations*, 2024.583 Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Stable audio
584 open. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 1–5.
585 IEEE, 2025.586 Yuan Gao, Nobuyuki Morioka, Yu Zhang, and Nanxin Chen. E3 TTS: Easy end-to-end diffusion-
587 based text to speech. In *IEEE Automatic Speech Recognition and Understanding Workshop*, pp.
588 1–8. IEEE, 2023.

- 594 Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
 595 Moore, Manoj Plakal, and Marvin Ritter. AudioSet: An ontology and human-labeled dataset
 596 for audio events. In *Proceedings of the Conference of the International Speech Communication
 597 Association*, pp. 776–780. IEEE, 2017.
- 598 Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish, and Soujanya Poria. Text-to-audio gen-
 599 eration using instruction guided latent diffusion model. In *Proceedings of ACM International
 600 Conference on Multimedia*, pp. 3590–3598, 2023.
- 602 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
 603 Joulin, and Ishan Misra. ImageBind: One embedding space to bind them all. In *Proceedings of
 604 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15180–15190, 2023.
- 606 Wenhao Guan, Kaidi Wang, Wangjin Zhou, Yang Wang, Feng Deng, Hui Wang, Lin Li, Qingyang
 607 Hong, and Yong Qin. LAFMA: A latent flow matching model for text-to-audio generation. In *Pro-
 608 ceedings of the Conference of the International Speech Communication Association*, pp. 4813–
 609 4817, 2024.
- 610 Yiwei Guo, Chenpeng Du, Ziyang Ma, Xie Chen, and Kai Yu. Voiceflow: Efficient text-to-speech
 611 with rectified flow matching. In *IEEE International Conference on Acoustics, Speech and Signal
 612 Processing*, pp. 11121–11125. IEEE, 2024.
- 614 Jiarui Hai, Yong Xu, Hao Zhang, Chenxing Li, Helin Wang, Mounya Elhilali, and Dong Yu. EzA-
 615 audio: Enhancing text-to-audio generation with efficient diffusion transformer. In *Proceedings of
 616 the Conference of the International Speech Communication Association*, pp. 4233–4237.
- 617 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 618 Neural Information Processing Systems*, 33:6840–6851, 2020.
- 620 Rongjie Huang, Feiyang Chen, Yi Ren, Jinglin Liu, Chenye Cui, and Zhou Zhao. Multi-singer: Fast
 621 multi-singer singing voice vocoder with a large-scale corpus. pp. 3945–3954, 2021.
- 622 Vladimir Iashin, Weidi Xie, Esa Rahtu, and Andrew Zisserman. Synchformer: Efficient synchro-
 623 nization from sparse cues. In *IEEE International Conference on Acoustics, Speech and Signal
 624 Processing*, pp. 5325–5329. IEEE, 2024.
- 626 Keith Ito and Linda Johnson. The LJ speech dataset. [https://keithito.com/
 627 LJ-Speech-Dataset/](https://keithito.com/LJ-Speech-Dataset/), 2017.
- 628 Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. AudioCaps: Generating
 629 captions for audios in the wild. In *Proceedings of the Conference of the North American Chapter
 630 of the Association for Computational Linguistics*, pp. 119–132, 2019.
- 632 Tom Ko, Vijayaditya Peddinti, Daniel Povey, Michael L Seltzer, and Sanjeev Khudanpur. A study
 633 on data augmentation of reverberant speech for robust speech recognition. In *IEEE International
 634 Conference on Acoustics, Speech and Signal Processing*, pp. 5220–5224. IEEE, 2017.
- 635 Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D Plumbley. PANNs:
 636 Large-scale pretrained audio neural networks for audio pattern recognition. *IEEE/ACM Transac-
 637 tions on Audio, Speech, and Language Processing*, 28:2880–2894, 2020.
- 639 Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet, Devi
 640 Parikh, Yaniv Taigman, and Yossi Adi. AudioGen: Textually guided audio generation. *arXiv
 641 preprint arXiv:2209.15352*, 2022.
- 642 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
 643 ing for generative modeling. In *Proceedings of the International Conference on Learning Repre-
 644 sentations*, 2023.
- 646 Haohe Liu, Woosung Choi, Xubo Liu, Qiuqiang Kong, Qiao Tian, and DeLiang Wang. Neural
 647 vocoder is all you need for speech super-resolution. In *Proceedings of the Conference of the
 International Speech Communication Association*, pp. 4227–4231, 2022a.

