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Abstract

Bayesian multinomial logistic-normal (MLN) models have gained popularity due
to their ability to account for the count compositional nature of microbiome
data. Recently, we developed a computationally efficient and accurate approach
to inferring MLN models with a Marginally Latent Matrix-T Process (MLTP)
form: MLN-MLTPs. However, previous research on MLTPs has been restricted
to linear models or a single non-linear process. This article addresses this
deficiency by introducing a new class of MLN Additive Gaussian Process models
(MultiAddGPs) for deconvolution of overlapping linear and non-linear processes.
We show that MultiAddGPs are examples of MLN-MLTPs and derive an efficient
Collapse-Uncollapse (CU) sampler for this model class. Through simulation
studies, we show that MultiAddGPs accurately and efficiently decompose over-
lapping effects in microbiota data, which provides a powerful tool for analyzing
complex count compositional datasets.

1 Introduction

Dysregulation of human-, animal-, and even plant-associated microbial communities (microbiota)
are known to cause disease [3, 7, 17, 29, 8]. In humans, alterations of microbiota play a causal
role in obesity [33, 20], inflammatory bowel disease [18, 9, 19], and even cancer [27, 16]. As a
result, many researchers study how dietary, host physiologic, and environmental factors influence
the relative abundance of different bacterial taxa in microbiota. These factors can have linear or
non-linear effects on community structure [6, 26, 28]. Overall, flexible statistical methods are
needed to disentangle linear and non-linear effects on microbiota.
Beyond the biological complexity of microbiota, limitations of the measurement process further
complicate analyses. These data are typically represented as a D × N count table Y with
elements Ydn denoting the number of DNA molecules from taxon d observed (sequenced) in
sample n. The size of one sample (the sequencing depth;

∑D
d=1 Ydn) is typically arbitrary and

unrelated to the total microbial load in the system [34]. As a result, many authors call these
data compositional, reflecting the idea that the data only provide information about the relative
abundances of the different taxa within each community [10, 24, 23]. Bayesian Multinomial
Logistic Normal (MLN) models have gained popularity due to their ability to address challenges in
the measurement process. [30, 1, 12, 31, 32]. The multinomial is used to model uncertainty due
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to random counting, while the logistic normal captures the extra-multinomial variability typically
seen in these data [32]. Unlike the more well-known Dirichlet distribution, the logistic-normal
has a rich covariance structure which allows modeling both positive and negative covariation
between taxa [2, 31]. The logistic-normal is also self-conjugate (as it is multivariate normal
under a suitable log-ratio transformation), allowing for a wide variety of models to be built in
the latent simplex space. However, the multinomial and the logistic-normal are not conjugate,
making inference of these models computationally challenging or even intractable.
Recent advances have made Bayesian MLN models practical for microbiota analyses [4, 11, 21,
1, 31, 12]. Yet scalability limits those methods. For example, the sampler used in [31] took
more than four hours on a high-performance cluster to analyze a dataset of approximately one
thousand samples, yet only ten taxa. More recently, we proved that a wide variety of Bayesian
MLN models, including generalized linear models and generalized Gaussian process regression
models, share a common marginal form called a Latent Matrix-T Process (LTP) [32]. We showed
that a Laplace approximation to this marginal form was extremely accurate, leading to an efficient
and accurate approximate inference procedure called the Collapse-Uncollapse (CU) sampler. Our
result demonstrated that this approach is often 4-5 orders of magnitude faster than HMC-based
methods with minimal error in posterior calculations [32].
Despite these advances, there remains a dearth of tools for disentangling the effects of multiple
measured factors on microbiota. Recently, [6] proposed an additive Gaussian process framework
to address this need. Yet their approach assumed the data was transformed Gaussian, ignoring
count compositional nature of these data. Moreover, our prior work with MLTPs was limited to
factors that have a linear effect on microbial composition (generalized linear models) or a single
factor that had a nonlinear effect (generalized Gaussian process regression models).
This article addresses the limitations of prior methods and develops a flexible, and computationally
efficient approach to disentangling both linear and nonlinear effects on microbiota. As in [6], our
approach is based on a class of additive Gaussian process regression models. Unlike [6], we do
not assume that the data is transformed Gaussian and instead prove that Bayesian MLN Additive
Gaussian Process Models are also MLTPs. Using those results, we extend the CU sampler to this
class of models.
We organize this article as follows. Section 2 presents a multinomial logistic-normal generalized
additive Gaussian process regression (MultiAddGP) model and proves that this model is part of
the Marginally LTP class. Sections 3 demonstrate our approach through application to simulated
microbiome data. Finally, we conclude with a discussion in Section 4.

