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Abstract

Fine-tuning multi-turn dialogue systems re-001
quires high-quality data but tends to degrade002
with low-quality or out-of-distribution (OOD)003
samples. Early errors accumulate, amplify-004
ing inconsistencies and degrading response005
quality. However, existing methods separate006
data quality control from fine-tuning, over-007
looking turn-level dependencies and cumula-008
tive noise, which hinders end-to-end optimiza-009
tion in multi-turn settings. To bridge this gap,010
we propose TWiNS (Turn-weighted Welford-011
based implicit Noise Suppression), an end-012
to-end adaptive fine-tuning method that im-013
plicitly pinpoints noisy samples and then sup-014
presses their gradient contributions over the015
course of model tuning on the fly, mitigat-016
ing error accumulation and preserving coher-017
ence in multi-turn dialogues. Specifically, turn-018
aware weighting maintains contextual coher-019
ence, while Welford’s online algorithm ad-020
justs sample weights without pre-filtering. Ex-021
periments show that TWiNS ensures stable022
optimization across multi-turn dialogues, en-023
hancing performance on individual and mixed-024
quality datasets while mitigating degradation.025
By suppressing noise without explicit filtering,026
it adapts to evolving data distributions with027
zero pre-filtering overhead, establishing a new028
paradigm for end-to-end data-quality optimiza-029
tion in multi-turn dialogue systems.030

1 Introduction031

Multi-turn dialogue systems are crucial in both task-032

oriented (Xu et al., 2024) and open-domain conver-033

sational agents (Lu et al., 2023a; Sun et al., 2024),034

enabling natural and efficient human-computer in-035

teractions. Fine-tuning these systems is challeng-036

ing due to their reliance on multi-turn dialogue037

datasets (Bian et al., 2023; Zhao et al., 2024b; Con-038

tributors, 2023), which include both manually an-039

notated and synthetic data (OpenAI, 2023). Al-040

though they dominate due to scalability (Zhang041

et al., 2023; Maheshwary et al., 2024), their in- 042

consistent quality frequently disrupts training and 043

optimization. In multi-turn dialogue, this variabil- 044

ity compounds over turns, leading to incoherent 045

responses, error propagation, and context drift. Fur- 046

thermore, misalignment with evaluation metrics on 047

multi-turn benchmarks (Zheng et al., 2023; Kwan 048

et al., 2024a), often leads to optimization instabil- 049

ity, jeopardizing response coherence and overall 050

performance (Wu et al., 2023; Chen et al., 2023; Li 051

et al., 2024a; Zhou et al., 2024). 052

Traditional approaches improve data quality and 053

training performance through pre-filtering-based 054

data selection before fine-tuning (Wang et al., 055

2024), typically removing noisy, redundant, and in- 056

complete samples. However, these methods rely on 057

predefined criteria (Cao et al., 2023), which often 058

fail to account for the complex contextual depen- 059

dencies in multi-turn dialogues, leading to exces- 060

sive data filtering. Additionally, some approaches 061

(Wu et al., 2022) introduce noise for robustness 062

but lack systematic optimization, further impacting 063

model performance. 064

To address these challenges, this paper pro- 065

poses a novel Turn-weighted Welford-based im- 066

plicit Noise Suppression (TWiNS) mechanism, an 067

adaptive fine-tuning mechanism that filters noisy 068

"junk" data during fine-tuning. Unlike static fil- 069

tering methods, TWiNS dynamically adjusts the 070

weight of each training instance using Welford’s on- 071

line statistical algorithm, ensuring that loss distribu- 072

tion updates reflect data quality. This approach not 073

only suppresses noisy samples but also preserves 074

the contextual dependencies crucial for multi-turn 075

dialogues, preventing early-turn errors from prop- 076

agating to later responses. Moreover, TWiNS in- 077

tegrates turn-specific hierarchical positioning, en- 078

abling fine-grained adjustments tailored to multi- 079

turn dialogue structures. 080

Our experiments demonstrate the effectiveness 081

of this approach. The proposed method consis- 082
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Figure 1: Comparison of the traditional fine-tuning approach and our TWiNS method. (a) The traditional approach
applies static pre-filtering before standard fine-tuning. (b) TWiNS integrates implicit noise suppression into fine-
tuning through online loss estimation, adaptive noise weighting, and turn-aware loss adjustment. Other standard
fine-tuning steps are omitted for clarity.

