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Abstract

Recent developments have sought to overcome the inherent limitations of traditional
associative memory models, like Hopfield networks, where storage capacity scales
linearly with input dimension. In this paper, we present a new extension of Hopfield
networks that grants precise control over inter-neuron interactions while allowing
control of the level of connectivity within the network. This versatile framework
encompasses a variety of designs, including classical Hopfield networks, models
with polynomial activation functions, and simplicial Hopfield networks as particular
cases. Remarkably, a specific instance of our construction, resulting in a new self-
attention mechanism, is characterized by quasi-exponential storage capacity and a
sparse network structure, aligning with biological plausibility.

1 Introduction

Hopfield networks [1, 21, 15] are widely recognized as one of the most prominent mathematical
models for associative memory. In this model, the retrieval of an item is possible by merely
recognizing a fragment of its content, such as reconstructing a complete image from a partial view.
These models have a rich history which goes back as far as [35, 40, 22, 16]. Apart from being
analytically tractable, Hopfield networks are attractive to biologists because in principle, they can be
implemented by the neurons and synapses in the brain. Indeed, a model could fail to be biologically
plausible if the connections are not synaptic (neuron-to-neuron) connections or if the connectivity
structure is not sparse (i.e is dense). Sparse connectivity means that each input neuron is connected
to only a small number of other neurons (i.e, vanishing edge-density in the connectivity graph). This
is the case of so-called dilute Hopfield networks [10, 36, 5, 23]. Finally, it is well-known that matrix
models like Hopfield networks have limited storage capacity [16, 15, 34, 4]: they can only store and
reliable retrieve cN memory patterns where c is an absolute constant.

The present study introduces a simple yet powerful approach for constructing general Hopfield
networks with desirable properties. Our main contributions are summarized as follows.

• Abstract Hopfield Networks. Our proposed models utilize setwise connections based on
collections, called skeletons, of subsets of input dimensions. We provide analytic expressions
for the energy functional and update rule for such models, which extend the definition of
traditional Hopfield networks [15]. These Abstract Hopfield Networks (or AHNs for short),
encompass the classical Hopfield network [15], and its various extensions [17, 9, 6].

• A New Type Self-Attention Layer. As our second contribution, we show in Section 3 that a
specific choice of skeleton leads to an AHN leads to a new type of self-attention layer which
we call Product-of-Sums Hopfield network (PSHN) due to its structure. Note that a duality
between traditional self-attention layers [38] and a certain type of Hopfield network has also
been established [28]. Our proposed PSHN model enjoys the following desirable properties:

– High robust storage capacity. Indeed, we show that our PSHN modern can store
ecN log log(N)/ logN memories, which is (quasi-)exponential in the input dimension N

– Biological-Plausibility. It can be neurobiologically implemented by introducing k
hidden neurons which have sparse synaptic connections to the N input neurons.
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See Appendix A for an overview of the relevant literature.

2 Abstract Hopfield Networks

In this section, we develop a simple and general extension of Hopfield networks.

The Skeleton. Given an arbitrary pattern y = (y1, . . . , yN ) ∈ {±1}N and a subset σ ⊆ [N ] :=
{1, 2, . . . , N} of neurons, define a variable yσ ∈ R by yσ := Πn∈σyn, with the convention that
y∅ = 1. For example, if σ = {1, 5, 7}, then yσ is the product y1y5y7. Let S be any (nonempty)
collection of subsets of [N ]. We shall call S a skeleton, borrowing terminology from [6] which
considered the special case S =

(
[N ]
D

)
, the collection of all subsets of [N ] which contain D or less

elements. A skeleton induces a correlation function on {±1}N given by ⟨x, y⟩S :=
∑

σ∈S xσyσ for
every pair of patterns x, y ∈ {±1}N . This can also be seen as an inner-product in the feature space
given by the mapping y 7→ (yσ)σ∈S. The parameters of the model are the memories x(1), . . . , x(M).
For any neuron n ∈ [N ], define

∂nS := {σ \ {n} | σ ∈ S and n ∈ σ}. (1)

In words, ∂nS is the collection of subsets of [N ] which don’t contain the neuron n and can be turned
into an element of S by including n. For example, in the case of classical Hopfield networks [15],

S = {σ ⊆ [N ] s.t |σ| = 2} and ∂nS = {{n′} | n′ ∈ [N ] \ {n}} ∼= [N ] \ {n}, ∀n ∈ [N ]. (2)

Thus, in this case |∂nS| = N − 1 ≤ N for all n ∈ [N ], and we shall see later (Theorem 4.1) that this
accounts for the linear storage capacity of the classical Hopfield network. One can therefore hope to
obtain higher storage capacity by appropriate choices for the skeleton S.

Energy Functional and Update Rule. The energy of an input pattern y ∈ {±1}N is given by

E(y) := −
∑
σ∈S

ω(σ)yσ = −
M∑
µ=1

⟨x(µ), y⟩S, with ω(σ) :=

M∑
µ=1

x(µ)
σ . (3)

The (one-step) update rule T : {±1}N → {±1}N is defined component-wise by

Tn(y) := sign

(
M∑
µ=1

c(µ)n (y)x(µ)
n

)
, with c(µ)n (y) := ⟨x(µ), y⟩∂nS =

∑
s∈∂nS

x(µ)
s ys. (4)

for any neuron n ∈ [N ]. This construction is a generalization of the energy of the classical Hop-
field network [15] by considering arbitrary multi-neuron interactions. For the particular case
of classical Hopfield networks [15], it is easy to see from (2) that the energy (3) reduces to
E(y) = −

∑M
µ=1

∑
n,n′∈[N ], n′ ̸=n x

(µ)
n x

(µ′)
n′ ynyn′ , while the update rule (4) reduces to update rule

Tn(y) = sign
(∑M

µ=1 x
(µ)
n
∑

n′∈[N ], n′ ̸=n x
(µ)
n′ yn′

)
, both of which are well-known formulae.

Definition 2.1. Given a nonempty collection S of subsets of neurons [N ], the energy (3) and update
rule (4) define an Abstract Hopfield Network (AHN) with skeleton S.

Thus, once the skeleton S is prescribed, everything else about an AHN is completely determined.
In particular, when S is the collection of subsets of [N ] with at most D elements, i.e a simplicial
complex of dimension D, we obtain the model proposed in [6].

Generality of Our Construction. We now show that for specific choices of the skeleton S, various
well-known extensions of Hopfield networks are instances of our AHNs. This also allows us to
recover the storage capacity of these models in a unified manner (Appendix D).

Theorem 2.1. The classical Hopfield network [15], the polynomial Hopfield network [17, 9], and
the simplicial Hopfield network [6],as well as all diluted versions of these networks are all instances
of AHNs corresponding to specific choices for the skeleton S.
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Comparison to [24]. This recent work makes the observation that the update functional T for
classical [15] and modern (dense) Hopfield networks [17, 9, 28] can be written as a composition of a
linear projection (proj), a separation / activation function (sep), and similarity function (sim). For a
general abstract Hopfield network (proposed by our work), it is not clear whether such a proj-sep-sim
decomposition is always possible. Moreover, [24] doesn’t show how any of these choices control for
the properties (e.g storage capacity) of the resulting memory model. In contrast, our work proposes a
different route to generalizing Hopfield network: by replacing pairwise connections by many-body
connections based on an arbitrary collection of subsets (of input neurons), the skeleton. Moreover,
the properties (storage capacity, etc.) of the resulting network derive from the topological properties
of the skeleton (see Sections 4.1 and 5).

