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ABSTRACT

State-of-the-art models in computer vision and natural language processing largely
owe their success to the ability to represent massive prior knowledge contained
in multiple datasets by learning over multiple tasks. However, large-scale cross-
dataset studies of deep probabilistic regression models are missing, presenting a
significant research gap in this area. To bridge this gap, in this paper we propose,
analyze, and evaluate a novel probabilistic regression model, capable of solving
multiple regression tasks represented by different datasets. To demonstrate the
feasibility of such operation and the efficacy of our model, we define a novel
multi-dataset probabilistic regression benchmark LPRM-101. Our results on this
benchmark imply that the proposed model is capable of solving a probabilistic
regression problem jointly over multiple datasets. The model, which we call
NIAQUE, learns a meaningful cross-dataset representation and scores favorably
against strong tree-based baselines and Transformer.

1 INTRODUCTION

For decades, the ML community has focused on addressing tabular predictive modeling problems
using advanced, non-linear models. Tree-based methods such as Random Forests (Breiman, 2001),
XGBoost (Chen and Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova
et al., 2019) have traditionally been the preferred approaches for solving these tasks. The first
notable shift toward deep learning in large-scale dense tabular problems occurred in domains like
e-commerce, ads, and click-through rate modeling, where deep representation learning demonstrated
clear advantages (Guo et al., 2017), and TabNet (Arik and Pfister, 2021) emerged as the first deep
model built specifically for tabular data. Building on these successes, recent research has expanded
the use of deep learning in diverse areas, including house pricing prediction (de Aquino Afonso
et al., 2019), used car pricing (Jawed et al., 2023), manufacturing (Malhan and Gupta, 2023), and
healthcare (Zhang et al., 2022).

Recent findings based on Transformer architectures highlight that deep learning models typically
require extensive upstream pre-training data to perform effectively (Arik and Pfister, 2021; Levin
et al., 2023; Hollmann et al., 2023). Our study complements existing results by showing that deep
learning models can be co-trained directly on a large collection of diverse downstream datasets for
probabilistic regression tasks, without requiring upstream pre-training. Additionally, we show that
meaningful dataset-level representations emerge in this setting, and when compared to tree-based
approaches under similar conditions, deep probabilistic models clearly outperform them. This new
result establishes the viability of cross-dataset (cross-problem) learning, with direct implications for
model architecture design in large enterprises. Currently, the common approach involves deploying
isolated, disjoint models, each requiring substantial scientific and engineering support. Our findings
indicate that unified models capable of concurrently addressing multiple probabilistic regression
tasks represent a viable alternative. The growing recognition of the importance of probabilistic
and distributional modeling in predictive scenarios is evident too, particularly in fields like medical
applications, such as clinical trial analysis (Heller et al., 2022). Moreover, representation of uncer-
tainty is a general requirement for any problem with incomplete knowledge (Taylor et al., 1994), and
predictive distributions build an understanding of uncertainty. Hence, distributional modeling is a
natural choice for overcoming barriers to ML adoption and enhancing system trustworthiness. A
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model that can flag its potential failure cases is more trustworthy than the model that is randomly and
unpredictably wrong. By quantifying output distributions, probabilistic models can alert downstream
users to high-uncertainty cases (e.g., large posterior distribution spreads), where predictions should
not be trusted in critical decisions. Another dimension of trust, interpretability, is gaining importance
for predictive models in tabular data (Sahakyan et al., 2021). In this paper, we focus on global
interpretability—identifying independent variables that are key to solving a given problem. We show
that probabilistic modeling and feature importance assessment can work in tandem: the posterior
distribution of individual features helps highlight those that strongly impact prediction accuracy.

In this work, we identify and bridge several key research gaps. First, existing multi-dataset tabular
benchmarks are predominantly focused on classification problems, lacking a comprehensive bench-
mark for large-scale probabilistic regression tasks. To fill this gap, we introduce a new multi-dataset
regression benchmark and co-train multiple baseline models across all its datasets. This benchmark
comprises 101 diverse datasets from various domains, with varying sample sizes and feature dimen-
sions. Second, we propose NIAQUE, a novel probabilistic regression model capable of co-training
across multiple datasets, effectively developing meaningful dataset-level representations. NIAQUE
compares favorably against strong tree-based baselines and Transformers, despite being trained solely
on a collection of downstream regression tasks. In essence, our contributions can be summarized as
follows.

* We define a new probabilistic regression benchmark based on 101 diverse regression datasets
publicly available from UCI, PMLB, OpenML and Kaggle repositories

* We introduce NIAQUE, a novel model designed to address probabilistic regression by learning
to approximate the inverse of the posterior distribution during training.

* Qur theoretical analysis provides strong methodological foundation for NTAQUE.

* We demonstrate that NIAQUE achieves superior accuracy compared to strong baselines, includ-
ing CatBoost, XGBoost, LightGBM, and Transformer.

* We propose feature weights derived from NIAQUE’s marginal posterior distributions that
enhance interpretability by taking advantage of the model’s probabilistic nature.

1.1 RELATED WORK

Co-training on multiple datasets and tasks has been modus operandi in computer vision (Sun et al.,
2021; Radford et al., 2021) and language modeling (Devlin et al., 2019). More recently, cross-dataset
learning has been applied to univariate time-series forecasting (Garza and Mergenthaler-Canseco,
2023; Ansari et al., 2024). In the context of tabular data processing, the emphasis so far has been
on classification problems and point (non-distributional) regressions. For example, Transformer is
compared with tree-based models on a collection of 20 and 67 classification datasets, respectively, in
a series of papers (Miiller et al., 2022; Hollmann et al., 2023), MLP is compared against Tabnet and
trees on 40 classification datasets in (Kadra et al., 2021). Similarly, (Grinsztajn et al., 2022) compares
Transformer and a few other architectures (ResNet, MLP) against tree-based models on 45 dataset
benchmark. It is important to note that only about half of the 45 datasets are regression datasets
and models are fitted to each dataset independently. While (Hollmann et al., 2023) and (Grinsztajn
et al., 2022) agree that Transformer is the strongest model for tabular data among deep learning
models, the latter concludes tree-based models to be the ultimate winners on performance while the
former present evidence in favor of Transformers. Finally, Salinas and Erickson (2023) present a
large tabular benchmark, but only 28 of the datasets represent regression problems.

In terms of neural modeling methodology, our work is closely related to (Oreshkin et al., 2022),
who used a similar architecture in the context of human pose completion in animation. We extend
this architecture with the any-quantile modeling and show interesting theoretical properties of the
proposed approach. Other permutation invariant architectures for encoding unstructured variable
inputs are also related. Attention models (Bahdanau et al., 2015) and Transformer (Vaswani et al.,
2017) have been proposed in the context of natural language processing. Prototypical networks (Snell
etal.,2017) use average pooled embedding to encode semantic classes in few-shot image classification.
PointNet (Qi et al., 2017) and DeepSets (Zaheer et al., 2017) represent variable input dimension
by max-pooling MLP output in the context of 3D point clouds and text concept retrieval, further
generalized by Niemeyer et al. (2019) resulting in ResPointNet architecture. From a probabilistic
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Figure 1: NIAQUE architecture and training methodology. The network accepts variable number
of observations for every training batch. The quantile is generated uniformly at random in the [0,1]
range for each training sample. Quantile is used both as the input of the quantile decoder to modulate
the observation representation and as the supervision signal in the quantile loss.

modeling perspective, our paper expands on the electricity forecasting work of Smyl et al. (2024),
extending both the theoretical analysis and neural modeling approach, making our research broadly
applicable to general cross-dataset regression problems.

1.2 PROBABILISTIC REGRESSION PROBLEM

We consider the problem of estimating the underlying dependent variable y € R given a variable set
of independent variables captured in vector x of variable dimensionality. The relationship between
dependent and independent variables is assumed to be captured by an unknown non-linear function
W and stochastic noise € with unknown distribution:

y=¥(xe) ey

The formulation of regression problem provided above is very general and this motivates us to also
define its solution in a general non-parameteric form. In particular, we further define the probabilistic
regression solution using a non-linear regression function fy : RI*I*Q — R?, parameterized with
0 € O, predicting a Q-tuple of g-th quantiles of the unknown dependent variable based on available
observation x. The accuracy of distributional dependent variable prediction is evaluated using
Continuous Ranked Probability Score:

CRPS(F,y):/R(F(z)—]l{zzy})de, )

where y is the dependent variable value and F' denotes the cumulative distribution function (CDF)
derived from the predicted set of quantiles, 1 denotes the indicator function.