- 648 Haohe Liu, Xubo Liu, Qiuqiang Kong, Qiao Tian, Yan Zhao, DeLiang Wang, Chuanzeng Huang,
 649 and Yuxuan Wang. VoiceFixer: A unified framework for high-fidelity speech restoration. In *Pro-
 650 ceedings of the Conference of the International Speech Communication Association*, pp. 4232–
 651 4236, 2022b.
- 652 Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
 653 Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In *Pro-
 654 ceedings of the International Conference on Machine Learning*, pp. 21450–21474. PMLR, 2023.
- 655 Haohe Liu, Ke Chen, Qiao Tian, Wenwu Wang, and Mark D Plumbley. AudioSR: Versatile audio
 656 super-resolution at scale. In *IEEE International Conference on Acoustics, Speech and Signal
 657 Processing*, pp. 1076–1080. IEEE, 2024a.
- 658 Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Qiao Tian, Yuping Wang, Wenwu
 659 Wang, Yuxuan Wang, and Mark D Plumbley. AudioLDM 2: Learning holistic audio genera-
 660 tion with self-supervised pretraining. *IEEE/ACM Transactions on Audio, Speech, and Language
 661 Processing*, 32:2871–2883, 2024b.
- 662 Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. DiffSinger: Singing voice synthesis
 663 via shallow diffusion mechanism. *Proceedings of the AAAI conference on artificial intelligence*,
 664 36(10):11020–11028, 2022c.
- 665 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *Proceedings of the
 666 International Conference on Learning Representations*, 2017.
- 667 Simian Luo, Chuanhao Yan, Chenxu Hu, and Hang Zhao. Diff-Foley: Synchronized video-to-audio
 668 synthesis with latent diffusion models. *Advances in Neural Information Processing Systems*, 36:
 669 48855–48876, 2023.
- 670 Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, and Sou-
 671 janya Poria. Tango 2: Aligning diffusion-based text-to-audio generations through direct prefer-
 672 ence optimization. In *Proceedings of ACM International Conference on Multimedia*, pp. 564–572,
 673 2024.
- 674 Brian McFee, Thierry Bertin-Mahieux, Daniel PW Ellis, and Gert RG Lanckriet. The million song
 675 dataset challenge. In *Proceedings of the International Conference on World Wide Web*, pp. 909–
 676 916, 2012.
- 677 Xinhao Mei, Chutong Meng, Haohe Liu, Qiuqiang Kong, Tom Ko, Chengqi Zhao, Mark D Plum-
 678 bley, Yuexian Zou, and Wenwu Wang. WavCaps: A ChatGPT-assisted weakly-labelled audio
 679 captioning dataset for audio-language multimodal research. *IEEE/ACM Transactions on Audio,
 680 Speech, and Language Processing*, 32:3339–3354, 2024.
- 681 Aleksandr Meister, Matvei Novikov, Nikolay Karpov, Evelina Bakhturina, Vitaly Lavrukhin, and
 682 Boris Ginsburg. Librispeech-pc: Benchmark for evaluation of punctuation and capitalization
 683 capabilities of end-to-end asr models. In *IEEE Automatic Speech Recognition and Understanding
 684 Workshop*, pp. 1–7. IEEE, 2023.
- 685 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 686 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4195–4205, 2023.
- 687 Igor Pereira, Felipe Araújo, Filip Korzeniowski, and Richard Vogl. MoisesDB: A dataset for source
 688 separation beyond 4-stems. *arXiv preprint arXiv:2307.15913*, 2023.
- 689 Karol Jerzy Piczak. ESC: Dataset for environmental sound classification. In *Proceedings of ACM
 690 International Conference on Multimedia*. ACM, 2015.
- 691 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
 692 Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie Gen: A cast of media founda-
 693 tion models. *arXiv preprint arXiv:2410.13720*, 2024.

