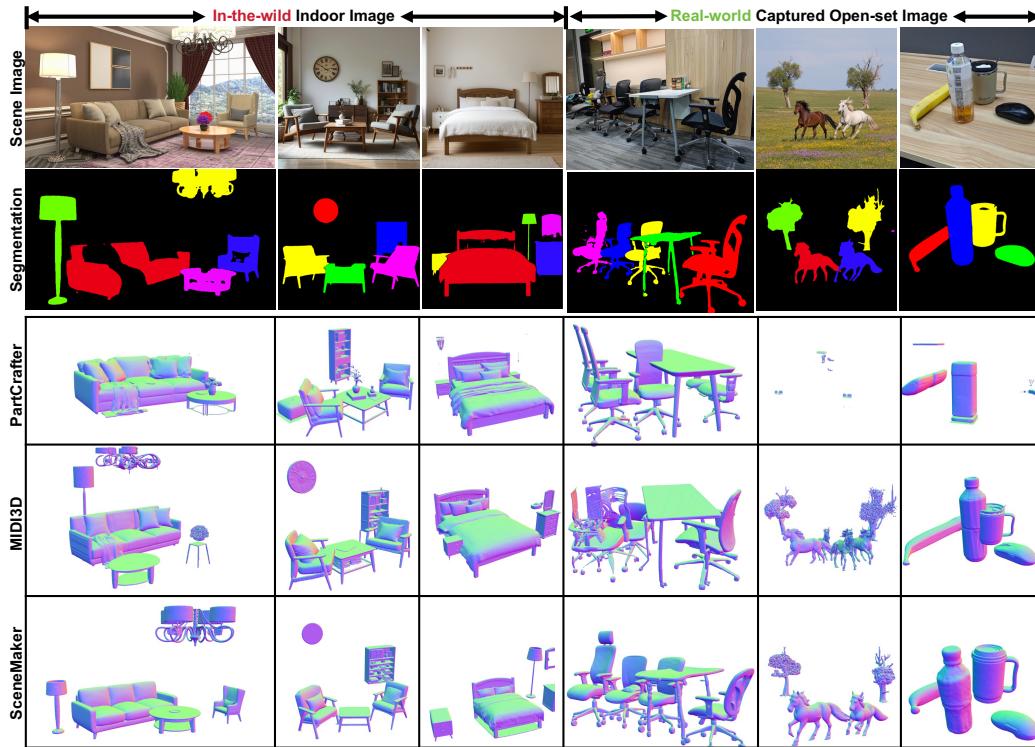


000 SCENEMAKER: OPEN-SET 3D SCENE GENERATION 001 WITH DECOUPLED DE-OCCLUSION AND POSE ESTI- 002 MATION MODEL 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009
010
011



036
037 Figure 1: Our method achieves better performance on both **in-the-wild** indoor scenes and **real-**
038 **world captured** open-set images. Existing methods lack sufficient de-occlusion and open-set priors.
039
040
041

ABSTRACT

042
043 We propose a decoupled 3D scene generation framework called **SceneMaker** in
044 this work. Due to the lack of sufficient open-set de-occlusion and pose estimation
045 priors, existing methods struggle to simultaneously produce high-quality geom-
046 etry and accurate poses under severe occlusion and open-set settings. To address
047 these issues, we first decouple the de-occlusion model from 3D object generation,
048 and enhance it by leveraging image datasets and collected de-occlusion datasets
049 for much more diverse open-set occlusion patterns. Then, we propose a unified
050 pose estimation model that integrates global and local mechanisms for both self-
051 attention and cross-attention to improve accuracy. Besides, we construct an open-
052 set 3D scene dataset to further extend the generalization of the pose estimation
053 model. Comprehensive experiments demonstrate the superiority of our decoupled
framework on both indoor and open-set scenes.

054 **1 INTRODUCTION**

055

056 Open-set 3D scene generation aims to synthesize 3D scenes containing arbitrary objects in any
 057 open-world domain from a single image. It is a fundamental task with high demand in AIGC and
 058 embodied AI, including applications such as 3D asset creation, simulation environment construction,
 059 and 3D perception for decision-making. However, limited scene datasets (Fu et al., 2021; Dai et al.,
 060 2017; Azinović et al., 2022) have confined most existing methods (Tang et al., 2024; Dahnert et al.,
 061 2024; Liu et al., 2022; Dai et al., 2024) to constrained domains like indoor scenes.

062 Recently, the advent of large-scale 3D object datasets (Deitke et al., 2023) has driven rapid progress
 063 in open-set 3D object generation models (Zhang et al., 2024b; Wu et al., 2024; Li et al., 2024;
 064 2025b; Xiang et al., 2025; Zhao et al., 2025; Li et al., 2025a), and emerging methods (Yao et al.,
 065 2025; Huang et al., 2024; Lin et al., 2025; Meng et al., 2025; Dogaru et al., 2024) are beginning
 066 to extend scene generation toward open-set settings. Despite all the progress, existing methods still
 067 struggle to simultaneously produce high-quality geometry and accurate poses under severe occlusion
 068 and open-set settings as shown in Figure 1.

069 The root cause is the model’s insufficient open-set priors for de-occlusion and pose estimation. As
 070 illustrated in Figure 2, a 3D scene generation model requires three key open-set priors in columns:
 071 de-occlusion, object geometry, and pose estimation. The availability of these priors varies across
 072 scene, object, and image datasets in rows (Fu et al., 2021; Azinović et al., 2022; Deitke et al.,
 073 2023; Schuhmann et al., 2022; Deng et al., 2009). Paths in different colors represent various scene
 074 generation methods with different prior sources. Existing scene-native methods (**yellow path**) (Tang
 075 et al., 2024; Dahnert et al., 2024; Liu et al., 2022; Dai et al., 2024) attempt to learn all the three priors
 076 exclusively from scene datasets, where the availability of open-set priors is limited. Object-native
 077 methods (**green path**) (Yao et al., 2025; Huang et al., 2024; Lin et al., 2025; Meng et al., 2025;
 078 Dogaru et al., 2024; Qu et al., 2025; Wu et al., 2025) further leverage large-scale 3D object datasets
 079 to learn sufficient open-set object geometry priors. However, the open-set priors for de-occlusion
 080 and pose estimation still remain insufficient due to the limited datasets, leaving these challenges
 081 unresolved. Meanwhile, existing pose estimation methods (Wen et al., 2024; Zhang et al., 2023;
 082 2024a) suffer from performance degradation in scene generation task, primarily due to missing size
 083 prediction and the absence of tailored attention mechanisms for different pose variables.

