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Abstract

Fine-tuning multi-turn dialogue systems re-
quires high-quality data but tends to degrade
with low-quality or out-of-distribution (OOD)
samples. Early errors accumulate, amplify-
ing inconsistencies and degrading response
quality. However, existing methods separate
data quality control from fine-tuning, over-
looking turn-level dependencies and cumula-
tive noise, which hinders end-to-end optimiza-
tion in multi-turn settings. To bridge this gap,
we propose TWiIiNS (Turn-weighted Welford-
based implicit Noise Suppression), an end-
to-end adaptive fine-tuning method that im-
plicitly pinpoints noisy samples and then sup-
presses their gradient contributions over the
course of model tuning on the fly, mitigat-
ing error accumulation and preserving coher-
ence in multi-turn dialogues. Specifically, turn-
aware weighting maintains contextual coher-
ence, while Welford’s online algorithm ad-
justs sample weights without pre-filtering. Ex-
periments show that TWiNS ensures stable
optimization across multi-turn dialogues, en-
hancing performance on individual and mixed-
quality datasets while mitigating degradation.
By suppressing noise without explicit filtering,
it adapts to evolving data distributions with
zero pre-filtering overhead, establishing a new
paradigm for end-to-end data-quality optimiza-
tion in multi-turn dialogue systems.

1 Introduction

Multi-turn dialogue systems are crucial in both task-
oriented (Xu et al., 2024) and open-domain conver-
sational agents (Lu et al., 2023a; Sun et al., 2024),
enabling natural and efficient human-computer in-
teractions. Fine-tuning these systems is challeng-
ing due to their reliance on multi-turn dialogue
datasets (Bian et al., 2023; Zhao et al., 2024b; Con-
tributors, 2023), which include both manually an-
notated and synthetic data (OpenAl, 2023). Al-
though they dominate due to scalability (Zhang

et al., 2023; Maheshwary et al., 2024), their in-
consistent quality frequently disrupts training and
optimization. In multi-turn dialogue, this variabil-
ity compounds over turns, leading to incoherent
responses, error propagation, and context drift. Fur-
thermore, misalignment with evaluation metrics on
multi-turn benchmarks (Zheng et al., 2023; Kwan
et al., 2024a), often leads to optimization instabil-
ity, jeopardizing response coherence and overall
performance (Wu et al., 2023; Chen et al., 2023; Li
et al., 2024a; Zhou et al., 2024).

Traditional approaches improve data quality and
training performance through pre-filtering-based
data selection before fine-tuning (Wang et al.,
2024), typically removing noisy, redundant, and in-
complete samples. However, these methods rely on
predefined criteria (Cao et al., 2023), which often
fail to account for the complex contextual depen-
dencies in multi-turn dialogues, leading to exces-
sive data filtering. Additionally, some approaches
(Wu et al., 2022) introduce noise for robustness
but lack systematic optimization, further impacting
model performance.

To address these challenges, this paper pro-
poses a novel Turn-weighted Welford-based im-
plicit Noise Suppression (TWiNS) mechanism, an
adaptive fine-tuning mechanism that filters noisy
"junk" data during fine-tuning. Unlike static fil-
tering methods, TWiNS dynamically adjusts the
weight of each training instance using Welford’s on-
line statistical algorithm, ensuring that loss distribu-
tion updates reflect data quality. This approach not
only suppresses noisy samples but also preserves
the contextual dependencies crucial for multi-turn
dialogues, preventing early-turn errors from prop-
agating to later responses. Moreover, TWiNS in-
tegrates turn-specific hierarchical positioning, en-
abling fine-grained adjustments tailored to multi-
turn dialogue structures.

Our experiments demonstrate the effectiveness
of this approach. The proposed method consis-
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Figure 1: Comparison of the traditional fine-tuning approach and our TWiNS method. (a) The traditional approach
applies static pre-filtering before standard fine-tuning. (b) TWiNS integrates implicit noise suppression into fine-
tuning through online loss estimation, adaptive noise weighting, and turn-aware loss adjustment. Other standard

fine-tuning steps are omitted for clarity.

tently outperforms existing multi-turn dialogue
training techniques on widely recognized bench-
marks, including MT-Bench, MT-Bench-Ext, and
in-domain tests. Notably, it mitigates overfitting
and prevents unstable optimization often observed
in supervised fine-tuning. Furthermore, when fine-
tuning on mixed-quality datasets, TWiNS main-
tains or improves performance across domain-
specific tasks, with no performance penalty ob-
served on individual datasets. These results con-
firm the method’s robustness, scalability, and adapt-
ability to diverse multi-turn dialogue settings.
Our key contributions include:

¢ We introduce TWINS, an end-to-end fine-
tuning framework that suppresses noisy sam-
ples through dynamic loss regulation, elimi-
nating manual filtering while preserving multi-
turn coherence.

* Our approach enables scalable training on
mixed-quality datasets by leveraging adaptive
online statistics, integrating large-scale hetero-
geneous data without performance loss.

* TWINS surpasses existing methods on MT-
Bench, MT-Bench-Ext, and in-domain bench-
marks, consistently enhancing performance
across datasets of varying quality.

