UNIFLOW-AUDIO: UNIFIED FLOW MATCHING FOR AUDIO GENERATION FROM OMNI-MODALITIES

Anonymous authors

000

001

002 003 004

010 011

012

013

014

015

016

017

018

019

021

025

026

027

028

029

031

032 033 034

035

037

040

041

042

043

044

045

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Audio generation, including speech, music and sound effects, has advanced rapidly in recent years. These tasks can be divided into two categories: timealigned (TA) tasks, where each input unit corresponds to a specific segment of the output audio (e.g., phonemes aligned with frames in speech synthesis); and nontime-aligned (NTA) tasks, where such alignment is not available. Since modeling paradigms for the two types are typically different, research on different audio generation tasks has traditionally followed separate trajectories. However, audio is not inherently divided into such categories, making a unified model a natural and necessary goal for general audio generation. Prior works on universal audio generation remain limited: auto-regressive models struggle with NTA tasks, while diffusion models often overlook TA tasks. In this work, we propose UniFlow-Audio, a universal audio generation framework based on flow matching. We propose a dual-fusion mechanism that temporally aligns audio latents with TA features and integrates NTA features via cross-attention in each model block. Task-balanced data sampling is employed to maintain strong performance across both TA and NTA tasks. UniFlow-Audio supports omni-modalities, including text, audio, and video. By leveraging the advantage of multi-task learning and the generative modeling capabilities of flow matching, UniFlow-Audio achieves strong results across 7 tasks using fewer than 8K hours of public training data and under 1B trainable parameters. Even the small variant with only 200M parameters shows competitive performance, highlighting UniFlow-Audio as a potential non-auto-regressive foundation model for audio generation. Code and models will be available at https://anonymous3387a8c.github.io/uniflow_audio.

1 Introduction

With the rapid evolution of generative models (Vaswani et al., 2017; Ho et al., 2020; Lipman et al., 2023), recent works have achieved remarkable improvements in generation quality (Esser et al., 2024; Polyak et al., 2024), promoting popularity of artificial intelligence generated content (AIGC). As an important modality, audio has also made remarkable progress in various generation tasks, with text-to-speech synthesis (TTS) (Wang et al., 2023a) and text-to-audio (T2A) generation (Liu et al., 2023) serving as representative tasks. Traditional audio generation models are designed for specific tasks, such as converting text to speech or music. This paradigm is suboptimal, as it overlooks the interconnected nature of real-world auditory information.

To overcome this limitation, we aim at a unified framework for audio generation that accommodates diverse input (text, audio, video) and output modalities (speech, music, sound effect). We observe that despite their differences, these tasks can be fundamentally categorized by the temporal relationship between input and output: either *time-aligned (TA)* or *non-time-aligned (NTA)*, as shown in Figure 1. For TA tasks, there is strict temporal alignment between input and output, such as the monotonic alignment in text-to-speech (TTS), the one-to-one frame alignment in speech enhancement (SE), and one-to-N frame alignment in video-to-audio (V2A). In contrast, NTA tasks, such as T2A, do not require such a temporal alignment constraint: the input sequence (textual description) corresponds holistically to the entire output soundscape, with semantic consistency being the primary objective rather than temporal correspondence. This fundamental difference in alignment requirements has historically necessitated specialized modeling approaches for TA and NTA tasks.

056

060 061 062

063

064

065

066

067

068

069

071

073

074

075

076

077

079

081

083

084

085

087

090

092 093

095

096

098

099

100 101

102 103 104

105

106

107

Figure 1: Illustration of time-aligned (TA) tasks and non-time-aligned (NTA) tasks.

Despite recent progress in unified audio generation, such as UniAudio (Yang et al., 2024), SpeechX (Wang et al., 2024), and AudioX (Tian et al., 2025), most systems remain biased toward either text-aligned (TA) or non-text-aligned (NTA) tasks. UniAudio and SpeechX adopt autoregressive (AR) architectures that perform strongly on TA tasks (Du et al., 2024a;b; Viertola et al., 2025); however, AR models typically trail diffusion-based approaches in generation quality on NTA tasks (Evans et al., 2024; Majumder et al., 2024). Conversely, AudioX uses diffusion to unify NTA tasks (audio and music generation) but excludes TA tasks due to its distinct modelling paradigm. This leaves a gap for a single framework that attains diffusion-level quality on NTA while retaining AR strengths on TA.

In this work, we propose UniFlow-Audio, a universal audio generation framework based on flow matching that unifies both TA and NTA tasks within a single non-auto-regressive (NAR) model. From the modeling perspective, we propose a dual-fusion mechanism to temporally align audio latents with input features for TA tasks, while utilizing cross-attention to integrate input features for NTA tasks, ensuring high-quality generation across both categories. To avoid interference between the two fusion strategies, task-irrelevant features (i.e., NTA features for TA tasks and TA features for NTA tasks) are replaced with learnable dummy embeddings, keeping TA and NTA feature integration disentangled. Both TA and NTA tasks are integrated in each block of the backbone (block-wise fusion), enabling the input to more effectively guide the generation. To balance the amount of different data types, we adopt a task-balanced sampling strategy to balance the ratio between TA and NTA data during training. Moreover, UniFlow-Audio supports a broader range of input modalities than prior works, including text, audio, and visual signals. With all these modalities and tasks involved, UniFlow-Audio learns the shared knowledge across different tasks, which in turn yields competitive or superior performance compared to task-specific baselines. Notably, compared with other unified audio generation models (see Section 2 for details on data and model sizes), our small variant (\sim 200M parameters), trained on fewer than 8K hours of public data, achieves strong results, underscoring the data efficiency and parameter effectiveness achieved by UniFlow-Audio.

The contributions of this work can be summarized as follows:

- We provide a novel perspective that formulates diverse audio generation tasks through temporal alignment.
- We propose UniFlow-Audio, the first flow-matching-based universal audio generation framework that unifies TA and NTA tasks.
- We design model architectures and data sampling strategies to balance TA and NTA tasks while ensuring the generation quality, including a dual-fusion mechanism, block-wise fusion, and task-balanced sampling.
- 4. UniFlow-Audio achieves strong results with limited open-source data and parameters on a variety of tasks, demonstrating the advantages of a unified audio generation model.
- 5. We open-source the code and model to provide a potential unified NAR audio generation foundation model, enabling further theoretical exploration and practical applications.

2 Related Work

Unified Audio Generation Recently, the research paradigm in audio generation has shifted from task-specific models to unified frameworks capable of handling multiple tasks within a single model. Such frameworks facilitate cross-domain knowledge sharing and improve data efficiency. Representative works include UniAudio (Yang et al., 2024) and AudioX (Tian et al., 2025). UniAudio is a large language model (LLM) based AR model that discretizes audio and various input modalities

into token sequences and leverages a multi-scale Transformer to model inter- and intra-frame correlations. UniAudio is trained on 165K hours of data. Despite 11 tasks being included, the video input modality is not supported in UniAudio. Furthermore, AR models often struggle with NTA tasks (Evans et al., 2024; Majumder et al., 2024). In contrast, AudioX adopts an NAR Diffusion Transformer (DiT) with a multi-modal input masking strategy to enhance robustness and generation performance. While trained on 29K hours of large-scale curated data, it focuses exclusively on NTA tasks. Compared with these pioneering works, UniFlow-Audio proposed a flow-matching-based unified NAR framework that achieves good performance on both TA and NTA tasks, with omni input modalities involved (text, audio, video) whilst trained on smaller datasets.