2 Methods

To facilitate additive linear and nonlinear modeling within a Bayesian MLN framework, this article
introduces Multinomial Logistic Normal Additive Gaussian Process Models (MultiAddGPs). In
this section, we first present the model and demonstrate that MultiAddGPs are a specific type of
MLTP model (a comprehensive review of MLTP models and Collapse-Uncollapsed (CU) sampler
are provided in Appendix A). Following this, we outline the process for conducting posterior
inference using an extended CU sampler in MultiAddGPs. Finally, we describe the identification
problem in our model.

2.1 Multinomial Logistic Normal Additive Gaussian Process Models (MultiAddGP)

Let Y·n denote a D-vector of observed data, X·n denote a Q0-vector of covariates to model
linearly, and each Z(k∈{1,...,K})

·n denote a Qk-vector of covariates to be modeled with distinct
non-linear functions. The MultiAddGPs models have the following form:

Y·n ∼ Multinomial(Π·n) (1)
Π·n = ϕ−1(H·n) (2)
H·n ∼ N(F·n, Σ) (3)

F = BX +
K∑

k=1
f (k)(Z(k)) (4)
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with priors B ∼ N(Θ(0), Σ, Γ(0)), f (k) ∼ GP(Θ(k), Σ, Γ(k)), and Σ ∼ InvWishart(Ξ, ζ). As in
the Appendix A, ϕ denotes any log-ratio transform from SD to RD−1. Σ is a D − 1 × D − 1
covariance matrix. For the matrix-normal prior on the linear term, Θ(0) is the mean matrix
and Γ(0) is a Q0 × Q0 covariance matrix representing covariance in the parameters of the Q0
covariates. The terms Θ(k) and Γ(k) in the K matrix-normal process priors echo their linear
counterparts but are functions (e.g., mean and kernel functions) rather than fixed dimensional
matrices. As we will show through simulated data analyses in Section 2.2, this is a very flexible
form of model that can be used in a wide range of additive linear and non-linear modeling tasks.

2.2 Posterior Estimation in MultiAddGPs

We use MLTP theory to sample from the posterior of MultiAddGPs: p(H, B, f (1), . . . , f (K), Σ |
Y). Appendix A provides a review of MLTP theory. In brief, we sample the posterior in two steps.
First, we use a Laplace approximation to sample p(H | Y). This is called the collapsed step of
the CU sampler [32]. In Appendix B we prove p(H | Y) is a LTP and derive its parameters. We
can then use results from [32] which provide efficient algorithms for obtaining MAP estimation
and forming a Laplace approximation. For each sample of H from the approximate posterior, we
obtain a corresponding sample from the conditional posterior p(B, f (1), . . . , f (K), Σ | H). This is
called the uncollapse step of the CU sampler [32]. Before describing subtleties of our uncollapse
algorithm, we must first clarify the definition of F, f1, . . . , fK .
Up to this point, we have not distinguished between the set of points n ∈ {1, . . . , N} at which
we have observed data Y and the potentially different set n∗ ∈ {1, . . . , N∗} at which we want
to evaluate the functions F, f1, . . . , fK . In what follows, we use the symbols F, f1, . . . , and fK

to denote the evaluation of corresponding infinite-dimensional functions at the set of evaluation
points {1, . . . , N∗}, i.e., they are each D × N∗-dimensional random matrices. In contrast, all
other random matrices (e.g., H) represent their corresponding infinite-dimensional analogues
evaluated at the set of observed points ({1, . . . , N}).
Sampling from the uncollapsed form starts by obtaining samples from p(F, Σ | H). Conditioning
on H and marginalizing over f (1), . . . , f (K) in the MultiAddGP model results in a Bayesian
matrix-normal process model with likelihood H·n ∼ N(F·n, Σ) and priors:

F ∼ GP
(

Θ(0)X +
K∑

k=1
Θ(k)(Z(k)), Σ, XT Γ(0)X +

K∑
k=1

Γ(k)(Z(k))
)

Σ ∼ InvWishart(Ξ, ζ).

This is the same model discussed in [32]: samples from p(F, Σ | H) can be obtained via methods
described in Appendix C of that article.
Finally, conditioned on samples of F and Σ, we obtain samples of each f (k). Inspired by the
backfitting algorithm used for estimation in generalized additive models [14], we developed
a backsampling algorithm for this task. The backsampling proceeds by iteratively sampling
p(B | F), p(f1 | F, B), p(f2 | F, B, f1), . . ., and then p(f (K) | F, B, f1, . . . , f (K−1)). For brevity,
we leave a description of this algorithm to Appendix B and C.

2.3 Model Identification

Identifiability is a well-known challenge in function decomposition models, such as generalized
additive models [13]. Common approaches to address this issue include imposing sum-to-zero
constraints on the functions (e.g.,

∫
f (k)dZ(k) = 0) [13], or modifying kernel functions to enforce

identifiability [22]. For simplicity, in this work, we adopt the sum-to-zero constraint by centering
posterior samples of each f (k) as f (k) − 1 · mean(f (k)).
By leveraging the MultiAddGP model and the CU sampler, we provide a computationally efficient
framework for disentangling linear and nonlinear effects in microbiota data while addressing the
compositional nature of count data. In the section 3, we demonstrate the model’s effectiveness
through simulated studies, designed to capture the key challenges highlighted earlier.
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Figure 1: MultiAddGPs successfully decompose simulated microbiome time-series. The
NAddGP model is identical to the MultiAddGP model but ignores uncertainty due to counting by
modeling the observed data as transformed Gaussian. Panels A, B, and C represent individual
decomposed components associated with each covariate. Panel D illustrates the cumulative
effect of all components. Note: This figure is also included in an extended version of this work
currently under review for journal publication [5].

3 Empirical Result

We simulated a suite of longitudinal studies of microbiota with varying numbers of taxa D ∈
{3, . . . , 100} and samples N ∈ {20, . . . , 1000}. We simulated microbial composition influenced
by batch effects, daily periodicity (e.g., circadian rhythm; [15]), and longer-term trends. Full
simulation details are provided in Appendix D.
In Figure 1 we show a small simulation D = 4 and N = 600 for ease of visualization. We use tn

to denote the time at which sample n was obtained. For inference, we specify a MultiAddGP
model Fn = b0 + b1x

(batch)
n + f (periodic)(tn) + f (trend)(tn) as follows. For covariates, we set

X·n = [1 x
(batch)
n ]T , Z(periodic)

·n = tn, and Z(trend)
·n = tn. For priors we set B = [b0 = 2.7; b1 =

1]. Both f (periodic) and f (trend) were given matrix-normal process priors with mean function

Θ(k) = 0. A periodic kernel Kperiod(t, t′) = σperiod exp
(

−
2 sin2

(
π|t−t′|

p

)
ρ2

period

)
was used in the prior

for f (periodic) and a squared exponential Ktrend(t, t′) = σ2
trend exp(− (t−t′)2