tently outperforms existing multi-turn dialogue083

training techniques on widely recognized bench-084

marks, including MT-Bench, MT-Bench-Ext, and085

in-domain tests. Notably, it mitigates overfitting086

and prevents unstable optimization often observed087

in supervised fine-tuning. Furthermore, when fine-088

tuning on mixed-quality datasets, TWiNS main-089

tains or improves performance across domain-090

specific tasks, with no performance penalty ob-091

served on individual datasets. These results con-092

firm the method’s robustness, scalability, and adapt-093

ability to diverse multi-turn dialogue settings.094

Our key contributions include:095

• We introduce TWiNS, an end-to-end fine-096

tuning framework that suppresses noisy sam-097

ples through dynamic loss regulation, elimi-098

nating manual filtering while preserving multi-099

turn coherence.100

• Our approach enables scalable training on101

mixed-quality datasets by leveraging adaptive102

online statistics, integrating large-scale hetero-103

geneous data without performance loss.104

• TWiNS surpasses existing methods on MT-105

Bench, MT-Bench-Ext, and in-domain bench-106

marks, consistently enhancing performance107

across datasets of varying quality.108

2 Related Work 109

2.1 Multi-turn Dialogue Fine-tuning 110

Recent advancements in LLM fine-tuning (Hu 111

et al., 2023, 2021; Dettmers et al., 2024) have sub- 112

stantially enhanced performance, leading to the 113

development of a new family of models (Liu et al., 114

2024a; Zhao et al., 2024a; Meng et al., 2024). 115

While existing methods have addressed multi- 116

turn conversations to a limited extent, performance 117

tends to degrade when fine-tuning on multi-turn 118

dialogue datasets (Sun et al., 2024). In the con- 119

text of combining LLMs with multi-turn dialogue 120

systems, recent studies have introduced improve- 121

ments in methods (Sun et al., 2024; Shani et al., 122

2024), focusing on context-aware preferences and 123

reinforcement learning, and in data (Maheshwary 124

et al., 2024; Ou et al., 2024), emphasizing separate 125

data enrichment. These two areas of enhancement, 126

however, have not been integrated elegantly, and 127

issues like expensive data curation, weak general- 128

ization, and inconsistent quality continue to pose 129

challenges. 130

2.2 Data Selection in LLM Finetuning 131

Although the scale of data is crucial in LLM fine- 132

tuning, selecting fewer high-quality data points can 133

lead to better performance than using the entire 134

dataset (Wu et al., 2023; Chen et al., 2023), high- 135
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lighting the significance of data selection in LLM136

fine-tuning.137

In terms of data quality assessment methods138

(Wang et al., 2024), data selection schemes can be139

categorized into three types: (1) GPT-based scor-140

ing, which involves designing detailed prompts and141

evaluation criteria and using ChatGPT as the scor-142

ing tool (Chen et al., 2023; Lu et al., 2023b; Xu143

et al., 2023; Liu et al., 2024b; Du et al., 2023);144

(2) trained model-based scoring, where an LLM145

is trained with a predefined policy to score each146

instance and set a threshold (Li et al., 2023, 2024b;147

Anonymous, 2024); and (3) indicator-based meth-148

ods, which estimate dataset quality through infer-149

ence loss (Cao et al., 2023) or by defining indicators150

based on conversation features (Wei et al., 2023)151

Although these methods similarly stress the im-152

portance of refined data, they often produce inexpli-153

cable results, suffer from limited applicability and154

randomness, or demand prohibitively high training155

costs, leading to a loss of feasibility in both training156

and generalization as models evolve. Additionally,157

prior approaches perform data selection before and158

independently of the training process, failing to159

capture and leverage end-to-end feedback during160

training—a key focus of our work.161

3 Methodology162

In multi-turn fine-tuning, given dialogue history163

H = {(u1, r1), . . . , (un−1, rn−1)} and the current164

user utterance un, the goal is to generate a coherent165

response rn by optimizing model parameters θ to166

maximize the conditional log-likelihood:167

θ∗ = argmax
θ

log pθ(rn | H,un) (1)168

To systematically structure our methodology,169

we first assess dataset quality before fine-tuning170

and then introduce the TWiNS method to evalu-171

ate model performance across datasets of varying172

quality.173

3.1 Evaluation on Datasets174

There are multiple public, open source, and high-175

quality multi-turn conversation datasets, which are176

generated by both humans and LLMs, especially177

ChatGPT. Table 4 in section B of Appendix details178

public datasets in this work including ShareGPT179

(RyokoAI, 2023), WildChat (Zhao et al., 2024b),180

OpenAssistant (Köpf et al., 2024), ChatAlpaca181

(Bian et al., 2023), MTLingual (Maheshwary et al.,182

Dataset Con. Qu. ID Fr. Overall
ChatAlpaca 8.34 9.49 0.0286 9.48 High

MTLingual 8.54 9.37 0.0263 9.14 High

UltraChat 8.46 9.06 0.0233 9.41 High

WildChat 7.80 8.78 0.0196 8.90 Normal

ShareGPT 8.10 8.69 0.0174 8.82 Normal

OpenAssistant 7.54 7.57 0.0292 8.21 Low

Table 1: Dataset Evaluation Results. Con.: Connection,
Qu.: Quality, ID: Information Density, Fr.: Friendliness.

