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Abstract
Unsupervised domain adaptation (UDA) has seen
substantial efforts to improve model accuracy for
an unlabeled target domain with the help of a
labeled source domain. However, UDA mod-
els often exhibit poorly calibrated predictive un-
certainty on target data, a problem that remains
under-explored and poses risks in safety-critical
UDA applications. The calibration problem in
UDA is particularly challenging due to the ab-
sence of labeled target data and severe distribu-
tion shifts between domains. In this paper, we
approach UDA calibration as a target-domain-
specific unsupervised problem, different from
mainstream solutions based on covariate shift.
We introduce Pseudo-Calibration (PseudoCal), a
novel post-hoc calibration framework. Our inno-
vative use of inference-stage mixup synthesizes
a labeled pseudo-target set capturing the struc-
ture of the real unlabeled target data. This turns
the unsupervised calibration problem into a su-
pervised one, easily solvable with temperature
scaling. Extensive empirical evaluations across 5
diverse UDA scenarios involving 10 UDA meth-
ods consistently demonstrate the superior per-
formance and versatility of PseudoCal over ex-
isting solutions. Code is available at https:
//github.com/LHXXHB/PseudoCal.

1. Introduction
Unsupervised domain adaptation (UDA) (Pan & Yang,
2009) has been widely studied for enhancing the generaliza-
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tion of deep learning models (He et al., 2016) from labeled
source domains to an unlabeled target domain with similar
tasks but varying data distributions. Notable progress has
been achieved in developing effective UDA methods (Ganin
& Lempitsky, 2015), practical applications (Tsai et al.,
2018), and real-world settings (Liang et al., 2020a), with a
predominant focus on target domain model accuracy.

However, for a classification model, achieving reliable pre-
dictive uncertainty estimation is as crucial as high accu-
racy, especially in safety-critical decision-making scenarios
like autonomous driving and medical diagnosis (Guo et al.,
2017). A calibrated model should produce probability pre-
dictions that accurately reflect correctness likelihood (Guo
et al., 2017). Although predictive uncertainty calibration
has garnered substantial attention in IID supervised learn-
ing tasks with deep models (Thulasidasan et al., 2019), the
calibration problem in UDA remained largely unexplored
until a pioneering UDA study (Wang et al., 2020), which
revealed that improved UDA model accuracy comes at the
expense of poor uncertainty calibration on target data. This
phenomenon is vividly illustrated in Figure 1(a), where
increasing target domain accuracy is accompanied by signif-
icant overfitting of the negative log-likelihood (NLL) loss
during adaptation. The first challenge with UDA calibra-
tion is the absence of labeled data in the target domain,
rendering the direct leverage of supervised IID calibration
methods like temperature scaling (Guo et al., 2017) im-
possible. Another significant challenge arises from severe
domain distribution shifts between source and target. Con-
sequently, UDA models calibrated with only labeled source
data cannot ensure effective calibration for unlabeled data
in the target domain (Wang et al., 2020).

To address these challenges, mainstream approaches (Park
et al., 2020; Wang et al., 2020) treat calibration in UDA as
a covariate shift problem (Sugiyama et al., 2007) across do-
mains. They typically employ importance weighting (Cortes
et al., 2008) to estimate weights for source samples based
on the similarity to target data and then perform sample-
weighted temperature scaling with a labeled source vali-
dation set. These solutions have obvious drawbacks that
impede effective and efficient model calibration in UDA.
Firstly, importance weighting may not be reliable under
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(a) Overfitting of NLL (b) Correct-wrong statistics (c) Reliability diagrams
Figure 1: ATDOC (Liang et al., 2021) on a closed-set UDA task Ar → Cl. (a) illustrates the target error and target NLL loss
(rescaled to match error) during UDA training. (b) divides confidence values into 50 bins, displaying the count of correct
and wrong predictions in each bin. For real target data, correctness is determined by comparing predictions with ground
truths, and for pseudo-target data, it’s assessed by comparing predictions with synthesized labels. (c) shows reliability
diagrams (Guo et al., 2017) for both pseudo and real target data. Perfect: ideal predictions with no calibration error.

severe covariate shift and other distribution shifts, such
as label shift (Park et al., 2020). Secondly, despite being
based on the simple and post-hoc temperature scaling, all
of these approaches require additional model training for ac-
curate density estimation, adding complexity. Lastly, these
methods rely on labeled source data, which limits their appli-
cability in privacy-preserving UDA scenarios like the recent
source-free UDA settings (Liang et al., 2020a; 2022).

In contrast, we adopt a novel perspective, treating UDA
calibration as an unsupervised calibration problem in the
target domain, which allows us to focus solely on the first
challenge. We first study the ‘Oracle’ case of using labeled
target data for temperature scaling and then factorize its
NLL objective into a joint optimization involving both cor-
rect and wrong predictions. This factorization uncovers a
key insight with temperature scaling: datasets with similar
correct-wrong statistics should share similar temperatures.
We then introduce a novel post-hoc calibration framework
called Pseudo-Calibration (PseudoCal). Concretely, Pseudo-
Cal utilizes mixup (Zhang et al., 2018) during the inference
stage with unlabeled target data to generate a labeled pseudo-
target set. It then performs supervised calibration on this
labeled set for the temperature. PseudoCal’s effectiveness
depends on the presence of similar correct-wrong statistics
between pseudo and real target data sets. Our intuitive analy-
sis, following the cluster assumption (Grandvalet & Bengio,
2004), supports sample-level correspondence between the
two datasets. Specifically, pseudo-target samples with cor-
rect predictions correspond to correct real target samples,
and vice versa, as shown in Figure 1(b). Benefiting from
such a high resemblance, PseudoCal significantly improves
the calibration performance, as demonstrated in Figure 1(c).

We make three key contributions: 1) We address the UDA
calibration problem from a novel target-domain perspective,

for the first time enabling a unified approach across diverse
UDA scenarios, including those with label shift or limited
source access. 2) We propose a novel and versatile calibra-
tion framework, PseudoCal, which only requires unlabeled
target data and a fixed UDA model. PseudoCal synthesizes
a labeled pseudo-target set with similar correct-wrong statis-
tics to real target data, successfully converting the challeng-
ing unsupervised calibration problem into a readily solvable
supervised one. 3) We conduct a comprehensive evaluation
of PseudoCal, involving 5 calibration baselines, to calibrate
10 UDA methods across 5 UDA scenarios. Experimental
results demonstrate the superior performance of PseudoCal
over all other calibration methods.

2. Related Work
Unsupervised domain adaptation (UDA) has been exten-
sively studied in image classification. Mainstream methods
can be categorized into two lines: 1) Distribution alignment
across domains with discrepancy measures (Long et al.,
2015) or adversarial learning (Ganin & Lempitsky, 2015;
Long et al., 2018; Saito et al., 2018), and 2) Target domain-
based learning with self-training (Shu et al., 2018; Liang
et al., 2021) or regularizations (Xu et al., 2019; Cui et al.,
2020; Jin et al., 2020). Initially, UDA focused on the co-
variate shift problem (Sugiyama et al., 2007) – two do-
mains share similar label and conditional distributions but
have different input distributions. This is commonly called
closed-set UDA. Then, more settings have arisen, notably
addressing label shift (Lipton et al., 2018). These include
partial-set UDA (Cao et al., 2018; Liang et al., 2020b),
where some source classes are absent in the target domain,
and open-set UDA (Panareda Busto & Gall, 2017), where
the target includes samples from unknown classes. Recently,
source-free UDA settings have become popular, preserving
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Table 1: Comparisons of typical methods for predictive uncertainty calibration in UDA.

Calibration method
Covariate

shift
Label
shift

No harm to
accuracy

No extra
training

No source
data

TempScal-src (Guo et al., 2017) ✗ ✗ ✓ ✓ ✗
MC-Dropout (Gal & Ghahramani, 2016) ✓ ✓ ✗ ✓ ✓
Ensemble (Lakshminarayanan et al., 2017) ✓ ✓ ✓ ✗ ✓
CPCS (Park et al., 2020) ✓ ✗ ✓ ✗ ✗
TransCal (Wang et al., 2020) ✓ ✗ ✓ ✗ ✗
PseudoCal (Ours) ✓ ✓ ✓ ✓ ✓

source privacy: the white-box setting (Li et al., 2020; Liang
et al., 2020a) uses the source model for target adaptation
and the black-box setting (Zhang et al., 2021; Liang et al.,
2022) only employs the source model for inference. Unlike
most studies on improving model accuracy, our work aims
to improve the estimation of predictive uncertainty in UDA.

Predictive uncertainty calibration was initially stuidied on
binary classification tasks (Zadrozny & Elkan, 2001; Platt
et al., 1999). (Guo et al., 2017) extends Platt scaling (Platt
et al., 1999) to multi-class classification and introduces ma-
trix scaling (MatrixScal), vector scaling (VectorScal), and
temperature scaling (TempScal). These post-hoc methods
require a labeled validation set for calibration. Some other
methods address calibration during model training, includ-
ing Monte Carlo Dropout (MC-Dropout)(Gal & Ghahra-
mani, 2016), Ensemble (Lakshminarayanan et al., 2017),
and Stochastic Variational Bayesian Inference (Blundell
et al., 2015; Louizos & Welling, 2017; Wen et al., 2018).
However, an evaluation in (Ovadia et al., 2019) reveals
that these methods do not maintain calibration performance
under dataset shift. There has been growing interest in cal-
ibration under distribution shifts (Alexandari et al., 2020;
Wang et al., 2020; Park et al., 2020). Some works per-
turb the labeled source validation set to serve as a domain-
generalized target set (Tomani et al., 2021; Salvador et al.,
2021; Zou et al., 2023) or employ it for density estima-
tion (Tomani et al., 2023). Some methods (Gong et al.,
2021; Yu et al., 2022) utilize multiple source domains to
calibrate the unlabeled target domain in UDA. Addition-
ally, some recent training-stage calibration methods employ
smoothed labels (Thulasidasan et al., 2019; Liu et al., 2022)
or optimize accuracy-uncertainty differentiably (Krishnan &
Tickoo, 2020). In this paper, we specifically address the cal-
ibration problem in single-source UDA. A vanilla baseline
is to apply IID calibration methods such as TempScal with a
labeled source validation set, dubbed TempScal-src. Regard-
ing methods considering the domain shifts, the mainstream
idea is to utilize importance weighting (Cortes et al., 2008)
to address calibration under covariate shift in UDA, exem-
plified by CPCS (Park et al., 2020) and TransCal (Wang
et al., 2020). Table 1 presents a comprehensive comparison
of typical and relevant UDA calibration methods. Notably,

PseudoCal stands out due to its simplicity and versatility.

