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Abstract

Different methods of fine-tuning Large Language Models to new modal-1

ities have been introduced in recent years, particularly for Scientific ML2

tasks such as time-dependent simulation tasks based on Partial Differential3

Equations (PDEs). Most of these approaches are based on encoder-only4

models, even though decoder-only models have gained popularity in NLP5

and ML more broadly, given their scaling capabilities. However, the impact6

of model architecture on these approaches has not been investigated before.7

In this ongoing work, we perform a series of ablation studies that compare8

encoder-only and decoder-only models. We find that encoder-only models9

perform better than decoder-only models (with a great variation between10

tasks). This is because of how the data is introduced into decoder-only11

models, which get heavily penalized for being autoregressive. We also12

find that, in contrast to other tasks, scaling decoder-only models does not13

change performance. Pending more experimentation, these results show14

that we need to find new ways to harness the potential of decoder-only15

models in the context of cross-modal adaptation.16

1 Introduction17

Over the years, we have seen an undeniable rise in the popularity of pre-trained Large18

Language Models (LLMs). These models can then be adapted to new tasks, using different19

approaches, like fine-tuning or in-context learning. Recent work has used fine-tuning20

techniques to adapt models across modalities (Lu et al., 2022; Shen et al., 2023; Ma et al.,21

2024; Shen et al., 2024a), achieving competitive performance across a wide range of tasks.22

Given the popularity and accessibility of these pre-trained models, these approaches can be23

of great utility for Scientific Machine Learning tasks, and are being used for tasks such as24

seismic monitoring (Wang et al., 2025) and time series forecasting (Liu et al., 2025).25

However, the reasons behind this success are unclear, since few ablation studies have been26

performed, varying the originally-proposed configurations. For example, most of these27

approaches are based on encoder-only models, even though decoder-only models have28

gained popularity in the fields of NLP and ML, given their scaling capabilities.29

To determine whether decoder-only models can be of use for cross-modal adaptation30

approaches, we introduce a series of ablation studies. Our research questions are:31

• How does model architecture affect cross-modal adaptation? (§4)32

• How does scaling decoder-only models affect cross-modal adaptation? (§5)33

With these questions, we try to get a better understanding of the capabilities of cross-modal34

adaptation methods and to broaden the potential available models used to perform cross-35

modal fine-tuning. In our results, we see that decoder-only models do not outperform36

encoder-only models, even when scaled up. This is due to autoregressive attention over the37

input, as well as how the outputs are computed, which is by averaging the representations38

of the last hidden layer, rather than generating outputs. Our results point to the need for39

future work to propose custom methods to leverage the potential of decoder-only models.40
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2 Background41

Large language models for science LLMs are increasingly being used for scientific tasks,42

including to improve text quality, coding, clinical research tasks, and more (Almarie et al.,43

2023). Recent work has even studied the potential of LLMs as hypothesis generators (Zhou44

et al., 2024).45

LLMs can also be very useful for scientific tasks where data can be processed sequentially.46

One example of this is protein data, where a growing number of LLM methods are proposed47

for different tasks (Xiao et al., 2025), including for protein understanding and prediction48

(Xiao et al., 2024; Wu et al., 2024; Truong Jr & Bepler, 2023), protein engineering, generation,49

and translation (Ghafarollahi & Buehler, 2024; Zheng et al., 2023; Shen et al., 2024b).50

Cross-modal adaptation In recent years, several approaches have been proposed to fine-51

tune large language models for different modalities unseen during pre-training. These52

methods include Frozen Pretrained Transformers (FPT) (Lu et al., 2022), ORCA (Shen et al.,53

2023), Patch Replacement (PaRe) (Cai et al., 2024), Modality kNowledge Alignment (MoNA)54

(Ma et al., 2024), Unified PDE Solver (UPS) (Shen et al., 2024a), etc. All these methods are55

based on taking advantage of the acquired knowledge of the model during pre-training to56

minimize the amount of fine-tuning necessary to adapt it to a new modality.57

These techniques have a lot of potential to be adapted to different Scientific Machine58

Learning tasks, and recently, some practical applications have been presented, for example,59

for seismic monitoring (Wang et al., 2025) and time series forecasting (Liu et al., 2025).60