2 NIAQUE

In this section we first outline the proposed general solution to the probabilistic regression problem
based on training a machine learning model using any-quantile approach. We further provide the
theoretical analysis showing that the training using proposed methodology has inverse cumulative
distribution function of the data as the optimal solution.
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2.1 ANY-QUANTILE LEARNING

The any-quantile learning methodology depicted in Figure 1 asserts that both model and the loss
function shall accept quantile level g as input, making the model g-programmable. Let y represent
the observed value, 3, the predicted g-quantile, and suppose the model is trained using quantile loss:

R o~ if ~
(y;yq) — {(y yq)q 1y 2 yq (3)

’ (y —Yq)(g —1) otherwise

We consider that the model is trained on S-sample dataset of (x,y) tuples derived from the joint
distribution P, x. We also assume, without loss of generality, that training is conducted using
stochastic gradient descent (SGD) with a mini-batch size of B, and that the quantile value ¢ is
sampled from U (0, 1). This results in the following model parameter update at iteration k:

B
1
Opy1 = 0 — 7)kVGE ;P(yi, Jo(Xi,qi))- “

Sequence 6 converges to the optimum over the full training dataset of size S Karimi et al. (2016):

S
0" = argmin < E_; p(Yis fo(xi, i) ©)

By the strong law of large numbers, as S increases without bound, the sum in the last equation
converges to the following w.p. 1:

1
ExyEqo(y, fo(x,q)) = Ex,y /0 p(y, fo(x,q))dg. (6)

Lastly, we note that besides the L2 formulation (2), CRPS can also be expressed in its integral form
using the inverse CDF F'~! (Gneiting and Ranjan, 2011):

1
CRPS(F,y) = 2/ p(y, F~'(q))dg. @)
0

Based on this fact, the following theorem proves that the expected pinball loss (6) is minimized when
fo(x, q) corresponds to the inverse of the posterior CDF P, |x.

Theorem 1. Let F' be a probability measure over variable y such that inverse F~1 exists and let
P, x be the joint probability measure of variables x,y. Then the expected loss, Ex , 4 p(y, F~1(q)),
is minimized if and only if F' = Py.

Proof. The proof is in Appendix A. O

This leads to the following conclusions. First, the SGD update based on quantile loss (4) optimizes
the empirical risk (5) corresponding to the expected loss (6). Based on (6,7) and Theorem 1,
for = argming, Ex , 4 p(y, fo(x, ¢)), has a clear interpretation as the inverse CDF corresponding
to Pyx. Second, as k (the SGD iteration index) and S (training sample size) increase, and if in
addition fy is implemented as an MLP whose width and depth scale appropriately with sample
size S, then (Farrell et al., 2021, Theorem 1) implies that the SGD solution also converges to
fo+(x,q) = P 1(g). In other words, given uniform sample ¢ ~ U(0,1), 3, = fo-(x, q) has the

ylx
interpretation of the sample from the posterior distribution of y, ¥ ~ p(y|x), which obviously follows
from the proof of the inversion method (Devroye, 1986, Theorem 2.1).

2.2 NEURAL ARCHITECTURE

NIAQUE, shown in Fig. 1, follows the encoder-decoder pattern. Encoder deals with N observations,
where N is variable. Decoder modulates the quantile agnostic representation received from encoder
with the vector of quantiles g € R?, again, of arbitrary dimensionality Q. This design is compute
efficient with complexity O(N + @), whereas processing quantiles and observations in encoder and
decoder would imply complexity O(N Q). In the rest of the section, we describe architectural details.
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Inputs. For each element in the observation vector x, NIAQUE receives its value along with an
integer representing the independent variable ID, which is embedded using learnable vectors. The
variable ID is crucial for capturing the distinct statistical properties of each variable, the interactions
between independent variables, and their statistical relationship with the dependent variable. The
embedded variable ID is concatenated with its value, which is transformed into the log domain using
the following transformation:

2= log(|a| + 1) - sen(z) (®)
Log-transform aligns the dynamic range of variable value with that of ID embeddings and preserves
the sign, which is important to make training successful (this intuition is confirmed by ablation).

Observation Encoder is structured as a two-loop residual network. We first present the encoder
equations, followed by a detailed explanation of the underlying architectural motivations. We assume
the encoder input to be x; = x;,, € RNVN*Ein where E;, is the size of embedding vector for each
independent variable, omitting the batch dimension for brevity. In this case, the fully-connected layer
FC, ,, with ¢ = 1...L, in the residual block 7, » = 1... R, with weights W,. , and biases a,. o can

be conveniently described as FC, ;(h, ,_1) = RELU(W, ¢h, ;1 + a, ). Given prototype layer
1 N

definition, PROTOTYPE(X) = > _;_; X[¢, :], the observation encoder can be described as:
x, = RELU(b,—1 — 1/(r = 1) - pr—1), )
h,; =FC,1(x;), ..., h,, =FC, r(h, 1), (10)
b, = RELU(L,x, + h, 1), f, = F,h, , (11)
Pr = Pr—1 + PROTOTYPE(f,). (12)

Equations (10) and (11) implement the MLP and the first residual loop. The second residual mech-
anism, described in equations (9) and (12), is motivated by the following. First, equation (12)
aggregates the forward encoding of individual independent variables into a prototype-based represen-
tation of the overall observation vector. Second, equation (9) enforces an inductive bias, ensuring
that information from independent variables is only significant when it deviates from the existing
observation embedding, p,_1, by applying a delta-mode constraint. Finally, the representation of
observations is accumulated across residual blocks in (12), effectively implementing skip connections.

Quantile Decoder is the fully-connected conditioned residual architecture depicted in Fig. 1 (top
right) consisting of the conditioned MLP blocks appearing in Fig. 1 (bottom right). The quantile
value is injected inside the MLP block using FiLM modulation principle (Perez et al., 2018). Quantile

Decoder takes the observation embedding, b0 = pR € R¥, and generates quantile-modulated
representations, fr € RC*F_ for all quantiles q € R?, using the following set of equations:

h,; =FCX(b,_1), 7, f, = LINEAR,(q)
hyo =FCR((1+7) hy1+B), ..., hyp =FC (h, 1), (13)
b, = RELU(L®b,_; +h,1), f. = f,_; + F®h, ;.
The final prediction, y, € R, is generated via linear projection, y,, = LINEAR([f,].

2.3 INTERPRETABILITY

The core feature of NIAQUE is its probabilistic formulation, which enables prediction of any
quantile of the dependent variable conditioned on any combination of available independent variables.
Consider fy(xs,q) to be NIAQUE prediction of quantile ¢ when only independent variable x; is
provided. We can then define the posterior confidence interval CI,, ; = fp(xs, 1—a/2)— fo(x5, @ /2).
Confidence interval defines the width of the region in which the ground truth will fall with probability
1 — «a. Independent variables that are stronger predictors will tend to produce narrower confidence
intervals. Therefore, we should be able to identify globally important variables by calculating the
average width of their confidence intervals and comparing it against that of other variables. Based on
this simple intuition, for the independent variable s, we define the normalized weight W as:

AL A
Yo W Clo.95,5
1
S

D fo(ysinl = a/2) = fo(ys, /2). (15)

%

(14)
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(a) Dataset Sources (b) Dataset Size (c) Dataset Width
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Figure 2: Summary statistics of the LPRM-101 benchmark. (a) The distribution by dataset sources,
(b) the distribution of dataset sizes, (c) the distribution of variable count per dataset.

Note that CI, s is the average width of posterior confidence interval over datapoints y ;. We propose
to use a validation dataset for computing this quantity. The proposed feature weight depends on the
accuracy of marginal distribution modeling. To better model the marginal distributions of individual
features and enable the proposed interpretability mechanism, we augment the dataset by adding
rows that contain only a single feature, constituting approximately 5% of the total training data. Our
ablation study shows that this is an important step enabling the proposed interpretability mechanism.

2.4 NIAQUE ASs A CROSS-DATASET PROBABILISTIC REGRESSION MODEL

NIAQUE handles variable input combinations through the use of semantically encoded variables.
Thus, the model can be co-trained on multiple heterogeneous datasets by presenting to the model,
for each dataset, only the relevant variables, each with a learnable semantic embedding that encodes
the variable ID. This combination of variables informs the model of the dataset or task required for
inference. When co-trained across multiple datasets, the model is expected to generalize effectively
to each dataset. Our experimental results provide empirical validation of this hypothesis.