- 702 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 703 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 704 models from natural language supervision. In *Proceedings of the International Conference on*
 705 *Learning Representations*, pp. 8748–8763. PmLR, 2021.
- 706 Zafar Rafii, Antoine Liutkus, Fabian-Robert Stöter, Stylianos Ioannis Mimalakis, and Rachel Bittner.
 707 MUSDB18-HQ-an uncompressed version of MUSDB18. (*No Title*), 2019.
- 709 Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. FastSpeech 2:
 710 Fast and high-quality end-to-end text to speech. In *Proceedings of the International Conference*
 711 *on Learning Representations*, 2020.
- 712 Kai Shen, Zegian Ju, Xu Tan, Eric Liu, Yichong Leng, Lei He, Tao Qin, Jiang Bian, et al. Natural-
 713 Speech 2: Latent diffusion models are natural and zero-shot speech and singing synthesizers. In
 714 *Proceedings of the International Conference on Learning Representations*, 2024.
- 716 Yao Shi, Hui Bu, Xin Xu, Shaoji Zhang, and Ming Li. AISHELL-3: A multi-speaker Mandarin TTS
 717 corpus. In *Proceedings of the Conference of the International Speech Communication Associa-*
 718 *tion*, pp. 2756–2760, 2021.
- 719 David Snyder, Guoguo Chen, and Daniel Povey. MUSAN: A music, speech, and noise corpus. *arXiv*
 720 *preprint arXiv:1510.08484*, 2015.
- 722 Wenxin Tai, Yue Lei, Fan Zhou, Goce Trajcevski, and Ting Zhong. DOSE: Diffusion dropout with
 723 adaptive prior for speech enhancement. *Advances in Neural Information Processing Systems*, 36:
 724 40272–40293, 2023.
- 725 Zeyue Tian, Yizhu Jin, Zhaoyang Liu, Ruibin Yuan, Xu Tan, Qifeng Chen, Wei Xue, and
 726 Yike Guo. AudioX: Diffusion transformer for anything-to-audio generation. *arXiv preprint*
 727 *arXiv:2503.10522*, 2025.
- 729 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 730 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Infor-*
 731 *mation Processing Systems*, 30, 2017.
- 732 Ilpo Viertola, Vladimir Iashin, and Esa Rahtu. Temporally aligned audio for video with autoregres-
 733 sion. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 1–5.
 734 IEEE, 2025.
- 736 Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing
 737 Liu, Huaming Wang, Jinyu Li, et al. Neural codec language models are zero-shot text to speech
 738 synthesizers. *arXiv preprint arXiv:2301.02111*, 2023a.
- 740 Hongji Wang, Chengdong Liang, Shuai Wang, Zhengyang Chen, Binbin Zhang, Xu Xiang, Yanlei
 741 Deng, and Yanmin Qian. Wespeaker: A research and production oriented speaker embedding
 742 learning toolkit. In *IEEE International Conference on Acoustics, Speech and Signal Processing*,
 743 pp. 1–5. IEEE, 2023b.
- 744 Xiaofei Wang, Manthan Thakker, Zhuo Chen, Naoyuki Kanda, Sefik Emre Eskimez, Sanyuan Chen,
 745 Min Tang, Shujie Liu, Jinyu Li, and Takuya Yoshioka. SpeechX: Neural codec language model
 746 as a versatile speech transformer. *IEEE/ACM Transactions on Audio, Speech, and Language*
 747 *Processing*, 32:3355–3364, 2024.
- 748 Yu Wang, Xinsheng Wang, Pengcheng Zhu, Jie Wu, Hanzhao Li, Heyang Xue, Yongmao Zhang,
 749 Lei Xie, and Mengxiao Bi. Opencpop: A high-quality open source Chinese popular song cor-
 750 pus for singing voice synthesis. In *Proceedings of the Conference of the International Speech*
 751 *Communication Association*, pp. 4242–4246, 2022.
- 752 Gordon Wichern, Joe Antognini, Michael Flynn, Licheng Richard Zhu, Emmett McQuinn, Dwight
 753 Crow, Ethan Manilow, and Jonathan Le Roux. WHAM!: Extending speech separation to noisy
 754 environments. In *Proceedings of the Conference of the International Speech Communication*
 755 *Association*, pp. 1368–1372, 2019.

- 756 Yuning Wu, Chunlei Zhang, Jiatong Shi, Yuxun Tang, Shan Yang, and Qin Jin. TokSing: Singing
 757 voice synthesis based on discrete tokens. In *Proceedings of the Conference of the International*
 758 *Speech Communication Association*, pp. 2549–2553, 2024.
- 759
- 760 Junichi Yamagishi, Christophe Veaux, Kirsten MacDonald, et al. CSTR VCTK corpus: English
 761 multi-speaker corpus for CSTR voice cloning toolkit (version 0.92). *University of Edinburgh.*
 762 *The Centre for Speech Technology Research (CSTR)*, pp. 271–350, 2019.
- 763
- 764 Dongchao Yang, Jinchuan Tian, Xu Tan, Rongjie Huang, Songxiang Liu, Haohan Guo, Xuankai
 765 Chang, Jiatong Shi, Jiang Bian, Zhou Zhao, et al. UniAudio: Towards universal audio genera-
 766 tion with large language models. In *Proceedings of the International Conference on Learning*
 767 *Representations*, 2024.
- 768
- 769 Yi Yuan, Xubo Liu, Haohe Liu, Mark D Plumbley, and Wenwu Wang. FlowSep: Language-queried
 770 sound separation with rectified flow matching. In *IEEE International Conference on Acoustics,*
 771 *Speech and Signal Processing*, pp. 1–5. IEEE, 2025.
- 772
- 773 Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu.
 774 LibriTTS: A corpus derived from librispeech for text-to-speech. In *Proceedings of the Conference*
 775 *of the International Speech Communication Association*, pp. 1526–1530, 2019.
- 776
- 777 Lichao Zhang, Ruiqi Li, Shoutong Wang, Liquan Deng, Jinglin Liu, Yi Ren, Jinzheng He, Rongjie
 778 Huang, Jieming Zhu, Xiao Chen, et al. M4singer: A multi-style, multi-singer and musical score
 779 provided Mandarin singing corpus. *Advances in Neural Information Processing Systems*, 35:
 780 6914–6926, 2022.
- 781
- 782 Wangyou Zhang, Robin Scheibler, Kohei Saito, Samuele Cornell, Chenda Li, Zhaoheng Ni, Jan
 783 Pirklbauer, Marvin Sach, Shinji Watanabe, Tim Fingscheidt, et al. URGENT challenge: Univer-
 784 sality, robustness, and generalizability for speech enhancement. In *Proceedings of the Conference*
 785 *of the International Speech Communication Association*, pp. 4868–4872, 2024.
- 786

A DATA DETAILS

Table 4: Training and evaluation data details of UniFlow-Audio.