2 Related Work

2.1 Multi-turn Dialogue Fine-tuning

Recent advancements in LLM fine-tuning (Hu
et al., 2023, 2021; Dettmers et al., 2024) have sub-
stantially enhanced performance, leading to the
development of a new family of models (Liu et al.,
2024a; Zhao et al., 2024a; Meng et al., 2024).

While existing methods have addressed multi-
turn conversations to a limited extent, performance
tends to degrade when fine-tuning on multi-turn
dialogue datasets (Sun et al., 2024). In the con-
text of combining LLMs with multi-turn dialogue
systems, recent studies have introduced improve-
ments in methods (Sun et al., 2024; Shani et al.,
2024), focusing on context-aware preferences and
reinforcement learning, and in data (Maheshwary
et al., 2024; Ou et al., 2024), emphasizing separate
data enrichment. These two areas of enhancement,
however, have not been integrated elegantly, and
issues like expensive data curation, weak general-
ization, and inconsistent quality continue to pose
challenges.

2.2 Data Selection in LLM Finetuning

Although the scale of data is crucial in LLM fine-
tuning, selecting fewer high-quality data points can
lead to better performance than using the entire
dataset (Wu et al., 2023; Chen et al., 2023), high-



lighting the significance of data selection in LLM
fine-tuning.

In terms of data quality assessment methods
(Wang et al., 2024), data selection schemes can be
categorized into three types: (1) GPT-based scor-
ing, which involves designing detailed prompts and
evaluation criteria and using ChatGPT as the scor-
ing tool (Chen et al., 2023; Lu et al., 2023b; Xu
et al., 2023; Liu et al., 2024b; Du et al., 2023);
(2) trained model-based scoring, where an LLM
is trained with a predefined policy to score each
instance and set a threshold (Li et al., 2023, 2024b;
Anonymous, 2024); and (3) indicator-based meth-
ods, which estimate dataset quality through infer-
ence loss (Cao et al., 2023) or by defining indicators
based on conversation features (Wei et al., 2023)

Although these methods similarly stress the im-
portance of refined data, they often produce inexpli-
cable results, suffer from limited applicability and
randomness, or demand prohibitively high training
costs, leading to a loss of feasibility in both training
and generalization as models evolve. Additionally,
prior approaches perform data selection before and
independently of the training process, failing to
capture and leverage end-to-end feedback during
training—a key focus of our work.

3 Methodology

In multi-turn fine-tuning, given dialogue history
H = {(u1,7r1),...,(un—1,mn—1)} and the current
user utterance u,,, the goal is to generate a coherent
response r,, by optimizing model parameters 6 to
maximize the conditional log-likelihood:

0" = argmaxlogpo(ry | H,un) (1)

To systematically structure our methodology,
we first assess dataset quality before fine-tuning
and then introduce the TWiNS method to evalu-
ate model performance across datasets of varying
quality.

3.1 Evaluation on Datasets

There are multiple public, open source, and high-
quality multi-turn conversation datasets, which are
generated by both humans and LLMs, especially
ChatGPT. Table 4 in section B of Appendix details
public datasets in this work including ShareGPT
(RyokoAl, 2023), WildChat (Zhao et al., 2024b),
OpenAssistant (Kopf et al., 2024), ChatAlpaca
(Bian et al., 2023), MTLingual (Maheshwary et al.,

Dataset Con. Qu. ID Fr. Overall
ChatAlpaca 834 949 0.0286 9.48 High
MTLingual 854 937 0.0263 9.14 High
UltraChat 846 9.06 0.0233 9.41 High
WildChat 7.80 878 0.0196 8.90 Normal
ShareGPT 8.10 8.69 0.0174 8.82 Normal
OpenAssistant ~ 7.54  7.57 0.0292 8.21 Low

Table 1: Dataset Evaluation Results. Con.: Connection,
Qu.: Quality, ID: Information Density, Fr.: Friendliness.

2024), and UltraChat (Ding et al., 2023) with their
features.

Existing benchmarks on LLM evaluation (Zheng
et al., 2023; Kwan et al., 2024b; Radziwill and Ben-
ton, 2017) and labels in OpenAssistant consider the
relevance, helpfulness, and accuracy when grading
the responses of LLMs, and state the importance of
the awareness of ethics, safety, and privacy. More-
over, a work on dialogue (Dethlefs et al., 2016)
addresses the significance of information density in
human dialogues. Thus, this work proposes an eval-
uation benchmark on multi-turn dialogue datasets
in four independent aspects: Connection, Informa-
tion Density, Quality, and Friendliness.

Connection: The assistant’s final response
should incorporate relevant information from prior
conversations without introducing any unrelated or
redundant details.

Quality: Each response should fulfill the spe-
cific request of the corresponding turn, while en-
suring content accuracy and maintaining high lan-
guage quality.

Information Density (ID): Treat the conversa-
tion as a whole, calculating the total number of
words N and the number of information units
I. The information density is then defined as
ID=1/N.

Friendliness: Human requests should be made
with attention to manner, while the assistant’s re-
sponses should prioritize security and politeness.
The conversation as a whole should maintain a re-
spectful tone.