3 LPRM-101 BENCHMARK

LPRM-101 is the multi-dataset benchmark for large probabilistic regression models (hence, LPRM)
consisting of 101 dataset (hence LPRM-101). The datasets, along with their sample count, number of
variables and source information are listed in Table 3 of Appendix B. To construct the benchmark, we
first collect 101 dataset publicly available from the following primary repositories: UCI (Kelly et al.,
2017), Kaggle (Kaggle, 2024), PMLB (Romano et al., 2021; Olson et al., 2017), OpenML (Vanschoren
et al., 2013), KEEL (Alcald-Fdez et al., 2011). We focus specifically on the regression task in which
the dependent variable is continuous or, if it has limited number of levels, these are ordered such
as student exam scores or wine quality. The target variable in each dataset is normalized to the [0,
10] range and the independent variables are used as is, raw. The target variable scaling is applied
to equalize the contributions of samples from each dataset to the evaluation metrics. Datasets have
variable number of samples, the lowest being just below 1000. For very large datasets we limit the
number of samples used in our benchmark to be 20,000 by subsampling uniformly at random. This
allows us (i) to model task imbalance, and at the same time (ii) avoid the situation in which a few
large datasets could completely dominate the training and evaluation of the model. The distribution
of datasets by source, number of samples and number of variables is shown in Figure 2.

For evaluating the prediction accuracy we use the following point prediction accuracy metrics:
SMAPE, AAD, RMSE, BIAS and distributional prediction accuracy metrics: CRPS and COVERAGE.
We implement the 0.8/0.1/0.1 training/validation/test split sampled uniformly at random using
stratified sampling at the level of each dataset. This approach mitigates the risk of disproportionately
including a large number of samples from a larger dataset in the validation/test splits, while potentially
excluding samples from smaller datasets due to sampling chance. Evaluation metrics are averaged
over all samples in the test split containing samples from all datasets. The ground truth sample
is denoted as y; and it’s g-th quantile prediction as ¥; ,. Given the N-sample dataset, the point
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Table 1: Accuracy of the proposed NIAQUE approach compared to the tree-based baselines and
Transformer on LPRM-101 benchmark. Smaller values for SMAPE, AAD, RMSE, CRPS are better.
BIAS values closer to zero are better. COVERAGE @ 95 values closer to 95 are better. The results
with confidence intervals derived from 4 random seed runs are presented in Appendix C, Tables 4,5.

SMAPE AAD BIAS RMSE | CRPS COVERAGE @ 95

XGBoost-global 314 0574 -0.15 1.056 | 0.636 94.6
XGBoost-local 256 0433 -0.03 0.883 | 0.334 90.8
LightGBM-global 275 0475 -0.06 0.930 | 0.426 94.8
LightGBM-local 257 0427 -0.03 0.865 | 0.327 91.5
CATBOOST-global 31.3 0561 -0.12 1.030 | 0.443 94.9
CATBOOST-local 243 0408 -0.03 0.840 | 0.315 92.7
Transformer-local 26.9 0462 -0.05 0.904 | 0.329 93.6
Transformer-global 23.1 0.383 -0.01 0.806 | 0.272 94.6
NIAQUE-local 22.8 0.377 -0.03 0.797 | 0.267 94.9
NIAQUE-global 22.1 0.367 -0.02 0.787 | 0.261 94.6

prediction accuracy metrics are defined as:

200 <~ |yi — Gi0.5) 1 o
SMAPE = —— § 1051 1 ap = — Yi — Ui 0.5 (16)
N 2 Tl T Tieos N 2l = dios
1Y 1 &
_ 7 e 2 —_ . .
RMSE = N ;(yz y1,0.5) , BIAS = N ;ylﬁﬁ Yi 7)

The distributional accuracy metrics are defined over a random set of () = 200 quantiles sampled
uniformly at random and are formally defined as follows:

N Q
2
CRPS = —T = iy Ai )y 18
NQ;;p(y Gig;) (18)
100 &
COVERAGE @ o = N ; L[yi > 9i,0.5-a/200]L[Yi < Ji,0.54a/200] - (19)

4 EMPIRICAL RESULTS

Our empirical results are obtained on the LPRM-101 benchmark introduced in Section 3. The key
quantitative result appears in Table 1. We compare NIAQUE against a number of tree-based baselines
XGBoost (Chen and Guestrin, 2016), LightGBM (Ke et al., 2017), CatBoost (Prokhorenkova et al.,
2019). XGBoost and CatBoost are trained on the multi-quantile loss with fixed quantiles (additional
quantiles required for evaluation are linearly interpolated). LightGBM does not support multi-quantile
loss and we trained one model per quantile (similarly, XGBoost trains one model per quantile under
the hood). Models co-trained on all 101 datasets are denoted by the suffix global, while those with
the suffix local are trained individually on each dataset. Transformer baseline and ablations are
discussed in detail in Appendix G, including the architectural diagram. The gist of it is that the
original Transformer’s encoder/decoder structure (Vaswani et al., 2017) replaces NIAQUE’s feature
encoder, while the quantile decoder and training procedure are kept to be exactly the same as those of
NIAQUE.

Training Details All global models are trained by drawing cases from the train splits of all datasets
jointly and uniformly at random. To train tree-based global models, we joined all datasets resulting in
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Table 2: Transfer learning results on LPRM-101 benchmark. 80 datsets are randomly sampled for
pretraining. Pretrained model is further fine-tuned on 21 held-out datasets whose test splits are
used for evaluation. p; designates the proportion of samples in held-out training datasets used for
fine-tuning. Smaller values for SMAPE, AAD, RMSE, CRPS are better. BIAS values closer to zero are
better. COVERAGE @ 95 values closer to 95 are better.

Dy SMAPE AAD BIAS RMSE | CRPS COVERAGE @ 95

NIAQUE-scratch 1.0 194 049 -0.04 0.96 | 0.351 94.4
0.5 20.8 054 0.02 1.04 | 0.383 93.1
0.25 21.7 056 -0.04 1.06 | 0.392 94.4
0.1 247 0.60 -0.04 1.10 | 0.423 93.0
0.05 28.0 0.71 -0.06 1.23 | 0.488 93.3
NIAQUE-pretrained 1.0 17.7 047 -0.04 0.94 | 0.334 94.6
0.5 18.7 050 -0.06 0.97 | 0.354 93.9
0.25 203 054 -0.06 1.04 | 0.380 94.2
0.1 219 057 -0.07 1.08 | 0.404 94.4
0.05 23,5 0.61 -0.06 1.11 | 0.427 95.3

a large flat table, whose rows contain samples from all datasets and whose columns contain features
from all datasets. The row-column locations corresponding to features that do not exist in a given
dataset are filled with NA values. NIAQUE and Transformer are trained using the loss in eq. (3)
and Adam optimizer with initial learning rate 0.0001 that steps down by a factor of 10 at 500k,
600k and 700k batches, training for total 500 epochs. In a batch of 512 instances, a quantile, ¢,
is generated uniformly at random for each instance. For both Transformer and NIAQUE models
we found that feature dropout with rate 0.2 implemented as discussed in more detail in Appendix I
helped to improve accuracy. Training NIAQUE and Transformer models on 4xV100 GPUs requires
approximately 24 and 48 hours, respectively. XGBoost training time on 1xV100 is about 30min on 3
quantiles and grows linearly with the number of quantiles.

Multi-Task Learning Experiment results are reported in Table 1. Detailed ablation studies of all
models are reported in Tables 5-10 of Appendices E-I. The results suggest a negative correlation
between the quality of distributional predictions, as measured by the COVERAGE @ 95 metric, and
point prediction accuracy metrics (e.g., SMAPE, AAD, RMSE). Therefore, to ensure a fair comparison,
Table 1 presents the best result for each model, constrained by a COVERAGE @ 95 value within the
[94.5, 95.5] range. For models unable to meet this criterion, the results reflect the case where their
COVERAGE @ 95 is closest to 95. Overall, our results demonstrate the following key findings. First,
NIAQUE effectively addresses the distributional modeling task while maintaining state-of-the-art
point prediction accuracy. Second, tree-based models struggle to achieve both point and distributional
accuracy simultaneously. Furthermore, tree-based models perform better on point prediction tasks
in the local training setting, but experience a decline in both point accuracy (measured by SMAPE,
AAD, RMSE) and distributional accuracy (CRPS) under global training. In contrast, neural models
represented by NIAQUE benefit from co-training across multiple datasets, showing improvements in
both point and distributional predictions, even when the datasets are largely unrelated (cf. NIAQUE-
local and NIAQUE-global). The multi-task learning experiment establishes the ability of our model
to operate effectively across multiple datasets representing multiple tasks.