083 In this paper, we further advance 3D scene generation towards open-set scenarios by addressing
 084 the critical issue of insufficient de-occlusion and pose estimation priors, as shown in Figure 2 (**red**
 085 **path**). Specifically, we first construct a decoupled framework that divides 3D scene generation
 086 into three distinct tasks based on the necessary priors: de-occlusion, 3D object generation, and
 087 pose estimation. Each task is trained separately on image datasets, 3D object datasets, and scene
 088 datasets, respectively. The decoupled framework ensures that each task can maximize the learning
 089 of its corresponding open-set priors, preventing quality degradation caused by the cross-impact of
 090 data on tasks, such as geometry collapse of small objects and pose shifting resulting from the joint
 091 representation of geometry and pose in Figure 1.

092 Second, we develop a robust de-occlusion model by leveraging image datasets for open-set occlusion
 093 prior. Image datasets are significantly larger than 3D datasets, encompassing a broader range of
 094 open-set objects and exhibiting more diverse occlusion patterns. To maintain the sufficient open-
 095 set priors, we adopt the image editing model (Labs et al., 2025) as the initialization. Then, we
 096 finetune it on our 10K image de-occlusion dataset with three carefully designed occlusion patterns
 097 to further enhance its de-occlusion capability, resulting in the final de-occlusion model. Compared
 098 with existing 3D object-based methods (Wu et al., 2025; Huang et al., 2024), our model achieves
 099 higher quality and more text-controllable results under severe occlusion and open-set conditions.

100 Third, we propose a unified pose estimation model along with a 200K scene dataset for better per-
 101 formance and open-set generalization. Since 3D object generation models (Zhang et al., 2024b;
 102 Zhao et al., 2025; Li et al., 2024; Chen et al., 2025) usually output normalized objects in canoni-
 103 cal space for better geometry, existing methods (Wen et al., 2024; Zhang et al., 2023; 2024a) often
 104 miss size prediction when they are employed in scene generation task. Thus, we propose a unified
 105 diffusion-based pose estimation model, which directly predicts object rotation, translation, and size
 106 conditioned on point clouds, images, and object geometry. Compared to existing methods (Yao et al.,
 107 2025), we introduce both single object and multi-object self-attention mechanism to ensure interac-
 108 tions between objects for coherent relationships. Moreover, we design a decoupled cross-attention
 109 mechanism, where rotation attends to canonical object conditions, while translation and scale attend

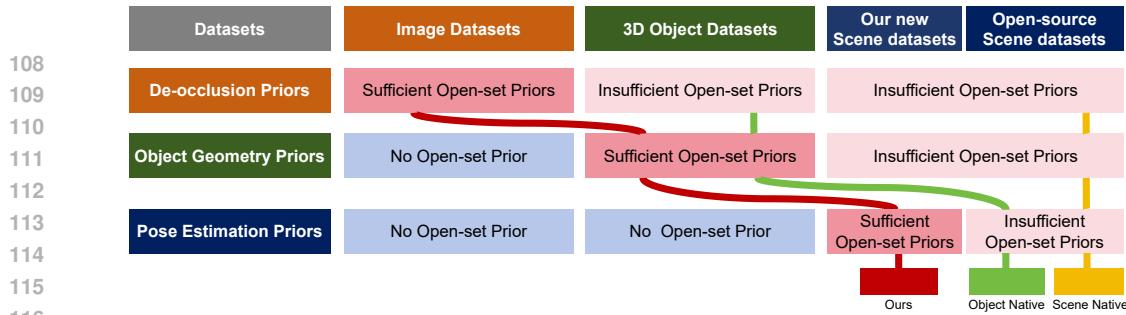


Figure 2: **The analysis of prior sources in different methods.** The table shows that the availability of required open-set priors (column) varies across different datasets (row). Paths in different colors represent various scene generation methods with different prior sources. Existing methods (**yellow path** and **green path**) lack sufficient open-set priors for de-occlusion and pose estimation due to the limited datasets. We further leverage image datasets for de-occlusion and collect new scene datasets for pose estimation to achieve better open-set performance(**red path**).

to scene-level conditions, to further improve accuracy. Additionally, to extend open-set capability, we construct a large-scale synthetic dataset of 200K scenes using Objaverse (Deitke et al., 2023) objects and mix it with existing scene datasets during training.

Finally, comprehensive experiments demonstrate that our model achieves state-of-the-art performance in both object geometry quality and pose accuracy on both indoor and open-set test sets. As our model is inherently compatible with other image inputs such as videos and multi-images, we further discuss its potential upper bound across these modalities.

In summary, our contributions are as threefold:

- We construct a decoupled 3D scene generation framework called **SceneMaker** that fully exploits existing datasets to learn sufficient open-set priors for de-occlusion and pose estimation, achieving superior performance in comprehensive experiments.
- We develop a robust de-occlusion model by leveraging image datasets for open-set occlusion priors and enhancing it with our 10K object image de-occlusion dataset.
- We propose a unified pose estimation diffusion model that directly predicts each object’s 6D pose and size, introducing both local and global attention mechanisms to enhance accuracy. And we further curate a 200K synthesized scene dataset for open-set generalization.

2 RELATED WORK

2.1 3D SCENE GENERATION

3D scene generation is in high demand for AIGC and embodied AI, serving as a foundation task for real-to-sim applications. Based on the source of 3D objects, existing methods fall into two categories: generation-based and retrieval-based. Retrieval-based methods (Dai et al., 2024) retrieve 3D objects from offline libraries but struggle to generalize to open-set scenarios due to limited asset diversity. Generation-based methods directly generate 3D objects from images and can be categorized into scene-native and object-native methods. Scene-native methods (Tang et al., 2024; Dahnert et al., 2024; Liu et al., 2022) directly learn from scene datasets (Fu et al., 2021; Azinović et al., 2022; Dai et al., 2017) but are limited to specific domains like indoor scenes. Object-native methods further leverage open-set 3D object datasets (Deitke et al., 2023) to improve object geometry quality. A series of methods (Yao et al., 2025; Huang et al., 2024; Lin et al., 2025; Meng et al., 2025; Dogaru et al., 2024) directly generate object geometry in the scene space. However, due to the limitations of scene datasets and the coupled representation, they often suffer from obvious degradation on images with severe occlusion or small objects. Another series of methods (Yao et al., 2025) decouple geometry generation and pose estimation to improve the open-set performance. But they lack scene-level interactions during pose estimation, leading to inaccurate relative poses. Fundamentally, existing methods lack sufficient de-occlusion and pose estimation priors. We supplement both open-set priors by leveraging image datasets for de-occlusion and proposing a unified model along with synthetic scene datasets for pose estimation.