The evaluation is done by ChatGPT, which is a
common labeling tool in evaluation works (Zheng
et al., 2023; Kwan et al., 2024b; Bai et al., 2024),
and the prompts and data processing are detailed
in section A of Appendix. For the evaluation on
each aspect, one hundred complete conversations
are independently and randomly sampled, and the
evaluation on each single conversation and dataset



is also independent. The score of each aspect of a
dataset is defined as the average score of the cho-
sen conversations in this aspect. The evaluation
result is detailed in Table 1. Based on the scores
of the four aspects, the overall quality of the 6
datasets are divided to high (ChatAlpaca, MTLin-
gual, UltraChat), normal (WildChat, shareGPT),
and low (OpenAssistant). OpenAssistant is built
from real human conversations, each labeled for
quality with the goal of subsequent reinforcement
learning. Because it deliberately preserves both
high- and low-quality responses, the dataset yields
a relatively lower overall score in our evaluation.

3.2 TWINS

We present TWiNS (Turn-Weighted Welford-Based
Implicit Noise Suppression), an adaptive loss reg-
ulation method that dynamically adjusts sample
importance through Welford’s online variance es-
timation. This technique stabilizes fine-tuning by
suppressing noise and modulating loss contribu-
tions according to turn depth.

3.2.1 Turn-aware Embedding Fusion

To effectively capture the structure of multi-turn
conversations, we integrate turn-aware embeddings
to every utterance in the dialogue. These turn IDs
are incorporated as additional features to help the
model distinguish the roles and importance of dif-
ferent conversation turns.

For turn ¢, we compute a learnable turn em-
bedding eqyn (t), which is element-wise combined
with the token and positional embeddings before
being passed to the transformer’s first layer. In
the additive fusion method, the turn embedding is
combined with the token embedding ey and the
positional embedding ep,s by element-wise addi-
tion:

€final = €token 1+ €pos + €wn (2)

The fused representation egy,; is then propagated
through the transformer, allowing the model to
jointly encode turn structure, token identity, and
positional information.

3.2.2 Online Loss Estimation

To adaptively regulate loss, we estimate its mean
u and variance o2 online using Welford’s algo-
rithm, enabling real-time updates without extra
data passes. Let N denote the current iteration
or update count, and let £ represents the mini-batch

loss at each step. We iteratively update:
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where M is a running accumulation of the squared
deviations from p, facilitating variance estimation.

These statistics are computed independently for
each conversational turn, segmenting samples into
discrete buckets based on turn ID. Earlier turns
(t < 4) typically correspond to simpler queries,
whereas later turns (¢ > 4) tend to involve more in-
tricate and contextually complex interactions. This
segmentation separates distinct turn complexities,
enhancing the model’s adaptability to different dia-
logue structures.

To mitigate short-term fluctuations in loss values,
we optionally apply Exponential Moving Averages
(EMA) for additional smoothing. Let ugpma be
the exponentially smoothed loss estimate, and 6 €
(0, 1) the smoothing factor. We iteratively update:

pEMa < (1 —6) - ppma +0 - £ )

By leveraging these statistics, TWiNS enhances
the stability of loss estimation while effectively
detecting outliers within each turn-specific bucket,
aligning with the inherent multi-turn nature of SFT
tasks.

Adaptive Noise Weighting. Using online loss
statistics, we dynamically reweight noisy samples
based on their deviation from expected loss. The
deviation score d is computed as:

1€ — pl
d=—™"= 6
o+e€ ©)

1
wjunk—m @)

where € is a small constant for numerical stabil-
ity, and « is a positive scaling factor that determines
how aggressively outliers are downweighted. To
avoid extreme weight shifts, wjunk s clipped within
[Wmins Wmax]- Samples with deviation scores out-
side this range are deemed noise and have their
contribution adaptively reduced, minimizing dis-
ruptive effects while preserving valuable signals
for improved robustness in multi-turn fine-tuning.



3.2.3 Turn-aware Loss Adjustment

To adaptively adjust the training loss in multi-turn
SFT, we introduce three weighting factors: the turn
weight Wy, the dynamic junk weight waynamic,
and the assistant weight wgggistant. The adjusted
loss is computed as:

Eadjusted = (- max (0'37 min (wturn * Wdynamic*
Wassistant 20)) (8)

The turn weight wy,m accounts for dialogue com-
plexity, ensuring that later turns, which are often
more complex, contribute to the overall loss:

Wym = 1.0 + § - avg_turn 9)

where [ is a tunable coefficient (e.g., 5 = 0.05).

To handle noisy samples, we apply the dynamic
junk weight wqynamic, which adjusts the impact of
samples based on their deviation from the expected
loss distribution:

Wdynamic = LO—7~- (1'0 - wjunk) (10)

Additionally, the assistant weight wpssistant T€2-
ulates the contribution of tokens generated by the
assistant role:

Wassistant = 1.0 + A - assistant_ratio

an

To prevent excessive weighting, Wyssistant 1S
clamped within the range [1.0,1.2]. These three
factors collectively enhance training stability by
emphasizing turn complexity, mitigating noisy sam-
ples, and balancing role-specific contributions.

4 Experiments

4.1 Experimental Settings

Parameter All fine-tuning experiments were con-
ducted based on Llama-3.2-3B Instruct (Face and
Al, 2023) model. The model was fine-tuned for 3
epochs on datasets of varying quality. Each device
processed a batch size of 4, with a gradient accumu-
lation step of 4, resulting in an effective batch size
of 64. The Adam optimizer was employed, with
the hyperparameter 32 set to 0.95. A cosine decay
learning rate schedule was applied, starting at an
initial learning rate of 1 x 10~° and incorporating
a warm-up ratio of 0.01.