Transfer Learning Experiment conducted in the current section provides further evidence that
the learnings from one set of regression datasets can be transferred on another, unseen and largely
unrelated set of regression datasets. The setup is the following. We divide the overall LPRM-101
benchmark, uniformly at random, into the set of 80 pretraining datasets and the set of 21 unseen test
datasets. The baseline control model (NIAQUE-scratch) is trained on each of the unseen 21 datasets
from scratch. The treatment model (NIAQUE-pretrained) is first pretrained on 80 pretraining datasets
and then fine-tuned on each of the 21 datasets using 10-times smaller learning rate (a common
scenario in transfer learning). To provide for a more comprehensive comparison under transfer
learning scenario we evaluate the accuracy of fine-tuned and scratch models by subsampling the
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’ (a) Change in AAD when features are removed
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(a) NIAQUE embeddings cluster by dataset. (b) Interpretability Analysis

Figure 3: Representation analysis (left) depicts UMAP projections of row embeddings of all datasets
derived from the output of the feature encoder and colored by dataset. Dataset-level clustering of
embeddings is evident. Interpretability Analysis (right), top-1 and bot-1 refer to features with the
highest and lowest importance scores, respectively. The top-rated features have the greatest impact
on AAD degradation when removed, whereas unimportant features exhibit a smaller effect on AAD.

training portion of held-out datasets with variable rate py. As py decreases, the unseen training
dataset size shrinks. The test sets are kept constant for apple-to-apple comparison. Metrics of both
models are presented in Table 2. Our results demonstrate that the pre-trained model is always more
accurate than the model trained from scratch. Pretraining lift increases as the training datasets shrink
(corresponging to smaller py in Table 2). This demonstrates the value of pretraining probabilistic
regression models in multi-task fashion and confirms that the learnings on various probabilistic
regression tasks are generalizeable and can be transferred on unseen regression datasets. Finally, note
that metrics in tables 1 and 2 are not directly comparable since the former presents results on 101
datasets and the latter on 21 held-out datasets.

Representation Analysis. Figure 3a depicts UMAP projections (Mclnnes et al., 2018) of row
embeddings of all datasets derived from the output of NIAQUE feature encoder and colored by
dataset. Clearly, NIAQUE produces meaningful representations of dataset rows that cluster by dataset.
We conclude that it is viable to train NIAQUE across datasets, resulting in a shared representation
space that is discriminative of the regression tasks encapsulated in each dataset.

Interpretability Analysis. Figure 3b depicts the empirical analysis of the feature importance
assessment mechanism proposed in Section 2.3. The procedure boils down to computing the
normalized inverse average confidence interval on the samples from the marginal distribution of
each feature drawn from the validation set. Then features are ordered by the importance weight, per
dataset. In Figure 3b, top-1 refers to the feature with highest weight, bot-1 refers to the feature with
lowest weight. Top-rated (most important) features contribute the most to the AAD metric decrease,
when removed. Unimportant features have much smaller effect on AAD. This shows the efficacy
of the proposed feature importance assessment in that it produces scores predictive of the effect of
features on accuracy. Note that this mechanism is tightly linked to the probabilistic nature of the
model, it can be executed on a pre-trained model and it does not require ground truth labels.

Ablation Studies. Detailed architecture and training ablations for NIAQUE are presented in Ap-
pendix I, demonstrating the following important observations. First, applying the log-transform
to input values, as shown in eq. (8), enhances both training stability and prediction accuracy. Sec-
ond, NIAQUE’s performance shows relatively low sensitivity to network width variations, but is
more dependent on the number of blocks. Third, the training approach incorporating single-feature
rows, which supports the interpretability mechanism discussed in Section 2.3, proves crucial. When
single-feature rows are excluded from the training mix (Appendix I, Figure 7c), the model poorly dis-
tinguishes between high-importance and low-importance features. However, including single-feature
rows to NIAQUE’s training mix, creates a clear accuracy gap between the cases of top-importance
feature removal and the bottom-importance feature removal. Importantly, this training procedure
adjustment does not negatively impact prediction accuracy.
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5 DISCUSSION

We believe that our results applying NIAQUE to the multi-dataset benchmark LPRM-101 lay out the
stepping stone for the development of probabilistic meta-models eventually possessing the following
key properties. Scalability: A unified model shares computational resources to address multiple
regression tasks, optimizing resource utilization and reducing the operational costs of maintaining
separate models. Data Efficiency: Training on diverse tasks introduces strong regularization effects,
and we expect existing datasets to be repurposed to solve emerging problems, promoting data reuse
and recycling. Representation and Generalization: A model trained across multiple datasets
uncovers generalizable representations of regression tasks and ways of solving them, acquiring the
ability to apply this knowledge across datasets.

Limitations. While we significantly expand the scope of cross-dataset probabilistic model training by
applying our neural model to a 101-dataset benchmark, this remains a limited effort. It is still unclear
how many datasets are required for a regression model to be considered foundational for solving, for
instance, 80% of industry problems. What level of dataset diversity is necessary? Will millions or
billions of unrelated datasets be required, or would 10,000 overlapping datasets suffice? Defining and
evaluating global success in this context remains an open question, necessitating further research.

Broader Impacts. Our findings have implications for designing machine learning deployments based
on unified models that address multiple regression tasks. We expect that this will eventually lead to
improved operational efficiency and accuracy of the models. However, this could also contribute
to the centralization of power among a few large entities. In this context, risk mitigation strategies
include (i) improving model computational efficiency and (ii) publicly releasing data, model training
code and pretrained models. Additionally, co-training models on multiple datasets may introduce
new biases not present in locally trained models, making interpretability and fairness research critical.
We explore some interpretability aspects in this paper, and further research on interpretability and
fairness in large probabilistic regression models co-trained across multiple datasets seems to be an
important area for future work.

6 CONCLUSIONS

In this paper we introduce NIAQUE, a novel probabilistic regression model, and LPRM-101, a novel
multi-dataset large regression model benchmark. We show that learning a probabilistic regression
model across datasets is viable and that there exists a strong neural baseline model that compares
favorably against usual suspects in the domain of tabular learning: boosted trees and Transformer.
We also show that the probabilistic nature of the proposed model opens up a way for achieving
global model interpretability via feature importance defined through the average marginal posterior
confidence interval. Future work will focus on finding more effective ways of representing variable
relationships across datasets, increasing the volume of datasets and applying developed techniques to
wide array of application domains, such as multi-variate cross-dataset time series forecasting.
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A PROOF OF THEOREM 1

Theorem. Let F be a probability measure over variable y such that inverse F~1 exists and let
P, x be the joint probability measure of variables x,y. Then the expected loss, E p(y, F~*(q)), is
minimized if and only if:

F=Pyx. (20)
Additionally:

1

m}nEp(y, F~l(q) = ]Ex§ /]R Pyix(2)(1 — Pyx(2))dz. 21

Proof. First, combining (6,7) with the L2 representation of CRPS (2) we can write:

Ep(y, F~'(q)) = Ex,y% /R (F(2) = Tiayy)” d2 (22)
= ExEy‘x% /RF2(z) — 2F (2)1 o3y + Lianyndz (23)
= Ex% /RFQ(Z) = 2F(2)Eyplfzny) + Byl (o341 d2 (24)
_ Ex% /R F2(2) — 2F(2) Pyju(2) + Pye(2)d. (25)

Here we used the law of total expectation and Fubini theorem to exchange the order of integration
and then used the fact that B, 1(.>,) = Px(2). Completing the square we further get:

Ep(y, F(q)) = Ex% /R F?(2) = 2F (2) Pyx(2) + Pyix(2) + P2 (2) — Poiy(2)dz - (26)
_ Ex% /R (F(2) = Pys(2)? + Pys(2) — P2, (2)d2 27

F = Py is clearly the unique minimizer of the last expression since [, (F(z) — Pyx(z))?dz >
0,VF # Py y. O
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(a) Dataset Sources (b) Dataset Size (c) Dataset Width
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Figure 4: Summary statistics of the LPRM-101 benchmark. (a) The distribution by dataset sources,
(b) the distribution of dataset sizes, (c) the distribution of variable count per dataset.

B LPRM-101 BENCHMARK DETAILS

LPRM-101 is the multi-dataset benchmark for large probabilistic regression models (hence, LPRM)
consisting of 101 dataset (hence LPRM-101). The datasets, along with their sample count, number of
variables and source information are listed in Table 3. To construct the benchmark, we first collect
101 dataset publicly available from the following primary repositories: UCI (Kelly et al., 2017),
Kaggle (Kaggle, 2024), PMLB (Romano et al., 2021; Olson et al., 2017), OpenML (Vanschoren
et al., 2013), KEEL (Alcala-Fdez et al., 2011). We focus specifically on the regression task in which
the dependent variable is continuous or, if it has limited number of levels, these are ordered such
as student exam scores or wine quality. The target variable in each dataset is normalized to the [0,
10] range and the independent variables are used as is, raw. The target variable scaling is applied
to equalize the contributions of the evaluation metrics from each dataset. Datasets have variable
number of samples, the lowest being just below 1000. For very large datasets we limit the number of
samples used in our benchmark to be 20,000 by subsampling uniformly at random. This allows us (i)
to model imbalance, and at the same time (ii) avoid the situation in which a few large datasets could
completely dominate the training and evaluation of the model. The distribution of datasets by source,
number of samples and number of variables is shown in Figure 4.