Flow Matching for Audio Generation Recent NAR generative models, diffusion models (Ho et al., 2020) and flow matching (Lipman et al., 2023), have attracted significant attention in audio generation due to their strong generative capabilities and the fast inference speed through parallel generation. NaturalSpeech2 (Shen et al., 2024), E3-TTS (Gao et al., 2023), and AudioLDM (Liu et al., 2023) demonstrate the capabilities of latent diffusion models on speech and audio generation. To achieve high-fidelity generation with extremely few steps, flow matching is adopted for T2A and TTS with low latency (Eskimez et al., 2024; Chen et al., 2025; Guan et al., 2024). It alleviates the high inference latency inherent to the iterative denoising process in diffusion models by directly learning a continuous velocity field that transports noise into data in a few integration steps, rather than requiring a substantial number of discrete denoising iterations. Flow matching is also employed in hybrid TTS systems such as CosyVoice (Du et al., 2024a) to refine acoustic details given discrete tokens predicted by the AR component. Motivated by the success of flow matching in prior speech and audio generation works, UniFlow-Audio adopts flow matching as the backbone.

3 UniFlow-Audio

As Figure 2 shows, UniFlow-Audio is a unified flow-matching-based audio generation framework that consists of four parts: a variational autoencoder (VAE) that compresses the raw long audio signal into a short sequence, a content encoding part for extracting features from the input content and task instruction, a duration adapter that generates TA content embeddings, and a Transformer-based flow matching backbone.

3.1 Audio Representation for Generation

Following (Evans et al., 2025), we employ a VAE that operates on raw waveforms for direct waveform generation and reducing latency. The VAE encoder compresses the waveform $\mathbf{x} \in \mathbb{R}^L$ into a latent representation $\mathbf{A} \in \mathbb{R}^{L/2^R \times D}$, where L, R and D denote the waveform length, compression ratio and latent dimension, respectively. The VAE architecture also follows (Evans et al., 2025), with details shown in Section D.1. We train the VAE on a mixture of high-quality speech, music, singing voice and general audio datasets to improve the generation performance on various domains.

3.2 CONTENT ENCODING WITH TASK INSTRUCTION

All inputs are transformed into continuous embeddings C instead of discrete tokens to avoid information loss by modality-specific content encoders:

 Phoneme & MIDI: For TTS, phonemes from grapheme-to-phoneme conversion (g2p)¹ and x-vectors (Wang et al., 2023b) for speaker information are used as input. We use the Transformer-based encoder from FastSpeech2 (Ren et al., 2020) as the content encoder. Singing voice synthesis (SVS) is similar to TTS, except that the input is MIDI rather than phonemes. In addition to phoneme embeddings, the MIDI encoder incorporates pitch, pitch duration, and slur information, which are fused with the phoneme embeddings through addition.

Text: For T2A and text-to-music generation (T2M), the input is a coarse text description without the alignment information. We use Flan-T5 (Chung et al., 2024) as the encoder following (Majumder et al., 2024; Evans et al., 2025).

¹https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner

Figure 2: Overview of UniFlow-Audio. The content encoder and adapter transform the input and task instruction into content embedding. Based on the predicted duration, the content embedding is expanded to time-aligned content embedding. A dual-fusion mechanism is applied: the latent is fused with the content by cross attention, and fused with time-aligned content by addition.

Audio: For audio input, we reuse the VAE as the encoder to compress the sequence length.

Video: For video input in video-to-audio generation (V2A), we use CLIP (Radford et al., 2021) combined as the encoder.

The VAE, Flan-T5, and CLIP are frozen during training. After obtaining C from the content encoder, we further integrate task instructions to inject explicit task-specific information, enabling the model to distinguish between tasks that share the same input modality (*e.g.*, T2A and T2M). This integration is achieved through an instruction encoder and a content adapter: the former maps the textual instruction into embeddings I, and the latter fuses C with I via cross-attention (Attn) by

$$\mathbf{C}^{\mathbf{I}} = \operatorname{Attn}(\mathbf{C}, \mathbf{I}, \mathbf{I}) + \mathbf{C}. \tag{1}$$

Regarding each task, we design 10 diverse textual instructions that describe the objective (details shown in Section C). During training, one instruction is randomly selected from each task as the input, whereas during inference, a fixed instruction is used.

With task-involved content embeddings $\mathbf{C}^{\mathbf{I}}$, a clip duration $d_c \in \mathbb{R}^+$ and a sequence duration $d_s \in (\mathbb{R}^+)^L$ are predicted. Since UniFlow-Audio is an NAR model, both TA and NTA tasks rely on d_c to determine the output length. d_s is only required by TA tasks for duration adaptation, which will be introduced in Section 3.3. For the duration predictor, we adopt the architecture in FastSpeech2.

3.3 DURATION ADAPTER

As introduced in Section 1, audio generation tasks can be divided into TA and NTA categories by their temporal alignment constraint. In NTA tasks where input and target audio lack temporal correspondence, cross-attention mechanism is typically used to integrate C into the generation process. In TA tasks, alignment information is often explicitly leveraged for generation. For instance, TTS relies on phoneme-to-frame alignment to expand linguistic units, while speech enhancement (SE) inherently operates on frame-aligned noisy and clean audio pairs. In such cases, content embeddings are aligned and concatenated with audio features, a process that may require a duration adapter.

Building on this insight, we introduce a unified *duration adapter* to explicitly align content embeddings with audio latents across all TA tasks. We posit that this explicit alignment offers superior efficacy for TA tasks than the implicit mechanisms of cross-attention. Specifically, C^{I} is expanded to a time-aligned content C^{I}_{T} . That is,

$$\mathbf{C}_{\mathbf{T}}^{\mathbf{I}} = \left[\underbrace{c_1^I, \dots, c_1^I}_{(d_s)_1}, \underbrace{c_2^I, \dots, c_2^I}_{(d_s)_2}, \dots, \underbrace{c_N^I, \dots, c_N^I}_{(d_s)_N} \right]. \tag{2}$$

Based on the sequence duration d_s , the duration adapter repeats each embedding c_i^I in $\mathbf{C^I}$ for $(d_s)_i$ steps, producing $\mathbf{C_T^I}$ that matches the length of the audio latents. For TTS and SVS, d_s specifies the

number of audio latents per phoneme. For SE and V2A, each value in d_s is fixed, since each input audio latent or video frame corresponds to a fixed number of target audio latents. For NTA tasks, d_s is set to a constant dummy value to achieve a unified design. During training, ground-truth durations are used to obtain $\mathbf{C}_{\mathbf{T}}^{\mathbf{I}}$.

3.4 DUAL-FUSION FLOW MATCHING TRANSFORMER

The generation backbone is a flow-matching Transformer composed of multiple Transformer blocks. We employ a dual-fusion mechanism to integrate both $\mathbf{C^I}$ and $\mathbf{C^I_T}$ into generation. Within each block, the audio latent \mathbf{A} is first processed by self-attention. The flow matching timestep τ is incorporated by adaptive layer norm (AdaLN) as

$$\mathbf{A} = (AdaLN_{SA} \circ Attn)(\mathbf{A}, \mathbf{A}, \mathbf{A}). \tag{3}$$

Next, C_T^I is fused with **A** by addition, as they are temporally aligned. That is,

$$\mathbf{A} = \mathbf{A} + \mathbf{C}_{\mathbf{T}}^{\mathbf{I}}.\tag{4}$$

Finally, as in standard Transformer blocks, cross-attention with C^{I} and feed-forward network (FFN) are applied to obtain the block output by

$$\mathbf{A} = \operatorname{Attn}(\mathbf{A}, \mathbf{C}^{\mathbf{I}}, \mathbf{C}^{\mathbf{I}}) + \mathbf{A} \tag{5}$$

$$\mathbf{A} = (\mathrm{AdaLN}_{\mathrm{FFN}} \circ \mathrm{FFN})(\mathbf{A}). \tag{6}$$

To prevent interference between the two fusion streams, we replace the ineffective input with learnable dummy embeddings. Specifically, $C^{\mathbf{I}}$ for TA tasks and $C^{\mathbf{I}}_{\mathbf{T}}$ for NTA tasks are set as dummy embeddings.