3. Approach
We introduce unsupervised domain adaptation (UDA) with
a C-way image classification task. UDA generally involves
two domains: a labeled source domain and an unlabeled
target domain. The source domain Ds = {(xi

s, y
i
s)}

ns
i=1

consists of ns images xs with corresponding one-hot labels
ys, where xi

s ∈ Xs and yis ∈ Ys. The target domain Dt =
{xi

t}
nt
i=1 contains unlabeled images xt, where xi

t ∈ Xt.
The goal is to learn a UDA model ϕ that can predict the
unknown ground truth labels {yit}

nt
i=1 for the target domain,

utilizing data from both domains simultaneously (Ganin &
Lempitsky, 2015) or sequentially (Liang et al., 2020a).

When feeding an arbitrary sample (x, y) into model ϕ, we
can obtain the predicted one-hot label ŷ and the correspond-
ing softmax-based confidence p̂. Ideally, the confidence
should accurately reflect the probability of correctness, ex-
pressed as P(ŷ = y|p̂ = p) = p, ∀ p ∈ [0, 1]. This
perfect calibration, also known as Perfect, is impossible
to achieve. The widely used metric for evaluating cali-
bration error is the expected calibration error (ECE) (Guo
et al., 2017). ECE involves partitioning probability pre-
dictions into M bins, with Bm representing the indices of
samples in the m-th bin. It calculates the weighted aver-
age of the accuracy-confidence difference across all bins:
LECE =

∑M
m=1

1
n |Bm||acc(Bm) − conf(Bm)|. Here, n

represents the number of samples, and for the m-th bin, the
accuracy is acc (Bm) = |Bm|−1

∑
i∈Bm

1(ŷi = yi), and
the confidence is conf (Bm) = |Bm|−1

∑
i∈Bm

p̂i. The in-
troduction of more metrics, such as NLL (Goodfellow et al.,
2016) and Brier Score (BS) (Brier et al., 1950), is provided
in Appendix B for further reference.

3.1. Factorization of Supervised ‘Oracle’ Calibration

Unlike the prevalent cross-domain covariate shift perspec-
tive, we view calibration in UDA as an unsupervised cal-
ibration problem within the unlabeled target domain. Be-
fore tackling this challenging problem, we study an ‘Or-
acle’ solution based on supervised temperature scaling
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Figure 2: PseudoCal post-hoc calibrates the UDA model’s predictive uncertainty in the unlabeled target domain.

(TempScal) (Guo et al., 2017). TempScal is a post-hoc
calibration method that optimizes a temperature scalar, de-
noted as T , on a labeled validation set using the NLL
loss between the temperature-flattened softmax predictions
and the ground truth labels. For the unlabeled target do-
main in UDA, we define the calibration achieved by ap-
plying TempScal with raw target predictions and unattain-
able target ground truths as the ‘Oracle’ calibration. Let
z represent the corresponding logit vector for the image
input x, and let σ(·) denote the softmax function. The
‘Oracle’ target temperature, denoted as To, can be ob-
tained using the original temperature scaling optimization:
To = argmin

T
E(xi

t,y
i
t)∈Dt

LNLL

(
σ(zit/T ), y

i
t

)
.

With further analysis, we observe that target samples can
be classified as either being correctly or wrongly predicted
when evaluated by target ground truths. Moreover, both
types of samples have contrasting effects on the temperature
optimization process. Specifically, the NLL minimization
favors a small temperature to sharpen the correct predictions
and a large temperature to flatten the wrong predictions.
Therefore, we can factorize the NLL objective as follows:

To = argmin
T

Nc

N
E(xi

t,y
i
t)∈Dc

LNLL

(
σ(zit/T ), y

i
t

)
+

Nw

N
E(xj

t ,y
j
t )∈Dw

LNLL

(
σ(zjt /T ), y

j
t

)
,

where Dc represents the set of correctly predicted target
samples, comprising Nc instances. Similarly, Dw denotes
the wrongly predicted set with Nw instances. Obviously,
this factorization suggests that when applying TempScal
to another labeled set with matching correct-wrong statis-
tics (i.e., the same count of correct and wrong predictions)
as the ‘Oracle’ calibration, the objective of the NLL opti-
mization remains highly consistent, yielding a temperature
approximation close to the target oracle temperature To.

3.2. Our Unsupervised Solution: Pseudo-Calibration

This straightforward factorization of NLL has inspired effec-
tive solutions to calibration in domain generalization using
a labeled source validation set (Zou et al., 2023). In contrast,
our study focuses specifically on the transductive target
domain, leading to the introduction of our novel Pseudo-
Calibration (PseudoCal) framework, which operates without
utilizing any source data. The main idea is to use the unla-
beled target data to synthesize a labeled pseudo-target set
that mimics the correct-wrong statistics of the real target set
and then apply TempScal to this labeled set.

With only unlabeled target data and a fixed UDA model, the
use of predicted labels as pseudo-labels (Lee et al., 2013) is
a simple method to generate a labeled set. However, optimiz-
ing NLL between raw target predictions and pseudo-labels
treats all predictions as correct, ignoring the optimization
of wrong predictions in Dw. This mismatch in correct-
wrong statistics can result in poor calibration performance,
as demonstrated by ‘Pseudo-Label’ and ‘Filtered-PL’ in Ta-
ble 8. Instead, we employ mixup (Zhang et al., 2018) with
data across clusters (i.e., with different pseudo-labels), gen-
erating mixed samples that inherently include both correct
and wrong predictions when evaluated with mixed labels.

Step 1: Pseudo-target synthesis. We generate a pseudo-
target set by applying mixup to target samples in the infer-
ence stage. Specifically, a pseudo-target sample xpt and its
label vector ypt are obtained by taking a convex combina-
tion of a pair of real target samples xi

t, x
j
t from different

clusters and their pseudo-labels ŷit, ŷ
j
t . Consequently, we

obtain a labeled pseudo-target set {(xi
pt, y

i
pt)}

npt

i=1, where
npt represents the amount. The general formulation is:

xpt = λ ∗xi
t +(1−λ) ∗xj

t , ypt = λ ∗ ŷit +(1−λ) ∗ ŷjt ,

where λ ∈ (0.5, 1.0) is a fixed scalar used as the mix ratio,
different from that in common mixup.

Step 2: Supervised calibration. Using the synthesized
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labeled pseudo-target set {(xi
pt, y

i
pt)}

npt

i=1, we can easily
determine its optimal pseudo-target temperature through
TempScal. This estimated temperature serves as an approxi-
mation of the ‘Oracle’ target temperature To.

With the above two simple steps, PseudoCal successfully
transforms the challenging unsupervised calibration prob-
lem associated with the unlabeled real target set into a su-
pervised one with the labeled pseudo-target set and readily
solves it with TempScal. The pipeline of PseudoCal is il-
lustrated in Figure 2, where the UDA model is utilized as a
black box solely for inferring the predictions of input data. A
comprehensive Pytorch-style pseudocode is in Appendix A.

Analysis. Built upon the well-established cluster assump-
tion (Grandvalet & Bengio, 2004; Chapelle & Zien, 2005),
we intuitively analyze how mixed samples can exhibit simi-
lar correct-wrong statistics as real target data, as shown in
Figure 1(b). This assumption suggests that within a well-
learned data structure, samples located far from the classifi-
cation boundary are more likely to be correctly classified,
while those near the boundary are prone to misclassification.
Instead of using this assumption as an objective in model
training (Shu et al., 2018; Verma et al., 2022), our focus
here is to employ it for explaining the inference behavior of
a UDA model ϕ, which often effectively learns the underly-
ing target-domain structure. For simplicity, let’s assume all
involved labels in mixup are one-hot, and consider a fixed
mix ratio λ noticeably greater than 0.5. This ensures a clear
distinction between two involved real samples: one primary
sample xi

t with a mix ratio greater than 0.5, determining
the mixed label ypt for the mixed sample xpt, and the other
as the minor sample xj

t , serving only as an input perturba-
tion. If xpt yields a correct model prediction ŷpt evaluated
by its mixed label (i.e., ŷpt == ypt), it suggests that the
real sample xi

t maintains its prediction after cross-cluster
perturbation. This implies that xi

t is likely distant from the
classification boundary, and its prediction or pseudo-label
ŷit is genuinely correct when evaluated against its ground
truth yit. Similar analysis can be easily applied to xpt with
a wrong prediction ŷpt (i.e., ŷpt ̸= ypt).The presence of
sample-level correspondence, when observed at the dataset
level, manifests as similar correct-wrong statistics. However,
this correspondence may not hold under extreme perturba-
tion degrees (i.e., λ quite near 0.5 or 1.0). Kindly refer to
Appendix D for detailed empirical evidence.

4. Experiments
4.1. Settings

Datasets. For image classification, we adopt 5 popular
UDA benchmarks of varied scales. Office-31 (Saenko et al.,
2010) is a small-scale benchmark with 31 classes in 3 do-
mains: Amazon (A), DSLR (D), and Webcam (W). Office-

Home (Venkateswara et al., 2017) is a medium-scale bench-
mark with 65 classes in 4 domains: Art (Ar), Clipart (Cl),
Product (Pr), and Real-World (Re). VisDA (Peng et al., 2017)
is a large-scale benchmark with over 200k images across
12 classes in 2 domains: Training (T) and Validation (V).
DomainNet (Peng et al., 2019) is a large-scale benchmark
with 600k images. We take a subset of 126 classes with
7 tasks(Saito et al., 2019) from 4 domains: Real (R), Cli-
part (C), Painting (P), and Sketch (S). Image-Sketch (Wang
et al., 2019) is a large-scale benchmark with 1000 classes
in 2 domains: ImageNet (I) and Sketch (S). For semantic
segmentation, we use Cityscapes(Cordts et al., 2016) as
the target domain and either GTA5(Richter et al., 2016) or
SYNTHIA (Ros et al., 2016) as the source.

UDA methods. We evaluate calibration on 10 UDA
methods across 5 UDA scenarios. For image classifica-
tion, we cover closed-set UDA methods (ATDOC (Liang
et al., 2021), BNM (Cui et al., 2020), MCC (Jin et al.,
2020), CDAN (Long et al., 2018), SAFN (Xu et al.,
2019), MCD (Saito et al., 2018)), partial-set UDA meth-
ods (ATDOC (Liang et al., 2021), MCC (Jin et al., 2020),
PADA (Cao et al., 2018)), the whit-box source-free UDA
method (SHOT (Liang et al., 2020a)), and the black-box
source-free UDA method (DINE (Liang et al., 2022)). For
semantic segmentation, we focus on calibrating source-only
models without applying domain adaptation techniques.

Calibration baselines. For a comprehensive comparison,
we consider 5 typical calibration baselines in UDA, as com-
pared in Table 1, including the no calibration baseline (No
Calib.), source-domain calibration (TempScal-src), cross-
domain calibration (CPCS, TransCal), and another versatile
unsupervised calibration method (Ensemble).

Implementation details. We train all UDA models using
their official code until convergence on an RTX TITAN
GPU. We adopt ResNet-101 (He et al., 2016) for VisDA and
segmentation tasks, ResNet-34 for DomainNet, and ResNet-
50 for all other tasks. For PseudoCal, a fixed mix ratio λ
of 0.65 is employed in all experiments. The UDA model
is fixed for only inference use. We use it for one-epoch
inference with mixup to generate the labeled pseudo-target
set. The reported results are averaged over five random runs.