For evaluating the prediction accuracy we use the following point prediction accuracy metrics: MAPE,
SMAPE, AAD, RMSE, BIAS and distributional prediction accuracy metrics: CRPS and COVERAGE.
We implement the 0.8/0.1/0.1 training/validation/test split sampled uniformly at random. Evaluation
metrics are averaged over all samples in the test split containing samples from all datasets. The
ground truth sample is denoted as y; and it’s g-th quantile prediction as §j; 4. Given the N-sample
dataset, the point prediction accuracy metrics are deﬁned as:

|yz yz 0. 5|
SMAPE = (28)
Z lyil + [9i,0.5]
N
100 lyi — Ui0.5]
_ 100 , 2
MAPE = — Z ] (29)
1 N
AAD = Z: |Yi — Ui,0.5] (30)
N
1 .
RMSE = | = (i — Ji0.5) 31)
=1
N
1 )
BIAS = = 2_: 9i,0.5 — Ys (32)

The distributional accuracy metrics are defined over a random set of () = 200 quantiles sampled
uniformly at random and are formally defined as follow5'

CRPS = NQ Z Z P Gig,): (33)

i=1 j=1
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100 &
COVERAGE @ g = % Z L[yi > 9i,0.5-ay2001L[Yi < Ji,0.5+a/200]- (34)
i=1
Table 3: The list of dat
name n_samples n_vars source url

0 Abalone 4177 7 uci https://archive.ics.uci.
1 Student_Performance 649 29  uci https://archive.ics.uci.
2 Infrared_Thermography_Temperature 1020 32 uci https://archive.ics.uci.
3 Parkinsons_Telemonitoring 5875 18 uci https://archive.ics.uci.
4 Energy_Efficiency 768 7 uci https://archive.ics.uci.
5 1027_ESL 488 3  pmlb https://github.com/Epist
6 1028_SWD 1000 9 pmlb https://github.com/Epist
7 1029_LEV 1000 3  pmlb https://github.com/Epist
8 1030_ERA 1000 3  pmlb https://github.com/Epist
9 1199_BNG_echoMonths 17496 8 pmlb https://github.com/Epist
10 197_cpu_act 8192 20 pmlb https://github.com/Epist
11 225_puma8NH 8192 7 pmlb https://github.com/Epist
12 227_cpu_small 8192 11 pmlb https://github.com/Epist
13 294 _satellite_image 6435 35 pmlb https://github.com/Epist
14 344 _mv 20000 9 pmlb https://github.com/Epist
15  503_wind 6574 13 pmlb https://github.com/Epist
16 529_pollen 3848 3  pmlb https://github.com/Epist
17 537_houses 20000 7 pmlb https://github.com/Epist
18  547_no2 500 6 pmlb https://github.com/Epist
19 564 _fried 20000 9 pmlb https://github.com/Epist
20 595_fri_c0_1000_10 1000 9 pmlb https://github.com/Epist
21 593_fri_c1_1000_10 1000 9 pmlb https://github.com/Epist
22 1193_BNG_lowbwt 20000 8 pmlb https://github.com/Epist
23 1201_BNG_breastTumor 20000 8 pmlb https://github.com/Epist
24 1203_BNG_pwLinear 20000 9 pmlb https://github.com/Epist
25 215_2dplanes 20000 9 pmlb https://github.com/Epist
26 218_house_8L 20000 7 pmlb https://github.com/Epist
27 QsarFishToxicity 908 5 uci https://archive.ics.uci.
28 CONCRETE_COMPRESSIVE_STRENGTH 1030 7 uci https://archive.ics.uci.
29 PRODUCTIVITY 1197 12 uci https://archive.ics.uci.
30 CCPP 9568 3 uci https://archive.ics.uci.
31 AIRFOIL 1503 4  uci https://archive.ics.uci.
32 TETOUAN 20000 6 uci https://archive.ics.uci.
33 BIAS_CORRECTION 7725 22 uci https://archive.ics.uci.
34 APARTMENTS 10000 10  uci https://archive.ics.uci.
35 MedicalCost 1338 5 kaggle kaggledatasetsdownload-c
36 Vehicle 2059 18 kaggle kaggledatasetsdownload-c
37  LifeExpectancy 2928 18 kaggle kaggledatasetsdownload-c
38 CalHousing 20000 7 dcc https://www.dcc.fc.up.pt
39 Ailerons 7154 39 dcc https://www.dcc.fc.up.pt
40 DeltaElevators 9517 5 dcc https://www.dcc.fc.up.pt
41 Pole 10000 25 dcc https://www.dcc.fc.up.pt
42 Kinematics 8192 7 dcc https://www.dcc.fc.up.pt
43 BigMartSales 8523 10 kaggle kaggledatasetsdownload-c
44 VideoGameSales 16598 3 kaggle kaggledatasetsdownload-c
45  NewsPopularity 20000 58 uci https://archive.ics.uci.
46  Wizmir 1461 8 keel https://sci2s.ugr.es/kee
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https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/227_cpu_small/227_cpu_small.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/294_satellite_image/294_satellite_image.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/344_mv/344_mv.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/503_wind/503_wind.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/529_pollen/529_pollen.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/537_houses/537_houses.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/547_no2/547_no2.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/564_fried/564_fried.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/595_fri_c0_1000_10/595_fri_c0_1000_10.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/593_fri_c1_1000_10/593_fri_c1_1000_10.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1193_BNG_lowbwt/1193_BNG_lowbwt.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1201_BNG_breastTumor/1201_BNG_breastTumor.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1203_BNG_pwLinear/1203_BNG_pwLinear.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/215_2dplanes/215_2dplanes.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/218_house_8L/218_house_8L.tsv.gz
https://archive.ics.uci.edu/static/public/504/qsar+fish+toxicity.zip
https://archive.ics.uci.edu/static/public/165/concrete+compressive+strength.zip
https://archive.ics.uci.edu/static/public/597/productivity+prediction+of+garment+employees.zip
https://archive.ics.uci.edu/static/public/294/combined+cycle+power+plant.zip
https://archive.ics.uci.edu/static/public/291/airfoil+self+noise.zip
https://archive.ics.uci.edu/static/public/849/power+consumption+of+tetouan+city.zip
https://archive.ics.uci.edu/static/public/514/bias+correction+of+numerical+prediction+model+temperature+forecast.zip
https://archive.ics.uci.edu/static/public/555/apartment+for+rent+classified.zip
kaggle datasets download -d mirichoi0218/insurance
kaggle datasets download -d nehalbirla/vehicle-dataset-from-cardekho
kaggle datasets download -d kumarajarshi/life-expectancy-who
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.tgz
https://www.dcc.fc.up.pt/~ltorgo/Regression/ailerons.tgz
https://www.dcc.fc.up.pt/~ltorgo/Regression/delta_elevators.tgz
https://www.dcc.fc.up.pt/~ltorgo/Regression/pol.tgz
https://www.dcc.fc.up.pt/~ltorgo/Regression/kinematics.tar.gz
kaggle datasets download -d brijbhushannanda1979/bigmart-sales-data
kaggle datasets download -d gregorut/videogamesales
https://archive.ics.uci.edu/static/public/332/online+news+popularity.zip
https://sci2s.ugr.es/keel/dataset/data/regression/wizmir.zip
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Table 3: The list of dat