2.2 OBJECT GENERATION UNDER OCCLUSION

With the emergence of large-scale open-set 3D object datasets (Deitke et al., 2023), a number of native 3D object generation works (Zhang et al., 2024b; Wu et al., 2024; Li et al., 2024; 2025b; Xiang

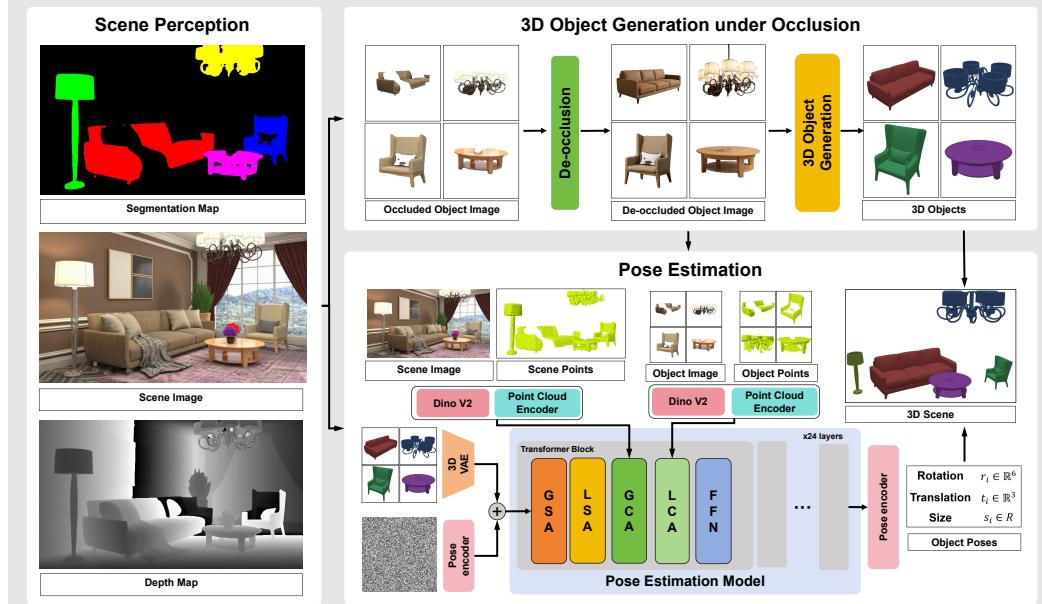


Figure 3: **The Framework of SceneMaker.** Our framework consists of scene perception, 3D object generation under occlusion, and pose estimation. We decouple the de-occlusion model from 3D object generation. We construct a unified pose estimation model that incorporates both global and local attention mechanisms. GSA, LSA, GCA, LCA, and FFN denote global self-attention, local self-attention, global cross-attention, local cross-attention, and feed-forward network, respectively.

et al., 2025; Zhao et al., 2025) have achieved impressive results. However, generating 3D objects under occlusion conditions is more aligned with the needs of scene generation and still requires further exploration. Most existing methods (Chu et al., 2023; Zhou et al., 2021; Stutz & Geiger, 2018; Cui et al., 2024) model the task as 3D completion, where partial geometry is derived from images and subsequently completed using 3D generation models. Recently, some methods (Wu et al., 2025; Cho et al., 2025) additionally use occluded images and masks as supplementary information to achieve better performance. Since 3D generation models already possess sufficient geometric priors, the bottleneck is the lack of de-occlusion priors. Image datasets, which contain more diverse occlusion patterns than 3D datasets, have not been fully utilized. We address this by decoupling the de-occlusion model and leveraging image datasets for training to enhance quality and controllability.

2.3 POSE ESTIMATION

Model-based pose estimation aims to predict poses based on the given CAD model. Existing methods (Zheng et al., 2023; Tian et al., 2020; Wang et al., 2019; Zhang et al., 2022) have achieved impressive performance on predefined classes. Recent works (Shugurov et al., 2022; Labb   et al., 2022; Wen et al., 2024; Zhang et al., 2023; 2024a) further extend the task to arbitrary objects with regression or diffusion models. However, they lack the size prediction when they are employed on scene generation task. CAST3D (Yao et al., 2025) address the issue with a point diffusion model, but it lacks both interaction between objects and decoupled mechanism with conditions from different spaces. We propose a unified pose estimation diffusion model with both local and global attention mechanisms to improve accuracy.

3 METHOD

In this work, we construct a decoupled 3D scene generation framework called **SceneMaker** that fully exploits existing datasets to learn sufficient open-set priors. In Section 3.1, we formulate and overview the whole scene generation framework. In Section 3.2 we introduce how to leverage image datasets for decoupled de-occlusion model in 3D object generation. In Section 3.3, we propose the unified pose estimation model and extend open-set generalization with synthetic datasets.

3.1 FRAMEWORK

As shown in Figure 3, given a single scene image X containing multiple objects $X = \{x_1, x_2, \dots, x_n\}$, our scene generation framework aims to generate a consistent 3D scene Z con-

taining corresponding 3D objects $Z = \{z_1, z_2, \dots, z_n\}$. Our framework consists of three modules: scene perception, 3D object generation under occlusion, and pose estimation, which are formally following the subsequent automated steps.

