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Abstract
The Johnson-Lindenstaruss lemma (Johnson &
Lindenstrauss, 1984) is a cornerstone result in di-
mensionality reduction, stating it is possible to
embed a set of n points in d-dimensional Eu-
clidean space into optimal k = O(ε−2 lnn) di-
mensions, while preserving all pairwise distances
to within a factor (1± ε).

The seminal Fast Johnson-Lindenstrauss
(Fast JL) transform by Ailon and Chazelle
(SICOMP’09) supports computing the embed-
ding of a data point in O(d ln d + k ln2 n) time,
where the d ln d term comes from multiplication
with a d × d Hadamard matrix and the k ln2 n
term comes from multiplication with a sparse
k × d matrix. Despite the Fast JL transform
being more than a decade old, it is one of the
fastest dimensionality reduction techniques for
many tradeoffs between ε, d and n.

In this work, we give a surprising new anal-
ysis of the Fast JL transform, showing that
the k ln2 n term in the embedding time can
be improved to (k ln2 n)/α for an α =
Ω(min{ε−1 ln(1/ε), lnn}). The improvement
follows by using an even sparser matrix. We
complement our improved analysis with a lower
bound showing that our new analysis is in fact
tight.

1. Introduction
Dimensionality reduction is a central technique for speed-
ing up algorithms and reducing the memory footprint of
large data sets. The basic idea is to map a set X ⊂ Rd of n
high-dimensional points to a lower dimensional representa-
tion, while approximately preserving similarities between
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the points. The most fundamental result in dimensionality
reduction, is the Johnson-Lindenstrauss transform (John-
son & Lindenstrauss, 1984), which for any precision 0 <
ε < 1, gives a mapping f : X → Rk with k = O(ε−2 lnn)
such that

∀x, y ∈ X : ‖f(x)− f(y)‖2 ∈ (1± ε)‖x− y‖2. (1)

That is, the pairwise Euclidean distance between the em-
beddings of any two points x, y ∈ X is within a factor
(1 ± ε) of the original distance. The target dimensional-
ity of k = O(ε−2 lnn) is known to be optimal (Larsen
& Nelson, 2017; Alon & Klartag, 2017). For algorithmic
applications where one can tolerate a small loss of preci-
sion, one can apply a Johnson-Lindenstrauss transform as
a preprocessing step to reduce the dimensionality of the in-
put. Since the running time of most algorithms depend on
the dimensionality of the input, this typically speeds up the
analysis while also reducing memory consumption.

A simple construction of a mapping f satisfying Equa-
tion (1) is to let f(x) = k−1/2Ax, where A is a ran-
dom k × d matrix, having each entry i.i.d. N (0, 1) dis-
tributed (Indyk & Motwani, 1998). This results in an em-
bedding time of O(kd) to compute the matrix-vector prod-
uct Ax. For some applications, this embedding time may
dominate the running time of the algorithms applied to the
embedded data, hence dimensionality reducing maps with
a faster embedding time has been the focus of much re-
search. The line of research on faster dimensionality re-
ducing maps splits roughly into two categories: 1) maps
based on sparse matrices, and 2), maps based on structured
matrices with fast matrix-vector multiplication algorithms.

Sparse JL. A sparse JL transform is obtained by replac-
ing the dense matrix A above with a matrix having only t
non-zero entries per column. Computing the product Ax
now takes only O(td) time instead of O(kd). Perhaps even
more importantly, if the input vectors x ∈ X are them-
selves sparse vectors, then the embedding time is further
reduced to O(t‖x‖0), where ‖x‖0 denotes the number of
non-zero entries in x. This is particularly useful when ap-
plying JL on e.g. bag-of-words, n-gram or tf-idf repre-
sentations of text documents (Manning & Schütze, 1999),
which are often very sparse. The fastest (sparsest) known
construction, due to Kane and Nelson (Kane & Nelson,
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2014), achieves t = O(ε−1 lnn), which nearly matches
a sparsity lower bound by Nelson and Nguyen (Nelson
& Nguyen, 2013), stating that any Sparse JL must have
t = Ω(ε−1 lnn/ ln(1/ε)). Sparse JL thus improves over
classic JL by an ε−1 factor.

While the lower bound by Nelson and Nguyen rules out sig-
nificant further improvements, the Feature Hashing tech-
nique by Weinberger et al. (Weinberger et al., 2009) study
the extreme case of t = 1. Since this is below the
sparsity lower bound, they have to assume that the ratio
ν = ‖z‖∞/‖z‖2 is small for all pairwise difference vec-
tors z = y − x for x, y ∈ X to ensure Equation (1) holds.
Determining the exact ratio ν for which Equation (1) holds
was subsequently done by Freksen et al. (Freksen et al.,
2018) and generalized to t-sparse embeddings for all t ≥ 1
by Jagadeesan (Jagadeesan, 2019).

Fast JL. Ailon and Chazelle (Ailon & Chazelle, 2009)
initiated the study of JL transforms that exploit dense matri-
ces with fast matrix-vector multiplication algorithms. Con-
cretely, they defined the Fast JL transform where the em-
bedding of a vector x is computed as PHDx, such that
D is a diagonal matrix with random signs on the diago-
nal, H is a d × d standardized Hadamard matrix and P is
a sparse k × d matrix. Computing Dx takes only O(d)
time, and multiplication with the Hadamard matrix can be
done in O(d ln d) time. The key observation that permits
a very sparse matrix P , is that with high probability, the
vector y = HDx has a small ratio ν = ‖y‖∞/‖y‖2, i.e.
no single entry contributes most of the ”mass”. As was the
case for Feature Hashing, such a bound allows for an even
sparser random projection matrix P than what a Sparse JL
transform could achieve. Ailon and Chazelle proved that a
matrix P in which each entry is non-zero only with proba-
bility q = O((ln2 n)/d) suffices for Equation (1). Thus the
expected number of non-zeroes in P is kdq = O(k ln2 n)
(also with high probability) and the product Py can be
computed in O(k ln2 n) time. This yields a total embed-
ding time of O(d ln d+ k ln2 n).

Numerous follow-up works have attempted to improve over
the Fast JL construction of Ailon and Chazelle, in particular
attempting to shave off the k ln2 n additive term to obtain
a clean O(d ln d) time embedding. These approaches nat-
urally divide into a couple of categories. First, a number
of constructions sacrifice the optimal target dimensionality
of k = O(ε−2 lnn) for faster embedding time. This in-
cludes e.g. five solutions with O(d ln d) embedding time,
but different sub-optimal k = O(ε−2 lnn ln4 d) (Krah-
mer & Ward, 2011), k = O(ε−2 ln3 n) (Do et al., 2009),
k = O(ε−1 ln3/2 n ln3/2 d + ε−2 lnn ln4 d) (Krahmer &
Ward, 2011), k = O(ε−2 ln2 n) (Hinrichs & Vybı́ral,
2011; Vybiral, 2010; Freksen & Larsen, 2020) and k =
O(ε−2 lnn ln2(lnn) ln3 d) (Jain et al., 2020), respectively.

The second category is solutions where one assumes that
k is significantly smaller than d. Here there are two so-
lutions that both achieve O(d ln k) embedding time under
the assumption that k = o(d1/2) (Ailon & Liberty, 2008;
Bamberger & Krahmer, 2021). Among solutions that insist
on optimal k = O(ε−2 lnn) and that make no assumption
about the relationship between k and d (other than the ob-
vious k ≤ d), only the recent analysis (Jain et al., 2020) of
the Kac JL transform (Kac, 1958) improves over the classic
Fast JL solution by Ailon and Chazelle for some tradeoffs
between ε, d and n. The Kac JL transform works by repeat-
edly picking two coordinates and doing a random unitary
rotation on the two coordinates. After a sufficient number
of steps, one projects on to the first k = O(ε−2 lnn) co-
ordinates and scales the coordinates appropriately. Since
each rotation takes O(1) time, the running time is propor-
tional to the number of steps needed. Jain et al. (Jain et al.,
2020) showed that

O(d ln d+ min{d lnn, k lnn ln2(lnn) ln3 d}) (2)

rotations suffice. Compared to the O(d ln d+ k ln2 n) em-
bedding time of Fast JL, Kac JL is an improvement un-
less ln3 d > lnn/ ln2(lnn). Despite these numerous ap-
proaches to Fast JL, we still lack a clean O(d ln d) or
O(d ln k) time solution.

Our Contributions. While Fast JL has been the focus
of a considerable amount of research, we give a surpris-
ing new analysis of the classic Fast JL transform by Ailon
and Chazelle. Our analysis shows that the sparsity pa-
rameter q in the matrix P can be lowered by a factor
Ω(min{ε−1 ln(1/ε), lnn}), thereby yielding a similar im-
provement in embedding time. Concretely, we show that
Fast JL can embed a vector x in time:

O

(
d ln d+ min

{
d lnn

ε
, k lnn ·max

{
1,

ε lnn

ln(1/ε)

}})
.

(3)

While this rather complicated expression might seem like
an artifact of our proof, we complement our improved up-
per bound by showing the existence of a vector requiring
precisely this embedding time using the PHDx Fast JL
construction. In later sections, we also give an intuitive de-
scription of where the different terms originate from.

Before giving more details on our results, let us thor-
oughly compare the bound to previous work. Compared
to the classic O(d ln d + k ln2 n) Fast JL bound, we ob-
serve that Equation (3) is always bounded by O(d ln d +
k lnnmax{1, ε lnn/ ln(1/ε)}), i.e. the term O(k ln2 n)
is improved by a factor Ω(min{ε−1 ln(1/ε), lnn}). Also,
if we consider the case of ε = O(ln(lnn)/ lnn), then 1
takes the maximum value in the max-expression and the
bound simplifies to O(d ln d + k lnn). Comparing this
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clean bound to the Kac JL bound in Equation (2), this is
a strict improvement (for ε < ln(lnn)/ lnn).

We further show that one can replace the Normal variables
in the projection matrix P with i.i.d. Rademacher variables
and obtain the same embedding time as in Equation (3),
thereby providing more efficient way to implement the Fast
JL construction with the same theoretical guarantees. This
is an improvement by a factor Ω(min{ε−1 ln(1/ε), lnn})
over the bound proved by Matoušek (Matoušek, 2008) for
the same construction, who showed that the embedding
time is bounded by O(d ln d+ k ln2 n).

In the next section, we give a detailed description of the
Fast JL transform and formally state our new results.

2. The Fast JL Transform
In the spirit of (Ailon & Chazelle, 2009) we now introduce
the notation for the Fast JL transform. Here we let d denote
the input dimension and k the output dimension. We as-
sume d is a power of two, which can always be ensured by
padding with 0’s. The Fast JL transform is the composition
of three matrices P ∈ Rk×d and H,D ∈ Rd×d. Here D
is a random diagonal matrix with independent Rademacher
variables (Di,i is 1 or −1 with equal probability) on its
diagonal, H is the normalized d× d Hadamard matrix (de-
noted Hd in the following):

H2 =
1√
2

(
1 1
1 −1

)
, Hd =

1√
2

(
Hd/2 Hd/2

Hd/2 −Hd/2

)
and P is a random matrix with the (i, j)’th entry being√

1/q bi,jNi,j where bi,j is a Bernoulli random variable
with success probability/sparsity parameter q and Ni,j is
a standard normal random variable, where all the bi,j’s,
Ni,j’s and Di,i’s are independent of each other. The final
embedding of a vector x is then computed as k−1/2PHDx.

Analysis Sketch. As is standard in the analysis of JL
transforms, we observe that k−1/2PHD is a linear trans-
formation. Hence for k−1/2PHD to satisfy Equation (1)
for a set of points X , it suffices that k−1/2PHD preserves
the norm of every vector z = x − y with x, y ∈ X to
within a factor (1± ε). Also by linearity, we guarantee this
by arguing that k−1/2PHD preserves the norm of a fixed
unit vector x to within (1± ε) with probability 1− δ when
k = O(ε−2 lg(1/δ)). Setting δ = 1/n3 and applying a
union bound over all normalized difference vectors z/‖z‖
with z = x − y for x, y ∈ X ensures Equation (1) holds
with probability 1 − 1/n. For shorthand, we from here on
use ‖ · ‖ to denote the norm ‖ · ‖2.

To build some intuition for the key ideas used to show
that the PHD construction approximately preserves the
norm of a unit vector with high probability, we first ob-
serve that H and D are both unitary matrices, hence HDx

preserves the norm of any vector x. Moreover, if we ex-
amine a single coordinate (HDx)i, then it is distributed
as d−1/2

∑
j σjxj for independent Rademachers σj =

sign(Hi,j)Dj,j . Standard tail bounds show that (HDx)i
is bounded by

√
ln(d/δ)/d in absolute value with prob-

ability 1 − δ/d when x has unit norm. A union bound
over all d coordinates gives that they are all bounded by√

ln(d/δ)/d with probability 1 − δ. Now that HDx has
only small coordinates (recall x has unit norm), it suffices
to use a very sparse matrix P , precisely as in the analysis
of Feature Hashing. Recall that we will set δ ≤ 1/n3 and
thus the d term in ln(d/δ) is irrelevant for d ≤ n. For sim-
plicity, we will thus assume d ≤ n, which is also consistent
with previous work (it was assumed both for Fast JL (Ailon
& Chazelle, 2009) and Kac JL (Jain et al., 2020)).