3.5 Training and Inference

We train the model using the flow matching loss, which encourages the velocity field $v_{\theta}(\mathbf{z}_{\tau}, \tau)$ to match a target velocity field, so that the continuous-time flow induced by v_{θ} transports data latents $\mathbf{z}_{0} \sim p_{\text{data}}$ to a standard Gaussian $\mathbf{z}_{1} \sim \mathcal{N}(0, \mathbf{I})$:

$$\frac{d\mathbf{z}_{\tau}}{d\tau} = v_{\theta}(\mathbf{z}_{\tau}, \tau), \quad \mathbf{z}_{\tau} = (1 - \tau) \cdot \mathbf{z}_{0} + \tau \cdot \mathbf{z}_{1}, \quad \tau \in [0, 1]$$
(7)

$$\mathcal{L}_{\text{FM}} = \mathbb{E}_{\tau, \mathbf{z}_0, \mathbf{z}_1} \left\| v_{\theta}(\mathbf{z}_{\tau}, \tau, \mathbf{C}^{\mathbf{I}}, \mathbf{C}_{\mathbf{T}}^{\mathbf{I}}) - (\mathbf{z}_1 - \mathbf{z}_0) \right\|^2, \tag{8}$$

where θ denotes model parameters, τ is the flow step, and \mathcal{L}_{FM} is the flow-matching training loss. The two duration predictors are trained together with the backbone using the following losses:

$$\mathcal{L}_{\text{dur-clip}} = \mathbb{E} \|d_c - \hat{d}_g\|^2, \quad \mathcal{L}_{\text{dur-seq}} = \mathbb{E}_i \|(d_s)_i - (\hat{d}_s)_i\|^2, \tag{9}$$

where \hat{d}_g and \hat{d}_s are ground-truth clip duration and sequence duration. For NTA tasks, $\mathcal{L}_{\text{dur-seq}}$ is omitted. In practice, d_s and \hat{d}_s are converted to frame numbers in the logarithmic domain to calculate $\mathcal{L}_{\text{dur-seq}}$, following FastSpeech2. The final training loss is $\mathcal{L} = \mathcal{L}_{\text{FM}} + \mathcal{L}_{\text{dur-clip}} + \mathcal{L}_{\text{dur-seq}}$. During inference, classifier-free guidance (CFG) is employed to balance the trade-off between generated sample diversity and their fidelity to the input content: $v_{\theta}^{\text{CFG}}(\mathbf{z}_{\tau}, \mathbf{C}^I, \mathbf{C}^I_T) = v_{\theta}(\mathbf{z}_{\tau}, \varnothing, \varnothing) + w \cdot \left(v_{\theta}(\mathbf{z}_{\tau}, \mathbf{C}^I, \mathbf{C}^I_T) - v_{\theta}(\mathbf{z}_{\tau}, \varnothing, \varnothing)\right)$, where w is the guidance scale.

4 EXPERIMENTAL SETUP

Tasks and Data UniFlow-Audio is trained and evaluated on a series of public datasets. Seven tasks are involved: TTS, SVS, T2A, T2M, SE, audio Super Resolution (SR) and V2A. Among them, T2A and T2M are NTA tasks, while the rest are TA tasks. Details of all training and evaluation data are demonstrated in Table 4. A total of 7.7K hours of data are used for training, which is substantially less than that employed in UniAudio and AudioX.

Table 1: Performance evaluation of UniFlow-Audio and baselines across all tasks.

Task	Model	Objective Evaluation Metrics Results		Subjective Ev Metrics	aluation Results
TTS	NaturalSpeech 2 ² (Shen et al., 2024) UniFlow-Audio	WER↓ SIM↑	9.94 34.8 3.09 55.8	MOS ↑ SMOS↑	2.72 3.43 3.79 3.21
SVS	DiffSinger (Liu et al., 2022c) UniFlow-Audio	F0↓ SA↑	0.144 58.0 0.147 59.9	MOS↑ SMOS↑	4.26 4.43 4.05 4.31
T2A	AudioLDM 2 (Liu et al., 2024b) UniFlow-Audio	FD↓ CLAP↑	21.8 0.476 17.2 0.476	OVL↑ REL↑	3.57 3.48
T2M	MusicGen (Copet et al., 2023) UniFlow-Audio	FD↓ CLAP↑	29.5 0.245 27.1 0.241	OVL↑ REL↑	3.45 3.08
SE	DOSE (Tai et al., 2023) UniFlow-Audio	PESQ↑ STOI↑	2.50 0.931 2.91 0.944	MOS↑	3.43 4.76
SR	AudioSR (Liu et al., 2024a) UniFlow-Audio	LSD↓	1.75 1.49	MOS↑	3.58 4.19
V2A	DiffFoley (Luo et al., 2023) UniFlow-Audio	IB↑ SYNC↓	22.7 922 28.6 1145	OVL↑ SYNC↑	2.80 2.94 3.61 3.55

Task-Balanced Sampling As Table 4 shows, different tasks' dataset sizes vary substantially due to discrepancies in collection difficulty and availability. To prevent overexposure to small-scale datasets caused by random sampling, a straightforward approach is to adopt a task-based roundrobin sampling strategy: sample data from each task in turn. However, since the number of different task types is imbalanced (five TA tasks and two NTA tasks), task-based round-robin sampling disproportionately favors TA tasks during training, which may in turn affect the model's overall performance. To this end, we upsample data from NTA tasks: T2M by 3 times and T2A by 2 times. We refer to this sampling strategy as *task-balanced sampling*.

Training UniFlow-Audio is trained on eight A100 GPUs with a batch size on each GPU of 24. We train three versions with different sizes: small, medium, and large. Configuration and training details are in Section D.2 and Section D.3. The small version takes about 7 days to train, while the large version takes about 12 days.

Evaluation Metrics For all tasks, both objective and subjective evaluation are conducted. Since UniFlow-Audio is evaluated on a variety of tasks and datasets, we adopt task-specific commonly-adopted metrics, as illustrated in Section B.

5 RESULTS

In this section, we first compare the performance of UniFlow-Audio with baselines on all tasks to evaluate the overall generation quality. Then, we explore the effect of CFG scale on different tasks. Finally, we conduct ablation studies on our training and architecture design.

5.1 Unified Audio Generation

The comparison between UniFlow-Audio and prior works is demonstrated in Table 1. For each task, we select a model from prior single-task works whose architecture and training data are closely aligned with our setting, while also demonstrating competitive performance. Although unified audio generation has been explored (see Section 2), UniAudio (Yang et al., 2024) is trained on much larger data, while AudioX (Tian et al., 2025) can only handle audio and music generation tasks. Therefore, we do not incorporate them for comparison. Except for LM-based MusicGen (Copet et al., 2023), all other baseline models adopt the diffusion architecture. UniFlow-Audio achieves at least comparable

 $^{^2 \}text{We}$ use the open-source version <code>https://huggingface.co/amphion/naturalspeech2_libritts.</code>

objective and subjective scores show the better synthesis quality of UniFlow-Audio. Compared with NaturalSpeech 2, we observe greater diversity in the prosody of the synthesized speech, which leads to lower subjective scores for speaker similarity. For SVS, a specified vocoder with high reconstruction quality is used in DiffSinger, while UniFlow-Audio uses a universal VAE, resulting in slightly lower singing synthesis quality on soprano samples. For other tasks, UniFlow-Audio performs quite competitively with training only on limited public datasets. In comparison, MusicGen (Copet et al., 2023) was trained on private datasets, and DiffFoley is trained on VGGSound (Chen et al., 2020), which is ten times the size of VisualSound.