4.2. Results

We evaluate PseudoCal across 5 UDA scenarios. For clas-
sification, we report the averaged ECE across UDA tasks
sharing the same target domain in Tables 2-6. For segmen-
tation, we take each pixel as a sample and report the results
in Table 7. ‘Oracle’ refers to the ‘Oracle’ calibration with
the target domain ground truths. ‘Accuracy’ (%) denotes
the target domain accuracy of the fixed UDA model. Refer
to Appendix C for segmentation details and Appendix E for
full results, including ECE results for each UDA task.
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Table 2: ECE (%) of closed-set UDA on Office-Home (Home). Lower is better. bold: Best case.

Method ATDOC BNM MCC
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg

No Calib. 10.07 22.35 8.61 6.06 11.77 30.97 39.85 19.70 16.73 26.81 13.25 23.11 12.33 10.53 14.81
TempScal-src 6.19 17.54 3.98 3.03 7.68 23.11 30.32 13.70 10.25 19.35 6.74 16.25 5.08 4.10 8.04
CPCS 14.13 14.75 11.02 7.33 11.81 24.76 25.02 14.90 8.80 18.37 19.11 28.59 14.65 5.55 16.97
TransCal 18.09 6.52 16.03 18.29 14.73 17.44 27.22 9.14 5.47 14.82 11.73 3.86 6.70 8.16 7.61
Ensemble 7.38 18.01 5.51 4.22 8.78 22.50 30.68 14.38 12.53 20.02 9.76 19.20 9.48 7.90 11.58
PseudoCal (ours) 2.42 2.93 5.84 5.07 4.07 17.34 16.03 6.20 4.68 11.06 2.85 2.25 5.18 3.57 3.47

Oracle 1.71 1.91 2.29 1.69 1.90 2.20 2.53 2.36 1.60 2.17 2.25 1.64 2.22 1.91 2.00
Accuracy (%) 66.42 52.39 76.60 77.74 68.29 65.42 53.69 76.51 78.98 68.65 61.03 47.47 72.37 74.03 63.73

Method CDAN SAFN MCD Home
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg AVG

No Calib. 13.38 22.94 12.15 10.00 14.62 16.57 27.90 13.16 11.93 17.39 16.36 25.96 13.29 11.97 16.89 17.05
TempScal-src 6.89 15.44 5.01 4.19 7.88 6.99 16.13 4.56 4.07 7.94 6.01 12.15 3.56 3.54 6.31 9.53
CPCS 18.38 33.56 15.29 9.90 19.28 14.98 30.54 10.06 12.11 16.92 25.13 27.26 10.17 14.29 19.21 17.09
TransCal 14.76 4.72 12.07 13.73 11.32 3.50 6.87 3.77 4.15 4.57 10.78 2.66 10.31 11.27 8.76 10.30
Ensemble 10.07 18.58 9.15 7.23 11.26 14.82 24.90 11.17 9.86 15.19 12.36 20.87 8.93 7.64 12.45 13.21
PseudoCal (ours) 5.10 3.72 4.71 2.40 3.98 3.05 3.34 6.86 4.37 4.41 4.07 2.86 6.26 3.72 4.23 5.20

Oracle 3.61 2.84 2.26 1.94 2.66 1.96 2.48 2.52 1.74 2.17 2.65 2.27 2.30 2.22 2.36 2.21
Accuracy (%) 62.26 49.99 71.19 73.79 64.31 65.84 51.90 73.78 75.09 66.66 59.04 46.80 68.75 71.39 61.49 65.52

Table 3: ECE (%) of closed-set UDA on Office-31 (Office) and VisDA.

Method ATDOC BNM MCC
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V

No Calib. 12.17 4.59 6.66 7.81 10.38 23.41 11.12 8.27 14.27 17.10 19.29 6.18 7.80 11.09 17.42
TempScal-src 22.39 3.39 4.18 9.99 10.53 23.85 9.23 4.98 12.69 13.72 21.38 3.79 3.00 9.39 13.28
CPCS 24.64 7.98 8.94 13.85 16.65 22.45 11.65 2.02 12.04 15.36 30.16 4.69 3.03 12.63 7.14
TransCal 12.14 14.21 14.64 13.67 6.36 14.86 5.22 2.70 7.59 8.79 6.53 3.77 3.91 4.74 12.21
Ensemble 9.79 3.60 4.09 5.83 8.53 19.77 6.92 4.63 10.44 14.84 17.48 3.07 4.88 8.48 15.32
PseudoCal (ours) 3.85 6.64 4.98 5.16 5.27 9.48 6.30 3.97 6.58 3.03 4.61 2.68 2.82 3.37 1.20

Oracle 2.13 2.49 3.15 2.59 0.52 2.52 2.65 1.40 2.19 0.93 2.24 2.36 2.67 2.42 1.12
Accuracy (%) 73.23 91.57 88.93 84.58 75.96 72.56 88.35 90.94 83.95 76.23 69.69 91.37 89.06 83.37 78.00

Method CDAN SAFN MCD Office VisDA
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V AVG AVG

No Calib. 17.02 9.34 7.96 11.44 15.90 21.34 6.17 6.68 11.40 18.53 16.71 9.49 8.88 11.69 17.58 11.28 16.15
TempScal-src 18.54 5.70 3.41 9.21 14.19 23.95 3.21 2.83 9.99 14.40 25.37 3.44 2.36 10.39 10.22 10.28 12.72
CPCS 17.47 30.95 5.67 18.03 15.45 23.15 8.21 18.21 16.52 17.88 27.69 11.85 19.01 19.52 10.56 15.43 13.84
TransCal 4.84 7.44 6.84 6.38 4.07 8.14 3.04 2.81 4.67 8.23 5.13 5.65 4.76 5.18 3.74 7.04 7.23
Ensemble 10.92 4.98 3.29 6.40 13.30 18.89 3.81 5.75 9.48 17.31 14.56 6.25 5.49 8.77 14.82 8.23 14.02
PseudoCal (ours) 6.58 4.78 3.04 4.80 3.04 4.13 7.92 5.51 5.85 7.54 4.22 5.97 5.33 5.17 6.71 5.16 4.46

Oracle 3.21 3.26 2.17 2.88 1.00 2.21 2.90 1.75 2.29 1.82 2.11 3.55 1.76 2.47 0.99 2.47 1.06
Accuracy (%) 66.03 87.15 87.17 80.12 75.24 68.95 89.96 88.55 82.49 73.91 67.07 86.14 85.53 79.58 72.18 82.35 75.25

Closed-set UDA. We evaluate 6 UDA methods on 4 bench-
marks for closed-set UDA. We report the ECE for Office-
Home in Table 2, ECE for both Office-31 and VisDA in
Table 3, and ECE for DomainNet in Table 4. PseudoCal
consistently achieves a low ECE close to ‘Oracle’, signifi-
cantly outperforming other calibration methods by a large
margin. On the evaluated benchmarks, PseudoCal shows av-
erage ECE improvements of 4.33% on Office-Home, 1.88%
on Office-31, 2.77% on VisDA, and 5.95% on DomainNet
when compared to the second-best calibration method.

Partial-set UDA. We evaluate 3 partial-set UDA methods
on Office-Home and report the ECE in Table 5. PseudoCal
consistently performs the best on average and outperforms
the second-best method (Ensemble) by a margin of 4.24%.

Source-free UDA. We evaluate source-free UDA settings

using SHOT and DINE. We report the ECE for DomainNet
and Image-Sketch together in Table 6. PseudoCal outper-
forms Ensemble on both benchmarks by significant margins,
with 7.44% on DomainNet and 15.05% on Image-Sketch.

Semantic segmentation. In addition to various classifi-
cation tasks, we also evaluate PseudoCal on the domain
adaptive semantic segmentation tasks and report the ECE
in Table 7. Remarkably, PseudoCal performs the best on
average and demonstrates an average ECE improvement of
4.62% over the no-calibration baseline.

4.3. Discussion

Qualitative comparisons. Reliability diagrams in Fig-
ure 3(a) show that PseudoCal aligns with ‘Oracle’, while
the state-of-the-art method TransCal deviates significantly.
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Table 4: ECE (%) of closed-set UDA on DomainNet (DNet).

Method ATDOC BNM MCC
→C →P →R →S avg →C →P →R →S avg →C →P →R →S avg

No Calib. 9.54 7.38 3.75 12.29 8.24 28.57 22.10 15.37 31.27 24.33 8.63 7.77 4.79 13.61 8.70
TempScal-src 8.69 7.71 1.94 11.82 7.54 19.04 13.62 9.40 20.30 15.59 8.38 8.32 2.36 13.88 8.23
CPCS 10.78 4.72 4.46 13.38 8.34 8.23 7.92 7.98 9.29 8.36 9.03 4.33 3.44 17.21 8.50
TransCal 23.02 24.76 26.65 19.68 23.52 6.52 1.84 5.82 9.39 5.89 22.27 24.06 23.45 18.03 21.95
Ensemble 6.32 4.54 1.59 9.05 5.37 23.44 18.61 12.61 26.21 20.22 5.71 5.10 2.57 10.34 5.93
PseudoCal (ours) 1.82 1.41 2.51 1.70 1.86 10.27 6.01 6.18 5.86 7.08 1.35 1.89 2.38 3.10 2.18

Oracle 1.55 0.94 0.86 1.07 1.10 2.40 1.66 3.40 1.30 2.19 1.16 1.44 1.09 0.89 1.14
Accuracy (%) 56.05 60.64 74.95 52.08 60.93 56.62 63.13 74.30 52.25 61.57 50.89 57.74 71.62 46.39 56.66

Method CDAN SAFN MCD DNet
→C →P →R →S avg →C →P →R →S avg →C →P →R →S avg AVG

No Calib. 10.17 9.64 5.56 14.44 9.95 17.94 14.44 10.15 21.26 15.95 9.56 7.40 3.80 12.93 8.42 12.60
TempScal-src 7.92 8.31 2.75 12.30 7.82 9.61 8.15 4.12 14.18 9.02 6.48 6.96 4.06 11.20 7.18 9.23
CPCS 10.75 4.28 5.57 6.91 6.88 10.92 5.91 8.22 22.59 11.91 7.02 3.51 1.96 21.79 8.57 8.76
TransCal 20.92 21.41 22.93 16.93 20.55 10.75 12.88 14.28 6.88 11.20 21.48 24.99 27.45 18.95 23.22 17.72
Ensemble 7.21 6.74 3.54 11.29 7.20 16.59 13.25 9.08 19.52 14.61 7.25 5.27 2.86 11.34 6.68 10.00
PseudoCal (ours) 1.58 1.89 1.86 2.67 2.00 3.33 1.30 1.50 2.76 2.22 2.27 1.16 1.01 1.70 1.53 2.81

Oracle 1.45 1.08 1.07 0.94 1.13 1.43 0.92 1.21 0.72 1.07 1.33 0.97 0.56 0.68 0.88 1.25
Accuracy (%) 53.11 59.13 71.82 49.09 58.29 49.59 58.03 66.40 47.66 55.42 48.85 57.99 65.32 47.95 55.03 57.98

Table 5: ECE (%) of partial-set UDA on Office-Home (Home).