3 Product-of-Sums Hopfield Network (PSHN)

We now construct an instance of AHNs (Section 2) with remarkable properties like high storage
capacity, biological plausibility, and connections to transformers [38].

The Skeleton. Let G1, . . . , Gk form a partition of [N ], and consider an AHN whose skeleton S is
the collection of all subsets of [N ] which contain exactly one item from each Gi, i.e

S = T (G1, . . . , Gk) := {σ ⊆ [N ] s.t |σ ∩Gi| = 1 for all i}. (5)

Observe that this is isomorphic to the Cartesian product of the Gi’s in an obvious way. We call the
resulting network a Product-of-Sums Hopfield network (PSHN), a terminology which will become
clear later once we make its energy functional explicit. For fixed Gi’s of equal size Ni = N/k for
all i ∈ [k], we simply write T (N, k) for T (G1, . . . , Gk). The inherent product structure of such
a skeleton enables it to integrate information across long-range interactions among input neurons.
For example, we show in Appendix E.3 that these models can solve the XOR problem [25], a
3-dimensional problem known to be unsolvable with HNs comprising fewer than 4 neurons.

Energy and Update Rule. The energy functional (3) now takes on a special form.

Lemma 3.1. For S = T (G1, . . . , Gk), the energy (3) is given by E(y) =
∑M

µ=1 Eµ(y), where

Eµ(y) = −
k∏

i=1

∑
n∈Gi

x(µ)
n yn, for any input pattern y ∈ {±1}N . (6)

The RHS of (6) justifies the name of the resulting network, namely: Product-of-Sums Hopfied
network (PSHN). Figure 4 (Appendix C.3) gives a schematic illustration of (6).
Lemma 3.2. For any pattern y ∈ {±1}N , group index i ∈ [k], and memory index µ ∈ [M ], define
a
(µ)
i (y) :=

∑
n′∈Gi

x
(µ)
n′ yn′ . Then, for any n ∈ Gi, the update (4) is Tn(y) = sign(∆n(y)), where

∆n(y) =

M∑
µ=1

c
(µ)
i (y)x(µ)

n , with c
(µ)
i (y) :=

∏
j ̸=i

a
(µ)
j (y). (7)

A New Type of Self-Attention Layer. As already mentioned in the introduction, transformers (aka
self-attention layers) are the core component of LLMs. We now show that a specific instance of our
proposed PSHN model corresponds to a new type of self-attention layer. So, consider the special case
where the skeleton is S = T (N, k), i.e where Ni = N1 = N/k for all i. Thus, N = k ×N1. Stack
the memories (x(µ))Mµ=1 into a matrix X ∈ RM×N and consider a batch of m queries y(1), . . . , y(m)

stacked in to a matrix Q ∈ Rm×N , and consider the following code snippet.

Code Listing 1: PyTorch GPU-friendly implementation of our PSHN model / self-attention layer.

X = X.reshape((M, k, N1)) # database of memories (e.g clean images)
Q = Q.reshape((m, k, N1)) # incoming queries (e.g noisy/occluded images)
Z = torch.einsum("mkg,Mkg->mMk", Q, X) # correlate
C = Z.prod(axis=2, keepdims=True) / Z # this replaces softmax operator
C = torch.nan_to_num(C, nan=0.) # This is a trick to compute the ci’s
TQ = torch.sign(torch.einsum("mMk,Mkg->mkg", C, X)) # output
TQ = TQ.reshape((m, N)) # original shape of input query matrix Q
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Thanks to Lemma 3.2, the above code snippet computes the update rule T for our PSHN model. It can
take full advantage of optimized matrix multiplication (GPUs). See Appendix C.2 for implementation
tips. We come to the realization that in the case of equally sized groups, our proposed PSHN model
is a new type of self-attention layer schematized like so

T (Q) = sign(∆(Q)), with ∆(Q) := σ(Q ·X) ·X, (8)

where σ is the nonlinear mapping which produces C from Z in the above code snippet, "·" denotes
inner-product of tensors along an appropriate axis, and we have omitted the reshaping operators for
clarity. Thus, our proposed PSHN model provides new perspectives for building transformers.

4 Analysis of Storage Capacity

As before, let N ≥ 1 be the input dimension, that is the number of feature dimensions, or simply
input neurons (e.g number of pixels in an image). Thus, for simplicity [N ] := {1, 2, . . . , N} is the
set of (indices of) neurons. As an example, this could be the number of pixels in an image. Let
x(1), . . . , x(M) ∈ {±1}N be a collection of M iid Rademacher memory patterns we wish to store.
Fix a noise threshold θ ∈ [0, 1), and let y(µ) be obtained from x(µ) by setting to −1, the value of
⌊Nθ⌋ coordinates of the latter selected uniformly at random and independently of all the memories.
Definition 4.1 (Robust Storage Capacity). We say that an associative memory network with update
function T : {±1}N → {±1}N has θ-robust storage capacity MN,θ if it holds that

lim
ε→0+

lim
N→∞

1

MN,θ
max{1 ≤ M ≤ 2N | inf

µ∈[M ]
P(T (y(µ)) = x(µ)) ≥ 1− ε} = 1. (9)

In particular, MN := Mθ,0 is nonrobust storage capacity (i.e for retrieving uncorrupted memories).

4.1 A Generic Lower-Bound for Nonrobust Storage Capacity

The following is a generic lower-bound for the capacity of an AHN.
Theorem 4.1. For any AHN with skeleton S, it holds that MN (S) ≥ d(S)/(2 logN), where
d(S) := minn d(n), and d(n) := |∂nS|.

In the presence of corruptions (θ ̸= 0), one cannot in general hope to get nontrivial lower-bounds for
the robust storage capacity without further information about S. This is done in Appendix D.4.

4.2 A Lower-Bound for the PSHN Model

We now establish lower-bounds for the storage capacity of our proposed PSHN model (Section 3).
Let us first consider the case of retrieving clean / uncorrupted patterns.
Theorem 4.2. Consider a PSHN model with k groups each of size N1 = N/k. Then, MN ≥
Nk−1

1 /(2 logN). In particular, if 2 ≤ N1 = O(1), then MN ≥ ecN for some positive constant c.

We now turn to the case of robust storage capacity Fix a corruption level θ ∈ [0, 1) and let p := 1−θ/2,
a := 1− θ, and b := e−1/(2a). The next theorem is one of our main results.
Theorem 4.3. Consider the PSHN model with k equal groups each of size N1 ≥ C logN with
C ≥ 73/p where p := 1 − θ/2. Then, MN,θ(S) ≥ (abN1)

k−1. In particular, for N1 = C logN ,

then MN,θ(S) ≥ ecN · log log N
log N , where c is a positive constant that only depends on θ and C.

The logarithmic scaling N1 ≍ (1/p) logN is crucial for achieving the quasi-exponential lower-bound.
Results of some experiments are presented in Appendix B and C.1.

Computation of upper-bounds for the robust storage capacity of AHNs in general and the PSHN
model in particular, is left for future work.