Table 2: Generation performance across different model sizes.

performance to baselines and significantly outperforms baselines on TTS, SE and SR. For TTS, both

Model	# Trainable	TTS	SVS	T2A	T2M	SE	SR	V2A
	Params	WER↓	SA↑	FD↓	FD↓	PESQ↑	LSD↓	IB↑
Prior Works	-	9.94	58.0	21.8	29.5	2.50	1.75	22.7
UniFlow-Audio small	208M	3.23	56.6	19.7	26.2 26.6 27.1	2.60	1.58	25.5
UniFlow-Audio medium	395M	3.03	58.4	17.8		2.72	1.53	26.5
UniFlow-Audio large	847M	3.09	59.9	17.2		2.91	1.49	28.6

We also explore the effect of model size on the generation performance. Table 2 shows that UniFlow-Audio achieves competitive performance even with relatively few parameters. UniFlow-Audio small, with only 208M trainable parameters, already outperforms baseline models across most tasks. This demonstrates that UniFlow-Audio is parameter-efficient, delivering strong results without relying on excessively large model sizes. We assume it can be attributed to the benefit of multi-task training since there is intrinsic commonality in the knowledge required by different tasks. For example, TTS and SVS both require generating vocal from phoneme inputs, while T2A and T2M both require generating sound from coarse textual descriptions. In contrast, other universal generation models, *i.e.*, UniAudio (Yang et al., 2024) and AudioX (Tian et al., 2025), both contain more than 1B parameters. Although medium and large model versions further improve performance on certain tasks, the performance gap between the small model and its larger counterparts remains moderate.

5.2 EFFECT OF CFG AND INFERENCE STEPS

Figure 3: The effect of guidance scale (left) and inference steps (right) on generation performance of typical tasks. When analyzing one factor, the other is kept fixed.

We further investigate the impact of two key hyper-parameters in flow matching on generation performance: the guidance scale and the number of inference steps. Interestingly, we observe two distinct patterns across all tasks: SE and SR fall into one pattern, while the remaining tasks follow another. We take SE and T2A as representative tasks of the two patterns and report their CLAP and PESQ scores, with higher values indicating better performance for both metrics. Results are presented in Figure 3.

For the T2A task, the effects of the guidance scale and inference steps are consistent with typical findings in diffusion-based models: larger guidance scales and more inference steps yield steady performance improvements. This is expected, as stronger guidance provides more effective conditioning from the textual description, while more inference steps allow smaller step sizes in the denoising trajectory, which improves fidelity by reducing error accumulation. However, SE exhibits a sharp performance decline as the guidance scale increases, with PESQ dropping from 2.9 to 1.75. We attribute this to the characteristics of SE: the input inherently contains both signal and noise.

Figure 4: Illustration of different fusion mechanisms, best viewed in color. In the dual fusion sub-figure, green and red indicate the flow in TA and NTA tasks, respectively, while the dashed line represents dummy embeddings. For instance, in TA tasks, the NTA content embeddings are replaced with dummy ones.

Stronger guidance thus amplifies not only the signal but also the noise, leading to reduced perceptual quality in the generated speech. In contrast, the input of T2A is a textual description without "noise", so all information should ideally be reflected in the generated audio. Regarding inference steps, increasing the number of steps is also detrimental to the performance, although the effect is considerably smaller than that of the guidance scale $(2.98 \rightarrow 2.89)$. This degradation may also stem from the fact that SE inputs contain both signal and noise. With more inference steps, residual noise can accumulate through the iterative denoising process, slightly reducing the perceptual quality.

5.3 ABLATION STUDIES

In this section, we conduct ablation studies to validate several components of UniFlow-Audio: 1) architecture design, including dual-fusion and layerwise fusion mechanisms, and 2) the task-balanced data sampling strategy.

Table 3: Ablation results on the architecture design and data sampling strategies of UniAudio-Flow. The best results are highlighted in bold, while the second-best are underlined.

	Time Aligned				Non Time Aligned		
Setting	TTS WER↓	SVS SA↑	SE PESQ↑	SR LSD↓	V2A IB↑	T2A FD↓	T2M FD↓
UniFlow-Audio-small	3.23	<u>56.6</u>	<u>2.60</u>	<u>1.58</u>	<u>25.5</u>	19.7	26.2
w. cross attention w. double fusion	27.6 3.42	55.0 56.9	1.10 2.65	2.42 1.58	24.5 25.5	30.1 22.3	37.2 30.5
w. input fusion	42.0	41.8	1.07	1.59	13.7	20.9	28.7
w/o. balanced sampling	3.30	56.5	2.54	1.53	26.0	22.9	<u>27.9</u>

5.3.1 Benefits of Dual-Fusion Transformer

To validate the effectiveness of our proposed dual-fusion mechanism, we replace it with alternative fusion strategies and compare their generation performance. As Figure 4 illustrates, we investigate two alternative fusion mechanisms: *cross-attention fusion* and *double fusion*. Cross-attention fusion is the most straightforward approach, where all contents are fused with the audio latent via cross-attention, similar to AudioLDM2 (Liu et al., 2024b). Double fusion resembles our proposed dual fusion mechanism but differs in one aspect: content embeddings both before and after duration adaptation are fed into the backbone, regardless of the task type. In contrast, in dual fusion, ineffective content embeddings based on task types are set to dummy embeddings. This design may introduce interference between the learning of different task types. In contrast, the dual fusion mechanism employs dummy embeddings, which provide better guidance for the model to attend to different sources depending on the task type, thereby mitigating such interference.

The upper half of Table 3 reports the results of alternative content fusion mechanisms, which are consistent with our assumptions. Although cross-attention has shown strong performance in prior T2A and T2M studies (Liu et al., 2024b), applying it directly to a mixture of task types results in poor performance. Even on non-time-aligned T2A and T2M tasks, its performance is significantly

worse than that of dual fusion, suggesting that the presence of rich time-aligned data adversely affects models based on cross-attention. Compared with double fusion, dual fusion achieves similar performance on time-aligned tasks, while substantially outperforming it on non-time-aligned tasks. This demonstrates the effectiveness of the dummy embedding design. As described in Section 3.4, for non-time-aligned tasks, the duration used for content expansion is a dummy value. Consequently, the incorporation of expanded content embeddings into the generation process acts as noise.

5.3.2 BENEFITS OF BLOCK-WISE FUSION

 To further validate the architectural design, we examine the effect of fusing time-aligned content embeddings only at the input layer, referred to as *input fusion*. This follows the design of F5-TTS (Chen et al., 2025) and FlowSep (Yuan et al., 2025). As shown in the middle row of Table 3, input fusion leads to a substantial performance drop on time-aligned tasks. Since content embeddings are integrated via cross-attention in each DiT block, injecting time-aligned inputs solely at the input layer makes their influence much weaker than that of non-time-aligned inputs. Consequently, non-time-aligned tasks are only marginally affected, while the performance on time-aligned tasks degrades significantly. In contrast, UniFlow-Audio employs *block-wise fusion*, where time-aligned content embeddings are injected into each DiT block. This progressive fusion allows richer interactions between time-aligned content and audio latents, and proves essential for achieving robust performance across different task types.

5.3.3 BENEFITS OF TASK-BALANCED SAMPLING

Finally, we investigate the impact of the proposed task-balanced data sampling strategy. As shown in the last row of Table 3, removing balanced sampling (*w/o balanced sampling*) results in degraded performance on non-time-aligned tasks (T2A and T2M), while performance on time-aligned tasks remain relatively stable. This aligns with the number of datasets from different task types: under the original round-robin sampling strategy, time-aligned tasks are overrepresented. Without explicit balancing, the model is more exposed to time-aligned tasks, which amplifies the influence of time-aligned content input. In contrast, the task-balanced sampling strategy ensures that each task type is adequately represented, mitigating the effects of task imbalance and leading to more consistent and reliable performance across both time-aligned and non-time-aligned tasks.

