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Figure 1: Our method achieves better performance on both in-the-wild indoor scenes and real-
world captured open-set images. Existing methods lack sufficient de-occlusion and open-set priors.

ABSTRACT

We propose a decoupled 3D scene generation framework called SceneMaker in
this work. Due to the lack of sufficient open-set de-occlusion and pose estimation
priors, existing methods struggle to simultaneously produce high-quality geome-
try and accurate poses under severe occlusion and open-set settings. To address
these issues, we first decouple the de-occlusion model from 3D object generation,
and enhance it by leveraging image datasets and collected de-occlusion datasets
for much more diverse open-set occlusion patterns. Then, we propose a unified
pose estimation model that integrates global and local mechanisms for both self-
attention and cross-attention to improve accuracy. Besides, we construct an open-
set 3D scene dataset to further extend the generalization of the pose estimation
model. Comprehensive experiments demonstrate the superiority of our decoupled
framework on both indoor and open-set scenes.
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1 INTRODUCTION

Open-set 3D scene generation aims to synthesize 3D scenes containing arbitrary objects in any
open-world domain from a single image. It is a fundamental task with high demand in AIGC and
embodied AI, including applications such as 3D asset creation, simulation environment construction,
and 3D perception for decision-making. However, limited scene datasets (Fu et al., 2021; Dai et al.,
2017; Azinović et al., 2022) have confined most existing methods (Tang et al., 2024; Dahnert et al.,
2024; Liu et al., 2022; Dai et al., 2024) to constrained domains like indoor scenes.

Recently, the advent of large-scale 3D object datasets (Deitke et al., 2023) has driven rapid progress
in open-set 3D object generation models (Zhang et al., 2024b; Wu et al., 2024; Li et al., 2024;
2025b; Xiang et al., 2025; Zhao et al., 2025; Li et al., 2025a), and emerging methods (Yao et al.,
2025; Huang et al., 2024; Lin et al., 2025; Meng et al., 2025; Dogaru et al., 2024) are beginning
to extend scene generation toward open-set settings. Despite all the progress, existing methods still
struggle to simultaneously produce high-quality geometry and accurate poses under severe occlusion
and open-set settings as shown in Figure 1.

The root cause is the model’s insufficient open-set priors for de-occlusion and pose estimation. As
illustrated in Figure 2, a 3D scene generation model requires three key open-set priors in columns:
de-occlusion, object geometry, and pose estimation. The availability of these priors varies across
scene, object, and image datasets in rows (Fu et al., 2021; Azinović et al., 2022; Deitke et al.,
2023; Schuhmann et al., 2022; Deng et al., 2009). Paths in different colors represent various scene
generation methods with different prior sources. Existing scene-native methods (yellow path) (Tang
et al., 2024; Dahnert et al., 2024; Liu et al., 2022; Dai et al., 2024) attempt to learn all the three priors
exclusively from scene datasets, where the availability of open-set priors is limited. Object-native
methods (green path) (Yao et al., 2025; Huang et al., 2024; Lin et al., 2025; Meng et al., 2025;
Dogaru et al., 2024; Qu et al., 2025; Wu et al., 2025) further leverage large-scale 3D object datasets
to learn sufficient open-set object geometry priors. However, the open-set priors for de-occlusion
and pose estimation still remain insufficient due to the limited datasets, leaving these challenges
unresolved. Meanwhile, existing pose estimation methods (Wen et al., 2024; Zhang et al., 2023;
2024a) suffer from performance degradation in scene generation task, primarily due to missing size
prediction and the absence of tailored attention mechanisms for different pose variables.

In this paper, we further advance 3D scene generation towards open-set scenarios by addressing
the critical issue of insufficient de-occlusion and pose estimation priors, as shown in Figure 2 (red
path). Specifically, we first construct a decoupled framework that divides 3D scene generation
into three distinct tasks based on the necessary priors: de-occlusion, 3D object generation, and
pose estimation. Each task is trained separately on image datasets, 3D object datasets, and scene
datasets, respectively. The decoupled framework ensures that each task can maximize the learning
of its corresponding open-set priors, preventing quality degradation caused by the cross-impact of
data on tasks, such as geometry collapse of small objects and pose shifting resulting from the joint
representation of geometry and pose in Figure. 1.

Second, we develop a robust de-occlusion model by leveraging image datasets for open-set occlusion
prior. Image datasets are significantly larger than 3D datasets, encompassing a broader range of
open-set objects and exhibiting more diverse occlusion patterns. To maintain the sufficient open-
set priors, we adopt the image editing model (Labs et al., 2025) as the initialization. Then, we
finetune it on our 10K image de-occlusion dataset with three carefully designed occlusion patterns
to further enhance its de-occlusion capability, resulting in the final de-occlusion model. Compared
with existing 3D object-based methods (Wu et al., 2025; Huang et al., 2024), our model achieves
higher quality and more text-controllable results under severe occlusion and open-set conditions.