Method ATDOC MCC PADA Home
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg AVG

No Calib. 16.68 28.47 20.00 12.26 19.35 12.71 22.17 12.21 8.99 14.02 9.45 19.09 9.19 6.77 11.13 14.83
TempScal-src 13.40 24.79 14.91 8.72 15.45 7.12 15.97 6.04 4.35 8.37 8.92 18.20 6.21 4.08 9.35 11.06
CPCS 19.39 29.74 13.86 14.63 19.41 12.73 28.11 9.09 10.69 15.16 24.40 22.74 17.30 27.67 23.03 19.20
TransCal 10.64 5.17 5.88 11.30 8.25 9.44 4.27 5.41 6.98 6.53 22.70 11.00 23.00 26.77 20.87 11.88
Ensemble 11.98 21.28 13.44 8.62 13.83 9.22 18.54 10.11 6.78 11.16 5.30 11.86 4.43 3.92 6.38 10.46
PseudoCal (ours) 7.87 10.90 6.24 4.83 7.46 3.74 3.63 6.93 4.81 4.78 4.72 3.45 10.77 6.69 6.41 6.22

Oracle 4.13 4.45 4.37 4.08 4.26 2.81 3.01 3.06 2.37 2.81 3.94 2.65 4.80 3.03 3.61 3.56
Accuracy (%) 63.02 50.70 65.92 73.71 63.34 65.53 51.68 73.41 78.23 67.21 55.65 44.06 61.23 66.54 56.87 62.47

Table 6: ECE (%) of source-free UDA on DomainNet (DNet) and ImageNet-Sketch (Sketch).

Method SHOT DINE DNet Sketch
→C →P →R →S avg I→S →C →P →R →S avg I→S AVG AVG

No Calib. 17.16 21.19 10.03 23.14 17.88 34.71 21.99 22.51 12.39 30.34 21.81 58.85 19.84 46.78
Ensemble 14.24 17.94 7.81 19.49 14.87 33.03 17.88 18.86 10.83 25.33 18.22 53.24 16.54 43.14
PseudoCal (ours) 6.66 7.78 2.91 6.67 6.00 8.42 14.42 12.95 5.30 16.15 12.20 47.76 9.10 28.09

Oracle 3.27 2.52 1.37 2.18 2.33 4.39 1.75 1.80 1.29 1.37 1.55 5.90 1.94 5.14
Accuracy (%) 66.52 64.48 78.34 59.64 67.25 34.29 63.76 65.47 80.69 55.51 66.36 22.27 66.80 28.28

Table 7: ECE (%) of segmentation.

Method GTA5 SYNTHIA AVG

No Calib. 7.87 23.08 15.48
TempScal-src 4.61 19.24 11.93
Ensemble 2.66 20.84 11.75
PseudoCal (ours) 5.73 15.99 10.86

Oracle 0.52 4.50 2.51

Impact of mix ratio λ. The fixed mix ratio λ is the sole
hyperparameter in PseudoCal. We investigate its impact on
calibration performance by experimenting with values rang-
ing from 0.51 to 0.9. Results of two typical UDA methods
for partial-set tasks on Office-Home are shown in Figure 3(b).
We first examine mixup with both ‘Hard’ (one-hot labels)
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Figure 3: (a) provides the reliability diagrams. (b) presents
the sensitivity analysis of the fixed mix ratio λ.

and ‘Soft’ (soft probability predictions) labels, finding sim-
ilar trends with differences that are generally not visible
when λ > 0.6. In addition, optimal performance for Pseu-
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Table 8: ECE (%) of ablation experiments on pseudo-target synthesis.

Method MCD BNM CDAN SHOT PADA DINE
D→A W→A Cl→Pr Pr→Re R→C I→S Ar→Cl Re→Ar P→R

No Calib. 16.39 17.03 22.09 15.72 9.83 34.71 20.35 8.31 12.39
MocoV2Aug (Chen et al., 2020) 16.85 17.21 20.51 14.98 15.49 28.63 25.81 15.17 11.12
RandAug (Cubuk et al., 2020) 12.87 11.53 19.24 11.37 13.33 29.28 18.47 10.32 12.62
CutMix (Yun et al., 2019) 8.20 6.39 14.82 10.60 7.60 23.18 15.96 6.04 6.93
ManifoldMix (Verma et al., 2019) 19.49 19.27 23.29 16.94 27.00 50.54 36.04 21.29 16.88
Mixup-Beta (Zhang et al., 2018) 14.96 13.11 15.65 11.24 15.84 26.74 23.85 11.46 9.72
Pseudo-Label (Lee et al., 2013) 32.47 33.35 26.31 19.65 47.02 65.70 56.18 36.27 19.31
Filtered-PL (Sohn et al., 2020) 31.74 32.73 26.14 19.46 45.35 64.29 54.83 35.10 19.05
PseudoCal-same 19.31 20.54 22.50 15.63 25.43 45.54 30.30 18.46 15.56
PseudoCal (ours) 4.38 4.06 6.31 4.76 1.51 8.42 2.95 3.71 5.29

Oracle 2.31 1.90 3.14 1.10 1.28 4.39 2.16 2.87 1.29
Accuracy (%) 67.52 66.63 73.69 80.35 52.98 34.29 43.82 63.73 80.69

doCal occurs with a moderate λ value between 0.6 and 0.8.
The reason is that a λ value closer to 0.5 generates more am-
biguous samples, resulting in increased wrong predictions,
whereas a λ value closer to 1.0 has the opposite effect. More
evidence is in Appendix D, where we examine the impact
of λ on sample-level correspondence. At last, for simplicity,
we use a fixed λ value of 0.65 with one-hot labels for all
experiments.

Table 9: ViT results of MCC on C→S.

Method ECE (%) BS NLL

No Calib. 11.52 0.5674 1.9592
TempScal-src 10.63 0.5647 1.9418
CPCS 5.48 0.5579 1.8781
TransCal 23.38 0.6279 2.1089
Ensemble 10.08 0.5618 1.9260
PseudoCal (ours) 3.63 0.5553 1.8697

Oracle 1.29 0.5519 1.8597

Impact of backbones and metrics. To examine the robust-
ness of PseudoCal across different backbones and calibra-
tion metrics, we assess its performance using ViT-B (Doso-
vitskiy et al., 2021) as the backbone and present the results
for the aforementioned three metrics in Table 9. The find-
ings reveal that PseudoCal consistently achieves the best
performance with different backbones or calibration metrics.

Table 10: ECE (%) of model calibration at different iter-
ations (batch size: 36) during the training of the ATDOC
model shown in Figure 1(a).

Method 1 5 10 50 100 500 1000

No Calib. 21.51 11.11 7.71 11.74 16.38 21.48 22.28
PseudoCal (ours) 73.91 46.06 34.91 6.01 4.43 2.87 3.67

Oracle 0.00 1.77 0.84 1.78 2.31 2.16 1.89
Accuracy (%) 1.97 4.28 11.25 37.25 40.64 45.73 49.00

Impact of UDA model quality. We provide the target-
domain accuracy for each model in the ‘Accuracy’ row.

PseudoCal remains effective as long as the model has
learned some target structure instead of being completely
randomly initialized, supported by cluster assumption. This
effectiveness is evident in Table 6, where PseudoCal main-
tains its competence even with low accuracy pseudo-labels
(around 30%). Additionally, we examine the influence of
model (pseudo-label) quality on calibration results through-
out UDA training, with results presented in Table 10. If
the model quality is particularly low, for instance, with an
accuracy below 15%, PseudoCal becomes ineffective. For-
tunately, PseudoCal operates as a post-hoc method, which
allows it to function effectively once the UDA model has
been adequately trained.

Comparison with training-stage mixup. Most approaches
incorporate mixup (Zhang et al., 2018) during the model
training stage as an objective to enhance model generaliza-
tion, and among them, (Thulasidasan et al., 2019) further
utilizes mixup as a training-stage calibration method. How-
ever, our use of mixup in PseudoCal differs significantly
from previous mixup-based works in three key aspects. 1)
Different stage: All of these works apply mixup in training,
while our mixup operation occurs in the inference stage to
synthesize a labeled set. 2) Different mix ratio: PseudoCal
leverages mixup for cross-cluster sample interpolation and
performs effectively with a fixed mix ratio λ ∈ (0.6, 0.8)
but is considerably less effective with λ values close to
1.0. In contrast, previous methods typically work best with
λ ∈ Beta(α, α) where α ∈ [0.1, 0.4], essentially favoring λ
values that are close to 1.0. However, they are ineffective
with λ values close to 0.5 (like our adopted values) due to the
manifold intrusion problem (Thulasidasan et al., 2019; Guo
et al., 2019). 3) Different performance: We observed that
UDA models trained with training-time calibration methods
still suffer from significant miscalibration, while our Pseu-
doCal can further substantially reduce ECE errors for these
models. For example, as shown in Table 6, SHOT employs
label smoothing for training (Liu et al., 2022), and DINE is
trained with mixup (Thulasidasan et al., 2019).
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Ablation study on pseudo-target synthesis. Pseudo-target
synthesis plays a critical role in our PseudoCal framework.
In this step, we employ input-level mixup with a fixed mix
ratio (λ) to generate a pseudo-target sample by combining
two real samples with different pseudo-labels. We conduct
a comprehensive ablation study on this synthesis strategy
by comparing it with alternative approaches, including: 1)
Applying mixup between samples with the same pseudo-
label (referred to as PseudoCal-same). 2) Using instance-
based augmentations of target samples, such as RandAug-
ment (Cubuk et al., 2020), and strong augmentations com-
monly used in self-supervised learning (Chen et al., 2020).
3) Employing mixup at different levels, such as the patch-
level (Yun et al., 2019) and the feature-level (Verma et al.,
2019). 4) Applying common training-stage mixup using
λ ∈ Beta(0.3, 0.3) (Zhang et al., 2018). 5) Directly utilizing
original or filtered pseudo-labeled real target samples (Lee
et al., 2013; Sohn et al., 2020) without mixup (by setting
λ to 1.0). We present an extensive comparison of all these
strategies in Table 8. The results consistently demonstrate
that our inference-stage input-level mixup outperforms the
alternative options.

Limitation discussion. PseudoCal has the following lim-
itations: 1) Like all of the existing calibration methods
compared, PseudoCal may occasionally increase ECE when
the initial ECE is already small (see →D in Table 3). This
is acceptable considering that unsupervised calibration re-
mains an open problem. 2) PseudoCal may face challenges
in extreme cases with very few available unlabeled target
samples, such as only a small batch of samples or even a
single target sample. 3) PseudoCal is partly dependent on
the cluster assumption, and it may fail if the target pseudo
label is extremely poor, i.e., performing similarly to random
trials. Regarding the last two limitations, similarly, all of the
existing UDA calibration methods would fail under these
extreme situations. In general, as we illustrate in Table 1,
our PseudoCal has fewer limitations compared with existing
prevalent UDA calibration solutions.