6 LIMITATIONS

Despite unifying TA and NTA audio generation within a flow-matching-based NAR framework, UniFlow-Audio has several limitations. First, tasks involving multiple TA/NTA inputs, such as voice conversion (source speech + target speaker utterance), are not explored. Second, the model's generalization to unseen tasks or input modalities, similar to the zero-shot generalization capabilities of LLMs, has not been investigated. Third, the data and model size have not been scaled. Except for T2M, most tasks have under 1,000 hours of training data. Finally, UniFlow-Audio currently focuses on single-stream audio generation, while multi-stream or multi-source generation (e.g., TTS with background music) remains largely underexplored.

7 CONCLUSION

We present UniFlow-Audio, a flow-matching-based universal audio generation framework that unifies both TA and NTA tasks within a single NAR model. By introducing a dual-fusion mechanism with block-wise integration, UniFlow-Audio effectively combines TA and NTA features without cross-task interference. The model leverages shared knowledge across multiple modalities, including text, audio, and vision, to enhance generation performance through unified audio modeling. Extensive experiments demonstrate that, even with limited training data and moderate model size (as small as 200M trainable parameters), UniFlow-Audio achieves competitive performance across diverse tasks, highlighting its potential as a foundation model for unified NAR audio generation.

ETHICS AND REPRODUCIBILITY STATEMENT

The authors have read and adhere to the ICLR Code of Ethics. This work does not involve human subjects, identifiable private data, or harmful applications. All datasets used are publicly available and were used in accordance with their original licenses and intended purposes. No external sponsorship or conflict of interest influenced the design or conclusions of this work.

All code and source files are provided in the supplementary material and will be publicly released.

REFERENCES

- Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon, Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. MusicLM: Generating music from text. *arXiv preprint arXiv:2301.11325*, 2023.
- Cassia Valentini Botinhao, Xin Wang, Shinji Takaki, and Junichi Yamagishi. Investigating RNN-based speech enhancement methods for noise-robust text-to-speech. In *9th ISCA speech synthesis workshop*, pp. 159–165, 2016.
- Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. VGGSound: A large-scale audio-visual dataset. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 721–725. IEEE, 2020.
- Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, JianZhao JianZhao, Kai Yu, and Xie Chen. F5-TTS: A fairytaler that fakes fluent and faithful speech with flow matching. In *Proceedings of Annual Meeting of the Association for Computational Linguistics*, pp. 6255–6271, 2025.
- Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.
- Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre Défossez. Simple and controllable music generation. Advances in Neural Information Processing Systems, 36:47704–47720, 2023.
- Seungheon Doh, Keunwoo Choi, Jongpil Lee, and Juhan Nam. LP-MusicCaps: LLM-based pseudo music captioning. In *Proceedings of the International Society for Music Information Retrieval Conference*, 2023.
- Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi Zheng, Yue Gu, Ziyang Ma, et al. CosyVoice: A scalable multilingual zero-shot text-to-speech synthesizer based on supervised semantic tokens. *arXiv preprint arXiv:2407.05407*, 2024a.
- Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang, Changfeng Gao, Hui Wang, et al. CosyVoice 2: Scalable streaming speech synthesis with large language models. *arXiv preprint arXiv:2412.10117*, 2024b.
- Sefik Emre Eskimez, Xiaofei Wang, Manthan Thakker, Canrun Li, Chung-Hsien Tsai, Zhen Xiao, Hemin Yang, Zirun Zhu, Min Tang, Xu Tan, et al. E2 TTS: Embarrassingly easy fully non-autoregressive zero-shot TTS. In *IEEE Spoken Language Technology Workshop*, pp. 682–689. IEEE, 2024.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Proceedings of the International Conference on Learning Representations*, 2024.
- Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Long-form music generation with latent diffusion. *arXiv preprint arXiv:2404.10301*, 2024.

- Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Stable audio
 open. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 1–5.
 IEEE, 2025.
 - Yuan Gao, Nobuyuki Morioka, Yu Zhang, and Nanxin Chen. E3 TTS: Easy end-to-end diffusion-based text to speech. In *IEEE Automatic Speech Recognition and Understanding Workshop*, pp. 1–8. IEEE, 2023.
 - Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing Moore, Manoj Plakal, and Marvin Ritter. AudioSet: An ontology and human-labeled dataset for audio events. In *Proceedings of the Conference of the International Speech Communication Association*, pp. 776–780. IEEE, 2017.
 - Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish, and Soujanya Poria. Text-to-audio generation using instruction guided latent diffusion model. In *Proceedings of ACM International Conference on Multimedia*, pp. 3590–3598, 2023.
 - Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, and Ishan Misra. ImageBind: One embedding space to bind them all. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15180–15190, 2023.
 - Wenhao Guan, Kaidi Wang, Wangjin Zhou, Yang Wang, Feng Deng, Hui Wang, Lin Li, Qingyang Hong, and Yong Qin. LAFMA: A latent flow matching model for text-to-audio generation. In *Proceedings of the Conference of the International Speech Communication Association*, pp. 4813–4817, 2024.
 - Jiarui Hai, Yong Xu, Hao Zhang, Chenxing Li, Helin Wang, Mounya Elhilali, and Dong Yu. EzAudio: Enhancing text-to-audio generation with efficient diffusion transformer. In *Proceedings of* the Conference of the International Speech Communication Association, pp. 4233–4237.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.
 - Rongjie Huang, Feiyang Chen, Yi Ren, Jinglin Liu, Chenye Cui, and Zhou Zhao. Multi-singer: Fast multi-singer singing voice vocoder with a large-scale corpus. pp. 3945–3954, 2021.
 - Vladimir Iashin, Weidi Xie, Esa Rahtu, and Andrew Zisserman. Synchformer: Efficient synchronization from sparse cues. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 5325–5329. IEEE, 2024.

 - Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. AudioCaps: Generating captions for audios in the wild. In *Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics*, pp. 119–132, 2019.
 - Tom Ko, Vijayaditya Peddinti, Daniel Povey, Michael L Seltzer, and Sanjeev Khudanpur. A study on data augmentation of reverberant speech for robust speech recognition. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 5220–5224. IEEE, 2017.
 - Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D Plumbley. PANNs: Large-scale pretrained audio neural networks for audio pattern recognition. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 28:2880–2894, 2020.
 - Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet, Devi Parikh, Yaniv Taigman, and Yossi Adi. AudioGen: Textually guided audio generation. *arXiv* preprint arXiv:2209.15352, 2022.
 - Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for generative modeling. In *Proceedings of the International Conference on Learning Representations*, 2023.