name n_samples n_vars source url
47  Ele2 1056 3 keel https://sci2s.ugr.es/kee
48 Treasury 1049 14 keel https://sci2s.ugr.es/kee
49  Mortgage 1049 14 keel https://sci2s.ugr.es/kee
50  Laser 993 3 keel https://sci2s.ugr.es/kee
51 SpaceGa 3107 5 openml https://www.openml.org/c
52 VisualizingSoil 8641 3 openml https://www.openml.org/c
53 Diamonds 20000 8 openml https://www.openml.org/c
54 TitanicFare 1307 6 openml https://www.openml.org/c
55 Sulfur 10081 5 openml https://www.openml.org/c
56 Debutanizer 2394 6 openml https://www.openml.org/c
57 Fardamento 6277 5 openml https://www.openml.org/c
58 ProteinTertiary 20000 8 openml https://api.openml.org/c
59  BrazilianHouses 10692 7 openml https://api.openml.org/c
60 Cps88Wages 20000 5 openml https://api.openml.org/c
61 CPMP-2015 2108 25 openml https://www.openml.org/c
62  NASA-PHM2008 20000 16 openml https://www.openml.org/c
63 Wind 6574 12 openml https://www.openml.org/c
64 NewFuelCar 20000 17 openml https://www.openml.org/c
65 MiamiHousing 13932 14 openml https://www.openml.org/c
66  BlackFriday 20000 8 openml https://www.openml.org/c
67 IEEE80211aaGATS 5296 28 openml https://www.openml.org/c
68  Yprop4l 8885 41 openml https://api.openml.org/c
69  Sarcos 20000 20 openml https://api.openml.org/c
70  ZurichDelays 20000 16 openml https://www.openml.org/c
71 1000-Cameras 1015 13 openml https://www.openml.org/c
72 GridStability 10000 11 openml https://api.openml.org/c
73 PumaDyn32nh 8192 31 openml https://api.openml.org/c
74 Fifa 19178 27 openml https://api.openml.org/c
75  WhiteWine 4898 10 openml https://api.openml.org/c
76 RedWine 1599 10 openml https://api.openml.org/c
77 FpsBenchmark 20000 42 openml https://api.openml.org/c
78  KingCountyHousing 20000 20 openml https://api.openml.org/c
79  AvocadoPrices 18249 12 kaggle kaggledatasetsdownload-c
80  Transcoding 20000 18 uci https://archive.ics.uci.
81 house_16H 20000 15 openml https://www.openml.org/c
82 Sales 10738 13 openml https://www.openml.org/c
83  WalmartSales 6435 8 kaggle kaggledatasetsdownload-c
84  UsedCar 6019 11 kaggle kaggledatasetsdownload-c
85  HouseRent 4746 11  kaggle kaggledatasetsdownload-c
86  LaptopPrice 1273 15 kaggle kaggledatasetsdownload-c
87  UberFare 20000 8 kaggle kaggledatasetsdownload-c
88  Co2Emission 7385 10 kaggle kaggledatasetsdownload-c
89  SongPopularity 18835 12 kaggle kaggledatasetsdownload-c
90  Cars 20000 8 kaggle kaggledatasetsdownload-c
91 GemstonePrice 20000 8 kaggle kaggledatasetsdownload-c
92  LoanAmount 20000 20 kaggle kaggledatasetsdownload-c
93  SaudiArabiaCars 5507 10 kaggle kaggledatasetsdownload-c
94  GpuKernelPerformance 20000 13  kaggle kaggledatasetsdownload-c
95 AmericanHousePrices 20000 10 kaggle kaggledatasetsdownload-c
96  KindleBooks 20000 12 kaggle kaggledatasetsdownload-c
97  BookSales 1070 8 kaggle kaggledatasetsdownload-c
98  CapitalGain 20000 12 kaggle kaggledatasetsdownload-c
99  MarketingCampaign 2976 14 kaggle kaggledatasetsdownload-c
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https://sci2s.ugr.es/keel/dataset/data/regression/ele-2.zip
https://sci2s.ugr.es/keel/dataset/data/regression/treasury.zip
https://sci2s.ugr.es/keel/dataset/data/regression/mortgage.zip
https://sci2s.ugr.es/keel/dataset/data/regression/laser.zip
https://www.openml.org/data/download/52619/space_ga.arff
https://www.openml.org/data/download/52988/visualizing_soil.arff
https://www.openml.org/data/download/21792853/dataset.arff
https://www.openml.org/data/download/20649205/file277c5e2b70e8.arff
https://www.openml.org/data/download/2095629/phpBXEqg1.arff
https://www.openml.org/data/download/2096280/phpWT77lf.arff
https://www.openml.org/data/download/21854531/fardamento_saidas_19_20a20maio.arff
https://api.openml.org/data/download/22111827/file22f167620a212.arff
https://api.openml.org/data/download/22111854/file22f1627e4a960.arff
https://api.openml.org/data/download/22111848/file22f161d4b5556.arff
https://www.openml.org/data/download/21377442/file16a868cf35f5.arff
https://www.openml.org/data/download/22045221/dataset.arff
https://www.openml.org/data/download/52615/wind.arff
https://www.openml.org/data/download/21230500/pruebaconvonline.csv.arff
https://www.openml.org/data/download/22047757/miami2016.arff
https://www.openml.org/data/download/21230845/file639340bd9ca9.arff
https://www.openml.org/data/download/22101884/dataset.arff
https://api.openml.org/data/download/22111920/dataset.arff
https://api.openml.org/data/download/22111840/file22f166a1669bb.arff
https://www.openml.org/data/download/21854423/file86eb92864fd.arff
https://www.openml.org/data/download/22102539/dataset.arff
https://api.openml.org/data/download/22111837/file22f1652de1c8a.arff
https://api.openml.org/data/download/22111845/file22f161b261f3b.arff
https://api.openml.org/data/download/22111894/file10aca711933d5.arff
https://api.openml.org/data/download/22111835/file22f16150a82cd.arff
https://api.openml.org/data/download/22111836/file22f162b311c38.arff
https://api.openml.org/data/download/22111856/file22f1639d20997.arff
https://api.openml.org/data/download/22111853/file22f167bd414f1.arff
kaggle datasets download -d neuromusic/avocado-prices
https://archive.ics.uci.edu/static/public/335/online+video+characteristics+and+transcoding+time+dataset.zip
https://www.openml.org/data/download/52752/house_16H.arff
https://www.openml.org/data/download/21756753/dataset.arff
kaggle datasets download -d mikhail1681/walmart-sales
kaggle datasets download -d nitishjolly/used-car-price-prediction
kaggle datasets download -d iamsouravbanerjee/house-rent-prediction-dataset
kaggle datasets download -d ehtishamsadiq/uncleaned-laptop-price-dataset
kaggle datasets download -d yasserh/uber-fares-dataset
kaggle datasets download -d debajyotipodder/co2-emission-by-vehicles
kaggle datasets download -d yasserh/song-popularity-dataset
kaggle datasets download -d aishwaryamuthukumar/cars-dataset-audi-bmw-ford-hyundai-skoda-vw
kaggle datasets download -d colearninglounge/gemstone-price-prediction
kaggle datasets download -d phileinsophos/predict-loan-amount-data
kaggle datasets download -d turkibintalib/saudi-arabia-used-cars-dataset
kaggle datasets download -d rupals/gpu-runtime
kaggle datasets download -d jeremylarcher/american-house-prices-and-demographics-of-top-cities
kaggle datasets download -d asaniczka/amazon-kindle-books-dataset-2023-130k-books
kaggle datasets download -d thedevastator/books-sales-and-ratings
kaggle datasets download -d minnieliang/adult-data
kaggle datasets download -d ahmadazari/marketing-campaign-data
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Table 3: The list of dat

name n_samples n_vars source url

100 CampaignUplift 2000 9 kaggle kaggledatasetsdownload-c
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kaggle datasets download -d hwwang98/software-usage-promotion-campaign-uplift-model
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C RESULTS WITH CONFIDENCE INTERVALS

To save space, we present benchmarking results with confidence intervals here. All confidence
intervals are obtained by aggregating the evaluation results over 4 runs with different random seeds.

Table 4: Distributional accuracy of the proposed NIAQUE approach compared to the tree-based base-
lines and Transformer on LPRM-101 benchmark. Smaller values for CRPS are better. COVERAGE
@ 95 values closer to 95 are better. The results with 95% confidence intervals derived from 4 random

seed runs

CRPS COVERAGE @ 95

XGBoost-global 0.636 £+ 0.165 94.6 £ 0.3
XGBoost-local 0.334 £ 0.001 90.8£0.2
LightGBM-global 0.426 £ 0.017 94.8 +0.1
LightGBM-local 0.327 £ 0.001 91.5+£0.2
CATBOOST-global | 0.443 £ 0.004 94.94+0.2
CATBOOST-local | 0.315+ 0.001 92.7+0.1
Transformer-global | 0.272 £ 0.005 94.6 £0.3
NIAQUE-local 0.267 £ 0.011 94.9+04
NIAQUE-global 0.261 £ 0.002 94.6 £ 0.2

Table 5: Point prediction accuracy of the proposed NIAQUE approach compared to the tree-based
baselines and Transformer on LPRM-101 benchmark. Smaller values for SMAPE, AAD, RMSE are
better. BIAS values closer to zero are better. The results with 95% confidence intervals derived from
4 random seed runs.