5. Conclusion
In conclusion, we introduce PseudoCal, a novel and versatile
post-hoc framework for calibrating predictive uncertainty
in unsupervised domain adaptation (UDA). By focusing
on the unlabeled target domain, PseudoCal distinguishes
itself from mainstream calibration methods that are based
on covariate shift and eliminates their associated limitations.
To elaborate, PseudoCal employs a novel inference-stage
mixup strategy to synthesize a labeled pseudo-target set that
mimics the correct-wrong statistics in real target samples. In
this way, PseudoCal successfully transforms the challenging
unsupervised calibration problem involving unlabeled real
samples into a supervised one using labeled pseudo-target

data, which can be readily addressed through temperature
scaling. Throughout our extensive evaluations spanning di-
verse UDA settings, including source-free UDA settings and
domain adaptive semantic segmentation, PseudoCal consis-
tently showcases its advantages of simplicity, versatility,
and effectiveness in enhancing calibration in UDA. In future
work, we aim to extend PseudoCal to additional practical
UDA scenarios, including open-set UDA.
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A. Algorithm
The PyTorch-style pseudocode for our calibration method
PseudoCal is provided in Algorithm 1.

B. Additional Calibration Metrics
In addition to the Expected Calibration Error (ECE) (Guo
et al., 2017), we consider two extra calibration metrics as
follows. Let yi represent the one-hot ground truth encoding
for input sample xi, and p̂i denote the predicted probability
vector output by the model ϕ.

Negative Log-Likelihood (NLL) (Goodfellow et al., 2016)
is also known as the cross-entropy loss. The NLL loss for a
single sample xi is given by:

LNLL = −
C∑

c=1

yc
i log p̂

c
i

Brier Score (BS) (Brier et al., 1950) can be defined as the
squared error between the predicted probability vector and
the one-hot label vector. The Brier Score for a single sample
xi is given by:

LBS =
1

C

C∑
c=1

(p̂c
i − yc

i )
2

Similar to the ViT results presented in Table 9, we have
observed consistent advantages of our PseudoCal method
over existing calibration methods across all three calibration
metrics: ECE, NLL, and BS. We choose to report the ECE
results for most of the experiments because ECE (Guo et al.,
2017) is a widely used calibration metric.

C. Semantic Segmentation Calibration Details
For our calibration experiments on semantic segmentation,
we calibrate the models trained solely on the source domain
(GTA5 (Richter et al., 2016) or SYNTHIA (Ros et al., 2016))
without any target domain adaptation. We treat each pixel as
an individual sample in classification tasks for both mixup
and temperature scaling. To address the computational
complexity, we adopt the evaluation strategy suggested in
previous studies (de Jorge et al., 2023) and randomly sample
20,000 pixels from each image (with resolutions such as
1920*720) for calibration.

D. Analysis of Sample-Level Correspondence
In the Analysis part of Section 3.2 in the main text, we
offer an intuitive analysis of the sample-level correspon-
dence between pseudo-target data and real target samples.
Figure 1(b) qualitatively illustrates the striking similarity
in the correct-wrong statistics between the real target and

pseudo target. To further enhance the understanding of this
correspondence, we aim for a quantitative sample-level anal-
ysis. Consider a pair of real samples xi

t with pseudo-label
ŷit inferred by the UDA model ϕ, and xj

t with pseudo-label
ŷjt . We employ the mixup operation to generate a mixed
sample xi

pt with the mixed label yipt. For simplicity, we
assume that all labels are one-hot hard labels and λ is in
the range of (0.5, 1.0). This implies that xi

t functions as the
primary real sample, directly determining the mixed label
yipt, i.e., yipt == ŷit. We apply the mixup operation nt times
during the model inference stage using unlabeled target data.
This results in a labeled pseudo-target set {(xi

pt, y
i
pt)}

nt
i=1

and the original pseudo-labeled real target set {(xi
t, ŷ

i
t)}

nt
i=1.

Using the same UDA model ϕ, we infer predictions ŷipt for
the mixed sample xi

pt and traverse through all mixed sam-
ples. For the mixed pseudo-target samples, we obtain pre-
dictions {ŷipt}

nt
i=1 and corresponding labels {yipt}

nt
i=1. Re-

garding real target samples, the predictions are the available
pseudo-labels {ŷit}

nt
i=1, while the labels are ground truth

labels {yit}
nt
i=1 which are used to assess the UDA model

accuracy.

CRcorrect =

∑nt

i (ŷipt == yipt) · (ŷit == yit)∑nt

i (ŷit == yit)

CRwrong =

∑nt

i (ŷipt ̸= yipt) · (ŷit ̸= yit)∑nt

i (ŷit ̸= yit)

CRarithmetic =
1

nt
·

[
nt∑
i

(ŷipt == yipt) · (ŷit == yit)

+

nt∑
i

(ŷipt ̸= yipt) · (ŷit ̸= yit)

]

CRharmonic =
2 · CRcorrect · CRwrong

CRcorrect +CRwrong

Using these predictions and labels, we can systemati-
cally quantify the sample-level correspondence between
the pseudo and real target sets for a more in-depth under-
standing. We establish such correspondence when both the
predictions of a mixed pseudo sample and its primary real
sample are either both correct or both wrong, as assessed
by their respective labels. In other words, we consider a
correspondence when ŷipt == yipt and ŷit == yit, or when
ŷipt ̸= yipt and ŷit ̸= yit. To quantitatively measure this
sample-level correspondence, we introduce four correspon-
dence metrics. The first metric, denoted as CRcorrect, rep-
resents the correspondence rate of correct real samples. It
indicates how many correct real samples maintain correspon-
dence with their mixed counterparts. Similarly, our second
metric, denoted as CRwrong, measures the correspondence
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Algorithm 1 PyTorch-style pseudocode for PseudoCal.

# x: A batch of real target images with shuffled order.
# lam: The mix ratio, a fixed scalar value between 0.5 and 1.0.
# net: A trained UDA model in the evaluation mode.

# Perform pseudo-target synthesis for a mini-batch.
def pseudo_target_synthesis(x, lam, net):

# Use the random index within the data batch
# to obtain a pair of real samples for mixup.
rand_idx = torch.randperm(x.shape[0])
inputs_a = x
inputs_b = x[rand_idx]

# Obtain model predictions and pseudo labels (pl).
pred_a = net(inputs_a)
pl_a = pred_a.max(dim=1)[1]
pl_b = pl_a[rand_idx]

# Select the samples with distinct labels for the mixup.
diff_idx = (pl_a != pl_b).nonzero(as_tuple=True)[0]

# Mixup with images and labels.
pseudo_target_x = lam * inputs_a + (1 - lam) * inputs_b

# If the user is not aware that lam is between 0.5 and 1.0,
# the following if-else code can avoid bugs.
if lam > 0.5:

pseudo_target_y = pl_a
else:

pseudo_target_y = pl_b

return pseudo_target_x[diff_idx], pseudo_target_y[diff_idx]

# Perform supervised calibration using pseudo-target data.
def pseudoCal(x, lam, net):

# Synthesize a mini-batch of pseudo-target samples and labels.
pseudo_x, pseudo_y = pseudo_target_synthesis(x, lam, net)

# Infer the logits for the pseudo-target samples.
pseudo_logit = net(pseudo_x)

# Apply temperature scaling to estimate the
# pseudo-target temperature as the real temperature.
calib_method = TempScaling()
pseudo_temp = calib_method(pseudo_logit, pseudo_y)

return pseudo_temp

rate of wrong real samples. For a more comprehensive per-
spective, we introduce the third metric, CRarithmetic, which
calculates the arithmetic mean of CRcorrect and CRwrong,
assessing the correspondence rate of all real samples. How-
ever, it’s important to note that these three metrics may
be misleading in extreme situations where most of the
correspondences are biased toward either being correct or
wrong. To address this issue, we propose our fourth metric,
CRharmonic, which takes the harmonic mean of CRcorrect

and CRwrong, providing equal consideration to both cor-
rect and wrong correspondences. This metric is inspired

by the success of the H-Score solution (Fu et al., 2020;
Bucci et al., 2020) in balanced accuracy measurement for
known-unknown accuracy in open-set UDA.

For empirical illustration, we conduct experiments using
PseudoCal with varied λ values of {0.51, 0.65, 1.0}, among
which 0.65 is our default value for all experiments in the
main text. We report all results, including the measurement
results of the sample-level correspondence using the four
metrics described above, in Table 11. From these results,
we have three consistent observations: i) As expected, only
the harmonic metric CRharmonic is reliable and aligns with
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Table 11: By tuning the mix ratio λ, we can synthesize the most ambiguous pseudo samples (λ = 0.51) and the simplest
ones (λ = 1.0), i.e., the pseudo-labeled real samples themselves. PseudoCal employs a moderate value of λ = 0.65 for all
the results. Under these three cases, we measure the sample-level correspondence between the real samples and pseudo
samples using four correspondence metrics.

Method MCD BNM CDAN SHOT PADA DINE
D→A W→A Cl→Pr Pr→Re R→C I→S Ar→Cl Re→Ar P→R

No Calib. ECE (%) 16.39 17.03 22.09 15.72 9.83 34.71 20.35 8.31 12.39
PseudoCal (λ=1.0) 32.47 33.35 26.31 19.65 47.02 65.70 56.18 36.27 19.31
PseudoCal (λ=0.65) 4.38 4.06 6.31 4.76 1.51 8.42 2.95 3.71 5.29
PseudoCal (λ=0.51) 13.77 11.69 11.85 14.13 15.15 11.08 11.03 23.07 14.50

Oracle ECE (%) 2.31 1.90 3.14 1.10 1.28 4.39 2.16 2.87 1.29
Accuracy (%) 67.52 66.63 73.69 80.35 52.98 34.29 43.82 63.73 80.69
# of correct real data 1826 1792 3183 3408 9650 17218 703 656 55757
# of wrong real data 872 894 1135 836 8548 32998 918 385 13342

CRharmonic (λ=1.0) (%) 0 0 0 0 0 0 0 0 0
CRharmonic (λ=0.65) (%) 63.45 63.45 59.89 59.27 60.56 56.28 60.21 62.04 61.73
CRharmonic (λ=0.51) (%) 52.08 54.42 53.13 52.87 45.33 35.18 50.94 46.03 56.26

CRarithmetic (λ=1.0) (%) 67.68 66.72 73.71 80.30 53.03 34.29 43.37 63.02 80.69
CRarithmetic (λ=0.65) (%) 62.36 62.75 61.72 63.08 61.58 65.58 63.92 61.00 70.73
CRarithmetic (λ=0.51) (%) 52.07 54.10 50.03 47.51 56.35 66.48 63.02 50.52 50.74