3 Experimental Setup61

To evaluate the effects of model architecture and scale on cross-modal adaptation with partial62

differential equation data, we experiment with several models, scales, and cross-modal63

adaptation methods as described below.64

Methods We choose two popular methods for cross-modal adaptation in the literature –65

FPT and ORCA. FPT adapts pre-trained models to new tasks by fine-tuning only the input66

and output layers and the layernorm parameters. ORCA performs an embedder training67

step before fine-tuning using Optimal Transport Dataset Distance (OTDD) (Alvarez-Melis &68

Fusi, 2020) between the new task dataset and a pre-selected proxy dataset, as a loss function.69

All parameters are trained during the fine-tuning step. We follow ORCA’s (Shen et al., 2023)70

implementation for both ORCA and FPT (Lu et al., 2022).71

Models We select RoBERTa base (Liu et al., 2019) as our encoder-only model, following72

ORCA (Shen et al., 2023), and GPT-2 (Radford et al., 2019) as our decoder-only model, since73

it is used in Lu et al. (2022). Both of these models have a similar size (125M vs. 137M74

parameters). For the scaling experiments, we consider the larger versions of the GPT-275

family: GPT-2 Medium (380M), GPT-2 Large (812M), and GPT-2 XL (1.61B).76

Datasets Following Shen et al. (2023), we use four different PDE datasets (Advection,77

Diffusion-Reaction, Diffusion-Sorption, and Navier-Stokes) from PDEBench Takamoto et al.78

(2022), explained in Appendix A. In addition to the target dataset, the ORCA method also79

requires a proxy dataset for embedder training. For RoBERTa base, we use CoNLL-2003, the80

original proxy dataset generated by Shen et al. (2023). Due to difficulties with replicating81

their approach, we used CoNLL-2000 to generate proxy datasets for the rest of the models,82

trying to remain as close as possible to their implementation. A detailed explanation of the83

proxy dataset generation can be found in Appendix B.84

As in previous literature (Shen et al., 2023; Ma et al., 2024; Shen et al., 2024a; Cai et al., 2024),85

we evaluate the tasks using normalized Root Mean Squared Errors (nRMSE), since it is86

scale-independent. As the metric is error-based, lower values are better.87
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4 How Does Model Architecture Affect Cross-Modal Adaptation?88

In this section, we experiment with two different kinds of transformer architectures, encoder-89

only and decoder-only models, represented by RoBERTa base and GPT-2, respectively. Prior90

work generally assumes that pre-training results in better cross-modal adaptation results,91

but we ablate for this factor as well by including randomly-initialized versions of these92

models. This allows us to disentangle the effects of both architecture and pre-training.93
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Figure 1: Comparison of model performance using ORCA (Shen et al., 2023) for cross-modal
adaptation, using both pre-trained and randomly-initialized versions of RoBERTa base and
GPT-2 models.

As shown in Figure 1, encoder-only models outperform decoder-only models for three94

of the four selected tasks (Advection, Diffusion-Reaction, and Navier-Stokes), with very95

different performance depending on the task. For both Advection and Navier-Stokes, we96

can see that GPT-2 is unable to solve the task, but RoBERTa base shows good results (only97

when using ORCA). On the other hand, Diffusion-Reaction shows just a small performance98

deterioration when using GPT-2 instead of RoBERTa base. Performance with FPT (shown in99

Appendix C) shows identical patterns to ORCA-based adaptation.100

The remaining task, Diffusion-Sorption, shows similarly good performance for all models,101

indicating that the task is simple enough to be solved without pre-training. Similar to what102

Garcı́a de Herreros et al. (2024) found with the Satellite dataset for satellite image time series103

analysis, this highlights the importance of selecting tasks that allow us to better evaluate104

cross-modal adaptation methods. We contend that applying these approaches should only105

be done when the pre-training in the original modality is necessary; otherwise, there is no106

gain from pre-training a model at all.107

To better understand these results, we analyzed the way these tasks were fed into the model,108

as well as the way the predictions were made. By doing this, we discovered that decoder-109

only models are doubly penalized. First, they are penalized for being autoregressive, since110

each point in the sequence is treated as an individual token and GPT-2 cannot condition on111

the sequence bidirectionally, which is necessary for waveforms with symmetry. Secondly,112

the predictions are not computed generatively, but instead, the representations of the last113

hidden layer are just averaged.114

This shows that while encoder-only models outperform decoder-only models for PDE115

tasks using cross-model adaptation methods, the setup for this comparison is biased.116