SMAPE AAD BIAS RMSE
XGBoost-global 314+44 0.574+£0.100 —-0.15+0.05 1.056 40.143
XGBoost-local 25.6£0.1 0.433£0.001 —0.034+0.01 0.883+0.004
LightGBM-global 275+£0.1 0475£0.001 —0.06=+0.01 0.930=+0.003
LightGBM-local 25.7+0.1 0.427+0.003 —0.03+0.01 0.865=+0.012
CATBOOST-global | 31.3+0.2 0.561 £0.006 —0.12£0.02 1.030 % 0.009
CATBoost-local 24.3+£0.1 0.408£0.001 —0.034+0.01 0.840 %+ 0.003
Transformer-global | 23.1 £0.3 0.383£0.008 —0.01+0.01 0.806 £ 0.015
NIAQUE-local 22.8+04 0.377£0.012 —-0.03+0.01 0.797£+0.019
NIAQUE-global 22.14+0.1 0.367£0.002 —0.02+0.01 0.787 £ 0.005
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51 D XGBOOST BASELINE

Table 6: Ablation study of the XGBoost model.

type ng?h lezig:;ng SMAPE  AAD BIAS RMSE | CRPS CO\%EI;?GE
global 8 0.02 314 0574 -0.15 1.056 | 0.636 94.6
global 16 0.02 25.7 0441 -0.07 0.864 | 0.484 91.5
global 32 0.02 24.1 0402 -0.05 0.800 | 0.353 80.0
global 40 0.02 246 0414 -0.05 0.815 | 0.378 78.2
global 48 0.02 241 0397 -0.04 0.785 | 0.362 74.8
global 96 0.02 23.8 0.384 -0.03 0.769 | 0.346 64.9
local 16 0.02 23.0 0.367 -0.00 0.753 | 0.317 52.0
local 12 0.02 2277 0369 -0.01 0.756 | 0.304 66.0
local 8 0.02 224 0372 -0.02 0.773 | 0.294 82.3
local 8 0.05 225 0373 -0.02 0.773 | 0.291 82.4
local 6 0.02 22.7 0382 -0.02 0.795 | 0.298 87.3
local 4 0.02 24.1 0412 -0.03 0.847 | 0318 90.2
local 3 0.02 256 0433 -0.03 0.883 | 0.334 90.8
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E CATBOOST BASELINE

The CATBoost is trained using the standard package via pip install catboost using
grow_policy = Depthwise. The explored hyper-parqameter grid appears in Table 7.

Table 8 shows CATBoost accuracy as a function of the number of quantiles. Quantiles are generated

using linspace grid np.linspace (0.01,

0.99,

num_quantiles). We recover the best

overall result for the case of 3 quantiles, and increasing the number of quantiles leads to quickly
deteriorating metrics. It appears that CATBoost is unfit to solve complex multi-quantile problems.

Table 7: Ablation study of the CATBoost model.

type depth I?:lnlg;l;a SMAPE  AAD BIAS RMSE | CRPS COV@?;?GE
global 16 50 314 0565 -0.12 1.036 | 0.442 94.2
global 16 100 31.3 0561 -0.12  1.030 | 0.443 94.9
global 16 200 31.6  0.569 -0.13 1.041 | 0.445 94.2
global 8 100 41.1 0.785 -0.26 1.324 | 0.602 94.3
local 3 50 243 0409 -0.03 0.841 | 0.316 92.7
local 3 100 243 0407 -0.03 0.843 | 0.317 92.7
local 3 200 243 0.408 -0.03 0.840 | 0.315 92.7
local 5 50 222 0373 -0.02 0.785 | 0.285 90.7
local 5 100 223 0374 -0.02 0.786 | 0.285 91.3
local 5 200 224 0378 -0.02 0.791 | 0.288 91.6
local 7 50 21.5 0359 -0.02 0.761 | 0.272 87.2
local 7 100 21.6 0.362 -0.02 0.765 | 0.273 88.6
local 7 200 21.8 0366 -0.02 0.772 | 0.277 89.9
Table 8: CATBoost accuracy as a function of the number of quantiles.
type  depth H&HIS:F quzﬁglles SMAPE  AAD BIAS RMSE | CRPS CO\%E};?GE
global 16 100 3 31.3 0561 -0.12  1.030 | 0.443 94.9
global 16 100 5 350 0.665 -0.13 1.183 | 0.482 96.2
global 16 100 7 385 0.746 -0.18 1.265 | 0.533 96.2
global 16 100 9 43.7 0.879 -025 1.437 | 0.622 96.2
global 16 100 51 68.9 1.538 -0.53 2.132 | 1.036 95.5
local 7 100 3 21.5 0359 -0.02 0.761 | 0.272 87.2
local 7 100 9 239 0399 -0.03 0.823 | 0.284 924
local 7 100 51 303 0.525 -0.09 1.079 | 0.369 92.1
local 16 100 51 302 0.514 -0.09 1.055 | 0.362 92.4
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s9n. F LIGHTGBM BASELINE

Table 9: Ablation study of the LightGBM model.

type max_depth 1:;\125 leigglg SMAPE  AAD BIAS RMSE | CRPS COV; l;? GE
global -1 10 0.05 35.6 0.661 -0.17 1.199 | 0.804 95.2
global -1 20 0.05 309 0.554 -0.11 1.034 | 0.566 95.4
global -1 40 0.05 27.5 0475 -0.06 0.930 | 0.426 94.8
global -1 100 0.05 246 0417 -0.03 0.852 | 0.342 93.3
global -1 200 0.05 234 0393 -0.02 0.813 0.32 923
global -1 400 0.05 23.6 0.379 -0.02 0.786 | 0.305 90.9
global 3 10 0.05 50.7 1.084 -049 1.763 | 1.013 94.1
global 3 20 0.05 50.7 1.084 -0.49 1.763 | 1.013 94.1
global 3 40 0.05 50.7 1.084 -0.49 1.763 | 1.013 94.1
global 3 100 0.05 50.7 1.084 -049 1.763 | 1.013 94.1
global 3 200 0.05 50.7 1.084 -049 1.763 | 1.013 94.1
global 3 400 0.05 50.7 1.084 -049 1.763 | 1.013 94.1
global 5 10 0.05 39.1 0.768 -0.25 1.341 | 0.856 94.8
global 5 20 0.05 390 076 -026 1327 | 0.863 94.8
global 5 40 0.05 390 0.759 -0.26 1.328 | 0.864 94.8
global 5 100 0.05 39.0 0.759 -0.26 1.328 | 0.864 94.8
global 5 200 0.05 39.0 0.759 -0.26 1.328 | 0.864 94.8
global 5 400 0.05 39.0 0.759 -0.26 1.328 | 0.864 94.8
global 10 10 0.05 356 0.661 -0.17 1.199 | 0.804 95.2
global 10 20 0.05 31,5 0572 -0.14  1.054 0.59 954
global 10 40 0.05 29.8 0.537 -0.13 1.001 | 0.575 95.2
global 10 100 0.05 29.5 0.528 -0.12 0991 | 0.577 95.2
global 10 200 0.05 29.2 0.522 -0.12 0981 | 0.576 95.0
global 10 400 0.05 29.1 052 -0.12 0975 | 0.582 95.1
global 20 10 0.05 356 0.661 -0.17 1.199 | 0.804 952
global 20 20 0.05 309 0.554 -0.11 1.034 | 0.566 95.4
global 20 40 0.05 27.1 0468 -0.07 0913 | 0512 95.2
global 20 100 0.05 255 0435 -0.06 0.864 | 0.496 94.9
global 20 200 0.05 250 0424 -0.06 0.846 | 0.488 94.3
global 20 400 0.05 243 041 -0.05 0.823 | 0.482 93.6
global 40 10 0.05 35.6 0.661 -0.17 1.199 | 0.804 95.2
global 40 20 0.05 309 0.554 -0.11 1.034 | 0.566 95.4
global 40 40 0.05 27.8 0481 -0.05 0913 | 0431 94.7
global 40 100 0.05 247 0419 -0.04 0.848 | 0.348 93.5
global 40 200 0.05 23,5 0395 -0.03 0.811 | 0.332 92.7
global 40 400 0.05 232 0.383 -0.03 0.791 | 0.322 92.0
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Table 10: Ablation study of the LightGBM model.

type max_depth 1:;528 le?;?éng SMAPE  AAD BIAS RMSE | CRPS CO\%EI;?GE
local -1 5 0.05 23.8 0399 -0.03 0.823 | 0319 90.6
local -1 10 0.05 225 0376 -0.02 0.786 | 0.301 88.9
local -1 20 0.05 219 0364 -0.02 0.766 | 0.289 86.5
local -1 50 0.05 21.6 0355 -0.01 0.752 | 0.278 82.6
local 2 5 0.05 2577 0427 -0.03 0.865 | 0.327 91.5
local 2 10 0.05 2577 0427 -0.03 0.865 | 0.327 91.5
local 2 20 0.05 2577 0427 -0.03 0.865 | 0.327 91.5
local 2 50 0.05 257 0427 -0.03 0.865 | 0.327 91.5
local 3 5 0.05 243 0404 -0.03 0.83 | 0318 90.7
local 3 10 0.05 239 0396 -0.03 0.818 | 0.304 90.4
local 3 20 0.05 239 039 -0.03 0.818 | 0.304 90.4
local 3 50 0.05 239 0396 -0.03 0.818 | 0.304 90.4
local 5 5 0.05 238 0399 -0.03 0.823 | 0319 90.6
local 5 10 0.05 22.7 0379 -0.02  0.79 0.3 89.1
local 5 20 0.05 223 037 -0.02 0.776 | 0.287 87.6
local 5 50 0.05 222 0368 -0.02 0.773 | 0.285 87.4
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G TRANSFORMER BASELINE
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Figure 5: Transformer baseline used in our experiments. The feature encoding module is replaced
with transformer block. Feature encoding is implemented via self-attention. The extraction of feature
encoding is done by applying cross-attention between the prototype of input features and the output
of self-attention. This operation is repeated several times corresponding to the number of blocks in
transformer encoder.