2ρ2
trend

) was used for f (trend).
Hyperparameters Ω = {σperiod, ρperiod, p, σtrend, ρtrend} were selected using MML estimation.
For comparison, we created a nearly identical model that ignored uncertainty due to counting
and assumed the data was transformed Gaussian. We implemented this model by setting
H·n = ϕ(Y·n + 0.5) and proceeding with the uncollapse step of MultiAddGPs directly; skipping
sampling the posterior of the collapsed form. We call this model the Normal Additive GP
(NAddGP) model.
We compared posterior estimates from the MultiAddGP and NAddGP models to emphasize the
importance of modeling uncertainty due to counting. Figure 1 shows that the MultiAddGP almost
perfectly recovered the true decomposition whereas the NAddGP substantially underestimated
the amplitude of the periodic component and long-term trend.
Figure 2 shows these findings generalize as N and D increase. As the posterior of these high-
dimensional models cannot be easily visualized, we quantified model performance based on the
coverage of posterior 95% intervals with respect to the true function decomposition. Since both
MultiAddGP and NAddGP are Bayesian models we do not expect that these intervals will cover
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Figure 2: At all tested dimensions N and D, posterior intervals from MultiAddGPs cover
the truth more frequently than NAddGPs. The first row illustrates how data sparsity varied
with dimensions N and D in our simulation studies. The second row shows the ratio between
coverage of 95% Credible intervals from MultiAddGPs compared to NAddGPs. Each datapoint
represents the mean over three simulations. The ratio is always positive illustrating MultiAddGPs
cover the truth substantially more than NAddGPs. Coverage ratios for each of the decomposed
components Batch, Hourly, and Daily and the cumulative function F are shown. Note: This
figure is also included in an extended version of this work currently under review for journal
publication [5].

the truth with 95% probability. As a result, we focus on the ratio of coverage between the
MultiAddGP and the NAddGP. Positive values of this coverage ratio indicate that the MultiAddGP
model covers the truth more often than the NAddGP model. In all simulations, at all sample
sizes N and number of taxa D, the MultiAddGP models covered the truth more frequently than
the NAddGP models.

4 Conclusion & Future Work

We have introduced MultiAddGPs, a Bayesian Multinomial Logistic-Normal additive regression
model designed to address the statistical challenges of analyzing microbiota data. By incorpo-
rating recent advancements in Marginally Latent Matrix-t Processes (MLTPs), we developed
computationally efficient inference methods, now implemented in the fido R package since version
1.1.0 [32]. Our simulations demonstrate that MultiAddGPs effectively disentangle linear and
nonlinear effects, which highlight their potential for real-world applications. Looking ahead, our
ongoing work focuses on applying MultiAddGPs to large-scale microbiome datasets to extract
biologically meaningful insights and developing robust methods for hyperparameter selection,
such as optimizing kernel parameters.
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A Review of Marginally Latent Matrix-t Process and the CU Sampler

Notation. In this article, we denote matrix and vector dimensions with unbolded uppercase
letters (e.g., N), matrices and matrix-valued functions using bold uppercase symbols (e.g., X),
vectors and vector-valued functions with bold lowercase symbols (e.g., x), and scalars and scalar
functions as unbolded lowercase symbols (e.g., x). For matrices, we index specific rows as
Xd· and columns as X·n. We denote vector-valued stochastic processes using the same nota-
tion as matrices (e.g. Y ) since, in practice, we only evaluate these at a finite number of test points.

We describe the class of Marginally Latent Matrix-T Processes (MLTPs) by sequentially general-
izing from Matrix-T Processes to Latent Matrix-T Processes (LTPs) and finally MLTPs. We
then describe the subset of Bayesian Multinomial Logistic-Normal MLTPs (MLN-MLTPs) before
reviewing the inference of this class of models.