- Haohe Liu, Woosung Choi, Xubo Liu, Qiuqiang Kong, Qiao Tian, and DeLiang Wang. Neural vocoder is all you need for speech super-resolution. In *Proceedings of the Conference of the International Speech Communication Association*, pp. 4227–4231, 2022a.
 - Haohe Liu, Xubo Liu, Qiuqiang Kong, Qiao Tian, Yan Zhao, DeLiang Wang, Chuanzeng Huang, and Yuxuan Wang. VoiceFixer: A unified framework for high-fidelity speech restoration. In *Proceedings of the Conference of the International Speech Communication Association*, pp. 4232–4236, 2022b.
 - Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In *Proceedings of the International Conference on Machine Learning*, pp. 21450–21474. PMLR, 2023.
 - Haohe Liu, Ke Chen, Qiao Tian, Wenwu Wang, and Mark D Plumbley. AudioSR: Versatile audio super-resolution at scale. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 1076–1080. IEEE, 2024a.
 - Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Qiao Tian, Yuping Wang, Wenwu Wang, Yuxuan Wang, and Mark D Plumbley. AudioLDM 2: Learning holistic audio generation with self-supervised pretraining. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 32:2871–2883, 2024b.
 - Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. DiffSinger: Singing voice synthesis via shallow diffusion mechanism. *Proceedings of the AAAI conference on artificial intelligence*, 36(10):11020–11028, 2022c.
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *Proceedings of the International Conference on Learning Representations*, 2017.
 - Simian Luo, Chuanhao Yan, Chenxu Hu, and Hang Zhao. Diff-Foley: Synchronized video-to-audio synthesis with latent diffusion models. *Advances in Neural Information Processing Systems*, 36: 48855–48876, 2023.
 - Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, and Soujanya Poria. Tango 2: Aligning diffusion-based text-to-audio generations through direct preference optimization. In *Proceedings of ACM International Conference on Multimedia*, pp. 564–572, 2024.
 - Brian McFee, Thierry Bertin-Mahieux, Daniel PW Ellis, and Gert RG Lanckriet. The million song dataset challenge. In *Proceedings of the International Conference on World Wide Web*, pp. 909–916, 2012.
 - Xinhao Mei, Chutong Meng, Haohe Liu, Qiuqiang Kong, Tom Ko, Chengqi Zhao, Mark D Plumbley, Yuexian Zou, and Wenwu Wang. WavCaps: A ChatGPT-assisted weakly-labelled audio captioning dataset for audio-language multimodal research. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 32:3339–3354, 2024.
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4195–4205, 2023.
 - Igor Pereira, Felipe Araújo, Filip Korzeniowski, and Richard Vogl. MoisesDB: A dataset for source separation beyond 4-stems. *arXiv preprint arXiv:2307.15913*, 2023.
 - Karol Jerzy Piczak. ESC: Dataset for environmental sound classification. In *Proceedings of ACM International Conference on Multimedia*. ACM, 2015.
- Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie Gen: A cast of media foundation models. *arXiv preprint arXiv:2410.13720*, 2024.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *Proceedings of the International Conference on Learning Representations*, pp. 8748–8763. PmLR, 2021.

- Zafar Rafii, Antoine Liutkus, Fabian-Robert Stöter, Stylianos Ioannis Mimilakis, and Rachel Bittner.
 MUSDB18-HQ-an uncompressed version of MUSDB18. (*No Title*), 2019.
 - Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. FastSpeech 2: Fast and high-quality end-to-end text to speech. In *Proceedings of the International Conference on Learning Representations*, 2020.
 - Kai Shen, Zeqian Ju, Xu Tan, Eric Liu, Yichong Leng, Lei He, Tao Qin, Jiang Bian, et al. Natural-Speech 2: Latent diffusion models are natural and zero-shot speech and singing synthesizers. In *Proceedings of the International Conference on Learning Representations*, 2024.
 - Yao Shi, Hui Bu, Xin Xu, Shaoji Zhang, and Ming Li. AISHELL-3: A multi-speaker Mandarin TTS corpus. In *Proceedings of the Conference of the International Speech Communication Association*, pp. 2756–2760, 2021.
 - David Snyder, Guoguo Chen, and Daniel Povey. MUSAN: A music, speech, and noise corpus. *arXiv* preprint arXiv:1510.08484, 2015.
 - Wenxin Tai, Yue Lei, Fan Zhou, Goce Trajcevski, and Ting Zhong. DOSE: Diffusion dropout with adaptive prior for speech enhancement. *Advances in Neural Information Processing Systems*, 36: 40272–40293, 2023.
 - Zeyue Tian, Yizhu Jin, Zhaoyang Liu, Ruibin Yuan, Xu Tan, Qifeng Chen, Wei Xue, and Yike Guo. AudioX: Diffusion transformer for anything-to-audio generation. *arXiv* preprint *arXiv*:2503.10522, 2025.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing Systems*, 30, 2017.
 - Ilpo Viertola, Vladimir Iashin, and Esa Rahtu. Temporally aligned audio for video with autoregression. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 1–5. IEEE, 2025.
 - Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu, Huaming Wang, Jinyu Li, et al. Neural codec language models are zero-shot text to speech synthesizers. *arXiv preprint arXiv:2301.02111*, 2023a.
 - Hongji Wang, Chengdong Liang, Shuai Wang, Zhengyang Chen, Binbin Zhang, Xu Xiang, Yanlei Deng, and Yanmin Qian. Wespeaker: A research and production oriented speaker embedding learning toolkit. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 1–5. IEEE, 2023b.
 - Xiaofei Wang, Manthan Thakker, Zhuo Chen, Naoyuki Kanda, Sefik Emre Eskimez, Sanyuan Chen, Min Tang, Shujie Liu, Jinyu Li, and Takuya Yoshioka. SpeechX: Neural codec language model as a versatile speech transformer. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 32:3355–3364, 2024.
 - Yu Wang, Xinsheng Wang, Pengcheng Zhu, Jie Wu, Hanzhao Li, Heyang Xue, Yongmao Zhang, Lei Xie, and Mengxiao Bi. Opencpop: A high-quality open source Chinese popular song corpus for singing voice synthesis. In *Proceedings of the Conference of the International Speech Communication Association*, pp. 4242–4246, 2022.
 - Gordon Wichern, Joe Antognini, Michael Flynn, Licheng Richard Zhu, Emmett McQuinn, Dwight Crow, Ethan Manilow, and Jonathan Le Roux. WHAM!: Extending speech separation to noisy environments. In *Proceedings of the Conference of the International Speech Communication Association*, pp. 1368–1372, 2019.
 - Yuning Wu, Chunlei Zhang, Jiatong Shi, Yuxun Tang, Shan Yang, and Qin Jin. TokSing: Singing voice synthesis based on discrete tokens. In *Proceedings of the Conference of the International Speech Communication Association*, pp. 2549–2553, 2024.

Junichi Yamagishi, Christophe Veaux, Kirsten MacDonald, et al. CSTR VCTK corpus: English multi-speaker corpus for CSTR voice cloning toolkit (version 0.92). *University of Edinburgh. The Centre for Speech Technology Research (CSTR)*, pp. 271–350, 2019.

Dongchao Yang, Jinchuan Tian, Xu Tan, Rongjie Huang, Songxiang Liu, Haohan Guo, Xuankai Chang, Jiatong Shi, Jiang Bian, Zhou Zhao, et al. UniAudio: Towards universal audio generation with large language models. In *Proceedings of the International Conference on Learning Representations*, 2024.

Yi Yuan, Xubo Liu, Haohe Liu, Mark D Plumbley, and Wenwu Wang. FlowSep: Language-queried sound separation with rectified flow matching. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 1–5. IEEE, 2025.

Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu. LibriTTS: A corpus derived from librispeech for text-to-speech. In *Proceedings of the Conference of the International Speech Communication Association*, pp. 1526–1530, 2019.

Lichao Zhang, Ruiqi Li, Shoutong Wang, Liqun Deng, Jinglin Liu, Yi Ren, Jinzheng He, Rongjie Huang, Jieming Zhu, Xiao Chen, et al. M4singer: A multi-style, multi-singer and musical score provided Mandarin singing corpus. Advances in Neural Information Processing Systems, 35: 6914–6926, 2022.

Wangyou Zhang, Robin Scheibler, Kohei Saijo, Samuele Cornell, Chenda Li, Zhaoheng Ni, Jan Pirklbauer, Marvin Sach, Shinji Watanabe, Tim Fingscheidt, et al. URGENT challenge: Universality, robustness, and generalizability for speech enhancement. In *Proceedings of the Conference of the International Speech Communication Association*, pp. 4868–4872, 2024.

A DATA DETAILS

Table 4: Training and evaluation data details of UniFlow-Audio.