Third, we propose a unified pose estimation model along with a 200K scene dataset for better per-
formance and open-set generalization. Since 3D object generation models (Zhang et al., 2024b;
Zhao et al., 2025; Li et al., 2024; Chen et al., 2025) usually output normalized objects in canoni-
cal space for better geometry, existing methods (Wen et al., 2024; Zhang et al., 2023; 2024a) often
miss size prediction when they are employed in scene generation task. Thus, we propose a unified
diffusion-based pose estimation model, which directly predicts object rotation, translation, and size
conditioned on point clouds, images, and object geometry. Compared to existing methods (Yao et al.,
2025), we introduce both single object and multi-object self-attention mechanism to ensure interac-
tions between objects for coherent relationships. Moreover, we design a decoupled cross-attention
mechanism, where rotation attends to canonical object conditions, while translation and scale attend
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Figure 2: The analysis of prior sources in different methods. The table shows that the availability
of required open-set priors (column) varies across different datasets (row). Paths in different colors
represent various scene generation methods with different prior sources. Existing methods (yellow
path and green path) lack sufficient open-set priors for de-occlusion and pose estimation due to the
limited datasets. We further leverage image datasets for de-occlusion and collect new scene datasets
for pose estiamtion to achieve better open-set performance(red path).
to scene-level conditions, to further improve accuracy. Additionally, to extend open-set capability,
we construct a large-scale synthetic dataset of 200K scenes using Objaverse (Deitke et al., 2023)
objects and mix it with existing scene datasets during training.

Finally, comprehensive experiments demonstrate that our model achieves state-of-the-art perfor-
mance in both object geometry quality and pose accuracy on both indoor and open-set test sets. As
our model is inherently compatible with other image inputs such as videos and multi-images, we
further discuss its potential upper bound across these modalities.

In summary, our contributions are as threefold:
• We construct a decoupled 3D scene generation framework called SceneMaker that fully

exploits existing datasets to learn sufficient open-set priors for de-occlusion and pose esti-
mation, achieving superior performance in comprehensive experiments.

• We develop a robust de-occlusion model by leveraging image datasets for open-set occlu-
sion priors and enhancing it with our 10K object image de-occlusion dataset.

• We propose a unified pose estimation diffusion model that directly predicts each object’s 6D
pose and size, introducing both local and global attention mechanisms to enhance accuracy.
And we further curate a 200K synthesized scene dataset for open-set generalization.

2 RELATED WORK

2.1 3D SCENE GENERATION

3D scene generation is in high demand for AIGC and embodied AI, serving as a foundation task
for real-to-sim applications. Based on the source of 3D objects, existing methods fall into two cate-
gories: generation-based and retrieval-based. Retrieval-based methods (Dai et al., 2024) retrieve 3D
objects from offline libraries but struggle to generalize to open-set scenarios due to limited asset di-
versity. Generation-based methods directly generate 3D objects from images and can be categorized
into scene-native and object-native methods. Scene-native methods (Tang et al., 2024; Dahnert et al.,
2024; Liu et al., 2022) directly learn from scene datasets (Fu et al., 2021; Azinović et al., 2022; Dai
et al., 2017) but are limited to specific domains like indoor scenes. Object-native methods further
leverage open-set 3D object datasets (Deitke et al., 2023) to improve object geometry quality. A
series of methods (Yao et al., 2025; Huang et al., 2024; Lin et al., 2025; Meng et al., 2025; Dogaru
et al., 2024) directly generate object geometry in the scene space. However, due to the limitations
of scene datasets and the coupled representation, they often suffer from obvious degradation on
images with severe occlusion or small objects. Another series of methods (Yao et al., 2025) decou-
ple geometry generation and pose estimation to improve the open-set performance. But they lack
scene-level interactions during pose estimation, leading to inaccurate relative poses. Fundamentally,
existing methods lack sufficient de-occlusion and pose estimation priors. We supplement both open-
set priors by leveraging image datasets for de-occlusion and proposing a unified model along with
synthetic scene datasets for pose estimation.