Upper Bounds. In their work, Ailon and Chazelle
showed that it suffices to set

q = O(ln2(n)/d) (4)

to guarantee Equation (1) for a set X of n points (with
probability 1 − 1/n by setting δ = 1/n3). Their proof
follows the template above, union bounding over preserv-
ing the norm of all normalized pairwise difference vectors.
This results in an expected kdq = O(k ln2 n) number of
non-zero entries in P . Our main upper bound result is an
improved analysis, showing that an even sparser P suffices:

Theorem 1. Let X be a set of n vectors in Rd and let
k = Θ(ε−2 lnn). Let further 0 < ε ≤ C where C is
some universal constant. Then for

q = O

(
min

{
ε,

lnn

d
·max

{
1,

ε lnn

ln(1/ε)

}})
,

it holds that k−1/2PHD satisfies Equation (1) with prob-
ability at least 1− 1/n.

The above is also true for matrices P where instead ofNi,j
variables one samples i.i.d. Rademacher variables.

Compared to Equation (4), we notice that even if we ignore
the first term in the min-expression, our guarantee on q is
q = O(max{ln(n)/d, ε ln2(n)/(d ln(1/ε))), i.e. always at
least a factor Ω(min{lnn, ε−1 ln(1/ε)}) better. Also, for
the case of ε = O(ln(lnn)/ lnn), the 1-term in the max
dominates, and the expression for q simplifies to a clean
q = O(ln(n)/d). Plugging in the value of q from The-
orem 1 (and recalling k = Θ(ε−2 lnn)), we get that the
number of non-zeroes of P is

kdq = O

(
min

{
ε−1d lnn, k lnn ·max

{
1,

ε lnn

ln(1/ε)

}})
in expectation. Moreover, since this number is larger than
lnn, it follows from a Chernoff bound that the number of
non-zeroes is strongly concentrated around its mean.

3



The Fast Johnson-Lindenstrauss Transform Is Even Faster

Lower Bound. A natural question to ask now is whether
the above q is optimal, or an even more refined analysis can
lead to further improvements. We show that our analysis is
tight for the case of Normal entries in the matrix P . In
particular, we give an example of a unit vector x such that
for the mapping k−1/2PHDx to preserve the norm of x to
within (1 ± ε) with probability 1 − δ, we cannot make P
sparser than in Theorem 1:

Theorem 2. For δ > 0, ε ≤ r where r is a universal con-
stant and k = ε−2 ln(1/δ), there is a unit vector x ∈ Rd
for which we must have

q = Ω

(
min

{
ε,

ln(1/δ)

d
·max

{
1,
ε ln(1/δ)

ln(1/ε)

}})
for 1√

k
‖PHDx‖ ∈ (1±ε) to hold with probability at least

1−δ, where P is the projection matrix with Normal entries.

For the reader concerned with assuming k = ε−2 ln(1/δ),
we remark that Theorem 2 can also be shown with k =
c̃ε−2 ln(1/δ) for c̃ ≥ 1, and another universal constant r′.

Comparing Theorem 2 to Theorem 1, we observe that the
bounds on q match exactly when setting δ = n−Θ(1). This
means that the analysis of Fast JL cannot be improved if
one attempts to show that any fixed vector has its norm pre-
served except with probability n−Θ(1) and doing a union
bound over all pairwise difference vectors. It is however
still conceivable that a more refined analysis could some-
how argue that there are only very few worst case vec-
tors in any set X . However, such an improved analysis
remains to be seen for any JL transform (when focusing
only on the type of guarantee in Equation (1), whereas net-
based arguments have been used e.g. for subspace embed-
dings (Clarkson & Woodruff, 2013)). In this light, Theo-
rem 2 can be seen either as a hard barrier for Fast JL, or as
hinting at a way towards further improvements.

In the next section, we formally prove Theorem 1 and also
discuss how our analysis differs from the previous analysis
by Ailon and Chazelle and conclude by giving more intu-
ition on where the different terms in the expression for q
come from.

3. Upper Bound
In this section we give the proof of Theorem 1 for Nor-
mal variables in P , while the sketch for the result for
Rademacher variables in P can be found in Appendix C.
We start by giving the high level ideas of our proof. As
in previous works, our analysis follows by arguing that for
any fixed unit vector x, it holds with probability at least
1− 1/n3 that ‖k−1/2PHDx‖ ∈ (1± ε).

First, we observe that HD is a unitary matrix and thus
‖HDx‖ = ‖x‖ = 1 for a unit vector x. Moreover, any

single coordinate (HDx)i equals d−1/2
∑d
j=1 σjxj , where

the σj = Dj,j sign(Hi,j)’s are independent Rademacher
random variables. Thus in line with the analysis by
Ailon and Chazelle, we get that any coordinate (HDx)i
is bounded by O(

√
ln(n)/d) in absolute value with prob-

ability 1 − 1/n4. A union bound over all d ≤ n coordi-
nates (this assumption is also made in previous work) gives
that all coordinates ofHDx are bounded byO(

√
ln(n)/d)

with probability 1− 1/n3.

What remains now is to argue that k−1/2‖Pu‖ ∈ (1 ± ε)
with high probability when u = HDx is a unit vector with
all coordinates bounded by O(

√
ln(n)/d).

To simplify the analysis, we will argue that k−1‖Pu‖2 ∈
(1 ± ε) with probability 1 − 1/n3. This is stronger
since

√
1± ε ⊂ (1 ± ε). To understand the distribu-

tion of ‖Pu‖2 for a fixed u, notice that the i’th coordi-
nate of Pu is given by

∑d
j=1 q

−1/2ujbi,jNi,j . Let us as-
sume that the Bernoulli random variables bi,j have been
fixed. In this case, (Pu)i is a sum of weighted and in-
dependent N (0, 1) random variables, hence (Pu)i is it-
self N (0, q−1

∑d
j=1 bi,ju

2
j ) distributed. Now define Zi =∑d

j=1 bi,ju
2
j and letN1, . . . , Nk be i.i.d. N (0, 1) variables.

Then for fixed values of the Bernoullis, ‖Pu‖2 is dis-
tributed as

∑k
i=1 q

−1ZiN
2
i . Our proof now has two steps:

1.) Give a bound on the Zi’s that holds with high proba-
bility over the random choice of the Bernoullis bi,j , and 2.)
Use the bound on the Zi’s to argue that

∑k
i=1 q

−1ZiN
2
i

behaves in a desirable manner.

In order to understand what type of bounds we need on
the Zi’s, we start by examining step 2. For this step, we
need a tail bound on

∑k
i=1 q

−1ZiN
2
i . When the Zi’s are

fixed, this is a weighted sum of sub-exponential random
variables. To analyse it, we use Proposition 5.16 from (Ver-
shynin, 2012), which gives upper bounds on the tails of
centered sub-exponential random variables:
Lemma 3 ((Vershynin, 2012)). Let Y1, . . . , Yk be indepen-
dent centered sub-exponential random variables. i.e., there
a constant C > 0 such that E[exp (CYi)] ≤ e. Then for
any a1, . . . , ak ∈ R and R = a1Y1 + · · ·+ akYk we have

P [|R| ≥ x] ≤ 2 exp
(
− cx2

‖a‖22

)
, ∀0 ≤ x ≤ ‖a‖22

‖a‖∞

P[|R| ≥ x] ≤ 2 exp
(
− cx
‖a‖∞

)
, ∀x ≥ ‖a‖22

‖a‖∞ .

where c > 0 is an absolute constant.

Note that for a random variable N ∼ N (0, 1), its centered
square (i.e. N2 − 1) is a sub-exponential random variable.
Therefore, we can apply Lemma 3 to

∑k
i=1 q

−1ZiN
2
i by

rewriting as
∑k
i=1 q

−1Zi(N
2
i − 1) +

∑k
i=1 q

−1Zi.

Examining Lemma 3, we see that we need two bounds
on the Zi’s, one on

∑
i Z

2
i and one on maxi |Zi|. Thus,
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we focus on giving bounds on these two quantities. For
this, we will use that u = HDx has all coordinates
bounded in absolute value by O(

√
ln(n)/d) as observed

earlier. We then argue that the hardest such vector u, is
one in which precisely m coordinates all take the value
m−1/2 = O(

√
ln(n)/d) and the remaining coordinates

of u are all 0. This is also the hard vector analysed by
Ailon and Chazelle. In their analysis, they simply bound∑k
i=1 Z

2
i by k(maxi |Zi|)2 and this is where we improve

over their work. Giving a tight analysis of
∑
i Z

2
i is far

from trivial and takes up the majority of Appendix A.

For now, we state the concentration inequalities we need
and we provide the proofs in Appendix A.

Lemma 4. For i = 1, . . . , k let Zi =
∑d
j=1 u

2
jbi,j where

the bi,j’s are independent Bernoulli random variables with
success probability q and the u2

j ’s are positive real numbers
upper bounded by 1/m and summing to 1. For α ≤ 1/4 it
holds

P
[

max
i=1,...,k

Zi >
q

2α

]
≤ k exp

(
−mq ln(1/α)

32α

)
.

And to bound
∑
i Z

2
i , we show the following:

Lemma 5. Let Z1, . . . , Zk be i.i.d. random variables
distributed as the Zi’s in Lemma 4. Then for any t ≥
64 · 24e3q2k and q ≥ 8/(em), we have:

P

[
k∑
i=1

Z2
i > t

]
< 14 exp

(
−
m
√
t ln(

√
t/23/(eq))

200 · 44 · 2 5
2

)
.

Before continuing, let us briefly argue that Lemma 5 is
tighter than using the approach of Ailon and Chazelle
where

∑
i Z

2
i is merely bounded as k(maxi Zi)

2. For
large enough t, Lemma 5 roughly gives that P[

∑
i Z

2
i >

t] < exp(−m
√
t ln(
√
t/q)). If we instead bounded

∑
i Z

2
i

by k(maxi Zi)
2, then for any t, their approach would

need maxi Zi ≤
√
t/k. Choosing α such that

√
t/k =

q/(2α) and examining Lemma 4, we would roughly get
P[
∑
i Z

2
i > t] < k exp(−(m(

√
t/k) ln((

√
t/k)/q))). We

would thus lose almost a factor
√
k in the exponent. This

is basically where our improvement comes from.

Since Lemma 5 does not capture all tradeoffs between ε, d
and n that we need, we also prove the following lemma:

Lemma 6. Let Z1, . . . , Zk be i.i.d. random variables dis-
tributed as the Zi’s in Lemma 4, with m = c2d/ lnn and
k = c1ε

−2 lnn and q = c1ε, where c1 ≥ 1/c2. For
ε ≤ c−1

1 /(e4) and t ≥ 2c31e
8 lnn, we have that

P

[
k∑
i=1

Z2
i > t

]
≤ 3n−4c1 .

With the central lemmas laid out, we now give the full proof
details of Theorem 1. We prove here the case of Normal en-
tries in P , and the case of Rademacher variables is proved
in Appendix C.

Proof of Theorem 1, Normal entries.

Proof. Let m = c2d/ lnn for a constant c2 > 0, and let
k = c1ε

−2 lnn be such that c1 ≥ 1/c2. Let the success
probabilities of the binomial random variables bi,j in P be

q = max {c1/m, c1εmin {1, ln (n) / (m ln (1/ε))}} .

Assume for now that u ∈ Rd is such that u2
i ≤ 1/m for all

i = 1, . . . , d and ‖u‖2 = 1. By construction of P and the
2-stability of the standard normal distribution

‖Pu‖2 =

k∑
i=1

 d∑
j=1

√
1/qujbi,jNi,j

2

d
=

k∑
i=1

1

q
ZiN

2
i ,

where Zi =
∑d
j=1 u

2
jbi,j and Ni’s are independent stan-

dard normal random variables. We first prove a bound on∑k
i=1 Zi. For this, notice that

∑k
i=1 Zi is a sum of inde-

pendent random variables, where each Zi is a sum of in-
dependent random variables with values between [0, 1/m],
and E [Zi] = q. In Appendix A, LemmaA1, we prove

P

[
k∑
i=1

Zi 6∈ (1± ε/4)qk

]
≤ 2 exp

(
−qmkε

2

48

)
,

which is bounded by 2n−c
2
1/48 when q ≥ c1/m and k =

c1ε
−2 lnn. Therefore,

∑k
i=1 Zi ∈ (1± ε/4)qk with prob-

ability at least 1− 2n−c
2
1/48.

We continue with case analysis based on the value of q. Our
goal is to show that ‖Pu‖2 =

∑k
i=1 ZiN

2
i /q ∈ (1±ε/4)k

with high probability (conditioned on u having bounded
coordinates as remarked earlier).

CASES q = c1/m AND q = c1ε ln(n)/(m ln(1/ε)).