All training and evaluation procedures were per-
formed in FP16 precision on four NVIDIA GPUs.
To reduce memory consumption, gradient check-
pointing and Low-Rank Adaptation (LoRA) were
enabled during training. Model performance was
periodically assessed using a held-out validation
set of 400 examples.

To enhance the robustness of the training process,
a warm-up strategy was implemented during the
initial phase of training. This involved using 640
high-quality dialogue samples to initialize baseline
mean and variance parameters. As training pro-
gressed, the filtering weight for anomalous data
was gradually increased to ensure smooth and sta-
ble model optimization.

Evaluation We first conducted in-domain evalu-
ations on six datasets: ShareGPT, WildChat, Ope-
nAssistant, ChatAlpaca, MTLingual, and Ultra-
Chat. From each dataset, 100 multi-turn dialogues
were sampled for assessment. Additionally, we per-
formed evaluations on the general-purpose multi-
turn dialogue benchmarks, MT-Bench and the ex-
tended MT-Bench (MT-Bench_Ext), to verify the
consistency of our training approach across dataset-
specific and general benchmarks. Finally, we em-
ployed evaluation prompts from the “LLM-as-a-
Judger” study and conducted all evaluations using
the GPT4-08-06 model.

Mix Dataset To validate the effectiveness of our
approach, we selected ChatAlpaca, ShareGPT, and
OpenAssistant as representatives of high-, normal-,
and low-quality datasets, respectively. From each
dataset, 20K samples were extracted and mixed in
different combinations: high and normal quality,
high and low quality, and high, normal, and low
quality. These experiments were designed to assess
the performance of our method in handling datasets
with varying distributions during training.

4.2 Baselines

We evaluate our method against four typical meth-
ods in multi-turn dialogue study:

(1) Baseline: the original instructed model without
dedicated multi-turn dialogue fine-tuning.

(2) Vicuna-tuning: a widely adopted dialogue
adaptation framework built upon LLaMA, distin-
guished by its LoRA fine-tuning strategy on multi-
turn conversational data (Chiang et al., 2023).

(3) Baize: a parameter-efficient approach that ex-
clusively updates linear layers through self-chat
generation (Chiang et al., 2023).



In_domain test MT-Bench MT-Bench-Ext
Lv. Dataset
Base. V.T. TWINS Base. V.T. TWINS Base. V.T. TWINS
H M2Lin.(en) 7.10 7.09 (-0.14%) 7.06 (-0.56%) 7.13 7.21 ( ) 7.16 ( ) 6.64 6.65 ( ) 6.71( )
ChatAlpaca 8.20 7.99 (-2.56%) 8.26 ( ) 7.13 6.97 (-2.24%) 7.29 ( ) 6.64 5.99 (-9.79%) 6.76 ( )
UltraChat  7.90 7.56 (-4.30%) 8.01 ( ) 7.13 6.68 (-6.31%) 7.32 ( ) 6.64 6.22 (-6.33%) 6.76 ( )

) 7.136.08 (-14.73%) 7.83 (
) 7.13 7.14 (

) 7.136.20 (-13.07%) 7.26 (

N  ShareGPT 6.55 6.09 (-7.02%) 6.95 (
WildChat 6.80 6.47 (-4.85%) 6.86 (

L OpenAss. 7.64 7.20 (-5.76%) 7.67 (

) 6.645.80 (-12.65%) 6.83 (

) 7.21( ) 6.64 6.74 ( ) 6.72 (

) 6.645.48 (-17.47%) 6.83 ( )

Table 2: Comparison of our method, non-trained Baseline, and Vicuna-Tuning on LLaMA 3.2-3B: multi-turn
dialogue performance (GPT-4 scores) across high-, normal-, and low-quality datasets. Each cell shows absolute
scores plus relative improvement/decline (%) vs. Baseline in parentheses. *Lv. = Level, H, N, L = High, Normal,
Low, M2Lin.(en) = M2Lingual (en), OpenAss. = OpenAssistant, Base. = Baseline, V.T. = Vicuna-Tuning.

(4) ChatGLM3: implements multi-turn dialogue
fine-tuning by updating only the loss of roles other
than user and system (GLM et al., 2024).

All methods share identical LoRA configurations
(rank=128, alpha=16, dropout=0.3) and data parti-
tions: 20,000 training samples with 400 validation
and 100 test instances. Experiments are conducted
with fixed random seeds (seed=42) and multi-turn
dialogue performance quantified by the MT-Bench
(Zheng et al., 2023).

4.3 Main Results

4.3.1 Does TWiNS address negative
optimization in multi-turn dialogues?

To evaluate the capability of the TWiNS fine-tuning
method in addressing the negative optimization is-
sue across diverse individual multi-turn dialogue
datasets, we conduct a comparative analysis with
Vicuna-Tuning approach. The experiments results
demonstrate the TWiNS effectively filters out low
quality data during training through end-to-end sig-
naling, thereby achieving positive performance on
both in-domain test sets and general multi-turn
dialogue benchmarks, including MT_Bench and
MT_Bench_Ext.