- 1) Utilize Grounded-SAM (Ren et al., 2024) to segment object masks $M = \{m_1, m_2, \dots, m_n\}$. Apply the mask on the scene image X to obtain occluded object images $I = \{i_1, i_2, \dots, i_n\}$.
- 2) Utilize MoGe (Wang et al., 2025b) to estimate scene depth map D . Apply mask M on the depth and project pixels into 3D space to obtain point clouds $C = \{c_1, c_2, \dots, c_n\}$.
- 3) Acquire de-occluded object images $I^d = \{i_1^d, i_2^d, \dots, i_n^d\}$ with $\epsilon_\theta^d(I_t^d; t, I) \rightarrow I^d$, where ϵ_θ^d denotes our decoupled de-occlusion model and t denotes timesteps in diffusion models.
- 4) Generate 3D object geometry $O = \{o_1, o_2, \dots, o_n\}$ based on de-occluded images I^d with $\epsilon_\theta^o(O_t; t, I^d) \rightarrow O$, where ϵ_θ^o denotes the 3D generation model.
- 5) Estimate object poses $P = \{p_1, p_2, \dots, p_n\}$ based on point clouds, images and object geometry with $\epsilon_\theta^p(P_t; t, X, M, I, C, O) \rightarrow P$, where ϵ_θ^p denotes the pose estimation model. Here the object poses contain rotation, translation, and size: $p_i = \{r_i, t_i, s_i\}$.
- 6) Composite generated object geometry and estimated poses into the final scene: $Z = \{O, P\}$.

In this formulation, we construct the decoupled 3D scene generation framework that fully exploits existing datasets to learn sufficient open-set priors.

3.2 OBJECT GENERATION WITH DECOUPLED DE-OCCLUSION MODEL

After obtaining the depth map and segmentation masks from the scene perception module, we aim to generate 3D objects with the high-quality geometry based on occluded object images. However, existing methods often struggle to generate high-quality geometry under severe occlusion. The main challenge is that models lack sufficient open-set occlusion priors due to limited 3D datasets.

Image datasets are significantly larger than 3D datasets, encompassing a broader range of open-set objects and exhibiting more diverse occlusion patterns. Therefore, compared with existing methods, we further decoupled the de-occlusion model and train it on image datasets for richer occlusion priors. The de-occlusion model is formulated as follow:

$$\epsilon_\theta^d(I_t^d; t, I) \rightarrow I^d, \quad (1)$$

where ϵ_θ^d , I , I^d , t denote our decoupled de-occlusion model, occluded images, de-occluded images, and timesteps in diffusion models, respectively.

Since existing 3D native object generation models (Zhao et al., 2025; Zhang et al., 2024b; Li et al., 2024; Xiang et al., 2025) have achieved impressive performance, we simply adopt existing methods for image-3d generation after de-occlusion, as shown in Equation 2:

$$\epsilon_\theta^o(O_t; t, I^d) \rightarrow O, \quad (2)$$

where ϵ_θ^o and O denote the 3D generation model and generated 3D objects, respectively.

3.2.1 DE-OCCLUSION MODEL

To acquire sufficient open-set priors, we directly use the image editing model (Labs et al., 2025) as the initialization for the de-occlusion model. Although both editing (Labs et al., 2025) and inpainting (Ju et al., 2024) models can achieve de-occlusion, their performance is often suboptimal in cases of severe occlusion. The fundamental cause is the lack of diverse and severe occlusion patterns in the training data. To address this, we construct an additional 10K object image de-occlusion dataset to finetune the model and enhance its de-occlusion capability.

De-occlusion Datasets. We first use GPT (Achiam et al., 2023) to generate detailed captions of objects, and then employ an image generation model (Flux, 2024) to produce high-quality target images. Considering that occluded images are derived from the segmentation model (Ren et al., 2024) based on predefined class labels (Liu et al., 2024), we generate 20 captions per class, and further expand them as detailed as possible to ensure high-quality images. Meanwhile, we create a universal template as the de-occlusion text prompt for all classes. Next, we carefully design three masking strategies to simulate real-world occlusions: object cutouts without background for object occlusion, right-angle cropping for image borders, and random brush strokes for user prompts. Finally, the final de-occlusion dataset is constructed by 10K triplets formed by masked images, de-occlusion text prompts, and target images.

Figure 4: Qualitative comparison of de-occlusion models. Our model has better performance on both indoor and open-set objects, especially under severe occlusion.

Figure 5: Qualitative comparison of object generation under occlusion. Our model has better performance on both indoor and open-set objects.

3.2.2 COMPARISON

De-occlusion. We conduct both quantitative and qualitative experiments to demonstrate the superiority of our de-occlusion model. We mainly compare our model with the state-of-the-art methods in image painting (Ju et al., 2024) and image editing (Labs et al., 2025). We evaluate these methods on our collected validation set of 1K images spanning over 500 classes. We use PSNR and SSIM between the prediction and ground truth images, as well as the CLIP score (Radford et al., 2021) between the prediction image and class labels, as evaluation metrics. As shown in Figure 4 and Table 1, our de-occlusion model achieves better performance on both indoor and open-set scenes, especially under severe occlusions.

Object Generation under Occlusion. To demonstrate the superiority of our decoupled pipeline, we compare it with existing 3D native methods (Wu et al., 2025; Huang et al., 2024) on the 3D object generation task. As shown in Table 2, we conduct quantitative experiments on 3D Front datasets (Fu et al., 2021) and images with more severe occlusions rendered by InstPifu (Liu et al., 2022). We further conduct qualitative experiments on indoor and open-set scenes in Figure 5. Both qualitative and quantitative results show that our decoupled framework achieves superior performance in object generation under occlusion across both indoor and open-set scenes.

3.3 UNIFIED POSE ESTIMATION MODEL

The goal of the pose estimation model is to predict each object’s rotation R , translation T , and size S in the scene based on its canonical geometry O . Existing methods (Wen et al., 2024; Zhang et al., 2024a; 2023; Huang et al., 2024; Yao et al., 2025) mainly face three challenges. First, they often miss size prediction when they are employed in scene generation task, since object geometries are usually generated in canonical space. Second, they do not properly decouple different pose variables when interacting with scene-level and object-level features, resulting in performance degradation. To address these two issues, we propose a unified pose estimation model that incorporates both global and local attention mechanisms in Section 3.3.1. Third, existing methods often struggle on open-set scenarios due to limited datasets. We build a large-scale open-set dataset containing over 200K synthesized scenes to tackle the generalization challenge in Section 3.3.2.

Methods	PSNR \uparrow	SSIM \uparrow	CLIP \uparrow
BrushNet	11.07	0.6760	0.2659
Flux Kontext	13.91	0.7309	0.2674
Ours	15.03	0.7566	0.2698

Table 1: Quantitative comparison of de-occlusion.

Methods	CD \downarrow	F-Score \uparrow	Volume IoU \uparrow
MIDI	0.0508	0.5533	0.4214
Amodal3R	0.0443	0.7124	0.5279
Ours	0.0409	0.7454	0.5985

Table 2: Quantitative comparison of object generation under occlusion.