In both these cases we have q ≥ c1ε ln(n)/(m ln(1/ε))
(due to the max in the definition of q and c1/m ≤ c1ε). By
Lemma 4, taking α = ε we have that ‖Z‖∞ ≤ q/(2ε) with
probability at least 1−k exp(−(mq ln(1/ε))/(32ε)) ≥ 1−
n−c1/32+1, because mq ln(1/ε)/ε ≥ c1 lnn and k ≤ n.

Since q ≥ c1/m, by Lemma 5 with t := 64 · 24e3q2k, and
since q ≥ c1ε ln(n)/(m ln(1/ε)) we conclude that ‖Z‖2 ≤

5
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64 · 24 · e3q2k with probability at least

1− 14 exp

−m√64 · 24 · e3q2k ln(

√
(64·24·e3q2k)/(23)

eq )

200 · 44 · 2 5
2


≥ 1− 14 exp

− (c1 ln(n))3/2 ln
(

22
√
k
)

300 ln (1/ε)


≥ 1− 14n−c

3/2
1 /300.

Hence, in these cases we have that
∑k
i=1 Zi ∈ (1±ε/4)qk,

‖Z‖∞ ≤ q
2ε and ‖Z‖2 ≤ 64 · 24e3q2k with probability

at least 1 − 17n−c1/300+1. We call such outcomes of the
variables Zi desirable.

Therefore, for desirable outcomes of theZi’s, we have from
Lemma 3 that if x := (ε/4)

∑k
i=1 Zi ≥ ‖Z‖2/‖Z‖∞, then

(with probability over the Ni’s)

P

[
1

q

k∑
i=1

ZiN
2
i 6∈ (1± ε/4)

1

q

k∑
i=1

Zi

]

≤ 2 exp

(
−
c(ε/4)

∑k
i=1 Zi

‖Z‖∞

)

≤ 2 exp

(
−cεqk/8
q/(2ε)

)
= 2n−cc1/4,

where we used that
∑k
i=1 Zi ≥ (1 − ε/4)qk for desir-

able outcomes, and that k = c1ε
−2 lnn. In addition, if

(ε/4)
∑k
i=1 Zi ≤ ‖Z‖2/‖Z‖∞, then by Lemma 3 (and us-

ing ε < 1):

P

[
k∑
i=1

1

q
N2
i Zi 6∈ (1± ε/4)

k∑
i=1

1

q
Zi

]

≤ 2 exp

(
−
c((ε/4)

∑k
i=1 Zi)

2

‖Z‖2

)

≤ 2 exp

(
− cε2q2k2

16 · 64 · 96e3q2k

)
= 2n−cc1/(16·64·96e3).

Therefore, for desirable outcomes of the Zi’s, for r1 :=
c/(16 · 64 · 96e3), it holds (with probability over the Ni’s):

1− 2n−r1c1 ≤ P

[
k∑
i=1

1

q
N2
i Zi ∈ (1± ε/4)

k∑
i=1

1

q
Zi

]

≤ P

[
k∑
i=1

1

q
N2
i Zi ∈ (1± ε)k

]
.

Since Zi’s and Ni’s are independent, it follows that with
probability at least (1− 2n−r1c1) · (1− 17n−c1/300+1) ≥
1 − 34n−min{r1,1/300}c1+1 it holds that

∑k
i=1N

2
i Zi/q ∈

(1± ε)k, as required.

CASE q = c1ε.

In this case (we assume that ε < c−1
1 /(4e)) from Lemma 6,

taking t := 2c31e
8 lnn it follows that ‖Z‖2 ≤ 2c31e

8 lnn
with probability at least 1− 3n−4c1 . Therefore, with prob-
ability at least 1 − 5n−c1/48 it holds that

∑k
i=1 Zi ∈

(1 ± ε/4)qk and ‖Z‖2 ≤ 2c31e
8 lnn, which we call as de-

sirable outcomes of Zi’s.

Similarly to the analysis in the previous case, using
Lemma 3 for desirable outcomes of Zi’s it holds that if
(ε/4)

∑k
i=1 Zi ≥ ‖Z‖2/‖Z‖∞, then with probability over

the Ni’s, and using the trivial bound that the Zi’s are at
most 1, it follows that

P

[
k∑
i=1

1

q
N2
i Zi 6∈ (1± ε/4)

k∑
i=1

1

q
Zi

]

≤ 2 exp

(
−
c(ε/4)

∑k
i=1 Zi

‖Z‖∞

)

≤ 2 exp

(
−cεqk

8

)
= 2n−cc

2
1/8,

where the last inequality follows from
∑k
i=1 Zi ≥ (1 −

ε/4)qk ≥ qk/2 and the equality follows from εqk =

c21 lnn. And if (ε/4)
∑k
i=1 Zi ≤ ‖Z‖2/‖Z‖∞, Lemma 3

yields:

P

[
k∑
i=1

1

q
N2
i Zi 6∈ (1± ε/4)

k∑
i=1

1

q
Zi

]

≤ 2 exp

(
−
c((ε/4)

∑k
i=1 Zi)

2

‖Z‖2

)

≤ 2 exp

(
− cε2q2k2

128c31e
8 lnn

)
≤ 2n−cc1/(128e8),

where the last inequality follows from ε2q2k2/ lnn =
c41ε

4 ln2(n)/(ε4 lnn) ≥ c41 ln n.

Letting r2 = c/(128e8) we conclude that for desirable out-
comes of the Zi’s, with probability

1− 2nr2c1 ≤ P

[
k∑
i=1

1

q
N2
i Zi ∈ (1± ε/4)

k∑
i=1

1

q
Zi)

]

≤ P

[
k∑
i=1

1

q
N2
i Zi ∈ (1± ε)k

]
.

Using the independence of the Zi’s and Ni’s, we get that∑k
i=1N

2
i Zi/q ∈ (1 ± ε)k holds with probability at least

(1− 2n−r2c1)(1− 5n−c1/48) ≥ 1− 10n−min{r2,1/48}c1 .

CONCLUDING THE PROOF

By a similar argument to (Ailon & Chazelle, 2009) in Equa-
tion (4), with probability at least 1 − 1/(2n3) it holds that

6
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u2
i = (HDx)2

i ≤ ln(n)/(c2d) = 1/m for all i = 1, . . . , d
simultaneously, when c2 is small enough (assuming d ≤ n
such that ln d = O(lnn)), thus we have u2

i ≤ 1/m as re-
quired.

Therefore, for all cases it suffices to set c1 as a sufficiently
large constant so with probability at least 1 − 1/(2n3),
‖Pu‖2 =

∑k
i=1

1
qN

2
i Zi ∈ (1 ± ε)k. Since D and P are

independent, with probability at least (1 − 1/(2n3))(1 −
1/(2n3)) ≥ 1− 1/n3, it holds k−1‖PHDx‖2 ∈ (1± ε).

To complete the proof of the theorem, we union bound over
all vectors z/‖z‖ where z = x − y with x, y ∈ X , to
conclude that with probability at least 1−1/n, k−1/2PHD
satisfies (1).

It remains to claim that the choice of

q = max {c1/m, c1εmin {1, ln(n)/(m ln(1/ε))}} ,

is equivalent to that claimed in Theorem 1. Recalling
that m = O(d/ lnn), implies that our choice of q is
O(max{(lnn)/d, εmin{1, ln2(n)/(d ln(1/ε))}}). Since
(lnn)/d ≤ (lnn)/k = O(ε2) = O(ε), we can never have
(lnn)/d = ω(ε) and hence we can move the max into the
min

q = O

(
min

{
ε,

lnn

d
·max

{
1,

ε lnn

ln(1/ε)

}})
.

This completes the proof of Theorem 1.

DISCUSSION OF EXPRESSION

Let us conclude by giving some more intuition on where
the different terms in the expression for q originate from.
Recall from above that the hardest vector for k−1/2P is a
unit vector u with m = O(d/ lnn) non-zero entries, each
of magnitudem−1/2. Also recall that each entry of P is the
product of a Bernoulli bi,j with success probability q and a
normal distributed random variable with variance 1/q.

The term ln(n)/d in the expression for q intuitively comes
from the following: There is a total of km Bernoulli ran-
dom variables bi,j that are each multiplied with the same
non-zero value u2

j . This gives an expected kmq of them
that are non-zero. Intuitively, since they are all multiplied
with the same coefficient, we need the number of non-zero
Bernouillis to be within εkmq of the expectation. A bino-
mial distribution with km trials and success probability q
deviates from its expectation by Ω(

√
kmq lnn) with proba-

bility n−1/2 and thus we require
√
kmq lnn < εkmq. This

implies that we must set q > ln(n)/(ε2mk) = Ω(1/m) =
Ω(ln(n)/d).

The terms ε ln2 n/(d ln(1/ε)) and ε in the expression for q
come from the event that the square of the first coordinate,
(k−1/2Pu)2

1 is larger than ε (which causes a distortion if

the rest of the coordinates are concentrated). Conditioned
on the Bernoullis b1,j , the square of the first coordinate is
the square of a normal distributed random variable. Hence
it is a factor Ω(lnn) larger than its variance with probabil-
ity n−1/2. There are now two cases: 1. m < c ln1/q n for
a small constant c > 0, and 2., m ≥ c ln1/q n.

In the first case, m < c ln1/q n, it happens with probability
at least n−1/2 that all Bernoullis b1,j that are multiplied
with a non-zero coefficient take the value 1. In that case,
the first coordinate of k−1/2Pu is normal distributed with
mean zero and variance 1/(qk) (since

∑
j u

2
j = 1). We

thus need lnn/(qk) < ε. Using that k = Θ(ε−2 lnn), this
means we have to set q = Ω(ε).

In the second case, m ≥ c ln1/q n, we expect to see qm
non-zero Bernoullis b1,j that are each multiplied with 1/m
for the first coordinate of k−1/2Pu. However, by a ”re-
verse” Chernoff bound, with probability at least n−1/2,
we see at least c ln1/q n non-zero Bernoullis. In that
case, the first coordinate of k−1/2Pu is normal distributed
with mean zero and variance Θ((ln1/q n)/(mqk)) =
Θ(ε2 ln1/q(n)/(dq)). Since the square of the first coordi-
nate was a factor lnn larger than its variance with probabil-
ity n−1/2, we hence need ε2 lnn ln1/q(n)/(dq) = O(ε). If
we for simplicity approximate q by ε in ln1/q n, this gives
precisely q = Ω(ε ln2 n/(d ln(1/ε))).

4. Lower Bound
In this section we give a sketch of the proof of Theorem 2.
The complete proof is in Appendix B. In particular, we give
an example of a unit vector x ∈ Rd, such that one must
have

q = Ω

(
min

{
ε,

ln(1/δ)

d
·max

{
1,
ε ln(1/δ)

ln(1/ε)

}})
,

to guarantee P[‖k−1/2PHDx‖ ∈ (1± ε)] ≥ 1− δ, where
P is populated with Normal variables.

The proof consists of two steps. In the first step, we show
that we must have q = Ω(ln(1/δ)/d). In the second step,
we use the result from step one to conclude that q must
also be Ω(εmin{1, ln2(1/δ)/(d ln(1/ε))}). Combining
the two, we have:

q = Ω
(
max{ln(1/δ)/d, εmin{1, ln2(1/δ)/(d ln(1/ε))}}

)
.

Noticing that it is always ln(1/δ)/d = O(ln(1/δ)/k) =
O(ε2) = O(ε), we can move the max inside the min and
obtain the bound claimed above.

In both steps, we use the same hard instance vector x. It
has the property that with probability at least δc for a small
constant c > 0, u = HDx has m = Θ(d/ ln(1/δ)) non-
zero entries, each of magnitude 1/

√
m. Conditioning on

7



The Fast Johnson-Lindenstrauss Transform Is Even Faster

such a transformed vector u = HDx puts a lot of struc-
ture on u, which simplifies the analysis of the product Pu.
Indeed, if we consider a coordinate (Pu)i, then this coor-
dinate is N (0,

∑
j bi,ju

2
j/q) distributed if we condition on

the Bernoullis bi,j . But u2
j is 1/m for precisely m values

of j and 0 for all others. Thus
∑
j bi,ju

2
j/q is distributed as

1/(qm) times a binomial distribution withm trials and suc-
cess probability q. One part of the analysis is thus to study
this distribution. Secondly, if we consider ‖Pu‖2, then this
is a linear combination of k independent χ2 random vari-
ables, with the i’th being scaled by

∑
j bi,ju

2
j/q. Hence we

also need to understand the tail of such a distribution.

For the first step, i.e. showing q = Ω(ln(1/δ)/d), we ar-
gue that the sum of the coefficients

∑
j bi,ju

2
j/q deviates a

lot from its expectation with reasonable probability. More
precisely, notice that E[

∑
j bi,ju

2
j/q] = (mq)/(mq) = 1

and thus E[
∑
i

∑
j bi,ju

2
j/q] = k. But the sum of these

coefficients is itself distributed as 1/(mq) times a bino-
mial distribution with mk trials and success probability q.
The number of successes in such a binomial distribution
deviates by additive Ω(

√
ln(1/δ)(mkq)) from its expecta-

tion mkq with probability at least δc for a small constant
c > 0. Intuitively, we need this deviation to be less than
εmkq to preserve the norm of x (and thus u) to within
(1 ± ε). This implies

√
ln(1/δ)(mkq) = O(εmkq) ⇒

q = Ω(ln(1/δ)/(ε2mk)) = Ω(1/m) = Ω(ln(1/δ)/d).