5 Biological Plausibility of the PSHN Model

We now provide strong arguments which show that our proposed PSHN model (described in Section
3) can be implemented in neurobiology (the brain), at least in principle.
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Synaptic Connections. Note that our PSHN model can be realized with O(k) hidden neurons
for computing sums and products in (7), with direct synaptic connections to input neurons. Unlike
the biological plausibility of the "sum" neurons, the "product neurons" which implement k-fold
multiplication in (7), need some explanation because such an operation might not be implementable
biologically by a single neuron. However, this operation can be carried out via a series of k 2-fold /
binary multiplication neurons (a, b) → a ∗ b, which are known to be biologically plausible [13, 37].
In fact, k-fold multiplication is the basis of so-called sigma-pi networks [11] and pi-sigma networks
[31, 12].

Remark 5.1. As observed by a reviewer, we have hand-waved the unfortunate fact that multiplication
with biological components is likely to be inexact, and errors might compound as the number of
groups (i.e hidden neurons) k grows. However, we believe that if the errors are kept under control,
the computations can still be done reliably. A rigorous analysis of this point is left for future work.

Sparsity of Connexions. Concerning the connectivity structure, we see from (7) with M = 1 (i.e
a single memory pattern) that the graph representing an PSHN model only contains O(Nk) edges
in total, corresponding to an edge density of O(Nk/N2) = O(k/N). If the number of groups k
is of order o(N) (e.g k = O(N/ logN)), then the computation graph for the corresponding PSHN
model is extremely sparse (vanishing edge density), and thus is biologically plausible. Importantly
our construction can simultaneously achieve sparsity and (quasi-)exponential robust storage capacity.
In contrast, diluted HNs [10, 5, 6] also enjoy sparse connectivity, but can only boast of polynomial
storage capacity.

Number of Connections vs Storage Capacity. Motivated by [6] which showed that it is important
to compare storage capacity of different Hopfield Networks with the same total number of connections,
let us now provide a back-of-envelope (but rigorous) calculation which shows that compared to
classical, polynomial, or simplicial Hopfield networks, our proposed PSHN network has a much
higher storage capacity w.r.t number of connections. Indeed, the number of connections in a
polynomial (resp. simplicial) HN is of order Nk where k = d − 1 and d is the degree of the
polynomial (dimension of the simplicial complex). The (robust) storage capacity of these models is
at most of order Nk−1. In contrast, the number of connections in our PSHN model with k = d− 1
groups of equal size N1 = N/k is of order Nk (i.e, much smaller!), and the storage capacity is of
order Nk

1 . Thus if we fix the number of connections to say N2 (as in [6]), then the storage capacity
of our network is quasi-exponential eN log log(N)/ logN (since the requirement k groups of equal
size N1 = C logN in Theorem 4.3 amounts to O(Nk) = O(N2/(C logN)) = O(N2/ logN)
connections, which is definitely less than N2 for large N ), while the robust storage capacity of
classical, polynomial, or simplicial Hopfield networks is only of order N (i.e linear).

Thus, simultaneously, our proposed PSHN model is biologically plausible and with (quasi-) exponen-
tial robust storage capacity. Our arguments for biological plausibility are stronger than the indirect
arguments presented in [18] for polynomial and exponential Hopfield networks.

6 Concluding Remarks

In this work, we have introduced a versatile framework for extending classical Hopfield networks
by incorporating long-range interactions defined via collections of subsets of input features, called
"skeletons". We have also demonstrated that many classical Hopfield network extensions are specific
examples of our broader construction corresponding to specific choices of the skeleton. Importantly,
one specific instantiation of our model introduces a novel self-attention layer (PSHN) with exponential
storage capacity. Moreover, we have shown that the later model is biologically-plausible: it can be
implemented by sparse two-body synaptic connections between neurons, providing a high storage
capacity w.r.t for a fixed number of connections, compared to previous extensions of Hopfield
networks.

Our findings open new possibilities for enhancing machine learning models with powerful associative
memory modules. This direction will be explored further in future work.
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Appendix

A Related Work

We now overview a cross-section of the relevant literature. Extensions of Hopfield networks that
break the linear of classical Hopfield networks [15] have been proposed. [26], then [17] have shown
that a modification of the energy of the classical Hopfield network leads to a polynomial increase in
memory capacity. This has been followed up by [9], and more recently [28] who proposed another
modification leading to exponential memory capacity. These so-called modern / dense Hopfield
networks use a nonlinear activation function to make the energy and an update rule that is more
sharply peaked around the stored memories in the space of neuron’s configurations compared to the
traditional Hopfield network. See [18] for a detailed review. One of the main insights from this recent
resurgence of Hopfield networks is their connection to transformers [38], which have become the
core components in the design of of large language models (LLMs) for example. Indeed, it was
shown in [28] that the update / retrieve function in their proposed Hopfield network amounts to the
self-attention layer in a transformer model [2, 8, 27, 20, 38]. This connection provides hope for a
theoretical understanding and explanation of the emergent capabilities of modern LLMs [39]. Refer
to Table 1 for a comparison between different types of Hopfield networks.

[14] established a duality between certain error-correcting codes on hyper-graphs, and Hopfield
networks. This link allowed them to derive an extension of Hopfield networks with quasi-exponential
storage capacity. On a similar route, [6] considered an extension of the traditional Hopfield network
wherein the complete graph characterizing the connectivity structure of the neurons is replaced by
a simplicial complex. Finally, let us also mention [7, 32] who have established a direct mapping
between Hopfield networks (and extensions thereof) and Restricted Boltzmann Machines (RBMs)
[33, 29] whereby the memory patterns of stored by the Hopfield network correspond to parameters
that control the activity of the hidden layer in the RBM.

Type of HN Reference Paper Bio Plausible Robust Storage Capacity
Classical [15] Yes cN/ logN (linear)

Polynomial [17] Yes† cNd−1/ logN (poly)
Simplicial [6] Yes∗ cND−1/ logN (poly)

Exponential [9, 28] Yes† exp(cN) (expo)
Little-Hopfield 2 [14] – exp( cN

logN ) (quasi-expo)
PSHN Our work Yes exp( cN log logN

logN ) (quasi-expo)

Table 1: Comparing different types of Hopfield networks (HNs) according to their biological
(im)plausibility and robust storage capacity (formally defined in Section 4.1). Our proposed product-of-
sums Hopfield network (PSHN) is described in Section 3. For the polynomial (resp. simplicial) Hopfield
network, d (resp. D) is the degree (resp. dimension). The c’s in the exponents of the storage capacity
bounds are positive constants which typically depend on the level of robustness required (and also on d and
D in the case of polynomial and simplicial Hopfield networks respectively). Yes† means the corresponding
Hopfield network is only biologically plausible in an indirect sense: it provides an effective description for
a more microscopic theory that has additional (hidden) neurons and only requires two-body interactions
between them [18]. Finally, the simplicial Hopfield network [6] only becomes biologically plausible when
diluted, i.e a large number of connections are suppressed. This reduces its storage capacity.

B An Experiment: Storing and Retrieving Correlated Patterns

We empirically demonstrate our theoretical results by running a small experiment on the popular
MNIST dataset [19]. For this computer vision dataset, each of the 70K examples is a gray-scale
image of resolution 28× 28 pixels. We sample M = 10K out of 70K images from this dataset and
examine how these can be stored and retrieved by our Product-of-Sums Hopfield network (PSHN)
model described in Section 3.