CRcorrect (λ=1.0) (%) 100 100 100 100 100 100 100 100 100
CRcorrect (λ=0.65) (%) 59.93 61.16 63.52 65.22 52.09 44.48 50.74 56.02 75.11
CRcorrect (λ=0.51) (%) 38.53 41.35 41.69 40.54 30.90 21.88 36.67 31.94 44.76

CRwrong (λ=1.0) (%) 0 0 0 0 0 0 0 0 0
CRwrong (λ=0.65) (%) 67.40 65.92 56.66 54.32 72.31 76.60 74.04 69.52 52.40
CRwrong (λ=0.51) (%) 80.32 79.57 73.2 75.99 85.04 89.75 83.38 82.39 75.73

the actual calibration performance, while both the one-sided
correct measure CRcorrect and the wrong measure CRwrong

can be extremely biased, which would further directly mis-
lead the arithmetic mean metric CRarithmetic. 2) Similar to
the discussion on the impact of mix ratio (λ) in Section 4.3,
our observations reveal that λ values near 0.5 predominantly
yield wrong predictions for pseudo-target samples (mixed
samples), while λ values of 1.0 result in entirely correct
predictions. The role of λ in controlling cross-cluster per-
turbation, determining the difficulty of mixed samples, is
noteworthy. A λ close to 0.5 generates ambiguous mixed
samples with almost even contributions from two real sam-
ples bearing different pseudo-labels. In such instances, the
UDA model struggles to ascertain the class label, resulting
in predominantly wrong predictions when evaluated with
mixed labels. Conversely, a λ of 1.0 equates to not using
mixup and directly leveraging pseudo-labeled real target
samples. This scenario constitutes the easiest mixed sam-
ples, as the UDA model outputs predictions identical to raw
target predictions, leading to entirely correct predictions
when assessed with target pseudo-labels. From the cluster
assumption perspective, extreme λ values render the rel-
evant analysis inconclusive. A λ value very close to 0.5
makes it challenging to determine the primary real sample.

Conversely, a λ value very close to 1.0 signifies the negli-
gible cross-cluster perturbation, generating a mixed sample
nearly identical to the primary real sample, wherein the clus-
ter assumption does not apply. In general, extreme λ values,
whether close to 0.5 or 1.0, exhibit significant bias towards
either wrong or correct predictions, which indicates correct-
wrong statistics of the pseudo-target set become skewed,
deviating from real target samples. Hence, for a typical
UDA model with both correct and wrong target predictions,
we recommend employing a moderate λ value, such as the
0.65 utilized in our main text. (iii) Taking a closer look
at the reliable measure of sample-level correspondence by
CRharmonic, we find that for various UDA models, there
maintains a high correspondence with a CRharmonic value
of about 60%, even for a low-accuracy model with only 30%
accuracy. This strongly supports the robust existence of the
cluster assumption and the robustness of our analysis in Sec-
tion 3.2. For a vivid illustration of the impact of λ values on
sample-level correspondence, Figure 4 presents the correct-
wrong statistics of all UDA methods outlined in Table 11.
We find that extreme λ values result in a notable skewness
in the correct-wrong statistics of the pseudo-target set when
compared to the real target set. For a clear visualization of
mixed images, please see Figure 5.
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Figure 4: The correct-wrong statistics are computed for both the pseudo-target and real target sets. We partition confidence
values into 50 bins and present the count of correct and wrong predictions in each bin. Correctness for real target data
is determined by comparing predictions of real target samples with ground truths. For pseudo-target data, correctness is
assessed by comparing predictions of the mixed samples with mixed labels.
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Figure 5: Visualization of input-level mixup for various UDA benchmarks with varied λ values.

Table 12: ECE (%) of calibration results when combining PseudoCal with different supervised calibration methods, including
MatrixScal (Guo et al., 2017), VectorScal (Guo et al., 2017), and TempScal (Guo et al., 2017) (our default choice).

Method MCD BNM CDAN SHOT PADA DINE
D→A W→A Cl→Pr Pr→Re R→C I→S Ar→Cl Re→Ar P→R

No Calib. 16.39 17.03 22.09 15.72 9.83 34.71 20.35 8.31 12.39
MatrixScal-src 17.86 20.28 25.73 15.98 22.11 - 36.55 20.45 -
VectorScal-src 17.75 20.52 16.40 12.36 12.88 - 20.53 9.07 -
TempScal-src 32.09 18.65 15.10 11.64 9.27 - 15.15 6.34 -
PseudoCal(Matrix.) 11.61 13.20 16.07 11.83 15.09 42.86 35.85 27.07 7.65
PseudoCal(Vector.) 11.00 9.32 9.31 6.05 6.37 23.90 5.90 4.19 6.23
PseudoCal(Temp.) 4.38 4.06 6.31 4.76 1.51 8.42 2.95 3.71 5.29

Oracle 2.31 1.90 3.14 1.10 1.28 4.39 2.16 2.87 1.29
Accuracy (%) 67.52 66.63 73.69 80.35 52.98 34.29 43.82 63.73 80.69
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E. Full Calibration Results
Due to space constraints in the main text, we have presented
the averaged results for tasks with the same target domain.
For example, in the case of Office-Home, UDA tasks includ-
ing ‘Cl→Ar’, ‘Pr→Ar’, and ‘Re→Ar’ share the common
target domain ‘Ar’. Consequently, we have averaged the
results of these three UDA tasks and reported the averaged
value in the tables within our main text under the column
labeled ‘→ Ar’. Additionally, note that the ‘avg’ column
represents the averaged results within each UDA method’s
columns to the left of the ‘avg’ column. Differently, the
‘AVG’ column signifies the averaged results across all ‘avg’
columns associated with different UDA methods. Conse-
quently, the ‘AVG’ column can be considered more reliable
and representative for drawing conclusions.

Additionally, as matrix scaling (MatrixScal), vector scal-
ing (VectorScal), and temperature scaling (TempScal) are
similar, all proposed by (Guo et al., 2017), and the authors
have demonstrated that temperature scaling (TempScal) is
the superior solution. Therefore, as for the source-domain
calibration baseline (using a labeled source validation set for
calibration), we have only reported the results of TempScal-
src in the tables in the main text. Here, we present the results
of MatrixScal-src and VectorScal-src for additional refer-
ence, without impacting any of the conclusions drawn in the
main text. While our PseudoCal is inspired by the factorized
NLL of TempScal and naturally employs TempScal as the
default supervised calibration method for our synthesized
labeled pseudo-target set, we investigate the compatibility
of PseudoCal with alternative supervised calibration meth-
ods, such as MatrixScal and VectorScal. The corresponding
results are detailed in Table 12. Our findings reveal two key
observations: 1) If a supervised calibration method exhibits
stability and effectiveness with the source labeled data, com-
bining it with PseudoCal tends to yield reduced ECE error
compared to the no calibration baseline. 2) Due to the simi-
larity in correct-wrong statistics between the pseudo-target
set and real target data, PseudoCal demonstrates compat-
ibility with both MatrixScal and VectorScal. However, it
consistently achieves the best calibration performance when
paired with TempScal, aligning with the conclusion in (Guo
et al., 2017) that TempScal generally outperforms MatrixS-
cal and VectorScal. For detailed calibration results for each
task, please refer to Table 13 through Table 31.
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Table 13: ECE (%) of a closed-set UDA method ATDOC (Liang et al., 2021) on Office-Home.
Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 22.83 10.57 6.31 10.77 8.88 6.38 10.39 22.61 5.49 9.06 21.61 6.38 11.77
MatrixScal-src 35.03 20.72 18.28 27.54 24.73 23.40 22.51 32.85 13.66 20.25 32.89 12.90 23.73
VectorScal-src 22.05 10.09 5.85 11.51 7.74 6.01 15.12 26.85 7.81 7.94 21.10 5.03 12.26
TempScal-src 14.69 5.55 2.60 4.27 3.17 1.45 9.67 22.55 5.04 4.63 15.37 3.21 7.68
CPCS 8.37 9.32 6.44 12.94 14.94 11.41 12.28 6.00 4.13 17.18 29.88 8.80 11.81
TransCal 4.95 13.85 16.58 17.29 17.34 18.76 18.77 7.48 19.54 18.20 7.13 16.90 14.73
Ensemble 18.40 7.47 4.51 7.82 4.76 4.24 8.36 17.96 3.92 5.96 17.68 4.29 8.78
PseudoCal (ours) 3.07 4.23 5.28 1.96 6.27 5.70 2.52 4.05 4.22 2.79 1.68 7.03 4.07

Oracle 2.38 3.14 2.34 1.44 1.92 1.36 1.98 1.92 1.37 1.71 1.43 1.80 1.90
Accuracy (%) 52.07 74.48 79.27 64.24 73.85 75.42 64.65 50.65 78.54 70.37 54.46 81.48 68.29

Table 14: ECE (%) of a closed-set UDA method BNM (Cui et al., 2020) on Office-Home.
Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 38.64 22.49 16.21 30.89 22.09 18.25 34.90 42.46 15.72 27.11 38.44 14.52 26.81
MatrixScal-src 39.37 23.31 19.01 30.30 25.73 22.24 31.37 41.37 15.98 24.06 37.39 14.77 27.07
VectorScal-src 30.83 17.66 9.97 21.91 16.40 11.46 27.76 37.27 12.36 18.91 29.06 10.03 20.30
TempScal-src 27.22 16.34 8.91 20.39 15.10 10.21 28.82 35.60 11.64 20.12 28.15 9.67 19.35
CPCS 33.80 18.08 8.12 17.24 19.77 7.90 28.68 17.28 10.39 28.36 23.97 6.86 18.37
TransCal 25.75 12.11 5.87 15.73 10.51 5.51 21.41 29.66 5.02 15.17 26.25 4.80 14.82
Ensemble 29.52 16.03 12.00 22.77 15.55 14.06 25.17 32.06 11.53 19.55 30.46 11.56 20.02
PseudoCal (ours) 14.27 8.74 4.60 15.46 6.31 4.69 20.90 18.35 4.76 15.66 15.47 3.55 11.06

Oracle 3.16 2.18 1.76 2.00 3.14 1.95 2.92 1.78 1.10 1.68 2.64 1.77 2.17
Accuracy (%) 54.39 73.49 79.78 64.52 73.69 76.82 61.68 51.13 80.35 70.05 55.56 82.36 68.65