5 How Does Scaling Decoder-Only Models Affect Cross-Modal117

Adaptation?118

The previous results motivated us to find potential ways in which decoder-only models can119

overcome this penalization and improve their performance. In this section, we test scaling120

the selected decoder-only model to see if this has an effect.121
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Figure 2: Performance of different sizes of models of the GPT-2 family using both ORCA
(Shen et al., 2023) and FPT (Lu et al., 2022) for cross-modal adaptation.

As Figure 2 shows, scaling does not improve performance for any of the selected tasks,122

neither when using ORCA, nor with FPT. For Advection and Navier-Stokes, we can even see123

some performance deterioration when using FPT. We leave it to future work to investigate124

why scaling does not work despite its success in other areas (Kaplan et al., 2020; Caillaut125

et al., 2024; Cai et al., 2025), and put forth two hypotheses:126

Hypothesis 1 It could be that being able to condition bidirectionally on the whole sequence127

context is important for the time prediction, as in the previous section.128

Hypothesis 2 Given that predictions are computed by averaging the last hidden layer of129

the model, increasing the embedding dimension could make this task harder.130

6 Limitations131

Model selection As we only evaluate one model per architecture, we caution against132

drawing conclusions about the performance of, e.g., other encoder-only models beyond just133

RoBERTa. To this end, we intend to experiment with a wider range of models.134

Proxy dataset Given our difficulties replicating the original proxy dataset from ORCA135

(Shen et al., 2023), more testing is required to determine the potential influence this could136

have on all models.137

Cross-modal adaptation methods We only experiment with two popular cross-modal138

adaptation methods, and leave it to future work to investigate whether the same patterns139

hold for PARE (Cai et al., 2024) and UPS (Shen et al., 2024a).140

7 Conclusion and Future Work141

In this work, we perform a series of ablation studies to study the effect of model architecture142

and size on cross-modal adaptation approaches. Contrary to our expectations, we found143

that decoder-only models cannot outperform encoder-only models, even when scaled. We144

found that the unidirectional attention plays a key role in this performance difference, not145

allowing the model to get an overall understanding of the PDE data.146

Based on these results, future work should introduce new ways to overcome this penal-147

ization to decoder-only models to be able to take advantage of their full capabilities and148

scaling potential. These results should also be validated with a wider variety of models,149

cross-modal adaptation methods, and datasets, to address the limitations described in the150

previous section.151
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A PDE Datasets Details249

As we saw in Section 3, we tested the models in a collection of PDE datasets from PDEBench250

(Takamoto et al., 2022). We follow Shen et al. (2023) for the download, pre-processing, and251

loading of the data. The specifications of the selected datasets can be seen in Table 1252

Dataset Dimension Resolution Coefficients

Advection 1D 1024 β = 0.4
Diffusion-Reaction 1D 1024 ν = 0.5, ρ = 1.0
Diffusion-Sorption 1D 1024 -

Compressible Navier-Stokes 1D 1024 η = ζ = 0.1, rand periodic

Table 1: List of PDE dataset used as target datasets and their corresponding specifications.

B Proxy Datasets253

To create the specific proxy datasets for GPT-2, GPT-2 Medium, GPT-2 Large, and GPT-2 XL,254

we follow the specifications given by Shen et al. (2023).255

Instead of using CoNLL-2003, like stated in Shen et al. (2023), we used the CoNLL-2000256

dataset (Sang & Buchholz, 2000). Following Shen et al. (2023), we selected a random sample257

of 2000 sequences containing less than 32 tokens. We unified the length by adding the258

padding token until all sequences have a length of 32 tokens. Lastly, we calculate the259

embeddings using the selected models.260

C How Does Model Architecture Affect FPT Adaptation?261

In this section, we include the results for FPT for Section 4.
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Figure 3: Comparison of model performance using FPT (Lu et al., 2022) for cross-modal
adaptation, using both pre-trained and randomly-initialized version of RoBERTa base and
GPT-2 models.
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