Experimental Setup. We normalized the intensity values of the image so that they are ±1. Thus
each of the M = 10K images is now a vector in {±1}N with N = 784. For each memory pattern

8



Figure 1: Comparing storage capacity on MNIST. Our proposed PSHN model (Section 3) is instantiated
with k groups each of size N1 = N/k, where N = 784. The y-axis represents how many memory patterns
are perfectly recovered. Error bars are variations across 10 runs (different sub-samplings of 10K out of
70K images). For this experiment, we see that the optimal number of groups is k = 112, each of size
N1 = N/k = 7. We also show results for the classical Hopfield network, exponential, and polynomial
Hopfield networks discussed in the introduction (Section 1).

Figure 2: Visual Inspection of reconstructed image for each method. As the order of the long-range
interactions in the model (k for our PSHN model and degree "deg" for Poly HN) increases, the model
moves from feature-extractors to prototype-builders. This is in accordance with the "Feature vs Prototype"
theory advocated in [17]. See Figure 3 for additional results.

x(µ) ∈ {±1}N , the intensity values of a fraction θ of the pixels (bottom-most) are set to −1. We do
this for θ = 0 (corresponding to nonrobust storage), θ = 0.25, and θ = 0.35. We create instances of
our PSHN model with k equally sized groups, for different values of k ranging in {7, 16, 28, 112}.
The experiment is run 10 times (on a machine with a single T4 GPU), each time with a different
random sub-sampling of M = 10K out of the 70K images in the MNIST dataset.

Empirical Results. Figure 1 reports robust storage capacity for our model alongside alongside
other types of high-capacity Hopfield network discussed in Section 1. Notice how the performance
for our PSHN model matches a polynomial Hopfield network of degree k, in accordance to Corollary
D.1. For k = 7, we observe the best performance for our model, which is consistent with the
(quasi-)exponential storage capacity in established in Theorem 4.3. The good performance for the
exponential Hopfield network [9, 28] observed in the figure is also consistent with its exponential
storage capacity. These models and ours rely on long-range interactions between features to cope
with the strong correlations present in the data. This is unlike the classical Hopfield network [15]
which only relies on short-range (pairwise) interactions.

All the models had comparable running times. The entire experiment (10 runs of all models) executes
in under 30 minutes on a single T4 GPU. See supplemental for code to reproduce all figures.

C Miscellaneous

C.1 Additional Results: Visual Inspection for Retrieval of MNIST Images

Figure 2 is a longer version of Figure 1. See supplemental for code to reproduce all figures.

9



Figure 3: Observe that, as the order of the long-range interactions in the model (k for our PSHN model
and degree "deg" for Poly HN) increases, the model moves from feature-extractors to prototype builders.
This is in accordance with the "Feature-Extractor vs Prototype" theory advocated in [17, 18].

C.2 Technical Details for Implementing our PSHN Self-Attention Layer

Observe that the code snippet in Code Listing 1 (Section 3 of the main text) is vectorizable and can
take full advantage of optmized linear algebra on GPUs. Also, line 3 of Code Listing 1 is effectively
doing matrix multiplication of k pairs of m×N1 and M ×N1 matrices, and can be carried out in
parallel on GPUs, for example. In particular, the case k = 1 reduces to the usual matrix product
Z = QX⊤. A similar comment applies to line 6. All in all, the complexity of our proposed PSHN
model is comparable to a traditional self-attention layer [38], and to classical dense associative
memory models [17, 9, 28].
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C.3 Schematic Illustration of Energy Functional of PSHN Model

Figure 4 shows a schematic representation of the energy E(y) according to (6) for an input ±1-pattern
y in N = 9 dimensions, according to formula (6). Here, there are M = 3 memory patterns x(1), x(2),
and x(3). Each of the M horizontal blocks of N cells each corresponds to an element-wise product
z(µ) = x(µ) ⊙ y ∈ {±1}N , for each µ ∈ [M ]. For this example, the skeleton of the PSHN model
is as in (5), with k = 2 groups of neurons G1 = {1, 2, 3, 4, 5} and G2 = {6, 7, 8, 9}. Each colered
subgraph can be seen as a tokenizer which correlates the input y and memory patterns x(µ) along a
the input dimensions corresponding to subset of neurons Gi.

Figure 4: Energy Computation for PSHN Model.

E(y)

+

∗

+ +

∗

+ +

∗

+ +

E(y) = −
M∑
µ=1

k∏
i=1

∑
n∈Gi

x(µ)
n yn

= −
M∑
µ=1

(x
(µ)
1 y1 + x

(µ)
2 y2 + x

(µ)
3 y3 + x

(µ)
4 y4 + x

(µ)
5 y5)(x

(µ)
6 y6 + x

(µ)
7 y7 + x

(µ)
8 y8 + x

(µ)
9 y9),

(10)

D Analysis of Storage Capacity for Abstract Hopfield Networks

D.1 Technical Notations

Let us recall some notations used in the manuscript and define others which we will continue to
use in this appendix. We will continue to use [N ] to denote the set of integers {1, 2, . . . , N}. The
collection of subsets of [N ] with d exactly d elements is denoted

(
[N ]
d

)
, while

(
[N ]
≤D

)
:= ∪D

d=0

(
[N ]
d

)
is the collection of subsets of [N ] with D elements or fewer. As simplicial complex K on [N ] is a
collection of subsets of subsets of K such that if s0 ⊆ s ∈ K, then s0 ∈ K. For example,

(
[N ]
≤D

)
is a

simplicial complex of dimension D.

Given nonnegative real functions f and g, we write f(N) ≲ g(N), or equivalently f(N) = O(g(N))
to mean that there exists an absolute constant C such that f(N) ≤ Cg(N) for sufficiently large N ,
while f(N) ≍ g(N) means f(N) ≲ g(N) ≲ f(N). Finally, f(N) = o(g(N)), or equivalently
f(N) ≪ g(N), means f(N)/g(N) → 0 as N → ∞. In particular, f(N) = O(1) means f is
bounded, while f(N) = o(1) means f(N) → 0 in the limit N → ∞. For example, logN = o(N)
since log(N)/N → 0 in the limit N → ∞.

X
D
= Y denotes equality in distribution of two random variables X and Y .

D.2 Generic Signal to Noise Ratio Computation

Let us consider the problem of robustly storing the first pattern x(1) ∈ {±1}N . Let the pattern y
be a corrupted version of x(1) as in Definition 4.1. That is we will to study the probability that
P(T (y) = x(1)). The following argument is adapted from [4] which established sharp bounds on
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the storage capacity of classical Hopfield network (corresponding to S =
(
[N ]
2

)
in our case). First

observe that the update Tn(y) for the the nth neuron satisfies Tn(y)x
(1)
n = sign(∆n), where

∆n =

M∑
µ=1

∑
s∈∂nS

x(µ)
n x(µ)

s ysx
(1)
n =

∑
s∈∂nS

(x(1)
n )2x(1)

s ys +
∑

s∈∂nS

M∑
µ=2

x(1)
n ysx

(µ)
n x(µ)

s

=
∑

s∈∂nS

x(1)
s ys +

∑
s∈∂nS

M∑
µ=2

x(µ)
n x(µ)

s , since x(1)
n ysx

(µ)
n x(µ)

s
D
= x(µ)

n x(µ)
s (Lemma D.2)

= An︸︷︷︸
signal

+ Zn︸︷︷︸
noise

(11)

where the signal term An and the noise term Zn (also known as the crosstalk term) are given by

An :=
∑

s∈∂nS

x(1)
s ys, (12)

Zn :=
∑

s∈∂nS

M∑
µ=2

x(µ)
n x(µ)

s . (13)

Note that the noise term Zn as given in (13) is a sum of (M − 1) · |∂nS| = iid Rademacher random
variables x

(µ)
n x

(µ)
s , and so in terms of (anti)concentration, we expect it to behave like a properly

scaled Gaussian random variable. In fact,
Lemma D.1. An and Zn are statistically independent, and we have the following identities

EZn = 0, (14)
var(Zn) = (M − 1)d(n), (15)

EAn =
∑

s∈∂nS

(1− θ)|s|. (16)

In particular, if θ = 0, then An = d(n) := |∂nS|, i.e deterministic.