Task	Training	Evaluation	Training Duration / h
TTS	LibriTTS (Zen et al., 2019)	LibriSpeech-PC (Meister et al., 2023)	555
SVS		M4Singer (Zhang et al., 2022)	30
T2A		AudioCaps (Kim et al., 2019)	253
SE	LibriTTS+Wham! VCTK+Wham! LJSpeech+Musan VoiceBank+Demand	VoiceBank+Demand (Botinhao et al., 2016)	460 44 24 10
SR	HQ-TTS MUSDB MoisesDB FreeSound	VCTK MUSDB ESC	85 47 26 158
T2M	MSD (McFee et al., 2012)	MusicCaps (Agostinelli et al., 2023)	5789
V2A		VisualSound (Viertola et al., 2025)	236
Total		-	7717

805
 806 UniFlow-Audio is trained and evaluated on a series of public datasets. Details of all training and
 807 evaluation data are shown in Table 4. For TTS, we train the model on LibriTTS (Zen et al., 2019)
 808 while use LibriSpeech-PC (Meister et al., 2023) for inference. The cross sentence evaluation setting
 809 follows F5-TTS (Chen et al., 2025). For SVS, we use the official training / validation / test splits of
 M4Singer. Details of other datasets are described in the following:

810 **T2A** The official training subset of AudioCaps is used for T2A training. Each sample contains 5
 811 captions in the test subset. Following TANGO (Ghosal et al., 2023), we randomly select one caption
 812 per sample for evaluation, and we use the same selected captions as in their setup.
 813

814 **T2M** For T2M, we use songs from MSD (McFee et al., 2012) combined with LP-MusicCaps-
 815 MSD (Doh et al., 2023) captions as the training data. The original song in MSD can be as long as 14
 816 minutes. During training, we randomly crop 10 seconds for training. The widely-used benchmark
 817 MusicGen (Copet et al., 2023) is used for evaluation.
 818

819 **SE** For SE, we utilize the method in URGENT challenge (Zhang et al., 2024) to simulate noisy
 820 speech. The clean speech datasets include LibriTTS, VCTK Corpus (Yamagishi et al., 2019) and
 821 LJSpeech (Ito & Johnson, 2017), while the noise datasets contain WHAM! (Wichern et al., 2019)
 822 and noise subset of Musan (Snyder et al., 2015). Room Impulse Responses (RIRs) dataset for
 823 simulation is the RIRs dataset in Ko et al. (2017). We choose VoiceBank+Demand (Botinhao et al.,
 824 2016) for both train and evaluation, which is widely used as a benchmark in SE.
 825

826 **SR** For SR, we mainly follow the setup of AudioSR (Liu et al., 2024a), while prioritizing the
 827 available sources for ease of collection. The training datasets include MUSDB (Rafii et al., 2019),
 828 MoisesDB (Pereira et al., 2023), HQ-TTS (Liu et al., 2022b) and FreeSound (Mei et al., 2024), while
 829 the evaluation uses ESC-50 (Piczak, 2015), VCTK-test (Liu et al., 2022a), and MUSDB. All high-
 830 quality recordings are first resampled to 24 kHz. Since our VAE is designed to process 24 kHz audio,
 831 we choose a cutoff range of [2,6] kHz for the downsampled audio. Based on the method introduced
 832 in NVSR (Liu et al., 2022a), we then apply the low-pass filter within this range to simulate low-high
 833 resolution audio pairs.
 834

835 **V2A** For V2A, since the widely used VGGSound (Chen et al., 2020) dataset is constructed from
 836 in-the-wild videos without ensuring high audio-video correspondence, it includes a considerable
 837 amount of modality-mismatched samples where the video and audio are not semantically related.
 838 This limitation is detrimental to training stability and the inherent irrelevance is harmful to the
 839 performance. Therefore, we adopt the smaller but better audio-visual aligned VisualSound (Viertola
 840 et al., 2025) for both training and evaluation, which is curated based on ImageBind scores (Girdhar
 841 et al., 2023) to identify videos with poor audio-visual correspondence.
 842

843 B EVALUATION METRICS

844 **TTS** Following (Wang et al., 2024), we use Word Error Rate (WER)² as an objective metric to
 845 evaluate the accuracy of generated speech with respect to the given transcription, and Speaker Simi-
 846 larity (SIM)³ to assess the consistency of speaker characteristics between the generated and prompt
 847 speech. For subjective evaluation, we employ the Mean Opinion Score (MOS) to measure overall
 848 speech naturalness and the Similarity MOS (SMOS) to assess perceived speaker similarity.
 849

850 **SVS** Following Wu et al. (2024), we use root mean square error of fundamental frequency (F0)
 851 and semitone accuracy (SA)⁴ for objective evaluation. Same as TTS, MOS and SMOS are used as
 852 subjective metrics for accessing singing quality and singer similarity.
 853