A.1 Defining Marginally Latent Matrix-T Processes (MLTPs)

Just as Gaussian processes can be defined based on the marginal properties of the multivariate
normal, matrix normal processes and Matrix-T processes can be defined by the marginal properties
of the matrix normal and matrix-T distributions [32]. Matrix-T processes generalize Student-T
processes and Gaussian processes [32].
Definition A.1 (Matrix-T Process). A stochastic process Y ∼ TP (ν, M, V, A) defined on
the set W = W(1) × W(2) is a matrix-T process if Y evaluated on any two finite subsets
X (1) ⊂ W(1) and X (2) ⊂ W(2) is a random matrix Y of dimension |X (1)| × |X (2)| that follows
a matrix-T distribution: Y ∼ T (ν, M, V, A). ν is a scalar value strictly greater than zero. Let
x

(1)
i , x

(1)
j ∈ X (1) and x

(2)
i , x

(2)
j ∈ X (2). Mij = M(x(1)

i , x
(2)
j ) is the matrix function representing

the mean, and Vij = V(x(1)
i , x

(1)
j ) and Aij = A(x(2)

i , x
(2)
j ) are kernel functions.

Latent Matrix-T Processes (LTP) generalize Matrix-T processes. Y is said to be an LTP if

Y ∼ g(Π, λ)
Π = ϕ−1(H)
H ∼ TP (ν, M, V, A).

where g is any distribution depending on parameters Π as well as hyperparameters λ and ϕ is a
known transform. LTPs can alternatively be written as a joint model p(Y, H).
A stochastic process Y is Marginally LTP (MLTP) if it can be described by a joint distribution
p(Y, H, Φ) with a marginal p(Y, H) that is a LTP. [32] showed that a wide variety of linear,
dynamic linear, and non-linear regression models are MLTP. In Appendix B, we show that our
proposed class of generalized additive Gaussian process regression models are MLTP as well.

A.2 Bayesian Multinomial Logistic Normal MLTPs (MLN-MLTPs)

Bayesian Multinomial Logistic Normal MLTPs (MLN-MLTPs) are a subtype of MLTPs that are
particularly useful for the analysis of microbiome data. In MLN-MLTPs, the distribution g is
a product multinomial: p(Y·1, . . . , Y·N ) ∼

∏N
n=1 Multinomial(Π·n) and the transform ϕ is an

invertible log-ratio transform from the D-dimensional simplex to D − 1 dimentional real-space:
H·n = ϕ(Π·n ∈ SD) ∈ RD−1. Canonically, we used the following Additive Log-Ratio (ALR)
transform which takes the D-th taxa as a reference:

H.n = ϕ(Π.n) =
{

log
(

π1n

πDn

)
, . . . , log

(
π(D−1)n

πDn

)}T

. (5)

We choose this transform for computational efficiency as discussed in [32]. There is no loss
in generality as posterior samples taken with respect to the ALRD coordinate system can be
transformed into any other log-ratio coordinate system [25, Appendix A.3]. For context, the
ALRD transform is the inverse of the softmax transform.
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A.3 Collapsed-Uncollapsed (CU) Sampler

The definition of MLTPs is key to efficient inference. If a model p(Y, H, Φ) has a closed-form
marginal p(Y, H) that is an LTP, then its closed form conditional p(Φ | Y, H) likely exists.
We call the marginal p(Y, H) the collapsed form and p(Φ | Y, H) the uncollapsed form. The
posterior of an MLTP factors as

p(H, Φ | Y) = p(Φ | H, Y)p(H | Y)
with the uncollapsed form as the first term and the posterior of the collapsed form as the second.
As the collapsed form is rarely conjugate, techniques such as MCMC can be used to obtain
samples from it’s posterior. Then, conditioned on those samples, the uncollapsed form can be
used to obtain samples from the joint posterior. Especially when Φ is high-dimensional, this
Collapse-Uncollapse sampler can be much more efficient than common alternatives [32]. Still, the
most substantial enhancements occur when approximations to the collapsed form are considered.
We have developed a Laplace approximation for the collapsed form of MLTPs:

p(vec(H) | Y) ≈ N(vec(Ĥ), ∇−2[vec(Ĥ)])
where Ĥ denotes the Maximum A Posteriori (MAP) estimate of the collapsed form and
∇−2[vec(Ĥ)] denotes the inverse Hessian of the collapsed form evaluated at the MAP esti-
mate. To facilitate this approximation, we derived analytical results for the gradient and Hessian
of the collapsed form [32]. Focusing on applications to MLN-MLTPs, we proved error bounds on
the Laplace approximation and provided simulation and real analyses showing that the approxima-
tion was extremely accurate in the context of microbiome data analysis. Beyond the accuracy of
posterior calculations, we showed that this CU sampler with the Laplace approximation (simply
referred to as the CU sampler in the following text) was often 4-5 orders of magnitude faster
than MCMC and 1-2 orders of magnitude faster than black-box variational inference while also
being more accurate than the later. The CU sampler for MLN-MLTPs, along with uncollapse
samplers for linear and non-linear regression models, is publicly available on CRAN as part of the
fido software package.

B Proof for MultiAddGPs are Marginal Latent Matrix-T Process
(MLTPs)

B.1 Derivation of Collapsed form

Theorem B.1. If
Y | Λ ∼ MN(ΛX, Σ, Γ)

Λ ∼ MN(Θ, Σ, Z)

and Σ is known, then the posterior of Λ is given by:
Λ | Σ, Y ∼ MN

(
(YΓ−1XT + ΘZ−1)(XΓ−1XT + Z−1)−1, Σ, (XΓ−1XT + Z−1)−1)

Proof. Using the density function of the matrix normal distribution, we can write:

Λ | Y ∝ exp
[
−1

2 tr
(
Σ−1(Y − ΛX)Γ−1(Y − ΛX)T

)]
×exp

[
−1

2 tr
(
Σ−1(Λ − Θ)Z−1(Λ − Θ)T

)]
Combining the exponents and expanding the term:

∝ exp
[
−1

2 tr
(
Σ−1 (YΓ−1YT − ΛXΓ−1YT − YΓ−1XT ΛT + ΛXΓ−1XT ΛT

+ΛZ−1ΛT − ΘZ−1ΛT − ΛZ−1ΘT + ΘZ−1ΘT
))]

.

∝ exp
[
−1

2 tr
(
Σ−1 (−ΛXΓ−1YT − YΓ−1XT ΛT + ΛXΓ−1XT ΛT + ΛZ−1ΛT

−ΘZ−1ΛT − ΛZ−1ΘT
))]
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Grouping like terms:

Λ | Y ∝ exp
[
−1

2 tr
(
Σ−1 (Λ(XΓ−1XT + Z−1)ΛT − Λ(XΓ−1YT + Z−1ΘT ) − (YΓ−1XT + ΘZ−1)ΛT

))]

∝ exp
(

−1
2 tr

{
Σ−1 ((Λ − (YΓ−1XT − ΘZ−1)(XΓ−1XT + Z−1)−1)

×(XΓ−1XT + Z−1)
(
Λ − (YΓ−1XT − ΘZ−1)(XΓ−1XT + Z−1)−1)T

)})
.

which implies that

Λ | Γ, Y ∼ MN
(
(YΓ−1XT − ΘZ−1)(XΓ−1XT + Z−1)−1, Σ, (XΓ−1XT + Z−1)−1)

Note that in the special case where X = I, i.e., a model of the form:

Y | Λ ∼ MN(Λ, Σ, Γ)

Λ ∼ MN(Θ, Σ, Z)
then the above result simplifies to

Λ | Σ, Y ∼ MN
(
(YΓ−1 + ΘZ−1)(Γ−1 + Z−1)−1, Σ, (Γ−1 + Z−1)−1) .