Table 15: ECE (%) of a closed-set UDA method MCC (Jin et al., 2020) on Office-Home.
Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 23.74 14.31 10.89 12.70 13.15 11.72 14.36 23.18 8.98 12.69 22.40 9.54 14.81
MatrixScal-src 37.39 23.28 19.95 31.00 27.75 25.27 26.13 35.70 16.27 21.56 35.20 14.95 26.20
VectorScal-src 21.05 12.79 7.87 10.96 11.18 8.20 16.87 28.29 9.64 7.58 21.40 6.15 13.50
TempScal-src 12.23 6.43 3.61 4.06 4.69 2.85 11.38 22.91 5.83 4.79 13.60 4.11 8.04
CPCS 25.11 15.31 3.60 19.41 14.36 4.49 13.83 35.66 8.56 24.08 24.99 14.27 16.97
TransCal 3.04 6.31 5.98 12.75 7.42 8.60 11.95 4.59 9.90 10.48 3.95 6.37 7.61
Ensemble 19.20 11.30 8.05 10.01 9.69 8.51 10.11 18.98 7.13 9.15 19.42 7.44 11.58
PseudoCal (ours) 2.71 5.04 3.81 3.17 4.64 3.06 2.66 1.54 3.85 2.73 2.51 5.86 3.47

Oracle 2.41 2.57 2.31 2.67 1.73 1.62 1.58 0.84 1.80 2.51 1.66 2.35 2.00
Accuracy (%) 47.26 69.29 75.90 59.91 68.33 70.16 56.32 44.49 76.04 66.87 50.65 79.48 63.73

Table 16: ECE (%) of a closed-set UDA method CDAN (Long et al., 2018) on Office-Home.
Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 24.88 14.66 10.39 14.71 13.05 11.25 13.24 22.54 8.37 12.19 21.41 8.74 14.62
MatrixScal-src 35.03 22.64 19.14 28.14 26.14 22.96 24.20 33.34 15.03 20.32 30.69 13.78 24.28
VectorScal-src 18.81 10.46 7.24 8.92 9.81 6.73 15.31 26.51 9.18 7.51 16.70 5.76 11.91
TempScal-src 12.48 5.82 3.40 5.57 5.14 3.06 9.78 21.29 6.12 5.31 12.55 4.06 7.88
CPCS 31.45 13.21 2.36 25.84 24.68 17.24 13.44 27.86 10.09 15.85 41.38 7.98 19.28
TransCal 2.65 11.04 11.67 14.44 13.41 14.01 16.34 6.04 15.50 13.51 5.46 11.77 11.32
Ensemble 18.64 11.85 7.23 10.87 9.04 7.94 9.45 19.12 6.52 9.90 17.97 6.56 11.26
PseudoCal (ours) 3.52 4.33 2.32 5.67 4.81 2.82 6.36 3.78 2.05 3.28 3.85 5.00 3.98

Oracle 1.83 2.96 1.94 3.88 1.74 2.20 4.46 3.22 1.68 2.50 3.48 2.08 2.66
Accuracy (%) 48.00 67.00 75.07 59.83 66.88 69.98 58.59 48.64 76.31 68.36 53.33 79.68 64.31

Table 17: ECE (%) of a closed-set UDA method SAFN (Xu et al., 2019) on Office-Home.
Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 28.25 15.29 12.40 16.62 14.10 12.45 18.17 29.68 10.94 14.92 25.77 10.08 17.39
MatrixScal-src 37.63 23.66 20.05 28.07 26.01 23.00 25.60 37.84 16.22 20.98 33.18 14.69 25.58
VectorScal-src 21.01 12.78 9.20 10.96 10.28 7.67 16.03 26.93 8.91 10.72 20.21 6.35 13.42
TempScal-src 12.33 5.56 3.17 4.62 4.22 3.40 9.99 21.72 5.64 6.36 14.33 3.89 7.94
CPCS 31.45 16.18 10.90 23.93 11.19 6.71 15.78 25.66 18.73 5.24 34.50 2.80 16.92
TransCal 7.50 4.23 2.80 4.11 3.63 4.89 3.14 7.47 4.76 3.26 5.65 3.46 4.57
Ensemble 25.00 13.33 9.91 15.20 11.62 10.14 16.12 26.14 9.54 13.15 23.56 8.55 15.19
PseudoCal (ours) 3.30 6.41 4.14 3.46 7.06 5.18 2.99 3.40 3.79 2.70 3.33 7.12 4.41

Oracle 3.10 3.78 1.94 2.06 1.85 2.18 2.65 1.66 1.11 1.16 2.68 1.92 2.17
Accuracy (%) 50.65 70.96 75.81 64.44 70.42 72.30 62.55 49.55 77.16 70.54 55.51 79.97 66.66
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Table 18: ECE (%) of a closed-set UDA method MCD (Saito et al., 2018) on Office-Home.
Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 26.24 16.26 12.30 16.42 14.19 13.27 19.02 27.38 10.35 13.63 24.25 9.43 16.89
MatrixScal-src 41.44 28.57 22.89 34.21 27.91 26.19 28.46 39.91 18.20 22.91 36.82 16.58 28.67
VectorScal-src 21.79 12.62 8.36 11.89 7.19 7.75 17.75 27.43 8.99 10.10 20.83 5.72 13.37
TempScal-src 8.59 4.59 2.87 3.65 2.79 2.90 10.42 17.99 4.85 3.96 9.86 3.29 6.31
CPCS 20.66 11.43 21.72 27.95 11.22 11.03 24.03 12.63 10.13 23.42 48.48 7.86 19.21
TransCal 2.43 8.94 9.45 10.78 10.81 10.80 9.86 2.07 13.56 11.69 3.49 11.19 8.76
Ensemble 20.49 10.59 7.24 11.59 9.53 9.16 15.53 22.66 6.52 9.95 19.45 6.66 12.45
PseudoCal (ours) 2.52 4.93 3.93 3.39 6.57 3.70 5.05 2.68 3.52 3.76 3.39 7.28 4.23

Oracle 2.22 2.48 2.08 2.68 2.31 2.13 3.02 1.97 2.44 2.26 2.61 2.11 2.36
Accuracy (%) 46.55 63.75 73.01 57.44 64.86 67.45 53.81 42.77 73.72 65.88 51.07 77.63 61.49

Table 19: ECE (%) of a closed-set UDA method ATDOC (Liang et al., 2021) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 12.22 9.27 3.75 9.81 6.85 12.36 7.92 8.88
MatrixScal-src 34.30 27.58 15.58 23.23 18.37 28.05 27.44 24.94
VectorScal-src 16.19 11.45 3.97 15.11 10.19 19.26 9.52 12.24
TempScal-src 10.32 6.52 1.94 10.86 8.51 13.31 6.92 8.34
CPCS 12.87 13.31 4.46 8.25 5.11 13.90 4.34 8.89
TransCal 19.89 23.51 26.65 22.52 24.93 19.46 24.59 23.08
Ensemble 8.71 5.73 1.59 6.91 4.41 9.38 4.66 5.91
PseudoCal (ours) 1.68 1.98 2.51 1.66 1.21 1.71 1.61 1.77

Oracle 0.98 1.92 0.86 1.18 0.70 1.16 1.17 1.14
Accuracy (%) 53.74 56.51 74.95 55.59 61.65 50.41 59.64 58.93

Table 20: ECE (%) of a closed-set UDA method BNM (Cui et al., 2020) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 30.88 29.27 15.37 27.87 21.79 31.65 22.41 25.61
MatrixScal-src 37.91 31.17 18.31 26.82 22.33 32.31 28.64 28.21
VectorScal-src 23.10 20.02 9.88 21.80 14.83 26.68 14.18 18.64
TempScal-src 19.11 18.79 9.40 19.28 14.42 21.49 12.81 16.47
CPCS 14.45 13.75 7.98 2.72 4.35 4.14 11.50 8.41
TransCal 9.21 6.31 5.82 6.73 1.69 9.56 1.98 5.90
Ensemble 25.08 23.46 12.61 23.42 18.52 27.34 18.70 21.30
PseudoCal (ours) 5.08 12.43 6.18 8.10 5.20 6.64 6.82 7.21

Oracle 1.60 3.17 3.40 1.63 1.50 1.00 1.81 2.02
Accuracy (%) 52.90 55.52 74.30 57.71 63.95 51.61 62.30 59.76

Table 21: ECE (%) of a closed-set UDA method MCC (Jin et al., 2020) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 15.19 8.29 4.79 8.98 6.91 12.04 8.63 9.26
MatrixScal-src 36.95 28.60 15.99 23.92 18.95 29.54 28.72 26.10
VectorScal-src 18.52 11.63 4.49 15.98 10.72 20.86 10.71 13.27
TempScal-src 13.49 5.92 2.36 10.83 8.96 14.27 7.67 9.07
CPCS 29.26 15.02 3.44 3.03 6.00 5.15 2.66 9.22
TransCal 16.89 22.54 23.45 22.00 24.68 19.17 23.44 21.74
Ensemble 11.36 5.38 2.57 6.03 4.40 9.32 5.80 6.41
PseudoCal (ours) 2.72 1.45 2.38 1.25 1.64 3.48 2.13 2.15

Oracle 0.80 1.36 1.09 0.96 1.18 0.97 1.70 1.15
Accuracy (%) 47.65 51.27 71.62 50.51 59.02 45.14 56.46 54.52
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Table 22: ECE (%) of a closed-set UDA method CDAN (Long et al., 2018) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 17.00 10.51 5.56 9.83 8.26 11.88 11.03 10.58
MatrixScal-src 35.28 27.82 15.80 22.11 18.34 27.24 27.76 24.91
VectorScal-src 17.44 10.88 4.37 12.88 9.45 17.90 9.81 11.82
TempScal-src 13.39 6.58 2.75 9.27 8.30 11.22 8.32 8.55
CPCS 2.40 17.27 5.57 4.24 6.75 11.42 1.81 7.07
TransCal 14.85 20.65 22.93 21.19 22.27 19.01 20.55 20.21
Ensemble 12.96 7.47 3.54 6.96 5.73 9.62 7.75 7.72
PseudoCal (ours) 3.48 1.65 1.86 1.51 1.70 1.85 2.08 2.02

Oracle 1.03 1.61 1.07 1.28 0.73 0.84 1.43 1.14
Accuracy (%) 49.07 53.25 71.82 52.98 60.75 49.11 57.51 56.36

Table 23: ECE (%) of a closed-set UDA method SAFN (Xu et al., 2019) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 21.82 17.98 10.15 17.90 13.63 20.70 15.25 16.78
MatrixScal-src 33.45 22.54 11.16 21.05 15.53 26.33 21.85 21.70
VectorScal-src 19.61 14.11 4.73 17.45 10.40 21.04 10.49 13.98
TempScal-src 15.12 8.37 4.12 10.86 8.23 13.25 8.07 9.72
CPCS 21.96 14.58 8.22 7.26 7.52 23.23 4.31 12.44
TransCal 6.58 11.28 14.28 10.21 12.67 7.18 13.10 10.76
Ensemble 19.74 16.66 9.08 16.51 12.48 19.31 14.03 15.40
PseudoCal (ours) 3.40 4.44 1.50 2.23 0.81 2.12 1.79 2.33

Oracle 0.86 1.75 1.21 1.11 0.78 0.57 1.06 1.05
Accuracy (%) 48.14 48.65 66.40 50.54 59.89 47.18 56.17 53.85

Table 24: ECE (%) of a closed-set UDA method MCD (Saito et al., 2018) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 12.97 9.47 3.80 9.65 7.01 12.89 7.80 9.08
MatrixScal-src 31.47 19.56 10.05 20.32 14.30 24.98 18.45 19.88
VectorScal-src 19.63 12.59 5.75 16.53 10.21 20.95 10.27 13.70
TempScal-src 11.61 5.39 4.06 7.58 7.19 10.79 6.74 7.62
CPCS 19.75 6.09 1.96 7.94 3.92 23.82 3.10 9.51
TransCal 19.44 21.53 27.45 21.44 25.19 18.45 24.79 22.61
Ensemble 11.60 7.54 2.86 6.95 5.35 11.07 5.19 7.22
PseudoCal (ours) 1.66 3.60 1.01 0.93 1.11 1.73 1.21 1.61

Oracle 0.62 1.81 0.56 0.85 0.91 0.73 1.03 0.93
Accuracy (%) 49.09 48.21 65.32 49.49 59.58 46.81 56.40 53.56

Table 25: ECE (%) of closed-set UDA methods on Office-31.