2024), and UltraChat (Ding et al., 2023) with their 183

features. 184

Existing benchmarks on LLM evaluation (Zheng 185

et al., 2023; Kwan et al., 2024b; Radziwill and Ben- 186

ton, 2017) and labels in OpenAssistant consider the 187

relevance, helpfulness, and accuracy when grading 188

the responses of LLMs, and state the importance of 189

the awareness of ethics, safety, and privacy. More- 190

over, a work on dialogue (Dethlefs et al., 2016) 191

addresses the significance of information density in 192

human dialogues. Thus, this work proposes an eval- 193

uation benchmark on multi-turn dialogue datasets 194

in four independent aspects: Connection, Informa- 195

tion Density, Quality, and Friendliness. 196

Connection: The assistant’s final response 197

should incorporate relevant information from prior 198

conversations without introducing any unrelated or 199

redundant details. 200

Quality: Each response should fulfill the spe- 201

cific request of the corresponding turn, while en- 202

suring content accuracy and maintaining high lan- 203

guage quality. 204

Information Density (ID): Treat the conversa- 205

tion as a whole, calculating the total number of 206

words N and the number of information units 207

I . The information density is then defined as 208

ID = I/N . 209

Friendliness: Human requests should be made 210

with attention to manner, while the assistant’s re- 211

sponses should prioritize security and politeness. 212

The conversation as a whole should maintain a re- 213

spectful tone. 214

The evaluation is done by ChatGPT, which is a 215

common labeling tool in evaluation works (Zheng 216

et al., 2023; Kwan et al., 2024b; Bai et al., 2024), 217

and the prompts and data processing are detailed 218

in section A of Appendix. For the evaluation on 219

each aspect, one hundred complete conversations 220

are independently and randomly sampled, and the 221

evaluation on each single conversation and dataset 222

3



is also independent. The score of each aspect of a223

dataset is defined as the average score of the cho-224

sen conversations in this aspect. The evaluation225

result is detailed in Table 1. Based on the scores226

of the four aspects, the overall quality of the 6227

datasets are divided to high (ChatAlpaca, MTLin-228

gual, UltraChat), normal (WildChat, shareGPT),229

and low (OpenAssistant). OpenAssistant is built230

from real human conversations, each labeled for231

quality with the goal of subsequent reinforcement232

learning. Because it deliberately preserves both233

high- and low-quality responses, the dataset yields234

a relatively lower overall score in our evaluation.235

3.2 TWiNS236

We present TWiNS (Turn-Weighted Welford-Based237

Implicit Noise Suppression), an adaptive loss reg-238

ulation method that dynamically adjusts sample239

importance through Welford’s online variance es-240

timation. This technique stabilizes fine-tuning by241

suppressing noise and modulating loss contribu-242

tions according to turn depth.243

3.2.1 Turn-aware Embedding Fusion244

To effectively capture the structure of multi-turn245

conversations, we integrate turn-aware embeddings246

to every utterance in the dialogue. These turn IDs247

are incorporated as additional features to help the248

model distinguish the roles and importance of dif-249

ferent conversation turns.250

For turn t, we compute a learnable turn em-251

bedding eturn(t), which is element-wise combined252

with the token and positional embeddings before253

being passed to the transformer’s first layer. In254

the additive fusion method, the turn embedding is255

combined with the token embedding etoken and the256

positional embedding epos by element-wise addi-257

tion:258

efinal = etoken + epos + eturn (2)259

The fused representation efinal is then propagated260

through the transformer, allowing the model to261

jointly encode turn structure, token identity, and262

positional information.263

3.2.2 Online Loss Estimation264

To adaptively regulate loss, we estimate its mean265

µ and variance σ2 online using Welford’s algo-266

rithm, enabling real-time updates without extra267

data passes. Let N denote the current iteration268

or update count, and let ℓ represents the mini-batch269

loss at each step. We iteratively update: 270

µ← µ+
ℓ− µ

N
(3) 271

272

σ2 ← M2

N − 1
(4) 273

where M2 is a running accumulation of the squared 274

deviations from µ, facilitating variance estimation. 275

These statistics are computed independently for 276

each conversational turn, segmenting samples into 277

discrete buckets based on turn ID. Earlier turns 278

(t ≤ 4) typically correspond to simpler queries, 279

whereas later turns (t > 4) tend to involve more in- 280

tricate and contextually complex interactions. This 281

segmentation separates distinct turn complexities, 282

enhancing the model’s adaptability to different dia- 283

logue structures. 284

To mitigate short-term fluctuations in loss values, 285

we optionally apply Exponential Moving Averages 286

(EMA) for additional smoothing. Let µEMA be 287

the exponentially smoothed loss estimate, and θ ∈ 288

(0, 1) the smoothing factor. We iteratively update: 289

µEMA ← (1− θ) · µEMA + θ · ℓ (5) 290

By leveraging these statistics, TWiNS enhances 291

the stability of loss estimation while effectively 292

detecting outliers within each turn-specific bucket, 293

aligning with the inherent multi-turn nature of SFT 294

tasks. 295

Adaptive Noise Weighting. Using online loss 296

statistics, we dynamically reweight noisy samples 297

based on their deviation from expected loss. The 298

deviation score d is computed as: 299

d =
|ℓ− µ|
σ + ϵ

(6) 300

wjunk =
1

1 + α · d
(7) 301

where ϵ is a small constant for numerical stabil- 302

ity, and α is a positive scaling factor that determines 303

how aggressively outliers are downweighted. To 304

avoid extreme weight shifts, wjunk is clipped within 305

[wmin, wmax]. Samples with deviation scores out- 306

side this range are deemed noise and have their 307

contribution adaptively reduced, minimizing dis- 308

ruptive effects while preserving valuable signals 309

for improved robustness in multi-turn fine-tuning. 310
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3.2.3 Turn-aware Loss Adjustment311

To adaptively adjust the training loss in multi-turn312

SFT, we introduce three weighting factors: the turn313

weight wturn, the dynamic junk weight wdynamic,314

and the assistant weight wassistant. The adjusted315

loss is computed as:316

ℓadjusted = ℓ ·max
(
0.3,min

(
wturn · wdynamic·317

wassistant, 2.0
))