854 **T2A & T2M** Following previous T2A and T2M studies (Liu et al., 2024b), we adopt Frechet
 855 Distance (FD) and CLAP score for audio and music generation evaluation. FD measures the simi-
 856 larity of the distribution between generated and reference audio based on PANNs CNN14 (Kong
 857 et al., 2020) features, while CLAP score serves as a reference-free metric that captures the semantic
 858 alignment between textual descriptions and generated audio.
 859

860 ²https://huggingface.co/nvidia/stt_en_conformer_transducer_xlarge

861 ³<https://drive.google.com/file/d/1-aE1NfzpRCLxA4GUxX9ITI3F9L1btEGP/view>

862 ⁴<https://github.com/espnet/espnet/blob/master/egs2/TEMPLATE/svs1/svs.sh#L1171>

864 **SE** Following Tai et al. (2023), we choose Perceptual Evaluation of Speech Quality (PESQ) and
 865 Short-Time Objective Intelligibility (STOI) for SE evaluation. PESQ measures perceptual speech
 866 quality, and STOI estimates speech intelligibility.
 867

868 **SR** Following previous studies (Liu et al., 2024a; 2022a), we adopt Log-Spectral Distance (LSD)
 869 for objective evaluation. LSD measures the discrepancy between the original high-frequency audio
 870 and the generated audio. Note that the baseline model AudioSR generates 48 kHz audio, while
 871 ours operates at 24 kHz. For fair comparison, AudioSR outputs are downsampled to 24 kHz before
 872 evaluation.
 873

874 **V2A** Following Viertola et al. (2025), we evaluate V2A performance using ImageBind (Girdhar
 875 et al., 2023) (IB) and Synchformer (Iashin et al., 2024) (SYNC). IB measures semantic modality
 876 consistency by computing the cosine similarity between audio and video embeddings. SYNC
 877 assesses synchronization based on temporal offsets between audio and visual modality estimated by
 878 Synchformer.
 879

880 Table 5: Comparison of Multi-Task and Single-Task Training on TTS and T2A.
 881

Setting	T2A Metrics		TTS Metrics	
	FD ↓	CLAP ↑	WER ↓	SIM ↑
T2A only	25.2	0.434	-	-
TTS only	-	-	2.55	40.8
TTS + T2A	21.3	0.466	2.71	43.0

C BENEFITS OF MULTI-TASK TRAINING

890 It is found that multi-task training can improve performance than task-specific training in UniAu-
 891 dio (Yang et al., 2024). Here we also explore the effect of multi-task training on NAR models, taking
 892 the combination of TTS and T2A as an example. We perform T2A-only, TTS-only, and TTS + T2A
 893 training respectively. For fair comparison, the effective number of TTS / T2A training samples
 894 (batch size \times training steps) seen by the model are kept the same across the corresponding training
 895 configurations. Each task is exposed to the same amount of task-specific training samples across
 896 settings. Results are shown in Table 5. It is shown that joint training brings significant improvement
 897 in the generation quality. The shared learning objective of generating high-quality audio across tasks
 898 enables joint learning to outperform task-specific learning.
 899

D ANALYSIS OF BLOCK-WISE FUSION DEPTH

900 To further understand the effect of fusion depth in block-wise fusion, we conduct an ablation study
 901 based on the 12-layer small model. Specifically, we remove block-wise fusion in different layer
 902 ranges: the first four layers (w.o. early fusion), the middle four layers (w.o. middle fusion), and
 903 the last four layers (w.o. late fusion). For efficiency, all models are trained for 200K steps under
 904 identical training configurations. The results are summarized in Table 6.
 905

906 Across all tasks, removing fusion in the middle layers leads to the largest performance degradation,
 907 while removing fusion in early or late layers has a relatively smaller impact and even outperforms
 908 the original model on some tasks. These findings suggest that the middle layers play a crucial role
 909 in integrating time-aligned content. Early layers may focus on low-level acoustic features, primarily
 910 capturing patterns from the input audio latent sequence. Late layers may focus on task-specific
 911 refinement. They are likely to specialize in task-dependent and domain-specific decoding behaviors
 912 (e.g., prosody refinement in TTS or high-frequency component refinement in T2M). In contrast,
 913 for middle layers, they are at the transition between low-level acoustic encoding and high-level
 914 task-specific decoding. They carry semantically enriched but flexible representations, making the
 915 contribution of time-aligned fusion in middle layers the most across different layers.
 916

918
919
920 Table 6: Analysis on Block-Wise Fusion Depth.
921
922
923
924
925
926

	TTS WER↓	SVS SA↑	T2A FD↓	T2M FD↓	SE PESQ↑	SR LSD↓	V2A IB↑
UniFlow-Audio small	2.27	54.5	28.0	33.9	2.41	1.66	21.3
w.o. early fusion	2.40	56.7	26.5	32.3	2.39	1.66	22.0
w.o. middle fusion	2.57	55.8	28.8	32.3	2.43	1.67	20.0
w.o. late fusion	2.68	55.9	25.1	33.9	2.39	1.65	21.0

927
928 Table 7: Inference speed comparison between UniFlow-Audio and UniAudio. Reported values
929 indicate inference time per second of audio.
930