The hard part of the business is that, in the noisey regime where θ = 0, the variance of An will in
general depend intricately on the topology of the skeleton S.

Proof. Note that x(1)
s ys =

∏
n′∈s x

(1)
n′ yn′ , which is a product of |s| idd random variables, each with

mean (1− θ). The claimed expression for EAn follows.

We now analyze the noise term Zn. Observe that Zn and −Zn have the same distribution. In
particular, Zn has zero mean. Also, the sum in the equation defining Zn is a sum of (M−1)·|∂nS| =
(M − 1) · d(n) iid Rademacher random variables x(µ)

s x
(µ)
n , where and 2 ≤ m ≤ M and s ∈ ∂nS.

We deduce that Zn has mean 0 and variance given b var(Zn) = (M − 1) · d(n).

Lemma D.2. Suppose n ∈ [N ] and s ⊆ [N ] such that n ̸∈ s. Then, for any memory pattern index

µ ̸= 1, it holds that x(1)
n ysx

(µ)
n x

(µ)
s

D
= x

(µ)
n x

(µ)
s , where y ∈ {±1}N is obtained from the pattern x(µ)

as in Definition 4.1.

D.3 Proof of Theorem 4.1

Thanks to (11), in order to ensure the "good" event Tn(x
(1))x

(1)
n ≥ 0, we need the std of An+Zn, to

be dominated by its mean. Thanks to Lemma D.1 we know that in the nonrobust regime (θ = 0), the
former is

√
(M − 1)d(n) and the former is d(n). Thus, it would from Chebychev’s inequality that

P(T (x(1)) ̸= x(1)) = P(∃n ∈ [N ] s.t Tn(x
(1))x(1)

n ≤ 0) ≤
N∑

n=1

P(Zn ≥ d(n))

≤
N∑

n=1

M

d(n)
≤ N · M

d(S)
.
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This would give the storage capacity bound MN (S) ≳ d(S)/N1+o(1), which is sub-optimal with
regards to our target. Instead, we use a slightly more involved argument, following a line thought
similar to [4]. First, a standard union-bound gives

P(T (x(1)) ̸= x(1)) = P(∃n ∈ [N ] s.t Tn(x
(1))x(1)

n ≤ 0)

≤ P(∃n ∈ [N ] s.t Zn ≥ d(n)) ≤
N∑

n=1

P(Zn ≥ d(n)).

Now, for any n ∈ [N ], we know that Zn =
∑

s∈∂nS
x
(µ)
n x

(µ)
s has the same distribution as∑

s∈∂nS
x
(µ)
s , because x(µ)

n and x
(µ)
s are independent. Moreover, the later is a sum of (M − 1) · d(n)

idd Rademacher random variables x(µ)
s , and so exhibits Gaussian concentration around zero [3]. We

deduce that

P(T (x(1)) ̸= x(1)) ≤
N∑

n=1

P

( ∑
s∈∂nS

x(µ)
s ≥ d(n)

)

≤
N∑

n=1

exp

(
− d(n)2

2Md(n)

)
=

N∑
n=1

exp

(
−d(n)

2M

)
≤ N · exp

(
−d(S)

2M

)
.

(17)

To make the RHS go to zero in the limit N → ∞, it suffices that d(S)/M ≥ (2 + γ) logN , i.e

M ≤ d(S)

(2 + γ) logN
where γ is a positive constant. Since γ is arbitrary, we conclude that the storage

capacity is lower-bounded as claimed.

D.4 Robust Storage Capacity

In the case of nonzero corruption level θ ∈ (0, 1), quantitative analysis of storage capacity must
exploit further information about the topology of the skeleton S. Indeed, we cannot generally hope
to get nontrivial lower-bounds for robust storage capacity of an AHN without assumptions on the
skeleton S. For example, the AHN induced by the largest possible collection of subsets of neurons,
namely S = 2[N ], has exponential nonrobust capacity MN ({0, 1}N ) ≥ ecN . This follows from
Theorem 4.1 and the fact that d{0,1}N (n) = 2N−1 for any n ∈ [N ]. However, the basin of attraction
around each stored pattern has width zero! To see this, note that 2−N

∑
σ∈2[N] xσyσ = δx=y by

Lemma E.1. Thus, the corresponding energy E in (3) is either 0 or 2N . Consequently, it is unable
to recover any stored pattern with at a nonzero corruption level, i.e MN,θ({0, 1}N ) = 0 for all
θ ∈ (0, 1).

Definition D.1 (Moments). For any n ∈ [N ] and integer i ≥ 0, define

µn,i(S) := max
s0∈([N]

i )
|{s ∈ ∂nS | s0 ⊆ s}|. (18)

Thus, there is no subset of [N ] with i elements, contained in more than µn,i(S) elements of ∂nS.

Note that in particular, µn,0(S) = d(n) := |∂nS|. Under the following condition, we can derive a
generic lower-bound for the robust storage capacity of an abstract Hopfield network.

Condition D.1 (Smooth Skeleton). (A) maxσ∈S |σ| − 1 ≤ q with q/ logN → 0 as N → ∞. (B)
max1≤i≤q N

i
1µn,i = O(d(n)), for all n ∈ [N ] and some N1 ≥ N c0 and positive constant c0.

The above condition means for any i ≤ q, there is no i-element subject of [N ] which is contained in
more than a fraction N−Ci of s ∈ ∂nS, where C is an absolute positive constant.

Theorem D.1. Fix a corruption level θ ∈ [0, 1), and consider an AHN with skeleton S verifying
Condition D.1. The θ-robust storage capacity is given by MN,θ(S) ≥ c(1− θ)2qd(S)/ logN , for
some positive constant c which only depends on θ.
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As shown in Section 2, the Hopfield network [15, 4], polynomial Hopfield networks [17, 9], and
simplifical Hopfield networks [6] are all instances of our AHNs with appropriate choices of the
skeleton S. Moreover, the skeletons of these models verify Condition D.1 under certain conditions.

Corollary D.1. If k, d,D = o(logN) as N → ∞, the storage capacity bounds in Table 2 hold.

Type of HN S d(S) q N1 Robust Storage Capacity
Classical N 1 N MN,θ ≥ c(1− θ)2N/ logN

Polynomial Nd−1 d− 1 N MN,θ ≥ c(1− θ)2(d−1)Nd−1/ logN

Simplicial ND−1 D − 1 N MN,θ ≥ c(1− θ)2(D−1)ND−1/ logN

PSHN Nk−1
1 k − 1 N1 MN,θ ≥ c(1− θ)2(k−1)Nk−1

1 / logN

Table 2: Combined with Theorem 2.1, our Corollary D.1 recovers lower-bounds previously established in
[15, 26, 17, 9, 6]. The PSHN model listed in the table is with k groups of equal size N1 = N/k.