In the second step, we now use the fact that we know that
q is sufficiently large, such that coordinates 2, . . . , k of
Pu are reasonably well concentrated around their mean.
What establishes the second lower bound on q, namely
q = Ω(εmin{1, ln2(1/δ)/(d ln(1/ε))}), is the possibility
that the first coordinate (Pu)1 may be so large that it alone
distorts the norm ‖k−1/2Pu‖2. In more detail, we show
that with good probability, we have

∑k
i=2 k

−1(Pu)2
i ∈

(1 ± ε)(k − 1)/k, i.e. on the last k − 1 coordinates, the
embedding k−1/2PHDx preserves the norm of x as it
should (we work with k−1‖Pu‖2 instead of k−1/2‖Pu‖
to simplify the analysis - and since the later is a weaker
statement by

√
1± ε ⊂ (1 ± ε) it suffices to work with

k−1‖Pu‖2). In this case, we show that unless q is large
enough, the single coordinate k−1(Pu)1 contributes more
than ε to k−1‖Pu‖2 with probability more than δ.

In what follows, we show the existence of the vector x for
which u = HDx often has m = O(d/ ln(1/δ)) coordi-
nates of magnitude 1/

√
m, and the two steps of the proof

are given in Appendix B.

The hard instance. For ε, δ > 0 set l be the integer such

that l ≤ lg2

(
lg2(1/

√
2δ)
)
≤ l + 1 and define xi =

√
1
2l

for all i ≤ 2l, and xi = 0 for rest coordinates.

Notice that Dx = x with probability 2−2l ≥
√

2δ. Mul-

tiplying the Hadamard matrix Hd with the vector x results
in Hx = [H2l1, . . . ,H2l1]T /

√
d, where H2l is the unnor-

malized Hadamard matrix of size 2l × 2l, and 1 is all-ones
vector in R2l . Since the rows of the Hadamard matrix are
orthogonal, and its first row is all-ones, it follows that

(Hx)i =

{√
2l

d , for i ≡ 0 mod (2l)

0 , otherwise

Therefore, u := Hx has d/2l non-zero entries, all of value√
2l/d. This is the vector u we will analyze throughout the

remainder of the lower bound proof.

Using the definition of u we have that

‖Pu‖2 d
=

k∑
i=1

 d

2l∑
j=1

√
2l

dq
bi,jNi,j

2

=
2l

dq

k∑
i=1

 d

2l∑
j=1

bi,jNi,j

2

,

where the bi,j’s are Bernoulli random variables with suc-
cess probability q and theNi,j’s areN (0, 1) distributed, all
independent of each other. Conditioned on the outcome of
the bi,j’s it follows from 2-stability of normal distribution

k∑
i=1

 d

2l∑
j=1

bi,jNi,j

2

d
=

k∑
i=1

biN
2
i ,

where the bi’s are
∑d/2l

j=1 bi,j and the Ni’s are independent
standard normal random variables.

5. Conclusion
In this paper we studied the embedding time of the classic
Fast JL transform (Ailon & Chazelle, 2009). We showed
that this famous algorithm is in fact faster than was proven
more than two decades ago in the original paper. In partic-
ular, we carefully analyzed the sparsity parameter q in the
sparse matrix P of the PHD embedding construction.

We showed that q can be decreased by a factor of
Ω(min{ε−1 ln(1/ε), lnn}), resulting in the similar im-
provement in the O(k ln2 n) term of the original embed-
ding timeO(d lg d+k ln2 n). Moreover, for the case of ε =
O(ln(lnn)/ lnn) our bound simplifies toO(d ln d+k lnn)
which is a strict improvement of the Kac JL bound in Equa-
tion (2) in this regime. It is an interesting open question to
investigate the optimality of the Kac JL transform in the
regime of larger ε’s.

We complimented our analysis with the lower bound, ef-
fectively showing that the the upper bound on q cannot

8
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be further lowered down, if one is about to use the PHD
construction together with the union bound for obtaining
distortion guarantees on pairwise distances. However, this
does not rule out possible further improvements in the Fast
JL embedding time using a different argument from the
standard union bound. We leave this as an intriguing open
question for future research.

As fast dimensionality reduction is widely used across
many applied communities, we believe its tight analysis
will be beneficial for practitioners.
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A. Concentration Inequalities Lemmas
The following lemma and its proof is similar to Lemma 2.3 in (Ailon & Chazelle, 2009), we reprove it here for complete-
ness.
Lemma A1. For i = 1, . . . , k let Zi =

∑d
j=1 u

2
jbi,j where the bi,j’s are independent Bernoulli random variables with

success probability q and the u2
j ’s are positive real numbers bounded by 1/m and summing to 1. It holds that

P

[
k∑
i=1

mZi 6∈ (1± ε)mqk

]
≤ 2 exp(−mqkε2/3).

Proof. For any c > 0 we have

E[exp(cZ1)] =
∑

b′∈{0,1}d
exp

c d∑
j=1

u2
jb
′
1,j

P [b′] ,

where
∑d
j=1 u

2
jb
′
i,j is an convex function in (u2

1, . . . , u
2
d), implying that exp(

∑d
j=1 u

2
jb
′
i,j) is also convex (as a composition

of the convex function
∑d
j=1 u

2
jb
′
i,j and the increasing convex function exp(·)). Further, E[exp(cZ1)] is a convex function

in (u2
1, . . . , u

2
d) as a linear combination with positive scalars of convex functions. Since the point (u2

1, . . . , u
2
d) lies in the

set {x ∈ Rd|xi ∈ [0, 1/m],
∑d
i=1 xi = 1} (which is a convex polytope), the function E[exp(cZ1)] obtains its maximum

on a vertex of the polytope. The choice of vertex does not change the distribution of the random variable, therefore without
loss of generality we may assume that u2

1, . . . , u
2
m = 1/m and u2

m+1, . . . , u
2
d = 0. Let µ denote mqk and let λ > 0, then

P

[
k∑
i=1

mZi ≥ (1 + ε)mqk

]
= P

[
k∑
i=1

mZi ≥ (1 + ε)µ

]
≤ E

[
exp(λ

k∑
i=1

mZi)

]
exp(−(1 + ε)µλ)

= E [exp(λmZ1)]
k

exp(−(1 + ε)µλ)

where the last inequality follows by Zi’s being i.i.d.

Since

E [exp(λmZ1)] ≤ E

[
exp

(
λm

m∑
i=1

(1/m)b1,j

)]
= E [exp(λb1,1)]

m
= [exp(λ)q + (1− q)]m

= [exp (lg [1 + (exp(λ)− 1)q])]
m

= exp((exp(λ)− 1)mq)

we get that

P

[
k∑
i=1

mZi ≥ (1 + ε)mqk

]
≤ exp((exp(λ)− 1)mqk) exp(−(1 + ε)µλ) = exp((exp(λ)− 1)− (1− ε)λ)µ).

Setting λ = lg(1 + ε), we get

P

[
k∑
i=1

mZi ≥ (1 + ε)mqk

]
≤ exp((ε− (1 + ε) lg(1 + ε))µ),

and using ε− (1 + ε) lg(1 + ε) ≤ −ε2/3 for 0 < ε < 1 we obtain

P

[
k∑
i=1

mZi ≥ (1 + ε)mqk

]
≤ exp(−ε2µ/3). (5)

11
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Considering the case P
[∑k

i=1mZi ≤ (1− ε)mqk
]
, let λ < 0 then

P

[
k∑
i=1

mZi ≤ (1− ε)mqk

]
= P

[
k∑
i=1

mZi ≤ (1− ε)µ

]
≤ E

[
exp(λ

k∑
i=1

mZi)

]
exp(−(1− ε)µλ)

= E [exp(λmZ1)]
k

exp(−(1− ε)µλ).

Similar estimations result in

P

[
k∑
i=1

mZi ≤ (1− ε)mqk

]
= P

[
k∑
i=1

mZi ≤ (1− ε)µ

]
≤ exp((exp(λ)− 1)mqk) exp(−(1− ε)µλ)

≤ exp((exp(λ)− 1− λ(1− ε))µ).

Setting λ = lg(1− ε) < 0, we obtain

P

[
k∑
i=1

mZi ≤ (1− ε)mqk

]
≤ exp((−ε− (1− ε) lg(1− ε))µ),

and since −ε− (1− ε) lg(1− ε) ≤ −ε2/2 for 0 < ε < 1 we get that

P

[
k∑
i=1

mZi ≤ (1− ε)mqk

]
≤ exp(−ε2µ/2). (6)

Finally, by Equation (5) and Equation (6) we conclude that

P

[
k∑
i=1

mZi 6∈ (1± ε)mqk

]
≤ 2 exp(−mqkε2/3),

for 0 < ε < 1, as claimed.

Next, we restate and prove Lemma 4.
Restatement of Lemma 4.

Lemma 4. For i = 1, . . . , k let Zi =
∑d
j=1 u

2
jbi,j where the bi,j’s are independent Bernoulli random variables with

success probability q and the u2
j ’s are positive real numbers upper bounded by 1/m and summing to 1. For α ≤ 1/4 it

holds

P
[

max
i=1,...,k

Zi >
q

2α

]
≤ k exp

(
−mq ln(1/α)

32α

)
.

Proof. First notice that by a union bound and Markov’s inequality we have that for c > 0

P
[

max
i=1,...,k

Zi > t

]
≤ kP [Z1 > t] ≤ kE [exp(cZ1)] exp(−ct). (7)

Since

E[exp(cZ1)] =
∑

b′∈{0,1}d
exp

 d∑
j=1

u2
jb
′
i,j

P [b′] ,

12
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where
∑d
j=1 u

2
jb
′
i,j is an convex function in (u2

1, . . . , u
2
d), implying that exp(

∑d
j=1 u

2
jb
′
i,j) is convex as the composition

of the convex function with the increasing convex function exp(·). Since a linear combination with positive scalars of
convex functions is again a convex function, we conclude that E[exp(cZ1)] =

∑
b′∈{0,1}d exp(

∑d
j=1 u

2
jb
′
i,j)P[b′] is a

convex function in (u2
1, . . . , u

2
d). Since (u2

1, . . . , u
2
d) ∈ {x ∈ Rd|xi ∈ [0, 1/m]∀i ∈ 1, . . . , d and

∑d
i=1 xi = 1} (which is

a convex polytope), the function E[exp(cZ1)] obtains its maximum on a vertex of the polytope. The choice of vertex does
not change the distribution of the random variable, so we can without loss of generality assume that u2

1, . . . , u
2
m = 1/m

and u2
m+1, . . . , u

2
d = 0.

Using that the maximum of E[exp(cZ1)] is attained in such a vertex, we obtain that

E [exp(cZ1)] ≤ E

[
exp(

c

m

m∑
i=1

b1,i)

]
=
(

exp
( c
m

)
q + (1− q)

)m
(8)

≤ exp
(
m
(

exp
( c
m

)
q − q

))
= exp

(
mq
(

exp
( c
m

)
− 1
))

,

where the first equality follows from the bernoulli trailes b1,i being independent and identically distributed. The second
inequality uses that 0 ≤ (1 + x) ≤ exp(x) for x ∈ R+. Now setting c = m ln(t/q) (for t > q) and using Equation (7) and
Equation (8)

P
[

max
i=1,...,k

Zi > t

]
≤ kE [exp (cZ1)] exp (−ct) ≤ k exp

(
mq

(
t

q
− 1

)
−mt ln

t

q

)
.

Now setting t = q/(2α) > q we get that

P
[

max
i=1,...,k

Zi > t

]
≤ k exp

(
mq

(
1

2α
− 1− 1

2α
ln

1

2α

))
=

k exp

(
mq

2α

(
1− 2α− ln

1

2α

))
≤ k exp

(
−mq ln (1/α)

32α

)
,

where we in the second inequality we used that α ≤ 1/4 so (1− 2α− ln(1/(2α)) ≤ − ln(1/α)/16.

Next we give the proof of Lemma 5. For this, we need the following technical lemma about linear combinations of
independent Bernoulli random variables.

Lemma 7. Let Z =
∑d
j=1 u

2
jbj where bj are independent Bernoulli random variables with success probability q and u2

j

are positive real numbers bounded by 1/m and summing to 1. We then have for t > q:

P [Z > t] <

(
t

eq

)−mt
.

Proof. The proof follows the proof steps in Lemma 4. For any c ≥ 0, we have

E [exp (cZ)] ≤ exp
(
mq
(

exp
( c
m

)
− 1
))

.

Thus by Markov’s, we have for c > 0

P [Z > t] = P [exp (cZ) > exp (ct)] ≤ exp
(
mq
(

exp
( c
m

)
− 1
))

exp (−ct) ≤ exp
(
mq exp

( c
m

)
− ct

)
.