Methods	CD \downarrow	F-Score \uparrow	Volume IoU \uparrow
MIDI	0.0508	0.5533	0.4214
Amodal3R	0.0443	0.7124	0.5279
Ours	0.0409	0.7454	0.5985

Table 2: Quantitative comparison of object generation under occlusion.

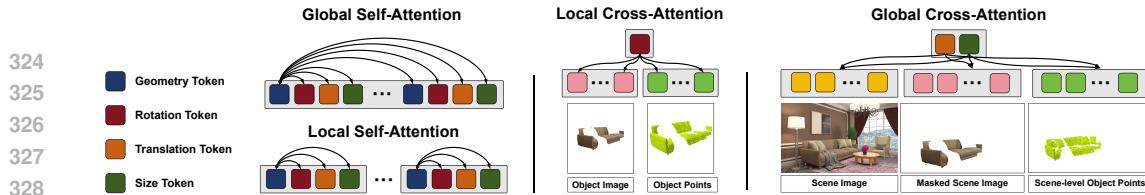


Figure 6: **Attention mechanisms in the pose estimation model.** The global self-attention module enables tokens of all objects in the scene to interact with each other. The local cross-attention module enables rotation tokens independently interact with conditions in the object canonical space. The global cross-attention module enables translation and size tokens attend to scene-level conditions.

3.3.1 PIPELINE

As shown in Figure 3, we propose a unified pose estimation model that introduces both global and local attention mechanisms specific for the scene generation task. We directly incorporate object size into the prediction and jointly estimate it with rotation and translation, to address the adaptation challenge in scene generation task. Specifically, we take scene images X , scene masks M , cropped object images I , point clouds C , and object geometries O as inputs, and predict object rotation R , translation T , and size S as outputs, where rotation is represented in 6D.

To improve learning efficiency, all scenes are normalized to a unified space for pose estimation. Since all pose variables can be well represented within a Gaussian distribution, we employ the diffusion model (Ho et al., 2020; Lipman et al., 2022; Peebles & Xie, 2023) for pose estimation from a generative perspective, where poses are denoised from Gaussian noise with the input modalities serving as conditioning signals. The final formulation can be represented in Equation 3.

$$\begin{aligned} \epsilon_{\theta}^p(P_t; t, X, M, I, C, O) &\rightarrow P, \\ P &= \{R, T, S\}, \end{aligned} \tag{3}$$

where ϵ_{θ}^p , t denote the pose estimation model and timestep in diffusion models, respectively.

As shown in Figure 3, the trainable object pose encoder and decoder are composed of MLPs. Object geometries, images, and point clouds are encoded into features using a pretrained 3D object VAE, Dinov2 (Oquab et al., 2023), and a point encoder pretrained on 3D reconstruction tasks, all of which are kept frozen during training. Object geometry is injected through concatenation with pose tokens, while image and point cloud features are injected via cross-attention. We implement our model using a flow matching framework (Lipman et al., 2022) with a DiT architecture (Peebles & Xie, 2023), where each transformer block consists of global and local self-attention, global and local cross-attention, and a feed-forward network.

Attention Mechanisms. As shown in Figure 6, we adopt both global and local mechanisms for self-attention and cross-attention. Each pose variable is separately encoded as a token, so each object in the diffusion model is uniquely represented by a quadruple of tokens: rotation, translation, size, and geometry. The local self-attention module enables the interaction inside the quadruple of each object. The global self-attention module enables tokens of all objects in the scene to interact with each other, leading to more coherent relative object poses. Considering that rotation can be independently estimated in the object canonical space and scene-level conditions provide little benefit, we introduce a local cross-attention module, allowing the rotation token to attend only to the cropped object image and normalized object point cloud. Meanwhile, we retain a global cross-attention module for the translation and size tokens, allowing them to attend to the scene-level point cloud and image. This decoupled attention mechanism is demonstrated to improve model performance in our comprehensive experiments.

3.3.2 OPEN-SET SCENE DATASETS

Since existing datasets currently lack the necessary prior for training a 3D scene generation model in an open-set domain, we addressed this by constructing our own training data. This involved using a carefully curated subset of the existing Objaverse (Deitke et al., 2023) dataset along with Blender (ble, 2025). A significant number of models in Objaverse are either scanned data or have low-quality textures and materials, which necessitated a rigorous curation process. To filter the models, we assessed their material information, excluding any that were transparent, lacked a BSDF node, or did not have an albedo map. To further refine the selection, we also excluded models with pure or excessively dark albedo colors. Ultimately, this process resulted in a high-quality subset of 90k models with a superior appearance to construct a dataset of 200k scenes for our work.

378	379	Method	3D-Front					Open-set				
			CD-S \downarrow	F-Score-S \uparrow	CD-O \downarrow	F-Score-O \uparrow	IoU-B \uparrow	CD-S \downarrow	F-Score-S \uparrow	CD-O \downarrow	F-Score-O \uparrow	IoU-B \uparrow
380	PartCrafter	0.1846	0.3844	-	-	-	-	0.2171	0.2613	-	-	-
381	MIDI3D	0.1672	0.3420	0.0663	0.5495	0.3855	-	0.1425	0.3211	0.0807	0.5602	0.5079
382	SceneMaker (w/o open-set data)	0.0381	0.6840	0.0681	0.6160	0.7658	-	0.1538	0.4644	0.0847	0.5771	0.6248
383	SceneMaker(Ours)	0.0470	0.6312	0.0885	0.6812	0.7693	0.0285	0.6125	0.0671	0.5948	0.7549	-

384 Table 3: Quantitative comparison with scene generation methods.
385

386 We composed each scene by combining 2 to 5 randomly selected objects. To enhance realism,
387 we used random environment maps sampled from Polyhaven (Poly Haven, 2025) to serve as the
388 background of the scenes. Additionally, we added a ground plane with a high-quality texture beneath
389 the objects, using Perlin noise to enhance the surface and add realistic variations. Finally, each object
390 was given a random rotation to serve as an augmentation of the level of the object to train the pose
391 estimation module. This entire process resulted in a dataset of 200k scenes, comprising a total of 8
392 million images for model training.
393