Task	Training	Training Duration / h	
TTS	LibriTT	555	
SVS	M4Singer	30	
T2A	AudioCap	os (Kim et al., 2019)	253
SE	LibriTTS+Wham! VCTK+Wham! LJSpeech+Musan VoiceBank+Demand	VoiceBank+Demand (Botinhao et al., 2016)	460 44 24 10
SR	HQ-TTS MUSDB MoisesDB FreeSound	VCTK MUSDB ESC	85 47 26 158
T2M	MSD (McFee et al., 2012)	MusicCaps (Agostinelli et al., 2023)	5789
V2A	VisualSound	l (Viertola et al., 2025)	236
Total		-	7717

UniFlow-Audio is trained and evaluated on a series of public datasets. Details of all training and evaluation data are shown in Table 4. For TTS and SVS, we use the official training / validation / test splits of LibriTTS and M4Singer. Details of other datasets are described in the following:

T2A The official training subset of AudioCaps is used for T2A training. Each sample contains 5 captions in the test subset. Following TANGO (Ghosal et al., 2023), we randomly select one caption per sample for evaluation, and we use the same selected captions as in their setup.

T2M For T2M, we use songs from MSD (McFee et al., 2012) combined with LP-MusicCaps-MSD (Doh et al., 2023) captions as the training data. The original song in MSD can be as long as 14 minutes. During training, we randomly crop 10 seconds for training. The widely-used benchmark MusicGen (Copet et al., 2023) is used for evaluation.

SE For SE, we utilize the method in URGENT challenge (Zhang et al., 2024) to simulate noisy speech. The clean speech datasets include LibriTTS, VCTK Corpus (Yamagishi et al., 2019) and LJSpeech (Ito & Johnson, 2017), while the noise datasets contain WHAM! (Wichern et al., 2019) and noise subset of Musan (Snyder et al., 2015). Room Impulse Rresponses (RIRs) dataset for simulation is the RIRs dataset in Ko et al. (2017). We choose VoiceBank+Demand (Botinhao et al., 2016) for both train and evaluation, which is widely used as a benchmark in SE.

SR For SR, we mainly follow the setup of AudioSR (Liu et al., 2024a), while prioritizing the available sources for ease of collection. The training datasets include MUSDB (Rafii et al., 2019), MoisesDB (Pereira et al., 2023), HQ-TTS (Liu et al., 2022b) and FreeSound (Mei et al., 2024), while the evaluation uses ESC-50 (Piczak, 2015), VCTK-test (Liu et al., 2022a), and MUSDB. All high-quality recordings are first resampled to 24 kHz. Since our VAE is designed to process 24 kHz audio, we choose a cutoff range of [2,6] KHz for the downsampled audio. Based on the method introduced in NVSR (Liu et al., 2022a), we then apply the low-pass filter within this range to simulate low-high resolution audio pairs.

V2A For V2A, since the widely used VGGSound (Chen et al., 2020) dataset is constructed from in-the-wild videos without ensuring high audio-video correspondence, it includes a considerable amount of modality-mismatched samples where the video and audio are not semantically related. This limitation is detrimental to training stability and the inherent irrelevance is harmful to the performance. Therefore, we adopt the smaller but better audio-visual aligned VisualSound (Viertola et al., 2025) for both training and evaluation, which is curated based on ImageBind scores (Girdhar et al., 2023) to identify videos with poor audio-visual correspondence.

B EVALUATION METRICS

TTS Following (Wang et al., 2024), we use Word Error Rate (WER)³ as an objective metric to evaluate the accuracy of generated speech with respect to the given transcription, and Speaker Similarity (SIM)⁴ to assess the consistency of speaker characteristics between the generated and reference speech. For subjective evaluation, we employ the Mean Opinion Score (MOS) to measure overall speech naturalness and the Similarity MOS (SMOS) to assess perceived speaker similarity.

SVS Following Wu et al. (2024), we use root mean square error of fundamental frequency (F0) and semitone accuracy (SA)⁵ for objective evaluation. Same as TTS, MOS and SMOS are used as subjective metrics for accessing singing quality and singer similarity.

T2A & T2M Following previous T2A and T2M studies (Liu et al., 2024b), we adopt Frechet Distance (FD) and CLAP score for audio and music generation evaluation. FD measures the similarity of the distribution between generated and reference audio based on PANNs CNN14 (Kong et al., 2020) features, while CLAP score serves as a reference-free metric that captures the semantic alignment between textual descriptions and generated audio.

SE Following Tai et al. (2023), we choose Perceptual Evaluation of Speech Quality (PESQ) and Short-Time Objective Intelligibility (STOI) for SE evaluation. PESQ measures perceptual speech quality, and STOI estimates speech intelligibility.

³https://huggingface.co/nvidia/stt_en_conformer_transducer_xlarge

⁴https://huggingface.co/nvidia/speakerverification_en_titanet_large

 $^{^5 \}rm https://github.com/espnet/espnet/blob/master/egs2/TEMPLATE/svs1/svs.sh\#L1171$

SR Following previous studies (Liu et al., 2024a; 2022a), we adopt Log-Spectral Distance (LSD) for objective evaluation. LSD measures the discrepancy between the original high-frequency audio and the generated audio. Note that the baseline model AudioSR generates 48 kHz audio, while ours operates at 24 kHz. For fair comparison, AudioSR outputs are downsampled to 24 kHz before evaluation.

V2A Following Viertola et al. (2025), we evaluate V2A performance using ImageBind (Girdhar et al., 2023) (IB) and Synchformer (Iashin et al., 2024) (SYNC). IB measures semantic modality consistency by computing the cosine similarity between audio and video embeddings. SYNC assesses synchronization based on temporal offsets between audio and visual modality estimated by Synchformer.

C TASK INSTRUCTIONS

For each task, we prompt the LLM to generate 10 instructions ranging from simple to complex. These instructions span from basic definitions of the task to detailed specifications of task requirements. Table 5 presents 3 examples of simple, medium, and complex instructions.

D ARCHITECTURE & HYPER-PARAMETERS

D.1 WAVEFORM-BASED VAE

The VAE adopts a fully-convolutional architecture with residual 1D blocks and Snake activations, following the design from Evans et al. (2025). The encoder maps raw waveforms into a compact latent sequence at a downsampling ratio of 480 with 128 channels, while the decoder mirrors the encoder by progressively upsampling the latent sequence with transposed convolution to reconstruct the waveform. To achieve high-fidelity audio generation across different audio types, we train the VAE using a diverse set of datasets from multiple categories, including speech, singing, music, and general audio, with details provided in Table 6. The model is trained for 1M steps on this extensive collection of approximately 6000 hours data, where each audio clip is randomly cropped to 1.5s segments during training.

To measure the reconstruction quality of VAE, we evaluate the mean squared error (MSE) and signal-to-noise ratio (SNR) on held-out test sets. As shown in Table 7, our VAE achieves consistently lower MSE and higher SNR than the one in EzAudio (Hai et al.), which was only trained on AudioSet (Gemmeke et al., 2017).

D.2 FLOW MATCHING BACKBONE

The diffusion step τ is processed by a multi-layer perceptron (MLP) to produce AdaLN scale and shift parameters for each Transformer block, conditioning the self-attention and FFN layers:

$$\gamma_{SA}, \beta_{SA}, \alpha_{SA}, \gamma_{FFN}, \beta_{FFN}, \alpha_{FFN} = MLP(\tau)$$
 (10)

We apply \tanh to the scaling parameter α in AdaLN (Peebles & Xie, 2023) to improve the numerical stability during training:

$$\mathbf{A}_{\text{norm}} = \gamma \cdot \text{Norm}(\mathbf{A}) + \beta \tag{11}$$

$$\mathbf{A} = \tanh(1 - \alpha) \odot F(\mathbf{A}_{\text{norm}}) + \mathbf{A}_{\text{norm}}$$
 (12)

To mitigate the potential negative influence from $\mathcal{L}_{dur\text{-}clip}$ and $\mathcal{L}_{dur\text{-}seq}$, we apply gradient scaling to the duration predictors. Specifically, we scale the gradients from the duration losses by a factor λ before backpropagation, thereby reducing their influence on the model.

$$\tilde{x} = \lambda \cdot x + (1 - \lambda) \cdot \operatorname{sg}(x)$$

where $sg(\cdot)$ represents stop gradient operator and λ is set to 0.1.