Setting c = m ln(t/q) gives

P [Z > t] < exp

(
mqt

q
−mt ln

t

q

)
= exp

(
mt−mt ln

t

q

)
= exp

(
−mt ln

t

eq

)
=

(
t

eq

)−mt
.

Restatement of Lemma 5.
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Lemma 5. Let Z1, . . . , Zk be i.i.d. random variables distributed as the Zi’s in Lemma 4. Then for any t ≥ 64 · 24e3q2k
and q ≥ 8/(em), we have:

P

[
k∑
i=1

Z2
i > t

]
< 14 exp

(
−
m
√
t ln(

√
t/23/(eq))

200 · 44 · 2 5
2

)
.

Proof. For simplicity we assume in the following that lg2 k is an integer. For j = 0, . . . , lg2(k)/2, let Ej denote the event
that there are at least 2j/(j + 1)2 indices i such that Z2

i ≥ t/(2j+3) and let E′j denote the event that there are at least
k/(2j(j + 1)2) indices i with Z2

i ≥ t2j−3/k. We claim that if
∑k
i=1 Z

2
i > t, then one of the events Ej or E′j must occur

for some j. Before we prove this, we briefly motivate why we need the two separate events Ej and E′j . If we had only
defined the events Ej , but let j range all the way to lg2 k, then either j = 0 or j = lg2 k term would dominate. The issue
with this, is that the (j + 1)2 term is sub-optimal (i.e. non-constant) for j = lg2 k. One could simply try to remove the
1/(j + 1)2 term, but this would not work as

∑
j 2j · t/2j+3 is ω(t). Including 1/(j + 1)2 is precisely used to guarantee

that
∑
j 2j/(j + 1)2 · t/2j+3 = O(t). For that reason, we define the events E′j that will handle the case of many indices

with small values.

Assume for the sake of contradiction that none of the events occur, then

k∑
i=1

Z2
i ≤

k∑
i=1

∞∑
j=0

1{Z2
i≥

t

2j+3 }
t

2j+3
=

∞∑
j=0

t

2j+3

k∑
i=1

1{Z2
i≥

t

2j+3 }

=

lg2 k∑
j=0

t

2j+3

k∑
i=1

1{Z2
i≥

t

2j+3 } +

∞∑
j=lg2 k+1

t

2j+3

k∑
i=1

1{Z2
i≥

t

2j+3 }

≤
lg2(k)/2∑
j=0

t

2j+3

k∑
i=1

1{Z2
i≥

t

2j+3 } +

lg2(k)/2∑
j=0

t

2lg2 k−j+3

k∑
i=1

1{Z2
i≥t/2lg2 k−j+3} +

∞∑
j=lg2 k+1

tk

2j+3

≤
lg2(k)/2∑
j=0

t2j

2j+3(j + 1)2
) +

lg2(k)/2∑
j=0

t2j−3

k

k∑
i=1

1{Z2
i≥

t2j−3

k } +
t

8

≤ t

8

lg2(k)/2∑
j=0

1

(j + 1)2
+

lg2(k)/2∑
j=0

kt2j−3

k(2j(j + 1)2)
+
t

8

≤ t

4

∞∑
j=0

1

(j + 1)2
+
t

8
=

tπ2

4 · 6
+
t

8
< t.

Therefore, we have that P[
∑k
i=1 Z

2
i > t] ≤

∑lg2(k)/2
j=0 P[Ej ] + P[E′j ]. To bound P[Ej ], let S be any subset of 2j/(j + 1)2

indices in [k] and define the eventEj,S which happens when all i ∈ S satisfy Z2
i ≥ t/(2j+3). Notice since t ≥ 64·24e3q2k

and j ≤ lg2(k)/2 we have t/2j+3 ≥ 64 · 24e3q2k/(8k1/2) ≥ 64 · 3e3q2k1/2 implying that the ratio of
√
t/2j+3 with q is

larger than 1, Lemma 7 is applicable with Z ≥
√
t/2j+3. Using a union bound over the events Ej,S for any such set S,

and that the Zi’s on such sets are independent and identically distributed, combined with Lemma 7 yields that,

P [Ej ] ≤
∑
S

P [Ej,S ] ≤
(

k

2j/(j + 1)2

)(√
t/2j+3/ (eq)

)−m√t/2j+32j/(j+1)2

,

and bounding
(

k
2j/(j+1)2

)
by k2j/(j+1)2 , we obtain

P [Ej ] ≤ exp

−2j
(
m
√
t/2j+3 ln

(√
t/2j+3/ (eq)

)
− ln k

)
(j + 1)

2

 .

For t ≥ 8e2kq2 and j ≤ lg2(k)/2, we have
√
t/2j+3/(eq) ≥

√
8e2kq2/(8

√
ke2q2)) ≥ k1/4 and thus it follows that

ln(
√
t/2j+3/(eq)) ≥ ln(k)/4. Using q ≥ 8/(em) we also have m

√
t/2j+3 ≥ m

√
8e2kq2/(8

√
k) ≥ meqk1/4 ≥ 8. By

14
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this we then obtain (
m
√
t/2j+3 ln

(√
t/2j+3/ (eq)

)
− ln k

)
≥ m

√
t/2j+3 ln

(√
t/2j+3/ (eq)

)
/2.

Thus letting f(j) = 2
1
2 j−5/2m

√
t ln(

√
t/2j+3/(eq))/(j + 1)2 we get that

P [Ej ] ≤ exp

(
−

(
2j−1m

√
t/2j+3 ln(

√
t/2j+3/(eq))

(j + 1)2

))

= exp

−2
1
2 j−5/2m

√
t ln
(√

t/2j+3/ (eq)
)

(j + 1)
2

 = exp (−f (j)) .

Now using that ln(
√
t/2j+3/(eq)) ≥ ln(

√
64 · 24e3q2k/(8

√
k)/(eq)) ≥ ln (32 · 3e) /2 = ln (96e) /2 for any j ∈

0, . . . , lg2(k)/2 and t ≥ 64 · 24e3q2k we get that the ratio between f(j) and f(j + 1) for j ∈ 0, . . . , lg2(k)/2 − 1 is
lower bounded by

f (j + 1)

f (j)
=

21/2
(

1− ln
(√

2
)
/ ln

(√
t/2j+3/ (eq)

))
(j + 1)

2

(j + 2)
2 ≥ 21/2 (1− ln (2) / ln (96e)) (j + 1)

2

(j + 2)
2 .

By iteratively applying the above inequality for the ratio of consecutive terms of f we get that for j′ ∈ 1, . . . , lg2(k)/2 that

f (j′) ≥
(
21/2 (1− ln (2) / ln (96e))

)j′
f (0)

(j′ + 1)
2 ≥ j′f (0)

200
,

where we in the last inequality have used that ((1− 2 ln (2) / ln (96e))21/2)j
′
/ (j′ + 1)

2 ≥ j′/200 for j′ ≥ 0.

Now using the above inequality for f we get by a geometric series argument that,

lg2(k)/2∑
j=0

P [Ej ] ≤ exp (−f (0)) +

lg2(k)/2∑
j=1

exp

(
−jf (0)

200

)

≤ exp (−f (0)) +
exp

(
− f(0)

200

)
1− exp

(
− f(0)

200

) ≤ 3 exp
(
−2−5/2 ·m

√
t ln
(√

t/23/ (eq)
)
/200

)
,

where we in the last inequality have used that f(0) = 2−5/2 · m
√
t ln(

√
t/23/(eq)) ≥ 250, to say that 1/(1 −

exp(−f(0)/200)) ≤ 2.

Next we bound P[E′j ] . Again by a union bound over all sets of k/(2j(j + 1)2) indices and Lemma 7, we get:

P[E′j ] ≤
(

k

k/ (2j(j + 1)2)

)(√
t2j−3/k/ (eq)

)−m√t2j−3/k·k/(2j(j+1)2)
.

Bounding
(

k
k/(2j(j+1)2)

)
from above by (e2j(j + 1)2)k/(2

j(j+1)2) we get that

P
[
E′j
]
≤ exp

(
− k

2j(j + 1)2
·
(
m
√
t2j−3/k ln

(√
t2j−3/k/ (eq)

)
− ln

(
e2j (j + 1)

2
)))

.

For t ≥ 24e3kq2, we have
√
t2j−3/k/(eq) ≥

√
3e2j . Since (j + 1)2 ≤ 3 · 2j for all j ≥ 0,

√
3e2j is at least√

e2j/2(j + 1) ≥ (e2j(j + 1)2)1/4 and thus ln(
√
t2j−3/k/(eq)) ≥ ln(e2j(j + 1)2)/4. For q ≥ 8/(em), we also

have m
√
t2j−3/k ≥ m

√
3e3q2 ≥ 8 and hence:

m
√
t2j−3/k ln

(√
t2j−3/k/ (eq)

)
− ln

(
e2j (j + 1)

2
)
≥ m

√
t2j−3/k ln

(√
t2j−3/k/ (eq)

)
/2.
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Now let g(j) = m
√
tk ln(

√
t2j−3/k/(eq)/((j + 1)221/2j+5/2) then we have

P
[
E′j
]
≤ exp

−km
√
t2j−3/k ln

(√
t2j−3/k/ (eq)

)
(j + 1)

2
2j+1

 = exp (−g (j)) .

Now for any j ∈ 0, . . . , lg2(k)/2 and t ≥ 64 · 24e3q2k it holds that ln(
√
t2j−3/k/(eq)) is at least

ln(
√

32 · 24e3q2k/(8k)/(eq)) ≥ ln (192e) /2. This implies that the ratio between g(j + 1) and g(j) for j ∈
0, . . . , lg2(k)/2− 1 is

g (j + 1)

g (j)
=

2−1/2
(

1 + ln
(√

2
)
/ ln

(√
t2j−3/k/(eq)

))
(j + 1)2

(j + 2)2
≤ 2−1/2 (1 + ln (2) / ln (192e)) (j + 1)2

(j + 2)2
.

Now iteratively using the above relation on the ratio between g(j + 1) and g(j) and that g(lg2(k)/2) =

k1/4m
√
t ln
(
t/(8e2q2

√
k)
)
/(27/2(ln(k)/2 + 1)2) we get for j′ ∈ 0, . . . , lg2(k)/2− 1 that

g(j′) ≥ (lg2 (k) /2 + 1)
2
g (lg2 (k) /2)(

2−1/2 (1 + ln (2) / ln (192e))
)(lg2(k)/2−j′)

(j′ + 1)
2

≥
k1/4m

√
t ln
(
t/(8e2q2

√
k)
)

(
2−1/2 (1 + ln (2) / ln (192e))

)(lg2(k)/2−j′)
22k1/827/2

≥
k1/8m

√
t ln
(
t/(8e2q2

√
k)
)

(
2−1/2 (1 + ln (2) / ln (192e))

)(lg2(k)/2−j′)
22 · 27/2

(9)

≥
(lg2(k)/2− j′) k1/8m

√
t ln
(
t/(8e2q2

√
k)
)

200 · 22 · 27/2
,

where we in the second inequality have used that for j′ ≥ 0 we have (j′ + 1)2 ≤ 22 · 2j′/4 ≤ 22 · k1/8 and where we in
the last inequality have used that for j′ = 0, . . . , lg2(k)/2− 1 we have

(
2−1/2 (1 + ln(2)/(ln(192e)))

)−(lg2(k)/2−j′)
≥ (lg2(k)/2− j′)/200.

Now using that Equation (9), also holds for j′ = lg2(k)/2, and a geometric series argument we get that,

lg2(k)/2∑
j=0

P
[
E′j
]

≤ exp

−k1/8m
√
t ln
(
t/
(

8e2q2
√
k
))

22 · 27/2

+

lg2(k)/2−1∑
j′=0

exp

− (lg2(k)/2− j′) k1/8m
√
t ln
(
t/
(

8e2q2
√
k
))

200 · 22 · 27/2


≤ exp

−k1/8m
√
t ln
(
t/
(

8e2q2
√
k
))

22 · 27/2

+
exp

(
−k1/8m

√
t ln
(
t/
(

8e2q2
√
k
))

/(200 · 22 · 27/2)
)

1− exp
(
−k1/8m

√
t ln
(
t/
(

8e2q2
√
k
))

/(200 · 22 · 27/2)
)

≤ 11 exp

−k1/8m
√
t ln
(
t/
(

8e2q2
√
k
))

200 · 22 · 27/2

 ,

where we in the last inequality have used that k1/8m
√
t ln(t/(8e2q2

√
k))/(200 · 22 · 27/2) ≥ 1/10 .
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By the above upper bounds on
∑lg2(k)/2
j=0 P[E′j ] and

∑lg2(k)/2
j=0 P[Ej ] we can conclude that

P

[
k∑
i=1

Z2
i ≥ t

]
≤ 14 exp

(
−min

{
k1/8m

√
t ln
(
t/
(

8e2q2
√
k
))

/
(

200 · 22 · 27/2
)
,m
√
t ln
(√

t/23/ (eq)
)
/
(

200 · 25/2
)})

≤ 14 exp
(
−m
√
t/
(

200 · 27/2
)

min
{
k1/8 ln

(
t/
(

8e2q2
√
k
))

/22, ln
(
t/
(
8e2q2

))})
≤ 14 exp

−m√t ln
(√

t/23/ (eq)
)

200 · 44 · 25/2

 ,

where we have used that the second term in the min is always the smallest, when it is scaled by 1/44, this follows from the
assumption about t ≥ 64 · 24e3kq2 implying that for any such given t there exist c̃ ≥ 1 such that t = c̃8e2kq2 and we get
that the first term in the min is equal to k1/8 ln

(
c̃
√
k
)
/22 = k1/8(ln (c̃) + ln (k) /2)/22 and the second term in the min

is equal to ln (c̃) + ln (k), where by the claim follows.