Model	TTS	SE
UniAudio	12.21	3.98
UniFlow-Audio small	0.66	0.64
UniFlow-Audio large	2.23	1.26

931
932
933
934
935
936
937
938
939 E INFERENC SPEED COMPARISON
940941 To demonstrate the efficacy of UniFlow-Audio, we compare it against UniAudio, reporting the aver-
942 age inference time per second of audio on the same A10 GPU. The results are presented in Table 7.
943 Because of its NAR generation paradigm and smaller parameter size, UniAudio achieves substan-
944 tially faster inference. In particular, UniAudio-small delivers a $\sim 18.5\times$ speedup on the TTS task.
945
946
947948 F TASK INSTRUCTIONS
949950 For each task, we prompt the LLM to generate 10 instructions ranging from simple to complex.
951 These instructions span from basic definitions of the task to detailed specifications of task require-
952 ments. Table 8 presents 3 examples of simple, medium, and complex instructions.
953954
955 G ARCHITECTURE & HYPER-PARAMETERS
956957
958 G.1 WAVEFORM-BASED VAE
959960 The VAE adopts a fully-convolutional architecture with residual 1D blocks and Snake activations,
961 following the design from Evans et al. (2025). The encoder maps raw waveforms into a compact
962 latent sequence at a downsampling ratio of 480 with 128 channels, while the decoder mirrors the
963 encoder by progressively upsampling the latent sequence with transposed convolution to reconstruct
964 the waveform. To achieve high-fidelity audio generation across different audio types, we train the
965 VAE using a diverse set of datasets from multiple categories, including speech, singing, music, and
966 general audio, with details provided in Table 9. The model is trained for 1M steps on this extensive
967 collection of approximately 6000 hours data, where each audio clip is randomly cropped to 1.5s
968 segments during training.969 To measure the reconstruction quality of VAE, we evaluate the mean squared error (MSE) and
970 signal-to-noise ratio (SNR) on held-out test sets. As shown in Table 10, our VAE achieves con-
971 sistently lower MSE and higher SNR than the one in EzAudio (Hai et al.), which was only trained
972 on AudioSet (Gemmeke et al., 2017).

Table 8: Examples of detailed task instructions.

TTS	Produce human-like speech from phoneme inputs and speaker representations.
	Generate natural speech from speaker embeddings and phoneme sequences while maintaining accurate pronunciation.
	Convert phoneme sequences into natural speech using speaker embeddings, with precise articulation of words and adaptation to the textual emotional content.
T2A	Generate an audio clip based on the given text description.
	Synthesize an audio signal from the given text, ensuring the fidelity of sound event representation and the naturalness of the audio output.
	Convert the given text into a natural-sounding audio clip, maintaining high fidelity in sound event reproduction (volume, positioning, timing, repetition) and ensuring realistic scene acoustics and event relationships.
SVS	Render a singing performance from musical notation, including phonemes, notes, durations, and slurs.
	Produce a singing voice rendering derived from the notated score that maintains parametric fidelity to the given phonemes, notes, durations, and slurs.
	Synthesize a singing voice that matches the input musical score's specifications (phonemes, notes, durations, slurs) while adapting phoneme durations for natural flow and preserving textual emotional tone.
SE	Enhance noisy speech signals by reducing background noise and reverberation.
	Improve degraded speech quality by suppressing noise and reverberation while preserving natural voice characteristics.
	Enhance speech signals by dynamically suppressing diverse noise types (environmental/mechanical) and reverberation, preserving tonal qualities and timbre across varying SNR conditions.
SR	Enhance audio quality by increasing its sampling rate or resolution.
	Convert low-sampling-rate audio to high-resolution output, recovering lost high-frequency components and subtle sonic characteristics.
	Upsample low-resolution audio signals to higher sampling rates while preserving original signal details and recovering high-frequency components without introducing audible artifacts.
V2A	Generate high-fidelity audio synchronized to video.
	Produce high-quality audio that matches the video's scene, with accurate timing, spatial positioning, and realistic sound properties.
	Generate high-fidelity audio for the video, ensuring strict temporal alignment, correct spatial direction, loudness, and frequency of sounds, while maintaining realism and coherence with visual content.
T2M	Develop a music clip that precisely matches the textual description in all aspects.
	Produce a musical piece that faithfully represents the given description, incorporating all specified instruments, intended emotions, genre characteristics, and vocal properties.
	Generate a musical output that perfectly matches the provided text, incorporating the exact instruments mentioned, upholding authentic stylistic qualities, and delivering the desired emotional impact. If vocals are required, precisely implement the described gender, age, vocal properties, and singing manner.

Table 9: Datasets used for training the waveform-based VAE.