TWINS addresses the negative optimization
observed in Vicuna-Tuning. As shown in Table
2, TWINS outperforms Vicuna-Tuning across mul-
tiple datasets, including ChatAlpaca, UltraChat,
ShareGPT, and OpenAssistant. TWiNS consis-
tently achieves positive optimization in both in-
domain evaluations and the MT-Bench/MT-Bench-
Ext benchmarks, whereas Vicuna-Tuning often
shows negative optimization. Among the various
datasets, ShareGPT reveals the largest performance
gap between TWINS and Vicuna-Tuning, likely
due to LLaMA-3.2B-3B’s sensitivity to ShareGPT.

TWiNS achieves improvements of 6.11%, 9.82%,
and 2.86% over the baseline for the in-domain test,
MT-Bench, and MT-Bench-Ext, respectively. In
contrast, Vicuna-Tuning attains 7.02%, 12.73%,
and 12.65% on those benchmarks. Overall, these
findings underscore TWiNS’s robust performance
in multi-turn dialogue tasks, driven by its consistent
positive optimization.

TWINS excels in longer, more complex multi-
turn dialogues. For the Mtlingual (en) dataset
(2,000 samples), both Vicuna-Tuning and TWiNS
exhibit negative optimization due to overfitting,
scoring 7.09 and 7.06 respectively. On the MT-
Bench dataset, which primarily consists of two-
turn dialogues, TWiNS is marginally outperformed
by Vicuna-Tuning. However, TWiNS achieves
a higher score on MT-Bench-Ext, where the di-
alogues are longer and more complex, indicating
TWiNS’s robustness in multi-turn conversational
scenarios.

4.3.2 Does TWINS skip junk data to enhance
fine-tuning stability and performance?

To further validate the ability of the TWiNS fine-
tuning method to leverage end-to-end signaling
for skipping low-quality data, we conduct dialogue
fine-tuning experiments on mixed datasets, compar-
ing it with Vicuna-Tuning, Baize, and ChatGLM3.
Figure 2 (a) shows that for in-domain evaluation,
TWIiNS maintains a stable score of around 8.2, de-
spite increasing dataset complexity. By contrast,
Vicuna-Tuning drops from 8.2 to 7.67, and Baize
and ChatGLM3 exhibit smaller declines or only mi-
nor gains. Turning to the MT-Bench benchmark in
Figure 2 (b), TWiNS steadily improves from 7.13
to 7.4, reflecting its clear positive trend in handling
general multi-turn dialogue tasks. Vicuna-Tuning,
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however, decreases from 7.13 to 6.38. Baize and
ChatGLM3 also show moderate fluctuations with
limited growth. Finally, in the MT-Bench-Ext eval-
uation (Figure 2 (c)), TWINS displays a consistent
upward trajectory from 6.64 to 6.77, while Vicuna-
Tuning plunges from 6.64 to 5.74. Baize and Chat-
GLM3 once again reveal minor variations but lack
the stable improvement seen in TWiNS.

TWINS excels on partially noisy datasets,
maintaining positive optimization. Building on
these observations, we find that as mixed dataset
complexity increases, different methods display
varying resilience to noise. Conventional fine-
tuning approaches (Vicuna-Tuning, Baize, Chat-
GLM3) tend to suffer from performance degrada-
tion when confronted with low-quality data. In con-
trast, TWIiNS effectively filters out disruptive junk
samples while preserving the beneficial signals
present in larger and more diverse datasets. This
robust noise-filtering capability enables TWiNS to
consistently learn from high-quality data within
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8
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m
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Figure 3: Turn-wise performance on MT-Bench Ex-
tended (GPT-4 evaluation).

mixed scenarios, thereby reinforcing its advantage
in complex, multi-turn dialogue settings.

Turn-by-turn Analysis on MT-Bench Ex-
tended. We compare three training setups - no
training, Vicuna tuning fine tuning, and TWiNS -
on the MT-Bench Extended dataset using GPT-4
evaluation. Performance as shown in Figure 3 de-
clines across turns, with a sharp drop from Turn 1
to Turn 2, highlighting the challenge of maintain-
ing response quality in multi-turn dialogues. Our
proposed fine-tuning consistently outperforms the
baseline and Vicuna Tuning methods, demonstrat-
ing better response stability. Baseline model shows
noticeable degradation in the last turn, while the
Vicuna Tuned model performs the worst. These
results emphasize the importance of fine-tuning for
sustained dialogue quality.

5 Ablation Study

TWINS excels in fine-tuning with mixed data
types. To further validate the stability of our
proposed TWIiNS in fine-tuning performance
across different types of data noise, we incorpo-
rated GSM8K, a mathematical question-answering
dataset, alongside multi-turn dialogue datasets. Af-
ter mixing GSM8K with the ChatAlpaca dataset,
we compared the fine-tuning methods of TWiNS
and Vicuna-Tuning. As shown in Fig. 4, our find-
ings indicate that TWiNS maintains stable perfor-
mance on in-domain tests and shows positive opti-
mization on general multi-turn dialogue evaluation
sets, even when compared to using a single high-
quality multi-turn dialogue dataset. In contrast, Vi-
cuna exhibits a decline in both in-domain tests and
general dialogue evaluation sets. This decline is
attributed to Vicuna’s overfitting to the mathemat-
ical capabilities associated with GSM8K, which
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Metric w/ Welford w/o Welford R.IL (%)
In-domain Test 8.26 8.20 +0.73 %
MT-Bench 7.29 7.19 +1.39%
MT-Bench-Ext 6.76 6.70 +0.90 %

Table 3: Comparison of main experiment and ablation
experiment with Relative Improvement (R.1.)

consequently weakens its multi-turn dialogue capa-
bilities.