We now restate and present the proof of Lemma 6.
Restatement of Lemma 6.

Lemma 6. Let Z1, . . . , Zk be i.i.d. random variables distributed as the Zi’s in Lemma 4, with m = c2d/ lnn and k =
c1ε
−2 lnn and q = c1ε, where c1 ≥ 1/c2. For ε ≤ c−1

1 /(e4) and t ≥ 2c31e
8 lnn, we have that

P

[
k∑
i=1

Z2
i > t

]
≤ 3n−4c1 .

Proof. In the following we assume for simplicity that lg2(k) and lg2(t) are integers. We proceed in a somewhat similar
fashion as in the proof of Lemma 5. For j = lg2 t, . . . , lg2 k letEj be the event that there are at least 2j−1/(j− lg2(t)+1)2

indices such that Z2
i ≥ t/2j+1. Assume that none of the events Ej occurs, we then have that

k∑
i=1

Z2
i

≤
k∑
i=1

∞∑
j=lg2(t)

1{Z2
i≥

t

2j+1 }
t

2j+1

=

∞∑
j=lg2(t)

t

2j+1

k∑
i=1

1{Z2
i≥

t

2j+1 }

=

lg2 k∑
j=lg2(t)

t

2j+1

k∑
i=1

1{Z2
i≥

t

2j+1 } +

∞∑
j=lg2 k+1

t

2j+1

k∑
i=1

1{Z2
i≥

t

2j+1 }

≤
lg2 k∑

j=lg2(t)

t2j−1

2j+1 (lg2(t)− j + 1)
2 +

∞∑
j=lg2 k+1

tk

2j+1

≤ t

4

∞∑
j=1

1

j2
+
t

4

∞∑
j=0

1

2j

≤ tπ2

24
+
t

2
< t,
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where the first inequality follows by Z2
i ≤ 1, so the sum of the terms 1{Z2

i≥t/2j+1}t/2
j+1 starting at j = lg2(t) is always

greater than Z2
i . Thus we conclude that one of the events Ej happens when

∑k
i=1 Z

2
i ≥ t. Now by an union bound over

the events Ej we have

P

[
k∑
i=1

Z2
i ≥ t

]
≤

lg2(k)∑
j=lg2(t)

P [Ej ] .

WhenEj happens we know that there is a set S of 2j−1/(j− lg2(t)+1)2 indices such that for i ∈ S we have Z2
i ≥ t/2j+1.

Thus the probability of each Ej can be bounded by using a union bound over all such possible sets of indices (k choose
2j−1/(j − lg2(t) + 1)2). Now using that the Zi’s are independent and identically distributed, the probability of each of
the sets S splits into a product of probabilities P

[
Z2
i ≥ t/2j+1

]
, where Lemma 7 can be used to bound each of these

probabilities. We note that Lemma 7 with Z ≥
√
t/2j+1 is applicable since

√
t/2j+1/q ≥

√
2c31e

8 ln(n)/(2k)/(c1ε) =√
2c31e

8/(2c31) ≥ e4, where we have used the assumption that t ≥ 2c31e
8 ln(n). We now get that:

P [Ej ] ≤
(

k

2j−1/ (j − lg2(t) + 1)
2

)(√
t/2j+1/ (eq)

)√t/2j+1m2j−1/(j−lg2(t)+1)2

≤ exp

−2j−1
(√

t/2j+1m ln
(√

t/2j+1/(eq)
)
− ln

(
ek(j − lg2(t) + 1)2/2j−1

))
(j − lg2(t) + 1)2

 ,

where the last inequality follows by
(

k
2j−1/(j−lg2(t)+1)2

)
≤
(
ek(j − lg2(t) + 1)2/2j−1

)2j−1/(j−lg2(t)+1)2

.

To evaluate the term
√
t/2j+1m ln

(√
t/2j+1/(eq)

)
− ln

(
ek(j − lg2(t) + 1)2/2j−1

)
we notice the following four rela-

tions for j = lg2(t), . . . , lg2(k)√
t/2j+1m ≥

√
2c31e

8 ln (n) / (2k)c2d/ ln (n) ≥
√

2c31e
8ε2/ (2c1)c2k/ ln (n) ≥

√
2c31e

8c1/2c2ε
−1 ≥ e4ε−1,

(√
t/2j+1/(eq)

)
≥
√

2c31e
8 ln (n) / (2k)/ (ec1ε) =

√
2c31e

8/ (2e2c31) ≥ e3,

ek

2j−1
≤ e2k/t ≤ e2c1/

(
2c31e

8ε2
)
≤ 1/

(
e7ε2

)
,

j − lg2(t) + 1 ≤ lg2(k/t) + 1 ≤ lg2

(
c1/
(
2c31e

8ε2
))

+ 1 = lg2

(
2c1/

(
2c31e

8ε2
))
≤ lg2

(
1/
(
e8ε2

))
,

where we have used that c1 ≥ 1/c2 t ≥ 2c31e
8 ln(n), k = c1ε

−2 ln(2) and d ≥ k. By the above relations we conclude that
for sufficiently small ε, we have that√

t/2j+1m ln
(√

t/2j+1/(eq)
)
− ln

(
ek(j − lg2(t) + 1)2/2j−1

)
≥
√
t/2j+1m ln

(√
t/2j+1/(eq)

)
/2.

Hence for such ε and f(j) = 2j/2−5/2
√
tm ln

(√
t/2j+1/(eq)

)
/(j − lg2(t) + 1)2 we have that

P [Ej ] ≤ exp

−2j−1
√
t/2j+1m ln

(√
t/2j+1/ (eq)

)
/2

(j − lg2(t) + 1)
2

 = exp (−f (j)) .

Now using the assumptions that t ≥ 2c31e
8 ln(n) and q = c1ε we get that

√
t/2j+1/(eq) ≥

√
2c31e

8/2c31/e ≥ e3 such that
for j = lg2 t, . . . , lg2(k)− 1

f (j + 1)

f (j)
≥ (j − lg2 (t) + 1)

2
(1− ln (2) /6)

√
2

(j + 1− lg2 (t) + 1)
2 ,
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using this iteratively we get that for j′ ∈ 1, . . . , lg2(k)− lg2(t)

f(lg2(t) + j′) ≥
(
(1− ln (2) /6)

√
2
)j′

f(lg2 t)

(j′ + 1)2
≥ j′f(lg2 t)

150
,

where the last inequality follows by
(
(1− ln (2) /6)

√
2
)j′

/(j′ + 1)2 ≥ j′/150 for j′ > 1.

Now using a geometric series argument we get that

P

[
k∑
i=1

Z2
i ≥ t

]

≤
lg2(k)∑
j=lg2(t)

P [Ej ]

≤
lg2(k)∑
j=lg2(t)

exp (−f(j))

≤ exp (−f(lg2 t)/150) +

∞∑
j=1

exp (−jf(lg2 t)/150)

≤ 2
exp(−f(lg2 t)/150)

1− exp(−f(lg2 t)/150)

≤ 2
exp

(
−tm ln(1/(

√
2eq))/(600

√
2)
)

1− exp
(
−tm ln(1/(

√
2eq))/(600

√
2)
) .

Now using that t ≥ 2c31e
8 ln(n) and ε ≤ c−1

1 /(4e) so ln(1/(
√

2eq)) ≥ ln(2) we end up with the following inequality
t ln(1/(

√
2eq))/(600

√
2) ≥ c31e8 ln(2)/(300

√
2) ln(n) ≥ 4c31 and since m ≥ 1 we conclude that

P

[
k∑
i=1

Z2
i ≥ t

]
≤ 2

exp
(
−tm ln(1/(

√
2eq))/(600

√
2)
)

1− exp
(
−tm ln(1/(

√
2eq))/(600

√
2)
) ≤ 2

n−4c31

1− n−4c31
≤ 3n−4c1 ,

where we in the last inequality have assumed that n ≥ 2 and used that c1 ≥ 1, which completes the proof.

B. Proof of Theorem 2
As described in the sketch of the proof in Section 4, we proceed with the following two cases (and two steps).

First case: q = Ω
(

ln 1
δ

d

)
. For this case we need lower bounds on the tail probabilities for weighted sums of independent

χ2-distributions, thus we now restate Theorem 7 from (Zhang & Zhou, 2020) in a slightly weaker form.

Lemma 8 ((Zhang & Zhou, 2020)). Let g1, . . . , gd be independent N(0, 1) random variables and u1, . . . , ud be non-
negative real numbers, then for constants 0 < c3 and C3 ≥ 1 we have that ∀x ≥ 0

P

[
d∑
i=1

ui(g
2
i − 1) ≥ x

]
≥ c3 exp

(
−C3x

2/‖u‖22
)
.

We will also need the following reverse Chernoff bound from (Mousavi, 2010) which we restate in a multiplicative version
instead of an additive:
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Lemma 9 ((Mousavi, 2010)). Let X be a binomial random variable with r trials and success probability q ≤ 1/4. Then
for any 0 ≤ αq ≤ 1/4 it holds that

Pr [X ≥ (1 + α)qr] ≥ 1

4
exp

(
−2α2qr

)
.

With the above lemma stated we proceed with the first step in the proof.

First step in proof of Theorem 2. We condition on the randomness in HD resulting in the fixed vector u as argued
earlier. In this case, we start by showing that

∑
i bi is large with reasonable probability. Observe that

∑
i bi is binomial

distributed with r = kd/2l trials and success probability q. Hence for α =
√

ln(1/(44δ))/(8qr), it follows from Lemma 9
that either αq > 1/4 or q > 1/4 or P[

∑
i bi ≥ qr +

√
ln(1/(44δ))qr/8] ≥ δ1/4.

If q ≥ 1/4 we are done. Likewise, if αq ≥ 1/4 then q ≥ 1/(4α) implying that q ≥
√
qr/(2 ln(1/(44δ))) ≥ Ω(ε−2) by

assumptions on r = kd/2l, k = lg(1/δ)/ε2 and d/2l ≥ 1 and we are done again.

Thus, what remains is the case of P[
∑
i bi ≥ qr +

√
ln(1/(44δ))qr/8] ≥ δ1/4. Let us condition on

∑
i bi ≥

qr +
√

ln(1/(44δ))qr/8. Then by Lemma 8 with x = 0 we get P[
∑
i bi(N

2
i − 1) ≥ 0] ≥ c3. This implies∑

i biN
2
i ≥

∑
i bi ≥ qr+

√
ln(1/(44δ))qr/8 with probability at least c3δ1/4. But (2l/(dq))(qr+

√
ln(1/(44δ))qr/8) =

k +
√

ln(1/(44δ))22lr/(8d2q) = k + Ω(
√

ln(1/δ)2lk/(qd)). Thus with probability at least c3δ1/4, we have

(2l/(dq))
∑
i biN

2
i ≥ k + Ω(

√
ln(1/δ)2lk/(qd)). And since ‖Pu‖2 d

= (2l/(dq))
∑
i biN

2
i we also have that ‖Pu‖2 ≥

k + Ω(
√

ln(1/δ)2lk/(qd)) with probability c3δ1/4. Further since we noticed that the probability of HDx = u is at least√
2δ it now follows what with probability at least c3δ3/4 we have that

1

k
‖PHDx‖2 > 1 + Ω(

√
ln(1/δ)2l/(kqd)).

Thus for δ ≤ c43 it follows that we must have

Ω

(√
ln(1/δ)2l/(kqd)

)
≤ ε

for 1
k ‖PHDx‖

2 to satisfy Equation (1) (being a length preserving projection) with probability δ, which implies q ≥
Ω(ln(1/δ)2l/(ε2kd)) = Ω(ln(1/δ)/d) where we have used that 2l is Θ(ln(1/δ)) by the choose of l, which completes the
proof of the first step.

Second case q = Ω
(
εmin

{
1, ln2 (1/δ) / (d ln (1/ε))

})
. In this section we show the second step of the lower bound.

We use the result from the first step which results in q = Ω(ln(1/δ)/d). The basic idea is to show that there is a reasonably
large probability that the first coordinate (Pu)1 is so large that it distorts the embedding of x by too much, even when all
other coordinates behave well.