Domain	Datasets
Speech	AISHELL-3 (Shi et al., 2021), TTS-HQ, LJSpeech, LibriTTS, VCTK
Singing	OpenSinger (Huang et al., 2021), M4Singer, OpenCpop (Wang et al., 2022), PopCS (Liu et al., 2022c)
Music	MUSDB, MoisesDB, MusicCaps
General Audio	AudioSet (Gemmeke et al., 2017)

G.2 FLOW MATCHING BACKBONE

The diffusion step τ is processed by a multi-layer perceptron (MLP) to produce AdaLN scale and shift parameters for each Transformer block, conditioning the self-attention and FFN layers:

$$\gamma_{\text{SA}}, \beta_{\text{SA}}, \alpha_{\text{SA}}, \gamma_{\text{FFN}}, \beta_{\text{FFN}}, \alpha_{\text{FFN}} = \text{MLP}(\tau) \quad (10)$$

Table 10: Reconstruction performance of VAE.

Domain	Speech		Music	
	MSE ↓	SNR (dB) ↑	MSE ↓	SNR (dB) ↑
EzAudio VAE	4.43×10^{-5}	17.06	1.13×10^{-4}	18.09
Ours	3.84×10^{-5}	17.63	8.42×10^{-5}	19.27

We apply tanh to the scaling parameter α in AdaLN (Peebles & Xie, 2023) to improve the numerical stability during training:

$$\mathbf{A}_{\text{norm}} = \gamma \cdot \text{Norm}(\mathbf{A}) + \beta \quad (11)$$

$$\mathbf{A} = \tanh(1 - \alpha) \odot F(\mathbf{A}_{\text{norm}}) + \mathbf{A}_{\text{norm}} \quad (12)$$

To mitigate the potential negative influence from $\mathcal{L}_{\text{dur-clip}}$ and $\mathcal{L}_{\text{dur-seq}}$, we apply gradient scaling to the duration predictors. Specifically, we scale the gradients from the duration losses by a factor λ before backpropagation, thereby reducing their influence on the model.

$$\tilde{x} = \lambda \cdot x + (1 - \lambda) \cdot \text{sg}(x)$$

where $\text{sg}(\cdot)$ represents stop gradient operator and λ is set to 0.1.

Table 11 summarizes the architectural configurations of different UniFlow-Audio versions. Notably, the small variant contains only approximately 200M trainable parameters, yet it achieves competitive performance as shown in Table 2.

Table 11: Model configurations.

Model Size	Depth	Embed Size	Num Heads	# Total / Trainable Params
Small	12	512	8	593M / 208M
Medium	16	768	12	780M / 395M
Large	24	1024	16	1.2B / 847M

G.3 TRAINING & INFERENCE SETUP

UniFlow-Audio is trained using AdamW optimizer (Loshchilov & Hutter, 2017) with a constant learning rate of 5e-5 with a warmup step of 10K steps and a total training step of 400K steps. To mitigate the negative impact of excessively long audio content sequence on training efficiency, we take a maximum of 5 second audio segments randomly during training for SE and SR. During inference, we take an inference step of 25 by default. Sway sampling (Chen et al., 2025) is adopted to improve the generation performance. During training, both TA and NTA content embeddings are randomly masked with a ratio of 0.2 to train conditional and unconditional generation simultaneously. During inference, a CFG scale of 5.0 is adopted for tasks except SE and SR while CFG is not applied for these two tasks, due to the influence of CFG on them (see Section 5.2).

H TRAINING STABILITY

We observe frequent loss spikes during training, as shown in Figure 5a, which naturally leads to a question: is training on mixed TA and NTA tasks stable? These loss spikes are typically accompanied by abnormally large loss values (up to 1,000), suggesting that they may be caused by noisy data. Indeed, LP-MusicCaps and VisualSound contain some inherent noise: captions in LP-MusicCaps are generated by ChatGPT and may include hallucinations, while audio-visual correspondence in VisualSound is not guaranteed. To validate this, we exclude LP-MusicCaps and VisualSound (the rest data are denoted as “clean” data) and train the same model. As Figure 5b shows, no spikes occur. Since there are both TA tasks (TTS, SVS, SE, SR) and NTA tasks (T2A) in this setting, we can conclude that training on mixed task types is stable.

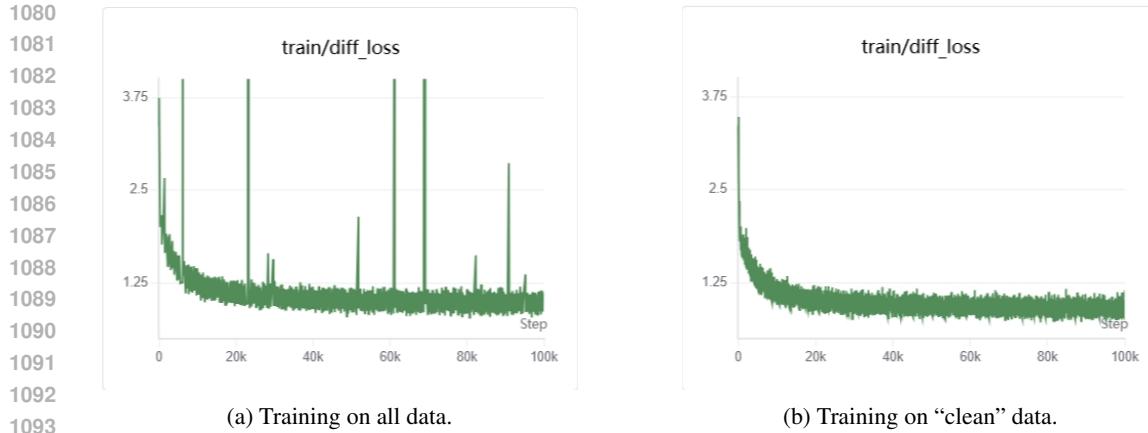


Figure 5: Loss curve of training on all data / “clean” data.