3.3.3 TRAINING

394 We directly apply L2 loss to rotation, translation, and size, with equal weighting for each term.
395 To demonstrate the superiority of our framework, we first train our model only on the 3D Front
396 datasets (Fu et al., 2021) for fair comparison. We mix the datasets curated by MIDI3D (Huang et al.,
397 2024) and Instpifu (Liu et al., 2022). We align their render results according to room IDs, resulting
398 in 20K scenes. We take 1K scenes as test sets and the rest as training sets. We train the model from
399 scratch for 25K steps until it converged. To extend the generalization on open-set, we further mix
400 our 200K open-set datasets into the indoor datasets, and take 1K scenes as open-set test sets. We
401 train the model from scratch for 40K steps until the model converged.
402

4 EXPERIMENTS

4.1 SETTINGS

403 **Datasets.** We conduct experiments on both indoor and open-set datasets. Specifically, we randomly
404 select 1K scenes with no overlap with the training set from 3D-front (Fu et al., 2021) as indoor test
405 sets, and 1K scenes from our collected open-set data as open-set test sets. It is worth noting that our
406 3D-Front scenes contain significantly more occlusions compared to MIDI. To further evaluate the
407 generalization, we conduct qualitative comparison on synthetic, in-the-wild, and multi-scale images.
408

409 **Baselines.** We compare our method with the state-of-art methods (Lin et al., 2025; Huang et al.,
410 2024) on both indoor scenes and open-set datasets. Since CAST3D (Yao et al., 2025) has not re-
411 leased its code or dataset, we can only provide qualitative comparisons in Figure 7.
412

413 **Metrics.** Following existing scene generation methods (Yao et al., 2025; Huang et al., 2024; Lin
414 et al., 2025), we use scene-level Chamfer Distance (CD-S), F-Score (F-Score-S), and IoU Bounding
415 Box (IoU-B) to evaluate the quality of the whole scene. And we use object-level Chamfer Distance
416 (CD-O) and F-Score (F-Score-O) to evaluate the quality of generated object geometry.
417

4.2 QUANTITATIVE RESULTS

418 We conducted a quantitative evaluation of our indoor scene dataset against the standard 3D-Front (Fu
419 et al., 2021) dataset. Since there is no existing open-set 3D scene generation benchmark, we con-
420 structed our own datasets specifically for this purpose. As shown in Table 3, our method con-
421 sistently outperforms existing baselines, achieving the highest quantitative metrics for both indoor and
422 the more challenging open-set scene generation tasks. Remarkably, even without being trained on
423 the open-set dataset we constructed, our approach still obtained the best quantitative results. This
424 underscores the superior performance of our proposed framework and designed modules.
425

4.3 QUALITATIVE RESULTS

426 As shown in Figure 7, our method generates visually compelling scenes that are not only realistic
427 but also rich in detail. Crucially, our model demonstrates a robust ability to handle severe occlusions
428 in Figure(a)(b), accurately reasoning about the relative spatial relationships between objects and
429 places objects in plausible poses in Figure(c)(d)(f). Besides, our model can also handle small objects
430 without geometry degradation in Figure(e).
431

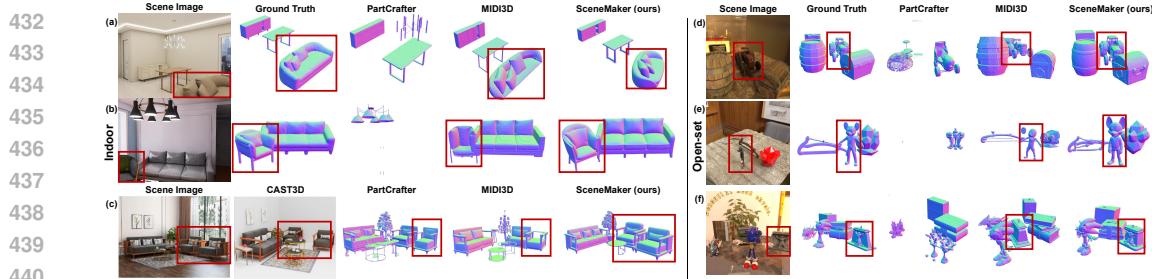


Figure 7: Qualitative comparison with scene generation methods.

4.4 ABLATION STUDY

Attention Mechanism. We ablate the contribution of the global and local self-attention mechanism, and the decoupled cross-attention mechanism in the pose estimation model respectively. For the self-attention mechanism, we simply remove the global and local attention modules respectively for comparison. For the decoupled cross-attention mechanism, we remove the local attention and merge the rotation update into the global attention for comparison. We train the above models from scratch and use ground-truth meshes to eliminate the influence of geometry on pose estimation. As shown in Table 4, all modules in our proposed attention mechanisms contribute positively to model performance.

Open-set Datasets. We demonstrate the necessity of our proposed scene datasets on the open-set images as shown in Table 3. Our model faces severe degradation in open-set scenario without the datasets. The datasets mainly provide open-set patterns of diverse objects, which help build pose mappings across different geometries and are essential for open-set scene generation.

Upper Bound of Pose Estimation. Compared to a single image, videos or multi-image can provide richer scene structure information through point cloud reconstruction. When the reconstruction algorithm (Wang et al., 2025a; 2024) reaches its upper limit, it is equivalent to providing our model with a complete point cloud. We discuss the upper bound of our pose estimation model by giving the complete point clouds of the scene. As shown in Table 4, with a complete point cloud, our model achieves a significant performance boost, demonstrating its strong potential under video or multi-image conditions.

5 CONCLUSION

In this paper, we propose a decoupled 3D scene generation framework called **SceneMaker**. To obtain sufficient occlusion priors, we decouple and develop the robust de-occlusion model from 3D object generation by leveraging image generation models and a 10K curated de-occlusion dataset for training. To improve the accuracy of the pose estimation model, we propose a unified pose estimation diffusion model with both local and global attention mechanisms. We further construct a 200K synthesized scene dataset for open-set generalization. Comprehensive experiments demonstrate the superiority of our framework on both indoor and open-set scenes.

Limitations. Although our framework effectively generalizes to arbitrary objects, the real-world arrangement of objects is often much more complex than what our datasets capture, particularly when force interactions are involved. Therefore, a key future research topic is how to construct or refine 3D scenes more accurately in a physically plausible manner, including interpenetration and force interactions. Meanwhile, existing methods can only control scene generation through images or simple captions, and further development is needed for more control signals and natural language interactions. Moreover, how to perform more in-depth understanding tasks and adapt embodied decision-making based on generated high-quality 3D scenes is also an unsolved challenge.