Method ATDOC (Liang et al., 2021) BNM (Cui et al., 2020) MCC (Jin et al., 2020)
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

No Calib. 4.59 6.66 11.43 12.91 8.90 11.12 8.27 24.60 22.22 16.55 6.18 7.80 18.60 19.97 13.14
MatrixScal-src 9.58 13.21 14.04 15.35 13.05 11.22 8.81 24.64 21.94 16.65 9.70 10.21 18.99 21.84 15.19
VectorScal-src 4.57 6.43 15.69 17.50 11.05 8.15 4.11 24.82 23.59 15.17 5.12 3.16 20.53 24.01 13.21
TempScal-src 3.39 4.18 24.37 20.41 13.09 9.23 4.98 26.15 21.55 15.48 3.79 3.00 22.07 20.70 12.39
CPCS 7.98 8.94 26.49 22.80 16.55 11.65 2.02 27.16 17.73 14.64 4.69 3.03 29.84 30.47 17.01
TransCal 14.21 14.64 13.27 11.02 13.29 5.22 2.70 16.00 13.72 9.41 3.77 3.91 5.57 7.49 5.19
Ensemble 3.60 4.09 9.04 10.53 6.82 6.92 4.63 19.99 19.56 12.78 3.07 4.88 17.18 17.78 10.73
PseudoCal (ours) 6.64 4.98 3.22 4.47 4.83 6.30 3.97 10.75 8.21 7.31 2.68 2.82 4.50 4.71 3.68

Oracle 2.49 3.15 1.90 2.35 2.47 2.65 1.40 2.63 2.41 2.27 2.36 2.67 2.42 2.05 2.38
Accuracy (%) 91.57 88.93 73.41 73.06 81.74 88.35 90.94 71.35 73.77 81.10 91.37 89.06 69.86 69.51 79.95
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Table 26: ECE (%) of closed-set UDA methods on Office-31.

Method CDAN (Long et al., 2018) SAFN (Xu et al., 2019) MCD (Saito et al., 2018)
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

No Calib. 9.34 7.96 16.66 17.39 12.84 6.17 6.68 20.34 22.33 13.88 9.49 8.88 16.39 17.03 12.95
MatrixScal-src 11.90 14.91 17.21 21.12 16.29 9.49 13.97 20.56 23.43 16.86 9.83 13.49 17.86 20.28 15.37
VectorScal-src 6.04 3.60 17.67 25.37 13.17 3.22 2.20 21.07 23.59 12.52 5.87 4.61 17.75 20.52 12.19
TempScal-src 5.70 3.41 16.10 20.97 11.55 3.21 2.83 24.48 23.41 13.48 3.44 2.36 32.09 18.65 14.14
CPCS 30.95 5.67 4.99 29.95 17.89 8.21 18.21 24.18 22.12 18.18 11.85 19.01 32.45 22.92 21.56
TransCal 7.44 6.84 5.51 4.18 5.99 3.04 2.81 6.43 9.86 5.54 5.65 4.76 5.86 4.39 5.17
Ensemble 4.98 3.29 7.41 14.43 7.53 3.81 5.75 17.58 20.20 11.84 6.25 5.49 13.53 15.60 10.22
PseudoCal (ours) 4.78 3.04 6.39 6.78 5.25 7.92 5.51 4.00 4.26 5.42 5.97 5.33 4.38 4.06 4.94

Oracle 3.26 2.17 2.94 3.47 2.96 2.90 1.75 2.14 2.27 2.27 3.55 1.76 2.31 1.90 2.38
Accuracy (%) 87.15 87.17 64.82 67.23 76.59 89.96 88.55 69.33 68.58 79.11 86.14 85.53 67.52 66.63 76.46

Table 27: ECE (%) of a partial-set UDA method ATDOC (Liang et al., 2021) on Office-Home.
Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 28.21 20.87 10.76 17.58 23.49 11.69 19.16 28.98 14.34 13.29 28.22 15.64 19.35
MatrixScal-src 35.85 19.37 13.42 29.69 30.20 21.94 21.96 37.00 14.83 19.36 34.96 16.94 24.63
VectorScal-src 25.87 15.83 7.46 18.37 20.96 11.63 19.96 33.03 12.36 11.16 26.57 11.61 17.90
TempScal-src 21.08 15.04 5.75 12.95 17.86 7.52 18.23 29.63 12.88 9.02 23.66 11.83 15.45
CPCS 28.34 27.40 19.28 14.37 6.27 10.86 32.51 39.04 13.75 11.28 21.84 7.92 19.41
TransCal 4.36 5.07 10.58 9.47 4.98 12.82 9.12 5.81 10.51 13.32 5.34 7.60 8.25
Ensemble 20.32 12.06 8.90 11.80 17.57 7.89 12.32 22.25 9.07 11.81 21.26 10.68 13.83
PseudoCal (ours) 9.15 7.08 3.21 7.59 7.53 4.84 11.80 12.79 6.45 4.21 10.75 4.10 7.46

Oracle 3.09 4.24 2.82 4.78 4.93 4.48 4.04 5.03 4.94 3.58 5.24 3.95 4.26
Accuracy (%) 51.46 64.99 77.19 61.89 61.34 73.44 59.50 49.01 70.51 67.68 51.64 71.43 63.34

Table 28: ECE (%) of a partial-set UDA method MCC (Jin et al., 2020) on Office-Home.
Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 22.91 11.67 8.45 14.42 14.34 10.29 12.63 21.14 8.22 11.09 22.46 10.63 14.02
MatrixScal-src 35.16 19.13 14.89 29.94 30.26 25.30 24.67 34.81 14.78 18.58 34.09 15.73 24.78
VectorScal-src 19.52 9.73 6.05 12.79 14.23 11.07 16.13 26.53 9.03 9.29 20.18 7.95 13.54
TempScal-src 13.14 5.37 3.05 5.96 6.62 4.21 10.00 20.08 5.79 5.39 14.70 6.12 8.37
CPCS 19.34 10.62 4.00 4.25 4.14 12.00 28.24 37.75 16.08 5.70 27.24 12.51 15.16
TransCal 2.74 6.19 5.25 8.09 5.92 8.40 11.03 6.01 7.29 9.20 4.06 4.13 6.53
Ensemble 18.27 9.86 6.49 9.68 11.37 7.27 8.76 18.05 6.57 9.21 19.31 9.10 11.16
PseudoCal (ours) 2.51 7.86 4.70 3.04 6.70 5.78 4.20 4.01 3.96 3.99 4.36 6.23 4.78

Oracle 2.29 3.75 2.04 2.67 3.07 3.11 2.69 3.26 1.97 3.06 3.47 2.35 2.81
Accuracy (%) 51.10 74.17 81.56 62.53 66.72 73.16 63.27 50.03 79.96 70.80 53.91 79.33 67.21

Table 29: ECE (%) of a partial-set UDA method PADA (Cao et al., 2018) on Office-Home.
Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 20.35 8.33 5.30 11.10 12.28 10.19 8.93 18.60 4.83 8.31 18.33 6.95 11.13
MatrixScal-src 36.55 24.04 16.23 34.97 33.22 28.87 27.26 37.58 16.54 20.45 35.41 16.45 27.30
VectorScal-src 20.53 7.22 4.71 12.28 13.91 13.44 22.41 31.95 9.35 9.07 19.86 8.57 14.44
TempScal-src 15.15 6.09 3.34 6.51 6.43 4.64 13.91 23.77 4.27 6.34 15.69 6.11 9.35
CPCS 24.22 30.26 24.81 9.80 7.37 43.23 28.84 39.45 14.97 34.57 4.55 14.27 23.03
TransCal 9.39 23.43 26.71 21.37 20.51 21.88 22.49 11.25 31.71 24.23 12.37 25.06 20.87
Ensemble 11.42 4.97 2.88 6.02 4.54 4.65 3.76 11.15 4.24 6.13 13.00 3.79 6.38
PseudoCal (ours) 2.95 12.31 7.51 4.68 10.14 5.38 5.77 4.13 7.19 3.71 3.28 9.85 6.41

Oracle 2.16 5.65 2.27 3.89 5.70 2.83 5.06 2.73 3.98 2.87 3.06 3.06 3.61
Accuracy (%) 43.82 59.83 72.45 51.70 52.32 58.14 51.52 40.66 69.02 63.73 47.70 71.54 56.87
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Table 30: ECE (%) of a white-box source-free UDA method SHOT (Liang et al., 2020a) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 21.57 16.14 10.03 18.18 20.86 24.71 21.52 19.00
MatrixScal-src 27.18 19.67 12.49 19.13 16.99 21.60 20.35 19.63
VectorScal-src 17.79 13.95 6.46 19.31 16.25 22.17 13.20 15.59
TempScal-src 13.91 11.32 4.81 16.76 16.47 18.99 10.63 13.27
CPCS 12.52 7.28 4.93 13.64 10.86 16.57 9.10 10.70
TransCal 16.39 23.80 25.37 24.23 18.18 15.87 14.81 19.81
Ensemble 17.57 13.24 7.81 15.24 18.14 21.40 17.73 15.88
PseudoCal (ours) 5.82 6.08 2.91 7.23 7.17 7.51 8.38 6.44

Oracle 2.03 3.69 1.37 2.85 2.25 2.33 2.78 2.47
Accuracy (%) 59.80 66.79 78.34 66.25 66.08 59.48 62.88 65.66

Table 31: ECE (%) of a black-box source-free UDA method DINE (Liang et al., 2022) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 31.91 22.54 12.39 21.43 20.63 28.77 24.38 23.15
Ensemble 26.38 18.72 10.83 17.03 17.53 24.28 20.18 19.28
PseudoCal (ours) 17.86 15.12 5.30 13.71 11.14 14.44 14.75 13.19

Oracle 1.35 1.87 1.29 1.62 1.94 1.38 1.65 1.59
Accuracy (%) 54.26 63.00 80.69 64.52 67.13 56.75 63.81 64.31
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