The ablation study of the transformer architecture is presented in Table 11. It shows that in general,
increasing the number of transformer blocks improves accuracy, however, at 8-10 blocks we clearly
see diminishing returns. Dropout helps to gain better empirical coverage of the 95% confidence
interval, but this happens at the expense of point prediction accuracy. Finally, the decoder query that
is used to produce the feature embedding that is fed to the quantile decoder can be implemented in
two principled ways. First, the scheme depicted in Figure 5, uses the prototype of features supplied
to the encoder. We call it the prototype scheme. Second, the prototype can be replaced by a learnable
embedding. Comparing the last and third rows in Table 11, we conclude that the prototype scheme is
a clear winner.
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Table 11: Ablation study of the Transformer architecture.

query d_model width blocks dp | SMAPE AAD BIAS RMSE | CRPS COV@IDE I;?GE
proto 256 256 4 0.1 256 0462 -0.01 0918 | 0313 95.2
proto 256 1024 4 0.1 245 0414 -0.02 0.845 | 0.292 95.1
proto 256 256 6 0.1 23.7 0397 -0.01 0.824 | 0.281 94.9
proto 256 512 6 0.2

proto 256 1024 6 0.1 243 0407 -0.01 0.840 | 0.287 94.9
proto 256 1024 6 0.0 26.5 0477 -0.04 0980 | 0.334 93.0
proto 256 512 8 0.0 233 0.388 -0.03 0.814 | 0.276 94.3
proto 256 1024 8 0.0 231 0383 -0.02 0.806 | 0.272 94.6
proto 256 1024 8 0.1 231 0384 -0.01 0.809 | 0.272 94.6
proto 256 512 10 0.0 23.0 0.384 -0.03 0.814 | 0.273 94.2
proto 256 1024 10 0.1 243 0407 -0.01 0.840 | 0.287 94.9
proto 512 1024 6 0.1 |

learn 256 256 6 0.2 ‘ 350 0.722 -0.16 1.406 | 0.489 93.9
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H NIAQUE-LOCAL BASELINE

NIAQUE-local baseline is trained on each dataset individually using the same overall training
framework as discussed in the main manuscript for the NIAQUE-global, with the following exceptions.
The number of training epochs for each dataset is fixed at 1200, the batch size is set to 256, feature
dropout is disabled. Finally, for each dataset we select the best model to be evaluated by monitoring
the loss on validation set every epoch.

Table 12: Ablation study of NIAQUE-local model.

blocks width dp layers | SMAPE  AAD BIAS RMSE | CRPS COV(‘;: l;?GE
2 64 00 3 242 0414 -0.03 0.848 | 0.292 95.1
2 128 00 3 22.8 0381 -0.02 0.804 | 0.270 94.5
2 256 00 3 22.1 0365 -0.02 0.786 | 0.260 94.0
2 512 00 3 21.9 0360 -0.02 0.781 | 0.257 92.7
2 64 01 3 247 0431 -0.07 0.855 | 0.305 933
2 128 0.1 3 231 0389 -0.04 081 | 0.276 94.0
2 256 01 3 222 0369 -0.02 0.79 | 0.263 94.0
2 512 01 3 22.0 0361 -0.02 0.779 | 0.257 93.5
2 64 00 2 245 0419 -0.03 0.852 | 0.296 95.0
2 128 00 2 234 0391 -0.02 0.815 | 0.276 94.7
2 256 00 2 223 0.368 -0.02 0.783 | 0.262 94.1
2 512 00 2 22.1 0363 -0.03 0.780 | 0.259 92.9
4 64 00 2 23.8 0399 -0.02 0.828 | 0.282 95.1
4 128 00 2 22.8 0377 -0.03 0.797 | 0.267 94.9
4 256 00 2 22.0 0363 -0.02 0.788 | 0.259 93.5
4 512 00 2 22.0 0.359 -0.02 0.785 | 0.257 92.0
4 64 01 2 23.8 0401 -0.03 0.829 | 0.284 94.3
4 128 0.1 2 229 0.379 -0.03 0.801 | 0.267 94.6
4 256 0.1 2 22.1 0363 -0.03 0.786 | 0.259 93.5
4 512 01 2 220 0360 -0.03 0.781 | 0.257 924
8 128 00 2 23.0 0.381 -0.02 0.798 0.27 95.7
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Table 13: Ablation study of NIAQUE model.

. . log COVERAGE
blocks width dp layers singles input SMAPE  AAD BIAS RMSE | CRPS @ 95
1 1024 02 2 5% yes 25.6 0433 -0.04 0.864 | 0.306 96.5
2 1024 02 2 5% yes 23.1 0384 -0.02 0.802 | 0.272 95.7
2 1024 02 3 5% yes 227 0377 -0.03 0.796 | 0.267 95.6
4 1024 02 2 5% yes 22.1 0367 -0.02 0.787 | 0.261 94.6
4 1024 02 3 5% yes 22.1 0367 -0.02 0.792 | 0.262 94.6
8 1024 02 2 5% yes 220 0366 -0.02 0.798 | 0.264 92.7
4 512 02 2 0% yes 225 0372 -0.02 0.791 | 0.264 95.4
4 1024 02 2 0% yes 22.1 0366 -0.02 0.791 | 0.261 94.2
4 1024 03 2 0% yes 22.1 0367 -0.02 0.787 | 0.260 94.7
4 1024 04 2 0% yes 222 0370 -0.02 0.791 | 0.263 95.1
4 2048 03 2 0% yes 22.1 0366 -0.02 0.795 | 0.263 93.4
4 1024 02 2 5% no ‘ 314 0.530 -0.066 1.017 | 0.371 95.6

I NIAQUE TRAINING DETAILS AND ABLATION STUDIES

To train both NIAQUE and Transformer models we use feature dropout defined as follows. Given
dropout probability dp, we toss a coin with probability /dp to determine if the dropout event is going
to happen at all for a given batch. If this happens, we remove each feature from the batch, again with
probability v/dp. This way each feature has probability dp of being removed from a given batch and
there is a probability 1/dp that the model will see all features intact in a given batch. The intuition
behind this design is that we want to expose the model to all features most of the time, but we also
want to create many situations with some feature combinations missing.

Architecture and training ablations are reported in Table 13 shown that increasing the number of
blocks and width improves accuracy until saturation happens at 4 blocks and width 1024.

Input log transformation defined in eq. (8) is important to ensure the success of the training, as
follows both from Table 13 and Figure 6. The introduction of log-transform makes learning curves
well-behaved and smooth and translates into much better accuracy.

Adding samples containing only one of the features as input does not significantly affect accuracy.

At the same time, the addition of single-feature training rows has very strong effect on the effectiveness
of NIAQUE’s interpretability mechanism. When rows with single feature input are added (Figures 7a
and 7b), NIAQUE demonstrates very clear accuracy degradation when top features are removed and
insignificant degradation when bottom features are removed. When rows with single feature input are
not added (Figure 7c), the discrimination between strong and weak features is poor, with removal of
top and bottom features having approximately the same effect across datasets.
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Figure 6: Training losses with (dark red) and without (blue) input value log-transform eq. (8). The
introduction of log-transform makes learning curves well-behaved and smooth.
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Figure 7: The effect of adding training rows containing only one of the input features as NIAQUE
input. When rows with single feature input are added (Figures 7a and 7b), NIAQUE demonstrates
very clear accuracy degradation when top features are removed and insignificant degradation when
bottom features are removed. When rows with single feature input are not added (Figure 7c¢), the
discrimination between strong and weak features is poor, with removal of top and bottom features
having approximately the same effect across datasets.
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