Method	CD-S \downarrow	FS-S \uparrow	CD-O \downarrow	FS-O \uparrow	IoU-B \uparrow
SceneMaker	0.0242	0.7502	0.0294	0.8121	0.7555
w/o GSA	0.0340	0.6610	0.0556	0.6293	0.7336
w/o LSA	0.0293	0.7434	0.0901	0.7142	0.7733
w/o LCA	0.0274	0.7368	0.0429	0.7113	0.7882
+ Complete points	0.0064	0.9197	0.0124	0.8432	0.8550

Table 4: Quantitative results of ablation studies. **Bold** and underline indicate the best and the second best, respectively.

we remove the local attention and merge the rotation update into the global attention for comparison. We train the above models from scratch and use ground-truth meshes to eliminate the influence of geometry on pose estimation. As shown in Table 4, all modules in our proposed attention mechanisms contribute positively to model performance.

486 REFERENCES
487

488 Blender, 2025. <https://www.blender.org/>.

489 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
490 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
491 report. *arXiv preprint arXiv:2303.08774*, 2023.

492 Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner, and Justus Thies.
493 Neural rgb-d surface reconstruction. In *Proceedings of the IEEE/CVF Conference on Computer*
494 *Vision and Pattern Recognition*, pp. 6290–6301, 2022.

495 Rui Chen, Jianfeng Zhang, Yixun Liang, Guan Luo, Weiyu Li, Jiarui Liu, Xiu Li, Xiaoxiao Long,
496 Jiashi Feng, and Ping Tan. Dora: Sampling and benchmarking for 3d shape variational auto-
497 encoders. In *Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)*,
498 pp. 16251–16261, June 2025.

499 Junhyeong Cho, Kim Youwang, Hunmin Yang, and Tae-Hyun Oh. Robust 3d shape reconstruction
500 in zero-shot from a single image in the wild. In *Proceedings of the Computer Vision and Pattern*
501 *Recognition Conference*, pp. 22786–22798, 2025.

502 Ruihang Chu, Enze Xie, Shentong Mo, Zhenguo Li, Matthias Nießner, Chi-Wing Fu, and Jiaya Jia.
503 Diffcomplete: Diffusion-based generative 3d shape completion. *Advances in neural information*
504 *processing systems*, 36:75951–75966, 2023.

505 Ruihai Cui, Weizhe Liu, Weixuan Sun, Senbo Wang, Taizhang Shang, Yang Li, Xibin Song, Han
506 Yan, Zhennan Wu, Shenzhou Chen, et al. Neusdfusion: A spatial-aware generative model for 3d
507 shape completion, reconstruction, and generation. In *European Conference on Computer Vision*,
508 pp. 1–18. Springer, 2024.

509 Manuel Dahnert, Angela Dai, Norman Müller, Angela, and Matthias Nießner. Coherent 3d scene
510 diffusion from a single rgb image. In *Thirty-Eighth Conference on Neural Information Processing*
511 *Systems*, 2024.

512 Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
513 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proceedings of the*
514 *IEEE conference on computer vision and pattern recognition*, pp. 5828–5839, 2017.

515 Tianyuan Dai, Josiah Wong, Yunfan Jiang, Chen Wang, Cem Gokmen, Ruohan Zhang, Jiajun Wu,
516 and Li Fei-Fei. Automated creation of digital cousins for robust policy learning. *arXiv preprint*
517 *arXiv:2410.07408*, 2024.

518 Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
519 Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
520 tated 3d objects. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
521 *recognition*, pp. 13142–13153, 2023.

522 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
523 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
524 pp. 248–255. Ieee, 2009.

525 Andreea Dogaru, Mert Özer, and Bernhard Egger. Generalizable 3d scene reconstruction via divide
526 and conquer from a single view. *arXiv preprint arXiv:2404.03421*, 2024.

527 Flux. Flux [Text-to-Image Model]. [https://blackforestlabs.ai/](https://blackforestlabs.ai/announcing-black-forest-labs/)
528 announcing-black-forest-labs/, 2024.

529 Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming Wang, Cao Li, Qixun Zeng, Chengyue
530 Sun, Rongfei Jia, Binqiang Zhao, et al. 3d-front: 3d furnished rooms with layouts and seman-
531 tics. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 10933–
532 10942, 2021.

533 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
534 *neural information processing systems*, 33:6840–6851, 2020.

540 Zehuan Huang, Yuan-Chen Guo, Xingqiao An, Yunhan Yang, Yangguang Li, Zi-Xin Zou, Ding
 541 Liang, Xihui Liu, Yan-Pei Cao, and Lu Sheng. Midi: Multi-instance diffusion for single image to
 542 3d scene generation. *arXiv preprint arXiv:2412.03558*, 2024.

543 Xuan Ju, Xian Liu, Xintao Wang, Yuxuan Bian, Ying Shan, and Qiang Xu. Brushnet: A plug-and-
 544 play image inpainting model with decomposed dual-branch diffusion. In *European Conference
 545 on Computer Vision*, pp. 150–168. Springer, 2024.

546 Yann Labb  , Lucas Manuelli, Arsalan Mousavian, Stephen Tyree, Stan Birchfield, Jonathan Trem-
 547 blay, Justin Carpentier, Mathieu Aubry, Dieter Fox, and Josef Sivic. Megapose: 6d pose estima-
 548 tion of novel objects via render & compare. *arXiv preprint arXiv:2212.06870*, 2022.

549 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
 550 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, et al. Flux. 1 kontext:
 551 Flow matching for in-context image generation and editing in latent space. *arXiv preprint
 552 arXiv:2506.15742*, 2025.

553 Weiyu Li, Jiarui Liu, Rui Chen, Yixun Liang, Xuelin Chen, Ping Tan, and Xiaoxiao Long. Crafts-
 554 man: High-fidelity mesh generation with 3d native generation and interactive geometry refiner.
 555 *arXiv preprint arXiv:2405.14979*, 2024.

556 Weiyu Li, Xuanyang Zhang, Zheng Sun, Di Qi, Hao Li, Wei Cheng, Weiwei Cai, Shihao Wu, Jiarui
 557 Liu, Zihao Wang, et al. Step1x-3d: Towards high-fidelity and controllable generation of textured
 558 3d assets. *arXiv preprint arXiv:2505.07747*, 2025a.

559 Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu,
 560 Yuan-Chen Guo, Ding Liang, Wanli Ouyang, et al. Tripogs: High-fidelity 3d shape synthesis
 561 using large-scale rectified flow models. *arXiv preprint arXiv:2502.06608*, 2025b.