(8)318

The turn weight wturn accounts for dialogue com-319

plexity, ensuring that later turns, which are often320

more complex, contribute to the overall loss:321

wturn = 1.0 + β · avg_turn (9)322

where β is a tunable coefficient (e.g., β = 0.05).323

To handle noisy samples, we apply the dynamic324

junk weight wdynamic, which adjusts the impact of325

samples based on their deviation from the expected326

loss distribution:327

wdynamic = 1.0− γ · (1.0− wjunk) (10)328

Additionally, the assistant weight wassistant reg-329

ulates the contribution of tokens generated by the330

assistant role:331

wassistant = 1.0 + λ · assistant_ratio (11)332

To prevent excessive weighting, wassistant is333

clamped within the range [1.0, 1.2]. These three334

factors collectively enhance training stability by335

emphasizing turn complexity, mitigating noisy sam-336

ples, and balancing role-specific contributions.337

4 Experiments338

4.1 Experimental Settings339

Parameter All fine-tuning experiments were con-340

ducted based on Llama-3.2-3B Instruct (Face and341

AI, 2023) model. The model was fine-tuned for 3342

epochs on datasets of varying quality. Each device343

processed a batch size of 4, with a gradient accumu-344

lation step of 4, resulting in an effective batch size345

of 64. The Adam optimizer was employed, with346

the hyperparameter β2 set to 0.95. A cosine decay347

learning rate schedule was applied, starting at an348

initial learning rate of 1× 10−5 and incorporating349

a warm-up ratio of 0.01.350

All training and evaluation procedures were per- 351

formed in FP16 precision on four NVIDIA GPUs. 352

To reduce memory consumption, gradient check- 353

pointing and Low-Rank Adaptation (LoRA) were 354

enabled during training. Model performance was 355

periodically assessed using a held-out validation 356

set of 400 examples. 357

To enhance the robustness of the training process, 358

a warm-up strategy was implemented during the 359

initial phase of training. This involved using 640 360

high-quality dialogue samples to initialize baseline 361

mean and variance parameters. As training pro- 362

gressed, the filtering weight for anomalous data 363

was gradually increased to ensure smooth and sta- 364

ble model optimization. 365

Evaluation We first conducted in-domain evalu- 366

ations on six datasets: ShareGPT, WildChat, Ope- 367

nAssistant, ChatAlpaca, MTLingual, and Ultra- 368

Chat. From each dataset, 100 multi-turn dialogues 369

were sampled for assessment. Additionally, we per- 370

formed evaluations on the general-purpose multi- 371

turn dialogue benchmarks, MT-Bench and the ex- 372

tended MT-Bench (MT-Bench_Ext), to verify the 373

consistency of our training approach across dataset- 374

specific and general benchmarks. Finally, we em- 375

ployed evaluation prompts from the “LLM-as-a- 376

Judger” study and conducted all evaluations using 377

the GPT4-08-06 model. 378

Mix Dataset To validate the effectiveness of our 379

approach, we selected ChatAlpaca, ShareGPT, and 380

OpenAssistant as representatives of high-, normal-, 381

and low-quality datasets, respectively. From each 382

dataset, 20K samples were extracted and mixed in 383

different combinations: high and normal quality, 384

high and low quality, and high, normal, and low 385

quality. These experiments were designed to assess 386

the performance of our method in handling datasets 387

with varying distributions during training. 388

4.2 Baselines 389

We evaluate our method against four typical meth- 390

ods in multi-turn dialogue study: 391

(1) Baseline: the original instructed model without 392

dedicated multi-turn dialogue fine-tuning. 393

(2) Vicuna-tuning: a widely adopted dialogue 394

adaptation framework built upon LLaMA, distin- 395

guished by its LoRA fine-tuning strategy on multi- 396

turn conversational data (Chiang et al., 2023). 397

(3) Baize: a parameter-efficient approach that ex- 398

clusively updates linear layers through self-chat 399

generation (Chiang et al., 2023). 400
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Lv. Dataset
In_domain test MT-Bench MT-Bench-Ext

Base. V.T. TWiNS Base. V.T. TWiNS Base. V.T. TWiNS

H M2Lin.(en) 7.10 7.09 (-0.14%) 7.06 (-0.56%) 7.13 7.21 (+1.12%) 7.16 (+0.42%) 6.64 6.65 (+0.15%) 6.71 (+1.05%)
ChatAlpaca 8.20 7.99 (-2.56%) 8.26 (+0.73%) 7.13 6.97 (-2.24%) 7.29 (+2.24%) 6.64 5.99 (-9.79%) 6.76 (+1.81%)
UltraChat 7.90 7.56 (-4.30%) 8.01 (+1.39%) 7.13 6.68 (-6.31%) 7.32 (+2.66%) 6.64 6.22 (-6.33%) 6.76 (+1.81%)

N ShareGPT 6.55 6.09 (-7.02%) 6.95 (+6.11%) 7.13 6.08 (-14.73%) 7.83 (+9.82%) 6.64 5.80 (-12.65%) 6.83 (+2.86%)
WildChat 6.80 6.47 (-4.85%) 6.86 (+0.88%) 7.13 7.14 (+0.14%) 7.21 (+1.12%) 6.64 6.74 (+1.51%) 6.72 (+1.20%)

L OpenAss. 7.64 7.20 (-5.76%) 7.67 (+0.39%) 7.13 6.20 (-13.07%) 7.26 (+1.83%) 6.64 5.48 (-17.47%) 6.83 (+2.86%)

Table 2: Comparison of our method, non-trained Baseline, and Vicuna-Tuning on LLaMA 3.2-3B: multi-turn
dialogue performance (GPT-4 scores) across high-, normal-, and low-quality datasets. Each cell shows absolute
scores plus relative improvement/decline (%) vs. Baseline in parentheses. *Lv. = Level, H, N, L = High, Normal,
Low, M2Lin.(en) = M2Lingual (en), OpenAss. = OpenAssistant, Base. = Baseline, V.T. = Vicuna-Tuning.