TWINS enhances response performance by
effectively skipping low-quality data. To evalu-
ate the impact of TWiNS mechanism on multi-turn
dialogue fine-tuning, we conduct an ablation study
by removing the Welford Loss Calculation com-
ponent while keeping all other loss updating func-
tions unchanged. This ablation setup disables the
skip mechanism, preventing the suppression of low-
quality data during training. As shown in Table 3,
the full TWiNS model outperforms the ablated ver-
sion, achieving improvements of +0.73% on the
in-domain test, +1.39% on MT-Bench, and +0.90%
on MT-Bench-Ext. These results demonstrate that
the skip mechanism in TWiNS effectively miti-
gates the influence of low-quality data, enhancing
the model’s robustness and fine-tuning stability.

6 Case Study

As shown in Figure 5, this multi-turn dialogue case
shows TWINS’ superior contextual comprehension
compared to Vicuna-Tuning. When analyzing the

User: In the sentence,
Assistant: Jack

Ist ..., identify the subject

nd User: ... what the predicate is in that sentence?
Assistant: Yes, the predicate ...

User: Can you explain to me what a predicate is?
3rd  Assistant: Sure! A predicate is one of the two main
parts of a sentence. It usually includes the...

User: Can you give me an example of a sentence
_with a compound predicate?  _____________|
Answer 1 (TWINS): ...\"are going to the
movies tonight\" is the first part of the
compound predicate, and
4th  superhero movie\" is the second part of the (&2
compound predicate....
Score: 9/10, Rationale:
parallel verb structures.

Answer 2 (Vicuna-Tuning): ... the compound
predicate includes two verbs: \"attended\" and
\"headed\". ...

Score: 3/10, Rationale: Mistakenly parsing the
noun phrase "headed" as a verb.

"will see a new

Correctly identify

©
N3

Figure 5: Case study.

compound predicate query, TWiNS accurately iden-
tifies parallel verb structures, correctly recognizing
both predicate components ("are going" and "will
see") with precise syntactic boundaries. In contrast,
Vicuna-Tuning exhibits critical contextual misin-
terpretation. erroneously parsing the noun phrase
"headed" as a verb predicate, confusing syntactic
roles despite the explicit mention of "head" as a po-
sitional noun in the preceding context. This failure
reveals Vicuna-Tuning’s limitations in maintaining
dialogue state awareness and tracking referential
relationships across conversational turns. Detailed
examples can be found in Appendix C.

7 Conclusion

In this study, we present TWiNS, which dynami-
cally adjusts training instance contributions to pre-
serve response quality and improve system robust-
ness. Our method outperforms traditional fine-
tuning across benchmarks like MT-Bench, MT-
Bench-Ext, and in-domain tests, effectively mit-
igating the impact of noisy data. Ablation studies
confirm the importance of dynamic loss control in
optimizing multi-turn dialogue performance. Over-
all, TWiNS offers a robust and adaptable solution
for fine-tuning multi-turn dialogue systems, partic-
ularly in handling noisy or low-quality data.



Limitation

This study has several limitations. First, we only
evaluate the impact of multi-turn fine-tuning on the
LLaMA 3.2 3B model. Due to computational con-
straints, we have not yet conducted experiments on
other LLM families, which may affect the general-
izability of our findings. Second, the proposed on-
line statistical method is one possible approach, but
alternative solutions may exist. Our study adopts
a straightforward experimental setup without ex-
ploring more sophisticated strategies. Third, our
evaluation of dataset quality serves as a reference
rather than a definitive assessment, as different do-
mains may require tailored quality evaluation met-
rics. Despite these limitations, we hope that our
findings can provide insights for future researches
on domain-specific fine-tuning.

Ethics Statement

Our work explores automatic noise filtering in
multi-turn dialogue training using end-to-end sig-
nals. However, its implicit filtering mechanism
may unintentionally remove valuable data, raising
concerns about bias and information completeness.
Moreover, the method is evaluated only in multi-
turn dialogue scenarios, with broader applications
limited by computational cost. Future work will
address these challenges to enhance fairness and
efficiency.
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‘<response>’}, ... , {"human’: ’<request>’,

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
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A Data processing and Evaluation
Prompts

During the evaluation of datasets, although the
raw patterns of conversation data from different
sources vary from each other, all of them are for-
matted as [{’human’: ’<request>’, ’assistant’:
‘as-
sistant’: ’<response>’}] for each entire and inde-
pendent conversation, before being written to the
prompt. The ChatGPT version used in the evalua-
tion is ChatGPT-40-2024-08-06, and the complete
prompts of the evaluation on Connection, Quality,
Information Density and Friendliness are detailed
in Figure 7, Figure 8, Figure 9, Figure 10 separately.
In the evaluation, each aspect of each independent
conversation is also graded independently.