From the corollary, we see that in the small k regime, the storage capacity of our PSHN model with k
equally sized groups behaves like that of a polynomial Hopfield network of degree k.

E Some Calculations Related to Our PSHN Model

E.1 Proof of Lemma 3.1

Starting from the general formula (3), we have

E(y) =
∑
σ∈S

ω(σ)yσ =
∑
µ

∑
σ∈S

zσ, where zσ :=
∏
n∈σ

zn and zn := x(µ)
n yn. (19)

Now, by basic algebra, one has

k∏
i=1

∑
n∈Gi

zn =
∑

n1∈G1,...,nk∈Gk

zn1
zn2

. . . zn2
=
∑
σ∈S

zσ, (20)

and the result follows upon combing with (19).

E.2 Proof of Lemma 3.2

Indeed, from (4), we know that Tn(y) = sign(∆n(y)), where ∆n(y) :=
∑M

µ=1 x
(µ)
n
∑

s∈∂nS
x
(µ)
s ys,

where ∂nS is as defined in (1). Now, because S = T (G1, . . . , Gk) := {σ ⊆ [N ] s.t |σ ∩ Gj | =
1 ∀j} ∼=

∏
j Gj , it is clear that if n ∈ Gi, then

∂nS = {s ⊆ [N ] s.t |s ∩Gi| = 1∀j ̸= i} = T (G1, . . . , Gi−1, Gi+1, . . . , Gk) ∼=
∏
j ̸=i

Gj . (21)

We deduce that ∆n(y) =
∑

µ x
(µ)
n
∏

j ̸=i

∑
n′∈Gj

y
(µ)
n′ x

(µ)
n′ =

∑
µ c

(µ)
i x

(µ)
n , as claimed.

E.3 Solving the XOR Problem

Let us present the simplest example of a non-trivial problem which can be solved by our proposed
PSHN model, but cannot be solved by a classical associative memory model (e.g traditional Hopfield
networks [15]) on the same input space: the XOR problem [25]. Note that the problem was also
considered in [17] and shown to be solvable by their polynomial networks as soon as the degree of
the polynomial is at least 3. This is because higher-order polynomials induce a capacity limit which
surpasses the number of neurons N . Indeed, the XOR problem corresponds to M = 4 memory
patterns in N = 3 dimensions, given by

x(1) = (−1,−1,−1), x(2) = (−1, 1, 1), x(3) = (1,−1, 1), x(4) = (1, 1,−1), (22)

with the identification 0 7→ −1 and 1 7→ 1. The 3rd / output neuron is the XOR of the first two.
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Now, consider consider a PSHN with skeleton S = T ({1}, {2}, {3}) = {(1, 2, 3)}. It is easy to see
that for any n ∈ {1, 2, 3}, then (1) becomes ∂nS = {[3] \ {n}} for any n ∈ {1, 2, 3}. Thus, for any
pattern y ∈ {±1}3, the update (4) for the 3rd neuron is given by T3(y) = sign(∆3(y)), where

∆3(y) =

4∑
µ=1

x
(µ)
3

∑
s∈∂3S

z(µ)s =

4∑
µ=1

x
(µ)
3 z

(µ)
{1,2} =

4∑
µ=1

x
(µ)
3 z

(µ)
1 z

(µ)
2

=

M∑
µ=1

x
(µ)
2 x

(µ)
1 y1x

(µ)
2 y2 =

4∑
µ=1

x
(µ)
1 x

(µ)
2 x

(µ)
3 y1y2 = −4y1y2.

We have used the fact that x(µ)
1 x

(µ)
2 x

(µ)
3 = −1 for all µ. Thus, T3(y) = −sign(y1y2) = XOR(y1, y2).

We deduce that this simple PSHN model solves the XOR problem.

E.4 A Boolean Binomial Identity

Lemma E.1. For every pair of patterns x, y ∈ {±1}N , it holds that∑
σ⊆[N ]

xσyσ =
∏

n∈[N ]

(1 + xnyn) =

{
0, if x ̸= y,

2N , otherwise,
, (23)

where xσ :=
∏

n∈σ xn as usual.

Proof. The proof is by induction on N . The case N = 1 is trivial since
∑

σ⊆[1] xσyσ = 1 + x1y1 =∏
n∈[1](1+ xnyn). Suppose the result is true for N = N ′. We will prove if for N = N ′ +1. Indeed,

observe that∑
σ⊆[N ′+1]

xσyσ =
∑

σ⊆[N ′]

xσyσ +
∑

σ⊆[N ′]

xσ∪{N ′+1}yσ∪{N ′+1}

=
∑

σ⊆[N ′]

xσyσ +
∑

σ⊆[N ′]

xσxN ′+1yσyN ′+1

= (1 + xN ′+1yN ′+1)
∑

σ⊆[N ′]

xσyσ

= (1 + xN ′+1yN ′+1)
∑

σ⊆[N ′]

∏
n∈[N ′]

(1 + xnyn) by the induction hypothesis

=
∏

n∈[N ′+1]

(1 + xnyn),

which completes the proof.

F Proof of Theorem D.1: Storage Capacity of A Class of AHNs

F.1 Controlling the Signal Term An in (11)

We will prove something more general than Theorem D.1. Let K be a nonempty collection of subsets
of [N ]. Ultimately, we are interested in the case where K = ∂sS. Note that K can be seen as an
unweighted hyper-graph with vertex-set [N ] and edge-set K. Define a random variable A(K) by

A(K) :=
∑
s∈K

zs, (24)

where zs :=
∏

n∈s zn as usual. It is clear that the mean of A(K) is given by

EA(K) =
∑
s∈K

(1− θ)|s| (25)

Let q = q(K) ≥ 1 be the maximal cardinality of an element of K, i.e

q(K) := max
s∈K

|s|. (26)
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Thus, the random variable A(K) is a random multi-linear polynomial of degree q. Moreover, it is
clear that

EA(K) ≥ (1− θ)q|K|, (27)
with equality if K is regular in the sense that |s| = q for all s ∈ K. Now, for any integer 0 ≤ i ≤ q,
define µi = µi(K) ≥ 0 by

µi := max
s0∈([N]

k )

∑
s∈K|s0⊆s

∏
n∈s\s0

E |zn| = max
s0∈([N]

k )
|{s ∈ K | s0 ⊆ s}|, (28)

where we have used the fact that |zn| = 1, since zn only takes the values ±1, for any n ∈ [N ]. It is
clear that µ0 = |K|. The other µi’s control the size (on average) of the "partial derivatives" of A(K)
w.r.t to the elements of K. We have the following proposition which is a direct consequence of the
main result in [30].
Proposition F.1. With all variables defined as above, it holds for any λ > 0 that

P
(
|A(K)− EA(K)| ≥ max

1≤i≤q
max(

√
λ|K|µiCq, λiµiC

q)

)
≤ e2e−λ, (29)

where C ≥ 1 is an absolute constant.

The appearance of Cq in the result is troublesome and somewhat unavoidable. A very high degree
polynomial cannot be concentrated in any meaningful way. Thus, we will focus on the case where
the degree q is low in the following sense.
Condition F.1 (Smoothness). For some N1 ≥ 1 (which may depend on N, q) and absolute positive
constant C1, it holds that

max
1≤i≤q

N i
1µi ≤ C1|K|. (30)

Note that the above condition only depends on the topology of the underlying collection K of subsets
of [N ]. For example, it is satisfied in the case where K is a simplicial complex on KN,≤D with
D = O(1) (here (N1, q) = (N,D)), or a transversal of an equi-partition partitioning of [N ], with
k = O(1) groups (here, (N1, q) = (N/k, k)).