(4) ChatGLM3: implements multi-turn dialogue401

fine-tuning by updating only the loss of roles other402

than user and system (GLM et al., 2024).403

All methods share identical LoRA configurations404

(rank=128, alpha=16, dropout=0.3) and data parti-405

tions: 20,000 training samples with 400 validation406

and 100 test instances. Experiments are conducted407

with fixed random seeds (seed=42) and multi-turn408

dialogue performance quantified by the MT-Bench409

(Zheng et al., 2023).410

4.3 Main Results411

4.3.1 Does TWiNS address negative412

optimization in multi-turn dialogues?413

To evaluate the capability of the TWiNS fine-tuning414

method in addressing the negative optimization is-415

sue across diverse individual multi-turn dialogue416

datasets, we conduct a comparative analysis with417

Vicuna-Tuning approach. The experiments results418

demonstrate the TWiNS effectively filters out low419

quality data during training through end-to-end sig-420

naling, thereby achieving positive performance on421

both in-domain test sets and general multi-turn422

dialogue benchmarks, including MT_Bench and423

MT_Bench_Ext.424

TWiNS addresses the negative optimization425

observed in Vicuna-Tuning. As shown in Table426

2, TWiNS outperforms Vicuna-Tuning across mul-427

tiple datasets, including ChatAlpaca, UltraChat,428

ShareGPT, and OpenAssistant. TWiNS consis-429

tently achieves positive optimization in both in-430

domain evaluations and the MT-Bench/MT-Bench-431

Ext benchmarks, whereas Vicuna-Tuning often432

shows negative optimization. Among the various433

datasets, ShareGPT reveals the largest performance434

gap between TWiNS and Vicuna-Tuning, likely435

due to LLaMA-3.2B-3B’s sensitivity to ShareGPT.436

TWiNS achieves improvements of 6.11%, 9.82%, 437

and 2.86% over the baseline for the in-domain test, 438

MT-Bench, and MT-Bench-Ext, respectively. In 439

contrast, Vicuna-Tuning attains 7.02%, 12.73%, 440

and 12.65% on those benchmarks. Overall, these 441

findings underscore TWiNS’s robust performance 442

in multi-turn dialogue tasks, driven by its consistent 443

positive optimization. 444

TWiNS excels in longer, more complex multi- 445

turn dialogues. For the Mtlingual (en) dataset 446

(2,000 samples), both Vicuna-Tuning and TWiNS 447

exhibit negative optimization due to overfitting, 448

scoring 7.09 and 7.06 respectively. On the MT- 449

Bench dataset, which primarily consists of two- 450

turn dialogues, TWiNS is marginally outperformed 451

by Vicuna-Tuning. However, TWiNS achieves 452

a higher score on MT-Bench-Ext, where the di- 453

alogues are longer and more complex, indicating 454

TWiNS’s robustness in multi-turn conversational 455

scenarios. 456

4.3.2 Does TWiNS skip junk data to enhance 457

fine-tuning stability and performance? 458

To further validate the ability of the TWiNS fine- 459

tuning method to leverage end-to-end signaling 460

for skipping low-quality data, we conduct dialogue 461

fine-tuning experiments on mixed datasets, compar- 462

ing it with Vicuna-Tuning, Baize, and ChatGLM3. 463

Figure 2 (a) shows that for in-domain evaluation, 464

TWiNS maintains a stable score of around 8.2, de- 465

spite increasing dataset complexity. By contrast, 466

Vicuna-Tuning drops from 8.2 to 7.67, and Baize 467

and ChatGLM3 exhibit smaller declines or only mi- 468

nor gains. Turning to the MT-Bench benchmark in 469

Figure 2 (b), TWiNS steadily improves from 7.13 470

to 7.4, reflecting its clear positive trend in handling 471

general multi-turn dialogue tasks. Vicuna-Tuning, 472
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mance.

however, decreases from 7.13 to 6.38. Baize and473

ChatGLM3 also show moderate fluctuations with474

limited growth. Finally, in the MT-Bench-Ext eval-475

uation (Figure 2 (c)), TWiNS displays a consistent476

upward trajectory from 6.64 to 6.77, while Vicuna-477

Tuning plunges from 6.64 to 5.74. Baize and Chat-478

GLM3 once again reveal minor variations but lack479

the stable improvement seen in TWiNS.480

TWiNS excels on partially noisy datasets,481

maintaining positive optimization. Building on482

these observations, we find that as mixed dataset483

complexity increases, different methods display484

varying resilience to noise. Conventional fine-485

tuning approaches (Vicuna-Tuning, Baize, Chat-486

GLM3) tend to suffer from performance degrada-487

tion when confronted with low-quality data. In con-488

trast, TWiNS effectively filters out disruptive junk489

samples while preserving the beneficial signals490

present in larger and more diverse datasets. This491

robust noise-filtering capability enables TWiNS to492

consistently learn from high-quality data within493

5

5.5

6

6.5

7

7.5

8

8.5

1 2 3 4 5

SC
O

R
E

TURN ID

TWiNS baseline Vicuna Tuning

Figure 3: Turn-wise performance on MT-Bench Ex-
tended (GPT-4 evaluation).