In what follows we state the lemmas we will need in the proof of the second step. By the the first step, we already have our
claimed lower bound in Theorem 2 whenever Θ

(
max

{
ln(1/δ)/d, εmin

{
1, ln2(1/δ)/(d ln(1/ε))

}})
= Θ (ln(1/δ)/d) ,

so we now consider the cases where ε, δ, d are such that

Θ
(
max

{
ln(1/δ)/d, εmin

{
1, ln2(1/δ)/(d ln(1/ε))

}})
= Θ

(
εmin

{
1, ln2(1/δ)/(d ln(1/ε))

})
,

and then show that for

c4 ln(1/δ)/d ≤ q ≤ c5εmin
{

1, ln2 (1/δ) / (d ln (1/ε))
}
, (10)

where c4 is the constant from the lower bound q ≥ c4 ln(1/δ)/d and c5 is a constant to be fixed later (but will be chosen
less than 1), we have that the projection fails with at least δ probability.

We construct our hard instance as in step one, except that we will have to slightly adjust the value of l (to deal with
constants). We thus set l to be the integer such that l ≤ lg2

(
lg2((1/δ)

min{1/50,c4/ lg2(e)}
)
)
≤ l + 1 and define

xi :=

{
1√
2l

, for i ≤ 2l

0 , otherwise
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It thus follows that with probability 2−2l ≥ δmin{1/50,c4/ lg2(e)}, the first 2l signs in D are 1 , thus Dx = x with at least
probability δmin{1/50,c4/ lg2(e)}. We further notice that for the above x we have that

ui := (Hx)i =

{√
2l

d , for i ≡ 0 mod (2l)

0 , otherwise

Notice that u has d/2l entries being
√

2l/d, and rest of the entries are 0. Let m denote the number of non-zero entries. If
ln(1/δ)/(qm) ≤ c6 then by the choice of l and m = d/2l it holds that q ≥ ln2(1/δ) min {1/50, c4/ lg2 (e)} /(c6d), and
since Θ

(
max

{
ln(1/δ)/d, εmin{1, ln2(1/δ)/(d ln(1/ε))}

})
= O(ln2(1/δ)/d), we are done. Hence, we may assume in

the following that

ln(1/δ)/(qm) ≥ c6, (11)

where c6 is at least 8, and will be chosen larger later.

For i ∈ [1, k] let Zi denote a normalized sum of m independent Bernoulli random variables: Zi = (1/m)
∑m
j=1 bi,j and

Ni denote a standard normal random variable, where all the Zi’s and the Ni’s are independent of each other. Then, for the
u as described above we have by linear combinations of independent normal distributions that:

‖Pu‖2 d
=

k∑
i=1

 d

2l∑
j=1

√
2l

dq
bi,jNi,j

2

d
=

k∑
i=1

1

q
ZiN

2
i .

Next we present the lemmas we will use in the second step in the proof of Theorem 2. The proof of the lemmas is in
Appendix B.1.

The following lemma states that with good probability the first coordinate of the projection vector Z1N
2
1 /q is large.

Lemma 10. For 0 < ε, δ ≤ 1/4, c5 sufficiently small (Equation (10)), and c6 sufficiently large (Equation (11)) we have
with probability at least δ1/50+1/2+1/π that

1

q
Z1N

2
1 ≥

5 ln(1/δ)

ε
.

We also would need to show that the sum of the coordinates, except Z1N
2
1 /q, have a good concentration around its mean:

Lemma 11. For 0 < ε ≤ 1/4 and 0 < δ ≤ 1/8 we have with probability at least δ1/8 that

k∑
i=2

1

q
ZiN

2
i ≥ (1− 3ε)(k − 1).

We are now ready to put the above lemmas together and complete the proof of Theorem 2.

Second step in proof of Theorem 2.

Proof. Let 0 < ε ≤ 1/4 and 0 < δ ≤ 1/8. We choose c5 and c6 according to Lemma 10. This implies that with probability
at least δ1/50+1/2+1/π , it holds that Z1N

2
1 /q ≥ 5 ln(1/δ)ε−1. In addition, by Lemma 11,

∑k
i=2 ZiN

2
i /q ≥ (1−3ε)(k−1)

with probability at least δ1/8.

21



The Fast Johnson-Lindenstrauss Transform Is Even Faster

Therefore, by independence of the Zi’s and the Ni’s, with probability δ1/50+1/2+1/π+1/8 for the vector u:

‖Pu‖2 d
=

k∑
i=1

1

q
ZiN

2
i

=
1

q
Z1N

2
1 +

k∑
i=2

1

q
ZiN

2
i

≥ 5 ln(1/δ)ε−1 + (1− 3ε)(k − 1)

= 5εk + k − 3εk − 1 + 3ε

= (1 + ε)k + εk − 1 + 3ε

> (1 + ε)k,

where the last inequality follows by the assumptions on ε ≤ 1/4 implying that εk = ln(1/δ)ε−1 > 4 ≥ 1− 3ε.

Since we have chosen l such that l ≤ lg2

(
lg2((1/δ)

min{1/50,c4/ lg2(e)}
)
)
≤ l + 1, we have that with probability at

least δ1/50 u = HDx, independently of the outcomes of the bi,j’s and the Ni,j’s. Therefore, by the law of conditional
probability, with probability at least δ1/50+1/2+1/π+1/8+1/50 ≥ δ it holds that ‖PHDx‖2 > (1 + ε)k. Thus we have
shown that for δ, ε less than sufficiently small constants, we must have q ≥ c5εmin {1, ln(1/δ)/(d ln(1/ε))} for the
mapping PHD to be a length preserving random projection with probability 1− δ.

B.1. Inequalities for the lower bound

In this section we proof Lemma 10 and Lemma 11. Lemma 10 states that the first coordinate Z1N
2
1 /q is Ω(εk) with good

probability and Lemma 11 says that
∑k
i=2 ZiN

2
i /q is Ω(k) with good probability.

We consider the cases where ε, δ, d are such that

c4 ln(1/δ)/d ≤ q ≤ c5εmin{1, ln2(1/δ)/(d ln(1/ε)} (12)

where c4 is the constant from Theorem 2 and c5 is a constant to be fixed later and will be chosen to be < 1.

We have m = d/2l where l ≤ lg2

(
lg2((1/δ)

min{1/50,c4/ lg2(e)}
)
)
≤ l + 1 implying that

m ≤ 2d/(min{1/50, c4/ lg2(e)} lg2(1/δ)) ≤ 2d/(min{1/50, c4/ lg2(e)} ln(1/δ)),

and
m ≥ d/(min{1/50, c4/ lg2(e)} lg2(1/δ)) ≥ d/(min{1/50, c4/ lg2(e)} lg2(e) ln(1/δ)).

We notice that for q’s as in Equation (12) and the above m we have that

min{1/50, c4/ lg2(e)} lg2(e) ln(1/δ)/c4 ≥ ln(1/δ)/qm ≥ min {1/50, c4/ lg2 (e)} ln(1/ε)/(2c5ε), (13)

especially that 1/(qm) ≤ 1.

We have that

ln(1/δ)/(qm) ≥ c6, (14)

where c6 is at least 8, and will be chosen larger later.

We consider the random variables Z1N
2
1 /q and

∑k
i=2 ZiN

2
i /q, where the Zi’s denotes normalized sums of independent

Bernoulli random variables Zi = (1/m)
∑m
j=1 bj and the Ni’s denotes standard normal random variable, where all the

Zi’s and the Ni’s are independent of each other.

We now present a technical lemma we will use in our proofs:

Lemma 12. For a, x ∈ R such that 0 ≤ x ≤ 1 and 0 ≤ ax ≤ 1 we have that

(1− x)
a ≤ (1− ax/2) .
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Proof. Cases x = 0, 1 and ax = 0 can be realised by insertion, and the case ax = 1 corresponds to (1 − x)1/x ≤ 1/2
which holds. Now for the remainding cases we first note by Taylor expansion of ln(1 − x) = −

∑∞
i=1 x

i/i that
(1−x)a = exp(−a

∑∞
i=1 x

i/i) and (1− ax/2) = exp(−
∑∞
i=1(ax/2)i/i). So it suffices to show that

∑∞
i=1(ax/2)i/i ≤

a
∑∞
i=1 x

i/i. Now using that ax ≤ 1 and that a geometric series with common ratio of 1/2 equals 2 we get that∑∞
i=1(ax/2)i/i = (ax/2)

∑∞
i=1

(ax/2)i−1

i ≤ (ax/2)2 = ax. We also have that ax ≤ a
∑∞
i=1 x

i/i. Hence we con-
clude that

∑∞
i=1(ax/2)i/i ≤ a

∑∞
i=1 x

i/i which proofs the claim.

In what follows we prove Lemma 13, Remark 14 and Lemma 15 which combined yield that with good probability we have
a lower bound of Θ(ε−1) on the scaled binomial Z1/q.

Lemma 13. Let 0 < ε, δ ≤ 1/4. Let further c7 ≤ 1 and L = c7 ln(1/δ)/ ln (ln(1/δ)/(qm)) if m/L ≥ 1, qm/L ≤ 1 and
c5 (Equation (12)) is chosen so small that min {1/50, c4/ lg2 (e)} /(2c5) is greater than 2. We then have with probability
at least δc7 that:

Z1

q
=

1

q

m∑
i=1

1

m
b1,i ≥

c8c7
ε
√
c5
,

with c8 = ln(2)
√

min {1/50, c4/ lg2 (e)}/(4
√

2).

Proof. The idea of the proof is to divide the m Bernoulli trails in Z1 =
∑m
i=1

1
mb1,i into L disjoint buckets of size m/L

(we choose c7 such that the bucket size is an integer), and then calculate the probability that all the buckets have at least
one success, and get thereby obtain the above lower bound on Z1/q.

Using that the buckets are disjoint so the events of buckets having a success in it is independent of each other the probability
of having at least one success in every disjoint bucket is (1−(1−q)m/L)L. Now using Lemma 12 with x = q and a = m/L

we get that
(
1− (1− q)m/L

)L ≥ (1− (1− (qm)/(2L)))
L

= ((qm)/(2L))
L. Now plugging L into this expression we

get that (qm
2L

)L
=

(
ln (ln (1/δ) / (qm)) qm

2c7 ln(1/δ)

)c7 ln(1/δ)/ ln(ln(1/δ)/(qm))

=

(
ln (ln (1/δ) / (qm))

2c7

)c7 ln(1/δ)/ ln(ln(1/δ)/(qm))

δc7 ≥ δc7 ,

where the last inequality follows from the assumption that ln(1/δ)/(qm) ≥ 8 (Equation (14)) so the first term in the second
to last expression is lower bounded by 1. Hence with probability at least δc7 we have that all the disjoint L buckets have at
least one success and hence on this event Z1/q ≥ L/(qm). Plugging L into the expression, using that x/ lnx is increasing
for x ≥ 3 and that ln(1/δ)/(qm) is lower bounded by min {1/50, c4/ lg2 (e)} ln(1/ε)/(2c5ε) (Equation (13)) which is at
least 3 by assumptions on c5 and ε ≤ 1/4, it follows that

1

q
Z1 ≥

c7 ln (1/δ)

qm ln (ln (1/δ) / (qm))
≥ c7 min {1/50, c4/ lg2 (e)} ln(1/ε)

2c5ε ln (min {1/50, c4/ lg2 (e)} ln(1/ε)/(2c5ε))
. (15)

Since min {1/50, c4/ lg2 (e)} /(2c5) ≥ 2 by assumption it holds that ln (min {1/50, c4/ lg2 (e)} ln(1/ε)/(2c5ε)) is less
than or equal to ln

(
(min {1/50, c4/ lg2 (e)} /(2c5ε))2

)
, thus

ln(1/ε)

ln (min {1/50, c4/ lg2 (e)} ln(1/ε)/(2c5ε))
≥ ln(1/ε)

2 ln (min {1/50, c4/ lg2 (e)} /(2c5ε))
.

Now using that x/(x+ a) with a, x > 0 is increasing in x, with a = ln (4/(c5 min {1/50, c4/ lg2 (e)})), x = ln(1/ε) and
ln(1/ε) ≥ ln 2 it follows that

ln(2)

2(ln (min {1/50, c4/ lg2 (e)} /(2c5)) + ln(2))
≥ ln(2)

4 ln (min {1/50, c4/ lg2 (e)} /(2c5))
.
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Plugging this into Equation (15) it follows that

1

q
Z1 ≥

c7 min {1/50, c4/ lg2 (e)} ln(2)

8c5ε ln (min {1/50, c4/ lg2 (e)} /(2c5))
.

Now using that x/ ln(x) ≥
√
x for x ≥ 1 with x = min {1/50, c4/ lg2 (e)} /(2c5), which is greater than 2 by assumptions,

we get that

min {1/50, c4/ lg2 (e)}
2c5 ln (min {1/50, c4/ lg2 (e)} /(2c5))

≥
√

min {1/50, c4/ lg2 (e)} /(2c5).

Thus we get

1

q
Z1 ≥

c7 ln(2)
√

min {1/50, c4/ lg2 (e)}
4
√

2c5ε
=

c8c7
ε
√
c5
,

with c8 = ln(2)
√

min {1/50, c4/ lg2 (e)}/(4
√

2).

We now notice that the assumption of qm/L ≤ 1 in Lemma 13 for a fixed c7 maybe be removed.

Remark 14. We may assume that qm/L ≤ 1 in Lemma 13 for a fixed c7 holds by choosing c6 sufficiently large.