Proposition F.2. Under Condition F.1 with N1 = NΩ(1) and q = o(logN) as N → ∞, it holds that

P
(∣∣∣∣ A(K)

EA(K)
− 1

∣∣∣∣ ≥ t

)
≤ e2e−t2NΩ(1)

, for any t ∈ (0, 1). (31)

Proof. WLOG, take C1 = 1. Observe that

max
1≤i≤q

√
λ|K|µiCq ≤ |K| max

1≤i≤q

√
λN−i

1 Cq = |K|
√
Cqλ/N1. (32)

On the other hand, one has

max
1≤i≤q

λiµiC
q ≤ |K| max

1≤i≤q
λiN−i

1 Cq = Cq|K| · max
1≤i≤q

(λ/N1)
i

= |K|Cq

{
λ/N1, if λ ≤ N1,

(λ/N1)
q, else.

Thus, for any t ∈ (0, Cq/2), taking λ = t2N1/C
q ≤ N1 gives

max
1≤i≤q

max(
√

λ|K|µiCq, λiµiC
q) ≤ |K|max(

√
Cqλ/N1, C

qλ/N1) = max(t, t2)|K|. (33)

Combining this with (29) then gives the following concentration inequality

P
(
|A(K)− EA(K)| ≥ max(t, t2)|K|

)
≤ e2e−λ = e2e−t2N1/C

q

= e2e−t2NΩ(1)

, (34)

because N1 = NΩ(1) and q = o(logN) by hypothesis. In particular, taking t ∈ (0, 1) gives

P (|A(K)− EA(K)| ≥ t|K|) ≤ e2e−t2NΩ(1)

, (35)

Noting that EA(K) =
∑

s∈K(1− θ)|s| ≥ |K|(1− θ)q = |K|No(1) because q = o(logN), we get

P (|A(K)− EA(K)| ≥ tEA(K)|) ≤ e2e−t2NΩ(1)−o(1)

= e2e−t2NΩ(1)

,

which completes the proof.
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F.2 Proof of Theorem D.1

For any neuron n ∈ [N ], applying Proposition F.2 with K = ∂nS, A(K) = An (the signal term in
(11)), and (N1, q) as in the statement of Theorem D.1 we obtain that: w.p 1−O(e−t2NΩ(1)

), it holds
that

|An/EAn − 1| ≤ t with EAn = (1− θ)q|K| = (1− θ)qd(n).

Note that the conditions for Proposition F.2 are verified thanks to Lemma F.1. We thus obtain

P(Tn(y) ̸= x(1)
n ) = P(Tn(y)x

(1)
n ≤ 0) ≤ P(Zn ≥ An) ≤ P(Zn ≥ (1− θ)qd(n)/2) + e−NΩ(1)

. (36)

A union-bound in the spirit of the proof of Theorem 4.1 then gives

P(T (y) ̸= x(1)) ≤
N∑

n=1

P(Zn ≥ (1− θ)qd(n)/2) +Ne−NΩ(1)

= N · exp(− (1− θ)2qd(n)2

2(M − 1)d(n)
) + o(1)

= exp(− (1− θ)2qd(n)

2(M − 1)
+ logN) + o(1),

(37)

and the claimed lower-bound follows.
Lemma F.1. For large N and any positive integer q ≤ N , it holds for any 1 ≤ i ≤ q that

µi(

(
[N ]

q

)
) =

(
N − i

q − i

)
= O(N)q−i, (38)

µi(

(
[N ]

≤ q

)
) =

∑
d≤q

(
N − i

d− i

)
= O(N)q−i, (39)

where the functionals µi are as defined in (28). Consequently, if q = o(logN), then
(
[N ]
q

)
and

(
[N ]
≤q

)
satisfy Condition D.1.

F.3 Proof of Corollary D.1

The proof follows from combining Theorem D.1 with Lemma F.1. We only need to compute
d(S) := maxn∈[N ] |∂nS| for all the networks considered in the corollary.

Classical Hopfield Networks. If S is the collection all singletons of [N ], then q = 1 and d(S) =
N − 1.

Polynomial Hopfield Networks. If S is the collection of d-element subsets of [N ], then q = d− 1

and d(S) =
(
N−1
d−1

)
. Furthermore, if N ≫ d, then

(
N−1
d−1

)
≈ Nd−1/d!.

Simplicial Hopfield Networks. The model proposed in [6] corresponds to taking S to be a D-
skeleton on the set of neurons, i.e the collection of subsets of neurons with cardinality D or less, then
q = D − 1 and d(S) =

∑D−1
d=0

(
N−1
d

)
≍ ND−1.

G Proof of Theorem 4.2: Nonrobust Capacity of PSHN Model

The theorem is a direct consequence of the following lemma.
Lemma G.1. If the subsets G1, . . . , Gk with |Gi| = Ni ≥ 1 for all i, form a partitioning of the set
of neurons [N ], then for the abstract Hopfield network with skeleton S = T (G1, . . . , Gk), it holds
that d(S) = (

∏
i Ni)/maxi Ni.

Proof. It is clear that |S| = |G1 × . . . × Gk| =
∏d

i=1 Ni. Now, for any n ∈ [N ] let Gi(n) be the
unique cluster of neurons which contains n. It is clear that ∂nS is isomorphic to

∏
i ̸=i(n) Gi, and so

d(n) := |∂nS| =
∏

i ̸=i(n) Ni = |S|/Ni(n), from which it follows that d(S) = (
∏

i Ni)/maxi Ni

as claimed.
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Proof of Theorem 4.2. For such a partition of N , we must have k = N/N1 = Θ(N) and so∏
i Ni/maxi Ni ≥ 2k/O(1) ≥ eΘ(N) thanks to Lemma G.1. The result then follows directly

from Theorem 4.1.

H Proof of Theorem 4.3: Robust Storage Capacity of PSHN Model

H.1 Warmup: A Weak Lower-Bound via Chebychev’s inequality

Fix θ ∈ [0, 1/2). Let x ∈ {±1}N be uniformly random pattern and let y ∈ {±1}N be a pattern
obtained from x as in Definition 4.1. Let d and N1 be positive integers and set N = dN1. Partition
[N ] := {1, 2, . . . , N} d disjoint from G1, . . . , Gd of each of size N1, and let T = T (d,N1) be a
transversal of the Gi’s, i.e the collection of subsets of [N ] which contain exactly one element from
each Gi. Note that T is isormophic to G1 × . . .×Gd in an obvious way, and thus |T | = Nd

1 . Finally,
let z = x⊙ y ∈ {±1}N be the component-wise product of x and y, and define a random variable

A(T ) :=
∑
T∈T

zT , (40)

where zT :=
∏

t∈T zt as usual. Note that A(T ) is a random multilinear polynomial of total degree
d. The objective is to design N1 and (thus d too) as a function of N such that A(T ) is as large as
possible (and positive !) w.p 1− o(1) in the limit N → ∞.