mixed scenarios, thereby reinforcing its advantage 494

in complex, multi-turn dialogue settings. 495

Turn-by-turn Analysis on MT-Bench Ex- 496

tended. We compare three training setups - no 497

training, Vicuna tuning fine tuning, and TWiNS - 498

on the MT-Bench Extended dataset using GPT-4 499

evaluation. Performance as shown in Figure 3 de- 500

clines across turns, with a sharp drop from Turn 1 501

to Turn 2, highlighting the challenge of maintain- 502

ing response quality in multi-turn dialogues. Our 503

proposed fine-tuning consistently outperforms the 504

baseline and Vicuna Tuning methods, demonstrat- 505

ing better response stability. Baseline model shows 506

noticeable degradation in the last turn, while the 507

Vicuna Tuned model performs the worst. These 508

results emphasize the importance of fine-tuning for 509

sustained dialogue quality. 510

5 Ablation Study 511

TWiNS excels in fine-tuning with mixed data 512

types. To further validate the stability of our 513

proposed TWiNS in fine-tuning performance 514

across different types of data noise, we incorpo- 515

rated GSM8K, a mathematical question-answering 516

dataset, alongside multi-turn dialogue datasets. Af- 517

ter mixing GSM8K with the ChatAlpaca dataset, 518

we compared the fine-tuning methods of TWiNS 519

and Vicuna-Tuning. As shown in Fig. 4, our find- 520

ings indicate that TWiNS maintains stable perfor- 521

mance on in-domain tests and shows positive opti- 522

mization on general multi-turn dialogue evaluation 523

sets, even when compared to using a single high- 524

quality multi-turn dialogue dataset. In contrast, Vi- 525

cuna exhibits a decline in both in-domain tests and 526

general dialogue evaluation sets. This decline is 527

attributed to Vicuna’s overfitting to the mathemat- 528

ical capabilities associated with GSM8K, which 529

7



Figure 4: Performance comparison between Vi-
cuna_tuning and Ours on ChatAlpaca and ChatAl-
paca+GSM8K datasets. Three evaluation metrics are
presented: In-domain test (solid line, circle marker),
MT-bench (dashed line, square marker), and MT-Bench-
Ext (dotted line, triangle marker).

Metric w/ Welford w/o Welford R.I. (%)

In-domain Test 8.26 8.20 +0.73%

MT-Bench 7.29 7.19 +1.39%

MT-Bench-Ext 6.76 6.70 +0.90%

Table 3: Comparison of main experiment and ablation
experiment with Relative Improvement (R.I.)

consequently weakens its multi-turn dialogue capa-530

bilities.531

TWiNS enhances response performance by532

effectively skipping low-quality data. To evalu-533

ate the impact of TWiNS mechanism on multi-turn534

dialogue fine-tuning, we conduct an ablation study535

by removing the Welford Loss Calculation com-536

ponent while keeping all other loss updating func-537

tions unchanged. This ablation setup disables the538

skip mechanism, preventing the suppression of low-539

quality data during training. As shown in Table 3,540

the full TWiNS model outperforms the ablated ver-541

sion, achieving improvements of +0.73% on the542

in-domain test, +1.39% on MT-Bench, and +0.90%543

on MT-Bench-Ext. These results demonstrate that544

the skip mechanism in TWiNS effectively miti-545

gates the influence of low-quality data, enhancing546

the model’s robustness and fine-tuning stability.547

6 Case Study548

As shown in Figure 5, this multi-turn dialogue case549

shows TWiNS’ superior contextual comprehension550

compared to Vicuna-Tuning. When analyzing the551

1st

User:… what the predicate is in that sentence?
Assistant: Yes, the predicate ...

2nd

User: Can you explain to me what a predicate is?
Assistant: Sure! A predicate is one of the two main
parts of a sentence. It usually includes the...

3rd

4th
(Test
case)

User: Can you give me an example of a sentence
with a compound predicate?

😊

Answer 1 (TWiNS): …\"are going to the
movies tonight\" is the first part of the
compound predicate, and \"will see a new
superhero movie\" is the second part of the
compound predicate….
Score: 9/10, Rationale: Correctly identify
parallel verb structures.
Answer 2 (Vicuna-Tuning): … the compound
predicate includes two verbs: \"attended\" and
\"headed\".…
Score: 3/10, Rationale: Mistakenly parsing the
noun phrase "headed" as a verb.

😔

User: In the sentence, … , identify the subject
Assistant: Jack

Figure 5: Case study.

compound predicate query, TWiNS accurately iden- 552

tifies parallel verb structures, correctly recognizing 553

both predicate components ("are going" and "will 554

see") with precise syntactic boundaries. In contrast, 555

Vicuna-Tuning exhibits critical contextual misin- 556

terpretation. erroneously parsing the noun phrase 557

"headed" as a verb predicate, confusing syntactic 558

roles despite the explicit mention of "head" as a po- 559

sitional noun in the preceding context. This failure 560

reveals Vicuna-Tuning’s limitations in maintaining 561

dialogue state awareness and tracking referential 562

relationships across conversational turns. Detailed 563

examples can be found in Appendix C. 564

7 Conclusion 565

In this study, we present TWiNS, which dynami- 566

cally adjusts training instance contributions to pre- 567

serve response quality and improve system robust- 568

ness. Our method outperforms traditional fine- 569

tuning across benchmarks like MT-Bench, MT- 570

Bench-Ext, and in-domain tests, effectively mit- 571

igating the impact of noisy data. Ablation studies 572

confirm the importance of dynamic loss control in 573

optimizing multi-turn dialogue performance. Over- 574

all, TWiNS offers a robust and adaptable solution 575

for fine-tuning multi-turn dialogue systems, partic- 576

ularly in handling noisy or low-quality data. 577
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Limitation578