Table 8 summarizes the architectural configurations of different UniFlow-Audio versions. Notably, the small variant contains only approximately 200M trainable parameters, yet it achieves competitive performance as shown in Table 2.

Table 5: Examples of detailed task instructions.

Produce human-like speech from phoneme inputs and speaker representations.

866 867

868

870 871

872

873

874

875

876

877

878

879

880

883

885

887

888

889

890

891 892

893

894

895

896

897

899

900

901

902 903

904

TTS

accurate pronunciation. Convert phoneme sequences into natural speech using speaker embeddings, with precise articulation of words and adaptation to the textual emotional content.

Generate natural speech from speaker embeddings and phoneme sequences while maintaining

T2A

Generate an audio clip based on the given text description.

Synthesize an audio signal from the given text, ensuring the fidelity of sound event representation and the naturalness of the audio output. Convert the given text into a natural-sounding audio clip, maintaining high fidelity in sound event reproduction (volume, positioning, timing, repetition) and ensuring realistic scene acoustics and

SVS

Render a singing performance from musical notation, including phonemes, notes, durations, and slurs. Produce a singing voice rendering derived from the notated score that maintains parametric fidelity to

the given phonemes, notes, durations, and slurs. Synthesize a singing voice that matches the input musica score's specifications (phonemes, notes, durations, slurs) while adapting phoneme durations for natural flow and preserving textual

SE

Enhance noisy speech signals by reducing background noise and reverberation. Improve degraded speech quality by suppressing noise and reverberation while preserving natural voice characteristics.

Enhance speech signals by dynamically suppressing diverse noise types (environmental/mechanical) and reverberation, preserving tonal qualities and timbre across varying SNR conditions.

event relationships.

Enhance audio quality by increasing its sampling rate or resolution. Convert low-sampling-rate audio to high-resolution output, recovering lost high-frequency components and subtle sonic characteristics.

Upsample low-resolution audio signals to higher sampling rates while preserving original signal details and recovering high-frequency components without introducing audible artifacts.

V2A

SR

Generate high-fidelity audio synchronized to video.

Produce high-quality audio that matches the video's scene, with accurate timing, spatial positioning, and realistic sound properties.

Generate high-fidelity audio for the video, ensuring strict temporal alignment, correct spatial direction, loudness, and frequency of sounds, while maintaining realism and coherence with visual content.

T2M

Develop a music clip that precisely matches the textual description in all aspects. Produce a musical piece that faithfully represents the given description, incorporating all specified instruments, intended emotions, genre characteristics, and vocal properties.

Generate a musical output that perfectly matches the provided text, incorporating the exact instruments mentioned, upholding authentic stylistic qualities, and delivering the desired emotional impact. If vocals are required, precisely implement the described gender, age, vocal properties, and singing manner.

Table 6: Datasets used for training the waveform-based VAE.

Domain	Datasets
Speech	AISHELL-3 (Shi et al., 2021), TTS-HQ, LJSpeech, LibriTTS, VCTK
Singing	OpenSinger (Huang et al., 2021), M4Singer, OpenCpop (Wang et al., 2022), PopCS (Liu et al., 2022c)
Music	MUSDB, MoisesDB, MusicCaps
General Audio	AudioSet (Gemmeke et al., 2017)

910 911

909

D.3 TRAINING & INFERENCE SETUP

912 914

915

916

917

UniFlow-Audio is trained using AdamW optimizer (Loshchilov & Hutter, 2017) with a constant learning rate of 5e-5 with a warmup step of 10K steps and a total training step of 400K steps. To mitigate the negative impact of excessively long audio content sequence on training efficiency, we take a maximum of 5 second audio segments randomly during training for SE and SR. During inference, we take an inference step of 25 by default. Sway sampling (Chen et al., 2025) is adopted

Table 7: Reconstruction performance of VAE.

Domoin	Spe	ech	Music		
Domain	$\mathbf{MSE}\downarrow$	SNR (dB) \uparrow	MSE ↓	SNR (dB) \uparrow	
EzAudio VAE Ours	$\begin{array}{ c c c } 4.43 \times 10^{-5} \\ 3.84 \times 10^{-5} \end{array}$	17.06 17.63	$\begin{array}{ c c c } 1.13 \times 10^{-4} \\ 8.42 \times 10^{-5} \end{array}$	18.09 19.27	

Table 8: Model configurations.

Model Size	Depth	Embed Size	Num Heads	# Total / Trainable Params
Small	12	512	8	593M / 208M
Medium	16	768	12	780M / 395M
Large	24	1024	16	1.2B / 847M

to improve the generation performance. During training, both TA and NTA content embeddings are randomly masked with a ratio of 0.2 to train conditional and unconditional generation simultaneously. During inference, a CFG scale of 5.0 is adopted for tasks except SE and SR while CFG is not applied for these two tasks, due to the influence of CFG on them (see Section 5.2).

E LLM USAGE

LLMs were used as assistive tools in this work. Specifically, they were employed to help with limited code writing and debugging, as well as for polishing the language of the paper. The LLMs involved include mainstream models such as GPT, Claude, and Gemini. These model were used for grammar correction, sentence restructuring, and enhancing overall readability. All technical content, experimental design, results, and conclusions were authored and verified solely by the human authors. LLMs did not contribute to the generation of ideas, methods, or data analysis.

F SUBJECTIVE EVALUATION DETAILS

For all tasks, we conduct MOS-based subjective tests with explicit instructions for raters. Each sample is rated on a 1–5 Likert scale. We recruit ten raters with college-level education and normal hearing ability for subjective evaluation. Examples of the rating interface and detailed instructions are shown in Figure 5. Below we describe the setup for each task.

For **TTS** and **SVS**, we evaluate speech quality MOS (MOS) and speaker similarity MOS (SMOS). For MOS, raters judge the overall naturalness and listening quality of the synthesized speech or singing voice. For SMOS, raters judge whether the generated audio matches the target/reference speaker in terms of timbre-related characteristics, disregarding prosodic variations.

For **T2A** and **T2M**, we follow AudioGen (Kreuk et al., 2022) and MusicGen (Copet et al., 2023) to evaluate overall quality (OVL) and relevance (REL) to the input caption.

For **SE**, raters assess the intelligibility and naturalness of enhanced speech. Each output is presented together with its clean reference target, and the MOS scores reflect residual noise, processing artifacts, and overall listening quality.

For **SR**, the evaluation setup is identical to SE, except that each sample is additionally accompanied by a spectrogram visualization to facilitate judgments.

For V2A, we evaluate overall acceptability (OVL) and synchronization (SYNC) with the reference video. In SYNC evaluation, the raters judge whether audio events are temporally aligned with visual cues such as lip movements, object impacts, or musical actions.

The test (2 of 30)

The Contract active gracine playing a remarker, ballad. Yields and viola are playing the lead mobely while cell are playing a rhythric molecular to the black ground. This song may be playing to the is a welfally

Before every the second of the seco

(a) TTS & SVS evaluation interface.

(c) SR evaluation interface.

(b) T2M & T2A evaluation interface.

(d) V2A evaluation interface.

Figure 5: Screenshots of the subjective evaluation interfaces used in our experiments.