First observe that we can alternately write for every i ∈ [d],

A(T ) =
∏

1≤i≤d

Si, with Si :=
∑
t∈Gi

zt. (41)

Now, it is clear that

• The Si’s are iid random variables taking integral values in the range [−N1, N1].
• Each Si is itself a sum of iid random variables which take values ±1, with P(zt = 1) =
1− θ/2 and E zt = 1− θ/2− θ/2 = a := 1− θ ∈ [0, 1]. Thus, ESi = aN1, and

EA(T ) = (aN1)
d. (42)

Proposition H.1. In the limit N1 → ∞ such that d = o(N1), it holds w.p 1 − o(1) that A(T ) ≍
EA(T ) = (aN1)

d

Proof. Indeed, setting a := 1− θ, one computes

ES2
i =

∑
t∈Gi

∑
t′∈Gi

E [ztzt′ ] = Ni +
∑

t,t′∈Gi, t′ ̸=t

E ztE zt′

= Ni +Ni(Ni − 1)a2 = Ni(1− a2) + (Nia)
2

= Ni(1− a2) + (ESi)
2,

(43)

and so var(Si) = Ni(1− a2). It follows from the independence of the Si’s that

var(A(T )) =

d∏
i=1

ES2
i −

d∏
i=1

(ESi)
2 = ((aN1)

2 +N1(1− a2))d − ((aN1)
2)d

= ((aN1)
2)d

((
1 +

1/a2 − 1

N1

)d

− 1

)
= (EA(T ))2 ·R(T ),

(44)

where R(T ) := var(A(T ))/(EA(T ))2 =

(
1 +

c

N1

)d

− 1, with c := 1/a2 − 1 ≥ 0. Now, one

computes

0 ≤ R(T ) =

(
1 +

c

N1

)d

− 1 ≤ ecd/N1 − 1.

Thus, if N1 → ∞ such that d = o(N1) (i.e d/N1 → 0), then R(T ) = o(1), and Chebychev’s
inequality gives

P(|A(T )− EA(T )| ≥ (1/2)EA(T )) ≤ 4R(T ) = o(1),

and the claim is proved.
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H.2 A Stronger Lower-Bound Via Chernoff

Let us now remove the troublesome requirement "d = o(N1)" from Proposition H.1. First observe
that, in the definition of Si, we can further write zt = 2bt − 1, where bt is Bernoulli with parameter
p = p(θ) := 1−θ/2 ∈ (1/2, 1]. Thus, Si =

∑
t∈Gi

(2bt−1) = 2Bi−N1, where Bi :=
∑

t∈Gi
bt ∼

Bin(N1, p). By well-known concentration results [3], we have

P(Bi ≥ (1 + t)N1p) ≤ e−
t2pN1
2+t , for all t > 0,

P(Bi ≤ (1− t)N1p) ≤ e−
t2pN1

2 , for all 0 < t < 1.

(45)

We deduce that

P(Si ≥ (2p(1 + t)− 1)N1) ≤ e−
t2pN1
2+t , for all t > 0,

P(Si ≤ (2p(1− t)− 1)N1) ≤ e−
t2pN1

2 , for all 0 < t < 1.

(46)

Therefore: for any t ∈ (0, a) and i ∈ [d], it holds w.p 1− e−t2pN1/2 that

Si ≥ ((2p− 1)− t)N1 = (a− t)N1,

where a = a(θ) := 2p− 1 = 1− θ ∈ (1/2, 1] as before. A union-bound over i ∈ [d] then gives: w.p
1− δ(N1) = 1− de−t2pN1/2 it holds that

A(T ) ≥ (aN1)
d (1− t/a)

d
= (aN1)

d ((1− t/a)
a
)
d/a ≥ (aN1)

de−td/a = (ab(t)N1)
d,

where b(t) := e−t/a ∈ (0, 1/e). Further taking t = 1/2 gives: w.p 1− de−pN1/8,

A(T ) ≥ (abN1)
d, (47)

where b = e−1/(2a). Now, we want d to be as large as possible, and the RHS of the above to be as
large as possible too. We can achieve by ensuring that δ(N1) := e−pN1/8+log d → 0 in the limit
N1 → ∞. To satisfy this constraint (perhaps non-optimally!) it suffices to take

N1 ≥ (9/p) log d, (48)

so that δ(N1) ≤ e−pN1/72. We have proved the following.

Proposition H.2. If N1 ≥ (9/p) log d, then it holds w.p 1− e−pN1/72 that A(T ) ≥ (abN1)
d, where

a := 1− θ, p := 1− θ/2, and b := e−1/(2a).

The following result is the last technical step towards the prove of Theorem 4.1.
Proposition H.3. Fix a corruption level θ ∈ [0, 1/2) and let N1 ≥ C logN , where C ≥ 73/p. Then,
for large N , it holds w.p 1− o(1/N) that

A(T ) ≥ (abN1)
d, (49)

where a := 1− θ, p := 1− θ/2, and b := e−1/(2a).

Proof. Indeed, observe that Ne−pN1/72 = e−pN1/72+logN = e−(N1−(72/p) logN)p/72 = o(1) if
N1 ≥ (73/p) logN . The result then follows from Proposition H.2 since logN ≥ log d.

Note that the constant 73 appearing in Proposition H.3 (and also in Theorem 4.3) has not been
optimized an could potentially be made much smaller with a bit of more work.

H.3 Proof of Theorem 4.3

We are now ready to prove Theorem 4.3 proper. Fix a corruption level θ ∈ [0, 1), and let y = y(θ) ∈
{±1}N be a corrupt version of a memory x(1) which is formed by chosen a subset sθ of size θN of
neurons, uniformly at random and independently of the memories x(1), . . . , x(µ), and then setting

yn =

{
x
(1)
n , if n ∈ sθ,

−1, else.
(50)
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For any neuron n ∈ [N ], the signal term in (11) is given by

An :=
∑

s∈∂nS

x(1)
s ys. (51)

Observe that ∂nS is precisely the collection of subsets of [N ] which contain exactly one element
of each group of neurons Gi except the group which contains the neuron n. Applying Proposition
H.3 with T = ∂nS, d = k − 1, and An = A(T ) one has An ≥ (abN1)

k−1 = (ab)k−1d(n) w.p
1− o(1/N) as soon as N1 ≥ C logN , where d(n) = Nk−1

1 , a := 1− θ and b := e−1/(2a).

Reasoning analogously to (17), we see that

P(T (y) ̸= x(1)) ≤
N∑

n=1

P (Zn ≥ An)

≤
N∑

n=1

(
P
(
Zn ≥ (ab)k−1d(n)

)
+ o(1/N)

)
≤

N∑
n=1

exp

(
(ab)2(k−1)d(n)2

2(M − 1)d(n)

)
+N · o(1/N)

=

N∑
n=1

exp

(
(ab)2(k−1)d(n)

2(M − 1)

)
+ o(1)

≤ N · exp
(
− (a2b2N1)

k−1

2(M − 1)

)
+ o(1)

= exp

(
− (a2b2N1)

k−1

2(M − 1)
+ logN

)
+ o(1),

(52)

To make the RHS go to zero in the limit N → ∞, it suffices that (a2b2N1)
k−1/M ≥ (2 + γ) logN ,

or equivalently,

M ≤ (a2b2N1)
k−1

(2 + γ) logN

where γ is a positive constant.

In particular, taking N1 = C logN and k = N/N1, and then lower-bounding the logarithm of the
function f(N) := (a2b2C logN)N/(C logN)−1 by Ω(N log log(N)/ logN) gives the result.
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