This study has several limitations. First, we only579

evaluate the impact of multi-turn fine-tuning on the580

LLaMA 3.2 3B model. Due to computational con-581

straints, we have not yet conducted experiments on582

other LLM families, which may affect the general-583

izability of our findings. Second, the proposed on-584

line statistical method is one possible approach, but585

alternative solutions may exist. Our study adopts586

a straightforward experimental setup without ex-587

ploring more sophisticated strategies. Third, our588

evaluation of dataset quality serves as a reference589

rather than a definitive assessment, as different do-590

mains may require tailored quality evaluation met-591

rics. Despite these limitations, we hope that our592

findings can provide insights for future researches593

on domain-specific fine-tuning.594

Ethics Statement595

Our work explores automatic noise filtering in596

multi-turn dialogue training using end-to-end sig-597

nals. However, its implicit filtering mechanism598

may unintentionally remove valuable data, raising599

concerns about bias and information completeness.600

Moreover, the method is evaluated only in multi-601

turn dialogue scenarios, with broader applications602

limited by computational cost. Future work will603

address these challenges to enhance fairness and604

efficiency.605
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A Data processing and Evaluation 857

Prompts 858

During the evaluation of datasets, although the 859

raw patterns of conversation data from different 860

sources vary from each other, all of them are for- 861

matted as [{’human’: ’<request>’, ’assistant’: 862

’<response>’}, ... , {’human’: ’<request>’, ’as- 863

sistant’: ’<response>’}] for each entire and inde- 864

pendent conversation, before being written to the 865

prompt. The ChatGPT version used in the evalua- 866

tion is ChatGPT-4o-2024-08-06, and the complete 867

prompts of the evaluation on Connection, Quality, 868

Information Density and Friendliness are detailed 869

in Figure 7, Figure 8, Figure 9, Figure 10 separately. 870

In the evaluation, each aspect of each independent 871

conversation is also graded independently. 872

B Datasets Introduction 873

Table 4 shows the datasets in this work. ShareGPT 874

is a collection of 90k conversations shared via the 875

ShareGPT API (closed at present), and includes 876

both user prompts and responses from ChatGPT, 877

which mainly consists of messages in English and 878

other western languages. WildChat is a collection 879

of 1 million real-world user-ChatGPT conversa- 880

tions which consists of over 2.5 million interaction 881

turns and 68 languages from 204,736 users (Zhao 882

et al., 2024b). OpenAssistant is a collection of 883

161,443 messages that construct over 10000 com- 884

plete conversations, which consists of 35 different 885

languages and over 40k annotations on quality, and 886

is designed for reinforcement learning from human 887

feedback. Hence, it provides different conversa- 888

tions based on the same initial question with differ- 889

ent quality, which leads to the sacrifice of the over- 890

all quality. Another important and unique feature 891

of OpenAssistant is that, it is totally generated and 892

annotated by human (Köpf et al., 2024). ChatAl- 893

paca is a collection of 20k conversations, generated 894

by ChatGPT and started with the original Stanford 895

Alpaca (Taori et al., 2023) data, and it contains 896

English and Chinese version. MTLingual is a col- 897

lection of 182k conversations in 70 languages, and 898

is generated by Evol (Maheshwary et al., 2024). 899

The type of language, task, user prompt, and seed 900

prompt are also detailed in MTLingual. UltraChat 901
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is a collection of 1.5 million conversations and is902

generated by ChatGPT which simulates the inter-903

actions of human. The main concerns of UltraChat904

is diversity, scale, and coherence.905

C Case Study906

Figure 6 details a case showing TWiNS’ superior907

contextual comprehension on multi-turn dialogue908

compared to Vicuna-Tuning. In this case, our909

method successfully identifies parallel verb struc-910

tures while Vicuna-Tuning fails in the recognition911

of the parts of speech.912
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Dataset Volume Avg. Turns Generation
Type

Generation
Mechanism

Annotated

ShareGPT
(RyokoAI, 2023) 94K 3.51 User-

ChatGPT
Voluntary sharing

by netizens
No

WildChat
(Zhao et al., 2024b) 1.04M 2.54 User-

ChatGPT
Collected from
chatbot services
powered by GPT

API

No

OpenAssistant
(Köpf et al., 2024) 135.6K 2.34 Human only Human-Generated

& Annotated by
volunteers

Yes

ChatAlpaca(Bian et al., 2023) 20K 4.32 ChatGPT Follow-up by GPT
from Stanford

Alpaca(Taori et al.,
2023)

No

MTLingual
(Maheshwary et al., 2024) 182K 2.48 ChatGPT Constructed by

Evol from
Aya(Singh et al.,

2024)

No

UltraChat
(Ding et al., 2023) 1.5M 3.80 ChatGPT Simulate human

interactions by
ChatGPT

No

Table 4: Datasets in this work with features, the values of Avg. Turns of ShareGPT, WildChat and OpenAssistant
derive from the work of WildChat (Zhao et al., 2024b), and the value of Avg. Turns of OpenAssistant calculates on
multi-turn conversations in English.

Figure 6: Case study.
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Prompts of the Evaluation of Connection

"""
You are a strict and objective evaluator. Your task is to assess the quality of the final response from
assistant in conversation content.
Your evaluation should be fair, professional, and reflect an expert judgment of the response’s
quality.
The conversation is formatted as [{’human’: ’...’, ’assistant’: ’...’}, ..., {’human’: ’...’, ’assistant’:
’...’}] .
The final response is the final ’assistant’ message in the conversation.