Proof. To see this we notice that the assumption qm/L ≤ 1 is equivalent to

qm ln (ln (1/δ) / (qm))

c7 ln (1/δ)
≤ 1.

So if we can upper bound the left hand side by 1, we are done. To upper bound the left hand side we use that ln (x) /x is de-
creasing for x ≥ 3 so using this fact with x = ln(1/δ)/(qm) and ln(1/δ)/(qm) being lower bounded by c6 (Equation (14))
we get that

qm ln (ln(1/δ)/(qm))

c7 ln(1/δ)
≤ ln c6
c7c6

,

which is less than 1 for sufficiently large c6 hence the assumption of qm/L ≤ 1 for a fixed c7 may be removed.

Lemma 15. Let the setting be as in Lemma 13 other than m/L ≤ 1 then we have with probability δc7 that

1

q
Z1 ≥

1

q
≥ 1

c5ε
.

Proof. Now since 1/q ≥ Z1/q happens if and only if Z1 = (1/m)
∑m
j=1 b1,j = 1, hence all the Bernoulli trails in

the binomial being one, the above happens with probability qm. This probability is less than or equal to (qm/L)
L since

m/L ≤ 1 now the calculations in Lemma 13 for (qm/(2L))
L yields that qm ≥ δc7 . The later lower bound on 1/q follows

from q ≤ c5ε (Equation (12))

We now show that with good probability we have that N2
1 is Θ(ln(1/δ)).

Lemma 16. For x ≥ 0 it holds that P
[
N2 ≥ x

]
≥ 1−

√
1− exp (−2x/π).

Proof. First notice that the event {N2 ≤ x} is equivalent to the event {−
√
x ≤ N ≤

√
x}. Using this and that the density

functions of N is (2π)−1/2 exp(−x2/2) we get that

P
[
N2 ≤ x

]
=

∫ √x
−
√
x

(2π)−1/2 exp(−x2/2)dx.

Now using the equation on the top of page 64 and equation (1.5) on the same page in (Pólya, 1949) we get that the above
is at most

√
1− exp(−2x/π). This conclude the proof since P

[
N2 ≥ x

]
= 1− P

[
N2 ≤ x

]
.
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We will now combine Lemma 13, Remark 14, Lemma 15 and Lemma 16 to show Lemma 10, recall that Lemma 10 is.
Restatement of Lemma 10.

Lemma 10. For 0 < ε, δ ≤ 1/4, c5 sufficiently small (Equation (10)), and c6 sufficiently large (Equation (11)) we have
with probability at least δ1/50+1/2+1/π that

1

q
Z1N

2
1 ≥

5 ln(1/δ)

ε
.

Proof. Let c7 = 1/50 and now fix c6 large enough such that qm/L ≤ 1 as described in Remark 14 and such that c6 is
greater than 8. Then we have with probability δ1/50 by either Lemma 13 (and accordingly small c5) or Lemma 15 that

1

q
Z1 ≥ min

(
1

c5ε
,

c8
50ε
√
c5

)
.

We now also choose c5 so small that the above is greater than 2 · 5ε−1.

Now using
√

1− x ≤ 1 − x/2 for x ≤ 1 and that δ ≤ 1/4 it follows by Lemma 16 that with probability
1−

√
1− exp(− ln(1/δ)/π) ≥ δ1/π/2 ≥ δ1/2+1/π , we have N2

1 ≥ ln(1/δ)/2.

Now since that Z1 and N2
1 are independent we conclude that with probability δ1/50+1/2+1/π we have that

1

q
Z1N

2
1 ≥

2 · 5 ln(1/δ)

2ε
=

5 ln(1/δ)

ε
,

which concludes the proof of Lemma 10

We now restate and prove Lemma 11.
Restatement of Lemma 11.

Lemma 11. For 0 < ε ≤ 1/4 and 0 < δ ≤ 1/8 we have with probability at least δ1/8 that

k∑
i=2

1

q
ZiN

2
i ≥ (1− 3ε)(k − 1).

Proof. Let X = (1/q)
∑k
i=2 ZiN

2
i

d
= (1/(mq))

∑k
i=2 biN

2
i , where the bi’s are binomial random variables with m trails

and success probability q, the Ni’s are standard normal random variables and the bi’s and the Ni’s are all independent of
each other. We now notice since the biN2

i ’s are independent and identically distributed the variance of their sum i equal to
k − 1 times the variance of b2N2

2 :

Var (X) =
1

(mq)
2

k∑
i=2

Var
(
biN

2
i

)
=

k − 1

(mq)
2 Var

(
b2N

2
2

)
.

Now using the independence of b2 and N2 and that the forth moment of a standard normal distribution is 3, and that the
first and second moment of a binomial random variable is respectively mq and (mq)2 +mq(1− q) we get that

Var
(
b2N

2
2

)
= E

[(
b2N

2
2

)2]− E [(b2N2
2

)]2
= E

[
b22
]
E
[
N4

2

]
−
(
E [b2]E

[
N2

2

])2
= 3

(
(mq)

2
+mq(1− q)

)
− (mq)

2
= (mq)

2
(2 + (1− q)/ (mq)) .

Now plugging Var(b2N
2
2 ) back into the expression of Var (X), yields that

Var (X) = (k − 1) (2 + (1− q)/ (mq)) .

Now using that E [X] = (k − 1), the above calculation of the variance of X and Chebyshev-Cantelli’s inequality
P [Y − E[Y ] ≤ −t] ≤ Var(Y )/

(
Var(Y ) + t2

)
which holds for t > 0, yields that
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P

[
k∑
i=2

1

q
ZiN

2
i ≤ (1− 3ε) (k − 1)

]
≤ (k − 1) (2 + (1− q) / (mq))

(k − 1) (2 + (1− q) / (mq)) + (3ε (k − 1))
2

≤ (2 + (1− q) / (mq))

(2 + (1− q) / (mq)) + (3ε)
2

(k − 1)
.

Since y → y/(y + a) is increasing in y for a, y > 0, it now follows using this with a = (3ε)3(k − 1) and y =
2 + (1− q)/(mq) ≤ 2 + 1 = 3, where we have used that 1/(mq) ≤ 1 by the comment under Equation (13), we get that

P

[
k∑
i=2

1

q
ZiN

2
i ≤ (1− 3ε) (k − 1)

]
≤ 3

3 + (3ε)
2

(k − 1)

Lastly using that k = ln(1/δ)/ε2, ε ≤ 1/4 and δ ≤ 1/8 we get ε2(k − 1) = ln(1/δ)− ε2 ≥ 2, and we conclude that

P

[
k∑
i=2

1

q
ZiN

2
i ≤ (1− 3ε) (k − 1)

]
≤ 3

3 + 18
≤ 1− (1/8)

1/8 ≤ 1− δ1/8,

which completes the proof.

C. Rademacher Entries in P
We sketch the proof of Theorem 1 for the case of P being populated with i.i.d. Rademacher entries. Namely, Pi,j =
bi,jri,j/

√
q, where the ri,j’s are independent Rademacher variables, and bi,j’s are Bernoulli with success probability q.

We will use the following upper bound (which is essentially a special case of the bound given in Lemma 3):
Lemma 17. Let ai,j ∈ R for i = 1, . . . , k and j = 1, . . . , d and ai = (ai,1, . . . , ai,d) ∈ Rd. Let further
Yi =

∑d
j=1 ai,jri,j , where the ri,j denote independent {−1, 1}-variables with mean 0. We then have

P

[
|
k∑
i=1

Y 2
i − ‖ai‖

2 | ≥ x

]
≤ 2 exp(− cx2∑k

i=1 ‖ai‖
4

), for 0 < x ≤
16
∑k
i=1 ‖ai‖

4

maxi=1,...,k ‖ai‖2

P

[
|
k∑
i=1

Y 2
i − ‖ai‖

2 | ≥ x

]
≤ 2 exp(− cx

maxi=1,...,k ‖ai‖2
), for x ≥

16
∑k
i=1 ‖ai‖

4

maxi=1,...,k ‖ai‖2

We note that the above lemma in general holds for any subgaussian random variables (note that Rademachers are indeed
subgaussian), implying the statement of Theorem 1 holds for any subgaussian variables in entries of P . We give the proof
of Lemma 17 for completeness at the end of this section.

Proof of Theorem 1, Rademacher entries. As in the case of Normal variables let m = c2d/ lnn for a constant c2. Further,
let the embedding dimension k = c1ε

−2 lnn, where c1 is such that c1 ≥ 1/c2, and let q the success probabilities of the
binomial random variables bi,j in P be

q = max {c1/m, c1εmin {1, ln (n) / (m ln (1/ε))}} .

We assume that u is a vector in Rd such that u2
i ≤ 1/m for all i = 1, . . . , d and ‖u‖2 = 1. Thus, the random variable of

interest is

‖Pu‖2 =
1

q

k∑
i=1

 d∑
j=1

ujbi,jri,j

2

.

Using Lemma 17 with ai,j’s equal to bi,juj we have to consider ‖ai‖2 =
∑d
j=1 u

2
jbi,j’s which is what we denoted

Zi =
∑d
j=1 u

2
jbi,j in the upper bound proof with normal random variables. Going through the upper bound proof ones

again and using Lemma 17 instead of Lemma 3 will result in exactly the same proof with the only difference in the
constants.
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It remains to prove Lemma 17.

Proof of Lemma 17. First, note the we can assume without loss of generality that ‖ai‖2 > 0 for all 1 ≤ i ≤ d, since
‖ai‖2 = 0 implies Yi = 0 and the inequalities are trivially true if all ‖ai‖2 = 0. Next, since exp (−y) + exp (y) ≤
2 exp

(
x2/2

)
for y ∈ R, it follows that for s ∈ R we have

E [exp(sai,jri,j)] ≤ (exp(−sai,j) + exp(sai,j)) /2 ≤ exp
(
(sai,j)

2/2
)

for all i, j. Thus it follows by independence of the ri,j that for all i and s ∈ R we have that

E [exp(sYi)] ≤
d∏
i=1

exp
(
(sai,j)

2/2
)

= exp
(
s2 ‖ai‖2 /2

)
.

Thus the Yi’s are independent sub-Gaussian random variable with variance proxy parameter ‖ai‖2 as in the Definition 1.2
in (Rigollet & Hütter, 2015). By Lemma 1.12 in (Rigollet & Hütter, 2015) it follows that for Y 2

i − E
[
Y 2
i

]
, which by the

independence of the ri,j’s is equal to Y 2
i − ‖ai‖

2, for |s| ≤ 1/(16 ‖ai‖2)

E
[
exp

(
s
(
Y 2
i − ‖ai‖

2
))]
≤ exp

(
162s2 ‖ai‖4 /2

)
(16)

Thus if we consider 0 ≤ s ≤ 1/(16 max1,...,k ‖ai‖2) we get that

E

[
exp

(
s

(
k∑
i=1

Y 2
i − ‖ai‖

2

))]
≤ exp

(
162s2

k∑
i=1

‖ai‖4 /2

)
.

Now using Markov’s inequality it follows that

P

[
k∑
i=1

Y 2
i − ‖ai‖

2 ≥ x

]
≤ E

[
exp

(
s

(
k∑
i=1

Y 2
i − ‖ai‖

2

))]
exp(−sx) ≤ exp

(
162s2

k∑
i=1

‖ai‖4 /2− sx

)
.

If x/
(

162
∑k
i=1 ‖ai‖

4
)
≤ 1/(16 max1,...,k ‖ai‖2) we set s = x/

(
162

∑k
i=1 ‖ai‖

4
)

and get that

P

[
k∑
i=1

Y 2
i − ‖ai‖

2 ≥ x

]
≤ exp

(
−x2/

(
2 · 162

k∑
i=1

‖ai‖4
))

(17)

If x/
(

162
∑k
i=1 ‖ai‖

4
)
≥ 1/(16 max1,...,k ‖ai‖2) ≥ s we get that x ≥

(
162s

∑k
i=1 ‖ai‖

4
)

implying that

P

[
k∑
i=1

Y 2
i − ‖ai‖

2 ≥ x

]
≤ exp

(
162s2

k∑
i=1

‖ai‖4 /2− sx

)
≤ exp (sx/2− sx) = exp (−sx/2) .

Now choosing s = 1/(16 maxi=1,...,k ‖ai‖2) we get

P

[
k∑
i=1

Y 2
i − ‖ai‖

2 ≥ x

]
≤ exp

(
−x/

(
2 max
i=1,...,k

‖ai‖2
))
≤ exp

(
−x/

(
2 · 162 max

i=1,...,k
‖ai‖2

))
. (18)

Due to Equation (16) holding true for |s| ≤ 1/(16 max1=,...,k ‖ai‖2), we can carry the above arguments for−(
∑k
i=1 Y

2
i −

‖ai‖2), and get the inequalities in Equations (17) and (18) for P
[∑k

i=1 Y
2
i − ‖ai‖

2 ≤ −x
]
. Now setting c = 1/(2 · 162)

and union bounding over
∑k
i=1 Y

2
i − ‖ai‖

2 ≤ −x and
∑k
i=1 Y

2
i − ‖ai‖

2 ≥ x the claim follows.
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