B Datasets Introduction

Table 4 shows the datasets in this work. ShareGPT
is a collection of 90k conversations shared via the
ShareGPT API (closed at present), and includes
both user prompts and responses from ChatGPT,
which mainly consists of messages in English and
other western languages. WildChat is a collection
of 1 million real-world user-ChatGPT conversa-
tions which consists of over 2.5 million interaction
turns and 68 languages from 204,736 users (Zhao
et al., 2024b). OpenAssistant is a collection of
161,443 messages that construct over 10000 com-
plete conversations, which consists of 35 different
languages and over 40k annotations on quality, and
is designed for reinforcement learning from human
feedback. Hence, it provides different conversa-
tions based on the same initial question with differ-
ent quality, which leads to the sacrifice of the over-
all quality. Another important and unique feature
of OpenAssistant is that, it is totally generated and
annotated by human (Kopf et al., 2024). ChatAl-
paca is a collection of 20k conversations, generated
by ChatGPT and started with the original Stanford
Alpaca (Taori et al., 2023) data, and it contains
English and Chinese version. MTLingual is a col-
lection of 182k conversations in 70 languages, and
is generated by Evol (Maheshwary et al., 2024).
The type of language, task, user prompt, and seed
prompt are also detailed in MTLingual. UltraChat
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is a collection of 1.5 million conversations and is
generated by ChatGPT which simulates the inter-
actions of human. The main concerns of UltraChat
is diversity, scale, and coherence.

C Case Study

Figure 6 details a case showing TWiNS’ superior
contextual comprehension on multi-turn dialogue
compared to Vicuna-Tuning. In this case, our
method successfully identifies parallel verb struc-
tures while Vicuna-Tuning fails in the recognition
of the parts of speech.
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Dataset Volume Avg. Turns Generation Generation Annotated

Type Mechanism
(Sélaf)f(ii? 2023) 94K 3.51 User- Voluntary sharing No
y ’ ChatGPT by netizens
gﬁ:gg?;l 2024b) 1.04M 2.54 User- Collected from No
v ChatGPT chatbot services
powered by GPT
API
OpenAssistant
.« 135.6K 2.34 Human only Human-Generated Yes
(Kopf et al., 2024) & Annotated by
volunteers
ChatAlpaca(Bian et al., 2023) 20K 4.32 ChatGPT  Follow-up by GPT No

from Stanford
Alpaca(Taori et al.,

2023)
?@Iﬂg‘i“‘j; ot al., 2024) 182K 2.48 ChatGPT  Constructed by No
Y ” Evol from
Aya(Singh et al.,
2024)
%E;acga;l 2023) 1.5M 3.80 ChatGPT  Simulate human No
& ” interactions by
ChatGPT

Table 4: Datasets in this work with features, the values of Avg. Turns of ShareGPT, WildChat and OpenAssistant
derive from the work of WildChat (Zhao et al., 2024b), and the value of Avg. Turns of OpenAssistant calculates on
multi-turn conversations in English.

User: In the sentence, \"Jack received a birthday present from his aunt Mary,\" identify the subject

Ist Assistant: Jack
User: Great job! Can you now tell me what the predicate is in that sentence?
2nd  pssistant: Yes, the predicate in the sentence is \"received a birthday present from his aunt Mary.
User: Can you explain to me what a predicate is?
Assistant: Sure! A predicate is one of the two main parts of a sentence. It usually includes the verb and all the
3rd other words in the sentence that modify or complete the sentence's subject. The job of the predicate is to
describe what the subject is doing or what is being done to it. For example, in the sentence \"Jack received a
birthday present from his aunt Mary,\" \"received a birthday present from his aunt Mary\" is the predicate, and it
describes what Jack did.
User: Can you give me an example of a sentence with a compound predicate?
Answer 1 (TWINS): ...\"Jack and Sarah are going to the movies tonight, and they will see a new superhero
movie.\"\n\nIn this sentence, \"are going to the movies tonight\" is the first part of the compound predicate, and
\"will see a new superhero movie\" is the second part of the compound predicate.... o
4th Score: 9/10, Rationale: Correctly identify parallel verb structures. =
g;ise; Answer 2 (Vicuna-Tuning): ...\"The manager of the store and the head of the marketing department attended

the meeting.\" \n\nln this sentence, the compound predicate includes two verbs: \"attended\" and \""headed\".
The first verb is \"attended\", which describes the manager's action at the meeting. The second verb is
\""headed\", which describes the head of the marketing department's action at the meeting. ... I~
Score: 3/10, Rationale: Mistakenly parsing the noun phrase "headed" as a verb. \=

Figure 6: Case study.
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Prompts of the Evaluation of Connection

nnn

You are a strict and objective evaluator. Your task is to assess the quality of the final response from
assistant in conversation content.

Your evaluation should be fair, professional, and reflect an expert judgment of the response’s
quality.

The conversation is formatted as [{"human’: ’...’, ’assistant’: ’...”}, ..., {"human’:
L

The final response is the final *assistant’ message in the conversation.

>

..., assistant’:

nmn

[Conversation]\n
Assessment Criteria:

Score baseline is 5. The final score should be adjusted based on the following criteria:
Connection: Does it utilize the information in the previous conversations?