[Conversation]\n""" + <conversation> + "\n" + """
Assessment Criteria:
Score baseline is 5. The final score should be adjusted based on the following criteria:
Connection: Does it utilize the information in the previous conversations?
Concentrate on the evidence of conflicts and coherence. Evidence of one conflict
should decrease the score by 1, and evidence of utilizing one information should increase the score
by 1.
Relevance: Does it provide redundant information which is not related to the topic? Is so, it should
be penalized by the degree and amount. One irrelevant information should decrease the score by 1.
Overall Score: Assign a score from 1 to 10 (10 being the best), considering all of the above factors.

The evaluation and your output must be strictly structured in the following JSON for-
mat:
{
"Explanation": "<Explain the rationale of your score.>",
"Score": <An integer score from 1 to 10.>
}
"""

Figure 7: Prompts of the Evaluation of Connection
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Prompts of the Evaluation of Quality

"""
You are a strict and objective evaluator. Your task is to assess the quality of the each response from
assistant in conversation, based on the Assessment Criteria.
Your evaluation should be fair, professional, and reflect an expert judgment of the response’s
quality.
The conversation is formatted as [{’human’: ’...’, ’assistant’: ’...’}, ..., {’human’: ’...’, ’assistant’:
’...’}].

[Conversation]\n""" + <conversation> + "\n" + """
Assessment Criteria:
Requirement Alignment: For each response, only consider the corresponding request from human
in this turn, does the response meet the user’s task goal?
Content Accuracy: Is the information in the response correct, clear, and logically organized?
Language Quality: Is the language fluent, coherent, and readable? Are there any obvious
grammatical or word choice errors?
Consideration on previous information: If there is relevant information in the previous turns of
chatting, does the response take them into consideration?
Overall Score: Assign a score from 1 to 10 (10 being the best), considering all of the above factors.

The evaluation and your output must be strictly structured in the following JSON for-
mat:
{
"evaluations": [
{
"Number of turn in conversation": 1,
"Explanation": "<Explain the rationale of your score.>",
"Score": <An integer score from 1 to 10.>
},
...,
{
"Number of turn in conversation": <Integer, the No. of turn in conversation>,
"Explanation": "<Explain the rationale of your score.>",
"Score": <An integer score from 1 to 10.>
}]
}
"""

Figure 8: Prompts of the Evaluation of Quality
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Prompts of the Evaluation of Information Density

"""
You are a strict and objective evaluator. Your task is to assess the information density of the given
conversation based on the following instructions and Example 1 and Example 2.
[Instructions]
Your evaluation should be fair, professional, and reflect an expert judgment of the response’s
quality.
The conversation is formatted as[{’human’: ’...’, ’assistant’: ’...’}, ..., {’human’: ’...’, ’assistant’:
’...’}].
The information density of a conversation is defined as a number of information units (e.g.,
facts, details, explanations) divided by the words in the conversation, including the numbers and
meaningful signals and excluding the punctuations.
You should only consider the information related to the topic of the conversation and ignore any
irrelevant or redundant information.
If the information unit is repeated in the conversation, it should be counted only once.
[Example 1]
Input Conversation: [{’human’: ’What is the capital of France?’, ’assistant’: ’The capital of France
is Paris.’}]
Output: {’Number of Information Units’: 1, ’Total Number of Words’: 12, ’Information Units’:
[’The capital of France is Paris.’]}
[Example 2]
Input Conversation: [{’human’: ’What is the capital of France?’, ’assistant’: ’The capital of France
is Paris.’}, {’human’: ’What is the population of Paris?’, ’assistant’: ’The population of Paris is 2.1
million.’}]
Output: {’Number of Information Units’: 2, ’Total Number of Words’: 25, ’Information Units’:
[’The capital of France is Paris.’, ’The population of Paris is 2.1 million.’]}

[Conversation]\n""" + <conversation> + "\n" + """
The evaluation and your output must be strictly structured in the following format:
{
"Number of Information Units": <Number of information units>,
"Information Units": [<Information unit 1>, <Information unit 2>, ...],
"Total Number of Words": <Total number of words>,
}
"""

Figure 9: Prompts of the Evaluation of Information Density
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Prompts of the Evaluation of Friendliness

"""
You are a strict and objective evaluator. Your task is to assess the friendliness of the given
conversation following the Assessment Criteria.
Your evaluation should be fair, professional, and reflect an expert judgment of the response’s
quality.
The conversation is formatted as [{’human’: ’...’, ’assistant’: ’...’}, ..., {’human’: ’...’, ’assistant’:
’...’}].

{[Conversation]}""" + <conversation> + """
Assessment Criteria:
Manner: Concentrate on the requests from the human, and also evaluate the assistant’s responses,
is there evidence of disobeying the rules or aggressive behaviors?
Security: Evaluate the security of the conversation. Does the conversation tend to be harmful or
offensive, or does the response from the assistant being guided to reveal sensitive information?
Tone: Evaluate the overall tone of the conversation. Does it have a positive and friendly tone?
Politeness: Evaluate the politeness and courtesy of the assistant’s responses. Overall Score: Assign
a score from 1 to 10 (10 being the most friendly), considering all of the above factors.

The evaluation and your output must be strictly structured in the following JSON for-
mat:

"Explanation": "<Explain the rationale of your score.>",
"Score": <An integer score from 1 to 10.>

"""

Figure 10: Prompts of the Evaluation of Friendliness
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