B.2 Derivation of Uncollapsed form

Here, we demonstrate how to efficiently compute and sample from the conditional posterior
p(F, B, f (1), . . . , f (K), Σ|H, Y, X, Z). Since F and Σ are conditionally independent of Y given
H, and B, f (1), . . . , f (K) are conditionally independent of H given F, by applying the chain rule,
we can rewrite the equation as:

p(F, B, f (1), . . . , f (K), Σ|H, Y, X, Z) = p(B, f (1), . . . , f (K)|F, Σ, X, Z)p(F|Σ, H, X, Z)p(Σ|H, X, Z)

The second and third parts on the right-hand side of the equation represent the posterior of a
multivariate conjugate linear model, which can be sampled efficiently from Appendix C of [32].
To sample from the first part of the equation, we developed backsampling algorithm. The
idea is motivated by the back-fitting algorithm in the Generalized Additive Model. Specifically,
given the samples from F and Σ, we draw sample iteratively from p(B|F), p(f (1)|F, B), . . . ,
p(f (K)|F, B, f (1), . . . , f (K−1)). Starting with B, define B∗ = F −

∑K
j=1 Θ(j)(Z(j)), then we

can write:

B∗ ∼ MN(BX, Σ, Γ∗)
B ∼ N(Θ(0), Σ, Γ(0))

where Γ∗ =
∑K

j=1 Γ(j), As the above model is a matrix conjugate linear model, we can sample
from its closed form:

B|B∗, Σ ∼ MN((B∗Γ−∗XT + Θ(0)Γ−(0))(XΓ−∗XT + Γ−(0))−1, Σ, (XΓ−∗XT + Γ−(0))−1)

where Γ−∗ and Γ−(0) are short-hand for (Γ∗)−1 and (Γ(0))−1 respectively.

We then use a similar process for f (k). Define f∗ = F − BX −
∑k−1

i=1 f (i) −
∑K

j=k+1 Θ(j)(Z(j)).
Then we can use a similar process to sample for f (k):

f∗ ∼ MN(f (k), Σ, Γ∗)
f (k) ∼ N(Θ(k), Σ, Γ(k))
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where Γ∗ =
∑K

j=k+1 Γ(j) and we can sample from its closed-form conditional distribution:

f (k) | Σ, f∗ ∼ N

([
f∗Σ−∗ + Θ(k)Γ−(k)

] [
Γ−∗ + Γ−(k)

]−1
, Σ,

[
Γ−∗ + Γ−(k)

]−1
)

where Γ−∗ and Γ−(k) are short-hand for (Γ∗)−1 and (Γ(k))−1 respectively. Finally, we set

f (K) = F − BX −
K−1∑
k=1

f (k)

C Pseudo code of Extended Collapse-Uncollapsed Sampler

In this section, we first present the pseudo-code for the Back Sampler (BS), which efficiently
samples B and fk for k ∈ 1, . . . , K. Following this, we provide the full pseudo-code for the
extended Collapse-Uncollapsed (CU) sampler designed for MultiAddGPs models. Note that in
algorithm 2, the sampler from step 3-4 can be found in the [32] Appendix C.

Algorithm 1 Back Sampler (BS)
1: Input: {Y, X, Z} are data observation, {F, Σ} are samples from CU sampler , Λ =

{Θ(0), . . . , Θ(k), Γ(0), . . . , Γ(k)} is a set of prior input
2: Output: S samples of the form (B, f (k), k ∈ {1, . . . , K})
3: for s = 1 to S do
4: B∗ = F −

∑K
j=1 Θ(j)(Z(j))

5: Γ∗ =
∑K

j=1 Γ(j)

6: Sample B|B∗, Σ ∼ MN((B∗Γ−∗XT + Θ(0)Γ−(0))(XΓ−∗XT +
Γ−(0))−1, Σ, (XΓ−∗XT + Γ−(0))−1) where Γ−∗ and Γ−(0) are short-hand for (Γ∗)−1 and
(Γ(0))−1 respectively.