562 Yuchen Lin, Chenguo Lin, Panwang Pan, Honglei Yan, Yiqiang Feng, Yadong Mu, and Katerina
 563 Fragkiadaki. Partcrafter: Structured 3d mesh generation via compositional latent diffusion trans-
 564 formers. *arXiv preprint arXiv:2506.05573*, 2025.

565 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 566 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

567 Haolin Liu, Yujian Zheng, Guanying Chen, Shuguang Cui, and Xiaoguang Han. Towards high-
 568 fidelity single-view holistic reconstruction of indoor scenes. In *European Conference on Com-
 569 puter Vision*, pp. 429–446. Springer, 2022.

570 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 571 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
 572 for open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer,
 573 2024.

574 Yanxu Meng, Haoning Wu, Ya Zhang, and Weidi Xie. Scenegen: Single-image 3d scene generation
 575 in one feedforward pass. *arXiv preprint arXiv:2508.15769*, 2025.

576 Maxime Oquab, Timoth   Darcet, Th  o Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 577 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 578 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

579 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 580 the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

581 Poly Haven. Poly Haven. <https://polyhaven.com/>, 2025.

582 Yansong Qu, Shaohui Dai, Xinyang Li, Yuze Wang, You Shen, Liujuan Cao, and Rongrong Ji.
 583 Deocc-1-to-3: 3d de-occlusion from a single image via self-supervised multi-view diffusion.
 584 *arXiv preprint arXiv:2506.21544*, 2025.

585 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 586 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 587 models from natural language supervision. In *International conference on machine learning*, pp.
 588 8748–8763. PMLR, 2021.

594 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
 595 Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
 596 tasks. *arXiv preprint arXiv:2401.14159*, 2024.

597

598 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 599 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 600 open large-scale dataset for training next generation image-text models. 2022.

601 Ivan Shugurov, Fu Li, Benjamin Busam, and Slobodan Ilic. Osop: A multi-stage one shot object
 602 pose estimation framework. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 603 and Pattern Recognition*, pp. 6835–6844, 2022.

604

605 David Stutz and Andreas Geiger. Learning 3d shape completion from laser scan data with weak
 606 supervision. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 607 pp. 1955–1964, 2018.

608

609 Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus Thies, and Matthias Nießner. Dif-
 610 fuscene: Denoising diffusion models for generative indoor scene synthesis. In *Proceedings of the
 611 IEEE/CVF conference on computer vision and pattern recognition*, pp. 20507–20518, 2024.

612

613 Meng Tian, Marcelo H Ang Jr, and Gim Hee Lee. Shape prior deformation for categorical 6d object
 614 pose and size estimation. In *European Conference on Computer Vision*, pp. 530–546. Springer,
 2020.

615

616 He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and Leonidas J Guibas.
 617 Normalized object coordinate space for category-level 6d object pose and size estimation. In
 618 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2642–
 2651, 2019.

619

620 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 621 Novotny. Vggt: Visual geometry grounded transformer. *arXiv preprint arXiv:2503.11651*, 2025a.

622

623 Ruicheng Wang, Sicheng Xu, Cassie Dai, Jianfeng Xiang, Yu Deng, Xin Tong, and Jiaolong Yang.
 624 Moge: Unlocking accurate monocular geometry estimation for open-domain images with optimal
 625 training supervision. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 pp. 5261–5271, 2025b.

626

627 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Ge-
 628 ometric 3d vision made easy. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 629 and Pattern Recognition*, pp. 20697–20709, 2024.

630

631 Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield. Foundationpose: Unified 6d pose estimation
 632 and tracking of novel objects. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 633 and Pattern Recognition*, pp. 17868–17879, 2024.

634

635 Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao Yao.
 636 Direct3d: Scalable image-to-3d generation via 3d latent diffusion transformer. *arXiv preprint
 637 arXiv:2405.14832*, 2024.

638

639 Tianhao Wu, Chuanxia Zheng, Frank Guan, Andrea Vedaldi, and Tat-Jen Cham. Amodal3r: Amodal
 640 3d reconstruction from occluded 2d images. *arXiv preprint arXiv:2503.13439*, 2025.

641

642 Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen,
 643 Xin Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation.
 644 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 21469–21480,
 645 2025.

646

647 Kaixin Yao, Longwen Zhang, Xinhao Yan, Yan Zeng, Qixuan Zhang, Lan Xu, Wei Yang, Jiayuan
 648 Gu, and Jingyi Yu. Cast: Component-aligned 3d scene reconstruction from an rgb image. *arXiv
 649 preprint arXiv:2502.12894*, 2025.

650

651 Jiyao Zhang, Mingdong Wu, and Hao Dong. Genpose: Generative category-level object pose esti-
 652 mation via diffusion models. *arXiv preprint arXiv:2306.10531*, 2023.

648 Jiyao Zhang, Weiyao Huang, Bo Peng, Mingdong Wu, Fei Hu, Zijian Chen, Bo Zhao, and Hao
 649 Dong. Omni6dpose: A benchmark and model for universal 6d object pose estimation and track-
 650 ing. In *European Conference on Computer Vision*, pp. 199–216. Springer, 2024a.
 651

652 Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang, Lan
 653 Xu, and Jingyi Yu. Clay: A controllable large-scale generative model for creating high-quality 3d
 654 assets. *ACM Transactions on Graphics (TOG)*, 43(4):1–20, 2024b.
 655

656 Ruida Zhang, Yan Di, Fabian Manhardt, Federico Tombari, and Xiangyang Ji. Ssp-pose: Symmetry-
 657 aware shape prior deformation for direct category-level object pose estimation. In *2022 IEEE/RSJ
 658 International Conference on Intelligent Robots and Systems (IROS)*, pp. 7452–7459. IEEE, 2022.
 659

660 Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
 661 Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
 662 high resolution textured 3d assets generation. *arXiv preprint arXiv:2501.12202*, 2025.
 663

664 Linfang Zheng, Chen Wang, Yinghan Sun, Esha Dasgupta, Hua Chen, Aleš Leonardis, Wei Zhang,
 665 and Hyung Jin Chang. Hs-pose: Hybrid scope feature extraction for category-level object pose
 666 estimation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
 667 tion*, pp. 17163–17173, 2023.
 668

669 Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation and completion through point-voxel
 670 diffusion. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 671 5826–5835, 2021.
 672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701