Concentrate on the evidence of conflicts and coherence. Evidence of one conflict

should decrease the score by 1, and evidence of utilizing one information should increase the score
by 1.

Relevance: Does it provide redundant information which is not related to the topic? Is so, it should
be penalized by the degree and amount. One irrelevant information should decrease the score by 1.
Overall Score: Assign a score from 1 to 10 (10 being the best), considering all of the above factors.

+ <conversation> + "\n" + """

The evaluation and your output must be strictly structured in the following JSON for-
mat:

{

"Explanation": "<Explain the rationale of your score.>",

"Score": <An integer score from 1 to 10.>

}

nnn

Figure 7: Prompts of the Evaluation of Connection
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Prompts of the Evaluation of Quality

nnn

You are a strict and objective evaluator. Your task is to assess the quality of the each response from
assistant in conversation, based on the Assessment Criteria.

Your evaluation should be fair, professional, and reflect an expert judgment of the response’s
quality.

The conversation is formatted as [{ human’: ’...’, ’assistant’: ...’ }, ..., {"human’: ’...’, ’assistant’:
9 9 }]
[Conversation]\n""" + <conversation> + "\n" + """

Assessment Criteria:

Requirement Alignment: For each response, only consider the corresponding request from human
in this turn, does the response meet the user’s task goal?

Content Accuracy: Is the information in the response correct, clear, and logically organized?
Language Quality: Is the language fluent, coherent, and readable? Are there any obvious
grammatical or word choice errors?

Consideration on previous information: If there is relevant information in the previous turns of
chatting, does the response take them into consideration?

Overall Score: Assign a score from 1 to 10 (10 being the best), considering all of the above factors.

The evaluation and your output must be strictly structured in the following JSON for-
mat:

{

"evaluations": [

{

"Number of turn in conversation": 1,

"Explanation”: "<Explain the rationale of your score.>",
"Score": <An integer score from 1 to 10.>

1,

ceey

{

"Number of turn in conversation": <Integer, the No. of turn in conversation>,
"Explanation": "<Explain the rationale of your score.>",

"Score": <An integer score from 1 to 10.>

}]

}

nnn

Figure 8: Prompts of the Evaluation of Quality
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Prompts of the Evaluation of Information Density

You are a strict and objective evaluator. Your task is to assess the information density of the given
conversation based on the following instructions and Example 1 and Example 2.

[Instructions]

Your evaluation should be fair, professional, and reflect an expert judgment of the response’s
quality.

The conversation is formatted as[{ human’: ’...’, assistant’: ...’ }, ..., {"human’: ’...’, ’assistant’:
L

The information density of a conversation is defined as a number of information units (e.g.,
facts, details, explanations) divided by the words in the conversation, including the numbers and
meaningful signals and excluding the punctuations.

You should only consider the information related to the topic of the conversation and ignore any
irrelevant or redundant information.

If the information unit is repeated in the conversation, it should be counted only once.

[Example 1]

Input Conversation: [{ human’: *What is the capital of France?’, ’assistant’: *The capital of France
is Paris.’ }]

Output: {’Number of Information Units’: 1, *Total Number of Words’: 12, ’Information Units’:
[’ The capital of France is Paris.’ ]}

[Example 2]

Input Conversation: [{human’: *"What is the capital of France?’, "assistant’: *The capital of France
is Paris.”}, {"human’: *What is the population of Paris?’, *assistant’: *The population of Paris is 2.1
million.” }]

Output: {’Number of Information Units’: 2, *Total Number of Words’: 25, *Information Units’:
[’ The capital of France is Paris.’, *The population of Paris is 2.1 million.’]}

nmn nnn

[Conversation]\n""" + <conversation> + "\n" +
The evaluation and your output must be strictly structured in the following format:
{

"Number of Information Units": <Number of information units>,

"Information Units": [<Information unit 1>, <Information unit 2>, ...],

"Total Number of Words": <Total number of words>,

}

Figure 9: Prompts of the Evaluation of Information Density
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Prompts of the Evaluation of Friendliness

You are a strict and objective evaluator. Your task is to assess the friendliness of the given
conversation following the Assessment Criteria.

Your evaluation should be fair, professional, and reflect an expert judgment of the response’s
quality.

The conversation is formatted as [{ human’: *...’, "assistant’: ’...”}, ..., {"human’: ’..., assistant’:
ek
{[Conversation]}""" + <conversation> + """

Assessment Criteria:

Manner: Concentrate on the requests from the human, and also evaluate the assistant’s responses,
is there evidence of disobeying the rules or aggressive behaviors?

Security: Evaluate the security of the conversation. Does the conversation tend to be harmful or
offensive, or does the response from the assistant being guided to reveal sensitive information?
Tone: Evaluate the overall tone of the conversation. Does it have a positive and friendly tone?
Politeness: Evaluate the politeness and courtesy of the assistant’s responses. Overall Score: Assign
a score from 1 to 10 (10 being the most friendly), considering all of the above factors.

The evaluation and your output must be strictly structured in the following JSON for-
mat:

n,on

"Explanation”: "<Explain the rationale of your score.>",
"Score": <An integer score from 1 to 10.>

Figure 10: Prompts of the Evaluation of Friendliness
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