I LLM USAGE

LLMs were used as assistive tools in this work. Specifically, they were employed to help with limited code writing and debugging, as well as for polishing the language of the paper. The LLMs involved include mainstream models such as GPT, Claude, and Gemini. These models were used for grammar correction, sentence restructuring, and enhancing overall readability. All technical content, experimental design, results, and conclusions were authored and verified solely by the human authors. LLMs did not contribute to the generation of ideas, methods, or data analysis.

J SUBJECTIVE EVALUATION DETAILS

For all tasks, we conduct MOS-based subjective tests with explicit instructions for raters. Each sample is rated on a 1–5 Likert scale. We recruit ten raters with college-level education and normal hearing ability for subjective evaluation. Examples of the rating interface and detailed instructions are shown in Figure 6. Below we describe the setup for each task.

For **TTS** and **SVS**, we evaluate speech quality MOS (MOS) and speaker similarity MOS (SMOS). For MOS, raters judge the overall naturalness and listening quality of the synthesized speech or singing voice. For SMOS, raters judge whether the generated audio matches the target/reference speaker in terms of timbre-related characteristics, disregarding prosodic variations.

For **T2A** and **T2M**, we follow AudioGen (Kreuk et al., 2022) and MusicGen (Copet et al., 2023) to evaluate overall quality (OVL) and relevance (REL) to the input caption.

For **SE**, raters assess the intelligibility and naturalness of enhanced speech. Each output is presented together with its clean reference target, and the MOS scores reflect residual noise, processing artifacts, and overall listening quality.

For **SR**, the evaluation setup is identical to SE, except that each sample is additionally accompanied by a spectrogram visualization to facilitate judgments.

For **V2A**, we evaluate overall acceptability (OVL) and synchronization (SYNC) with the reference video. In SYNC evaluation, the raters judge whether audio events are temporally aligned with visual cues such as lip movements, object impacts, or musical actions.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

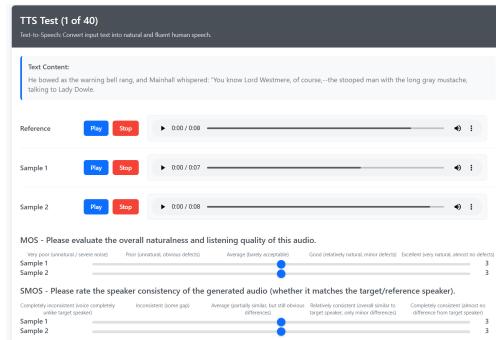
1144

1145

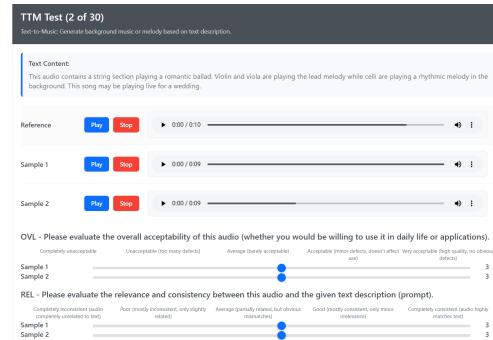
1146

1147

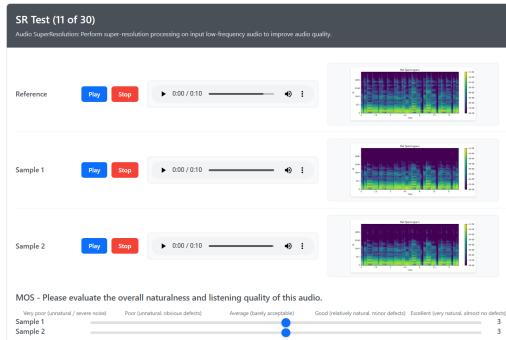
1148



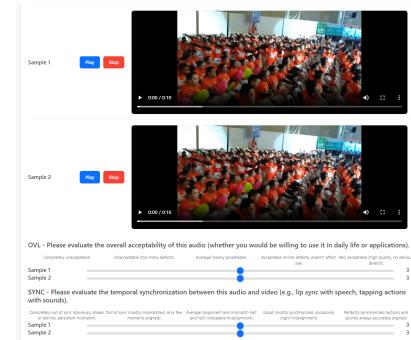
(a) TTS & SVS evaluation interface.



(b) T2M & T2A evaluation interface.



(c) SR evaluation interface.



(d) V2A evaluation interface.

Figure 6: Screenshots of the subjective evaluation interfaces used in our experiments.

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187