7: for j = 1 to K do
8: if j = 1, ..., k − 1 then
9: f∗ = F − BX −

∑k−1
i=1 f (i) −

∑K
j=k+1 Θ(j)(Z(j))

10: Γ∗ =
∑K

j=k+1 Γ(j)

11: Sample f (k) | Σ, f∗ ∼ N

([
f∗Σ−∗ + Θ(k)Γ−(k)

] [
Γ−∗ + Γ−(k)

]−1
, Σ,

[
Γ−∗ + Γ−(k)

]−1
)

where Γ−∗ and Γ−(k) are short-hand for (Γ∗)−1 and (Γ(k))−1 respectively.
12: else
13: Sample f (K) = F − BX −

∑K−1
k=1 f (k)

14: end if
15: end for
16: end for
17: return B, f (k)

Algorithm 2 The Collapse-Uncollapse (CU) Sampler for MultiAddGPs Models
1: Input: {Y, X, Z} are data observation, ∆ = {Λ, Ξ, ν} is a set of prior input
2: Output: S sample of {H, Σ, F, B, f (k), k ∈ {1, . . . , K}}
3: Sample S of H ∼ p(H|Y, X, Z, ∆) where p(H|Y, X, Z, ∆) is an LTP;
4: Sample S of Σ ∼ p(Σ|H, X, Z);
5: Sample S of F ∼ p(F|H, Σ, X, Z);
6: Sample S of B, f (k) = BS(Y, X, Z, F, Σ, Λ)

D Simulation Study

To evaluate the implementation and investigate the behavior of the MultiAddGPs model, we
simulated a synthetic microbial community time-series comprising four bacterial taxa across 600
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time points, based on the following model:

Y.n ∼ Multinomial(Π.n)
Π.n = ALR−1(H)
F.n = 2.7 + 3x(batch)

n + f (periodic)(tn) + f (trend)(tn)
f (trend)(tn) ∼ MN(0, Σ, Γ(trend))

f (periodic)(tn) ∼ MN(0, Σ, Γ(periodic))

Here, we set Σ as a covariance matrix with off-diagonal elements of 0.9 and diagonal elements

of 1.5. The periodic kernel is defined as Γ(periodic) = 4 exp
(

−
2 sin2

(
π|t−t′|

25

)
302

)
, while the trend

kernel is modeled as Γ(trend) = exp
(

− (t−t′)2

2×302

)
. After obtaining the posterior samples from the

MultiAddGPs model, we apply a sum-to-zero constraint to facilitate model identification.
In Figure 1 of the main text, we illustrate the model’s ability to successfully decompose the
simulated microbiome time-series for a single taxon. In Figures 3 and 4 below, we further
demonstrate this decomposition for two additional taxa.
Next, we assessed the scalability of the model. However, as the dimensions (D) and number of
time points (N) increased, it became increasingly challenging to simulate data with a distinct
non-linear trend suitable for additive modeling. To address this, we replaced the non-linear trend
kernel Γ(trend) with a linear kernel: Γ(trend) = 202 + (t − c)(t′ − c), while keeping the rest of
the model unchanged. We then simulated this modified model across various combinations of
D and N , where D ∈ 3, . . . , 100 and N ∈ 20, . . . , 1000. For each combination of (D, N), we
generated three simulated datasets. The coverage ratio, presented in Figure 2 below, represents
the average across these three simulations.
Analysis of the simulated dataset revealed that the estimates for the unobserved compositions, H,
and latent factors, F, obtained from the MultiAddGPs model were more accurate compared to
those derived from the standard approach of normalizing read counts to proportions (NAddGPs).
Furthermore, our model successfully disentangled distinct effects arising from multiple linear and
non-linear factors. These results suggest that our model is capable of effectively decomposing
longitudinal microbiota data into a mixture of linear and non-linear additive components.
All implements were compiled and run using gcc version 9.1.0 and R version 4.3.2. All replicates
of the simulated count data were supplied to the various implementions independently and the
models were fit on identical hardware, allotted 64GB RAM, 4 cores, and restricted to a 48-hour
upper limit on run-time. All code required to reproduce the results of the this article is available
at https://github.com/Silverman-Lab/MultiAddGPs.
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Figure 3: MultiAddGPs successfully decompose simulated microbiome time-series on Taxa 2.
Note: This figure is also included in an extended version of this work currently under review for
journal publication [5].

Figure 4: MultiAddGPs successfully decompose simulated microbiome time-series on Taxa 3.
Note: This figure is also included in an extended version of this work currently under review for
journal publication [5].
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