2.2 OBJECT GENERATION UNDER OCCLUSION

With the emergence of large-scale open-set 3D object datasets (Deitke et al., 2023), a number of na-
tive 3D object generation works (Zhang et al., 2024b; Wu et al., 2024; Li et al., 2024; 2025b; Xiang
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Figure 3: The Framework of SceneMaker. Our framework consists of scene perception, 3D object
generation under occlusion, and pose estimation. We decouple the de-occlusion model from 3D
object generation. We construct a unified pose estimation model that incorporates both global and
local attention mechanisms. GSA, LSA, GCA, LCA, and FFN denote global self-attention, local
self-attention, global cross-attention, local cross-attention, and feed-forward network, respectively.

et al., 2025; Zhao et al., 2025) have achieved impressive results. However, generating 3D objects
under occlusion conditions is more aligned with the needs of scene generation and still requires
further exploration. Most existing methods (Chu et al., 2023; Zhou et al., 2021; Stutz & Geiger,
2018; Cui et al., 2024) model the task as 3D completion, where partial geometry is derived from im-
ages and subsequently completed using 3D generation models. Recently, some methods (Wu et al.,
2025; Cho et al., 2025) additionally use occluded images and masks as supplementary information
to achieve better performance. Since 3D generation models already possess sufficient geometric
priors, the bottleneck is the lack of de-occlusion priors. Image datasets, which contain more diverse
occlusion patterns than 3D datasets, have not been fully utilized. We address this by decoupling the
de-occlusion model and leveraging image datasets for training to enhance quality and controllability.

2.3 POSE ESTIMATION

Model-based pose estimation aims to predict poses based on the given CAD model. Existing meth-
ods (Zheng et al., 2023; Tian et al., 2020; Wang et al., 2019; Zhang et al., 2022) have achieved
impressive performance on predefined classes. Recent works (Shugurov et al., 2022; Labbé et al.,
2022; Wen et al., 2024; Zhang et al., 2023; 2024a) further extend the task to arbitrary objects with
regression or diffusion models. However, they lack the size prediction when they are employed on
scene generation task. CAST3D (Yao et al., 2025) address the issue with a point diffusion model, but
it lacks both interaction between objects and decoupled mechanism with conditions from different
spaces. We propose a unified pose estimation diffusion model with both local and global attention
mechanisms to improve accuracy.

3 METHOD

In this work, we construct a decoupled 3D scene generation framework called SceneMaker that
fully exploits existing datasets to learn sufficient open-set priors. In Section 3.1, we formulate and
overview the whole scene generation framework. In Section 3.2 we introduce how to leverage image
datasets for decoupled de-occlusion model in 3D object generation. In Section 3.3, we propose the
unified pose estimation model and extend open-set generalization with synthetic datasets.

3.1 FRAMEWORK

As shown in Figure 3, given a single scene image X containing multiple objects X =
{x1, x2, ..., xn}, our scene generation framework aims to generate a consistent 3D scene Z con-
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taining corresponding 3D objects Z = {z1, z2, ..., zn}. Our framework consists of three modules:
scene perception, 3D object generation under occlusion, and pose estimation, which are formally
following the subsequent automated steps.
1) Utilize Grounded-SAM (Ren et al., 2024) to segment object masks M = {m1,m2, ...,mn}.

Apply the mask on the scene image X to obtain occluded object images I = {i1, i2, ..., in}.
2) Utilize MoGe (Wang et al., 2025b) to estimate scene depth map D. Apply mask M on the depth

and project pixels into 3D space to obtain point clouds C = {c1, c2, ..., cn}.
3) Acquire de-occluded object images Id = {id1, id2, ..., idn} with ϵdθ(I

d
t ; t, I) → Id, where ϵdθ de-

notes our decoupled de-occlusion model and t denotes timesteps in diffusion models.
4) Generate 3D object geometry O = {o1, o2, ..., on} based on de-occluded images Id with

ϵoθ(Ot; t, I
d) → O, where ϵoθ denotes the 3D generation model.

5) Estimate object poses P = {p1, p2, ..., pn} based on point clouds, images and object geometry
with ϵpθ(Pt; t,X,M, I, C,O) → P , where ϵpθ denotes the pose estimation model. Here the object
poses contain rotation, translation, and size: pi = {ri, ti, si}.

6) Composite generated object geometry and estimated poses into the final scene: Z = {O,P}.

In this formulation, we construct the decoupled 3D scene generation framework that fully exploits
existing datasets to learn sufficient open-set priors.

3.2 OBJECT GENERATION WITH DECOUPLED DE-OCCLUSION MODEL

After obtaining the depth map and segmentation masks from the scene perception module, we aim
to generate 3D objects with the high-quality geometry based on occluded object images. However,
existing methods often struggle to generate high-quality geometry under severe occlusion. The main
challenge is that models lack sufficient open-set occlusion priors due to limited 3D datasets.

Image datasets are significantly larger than 3D datasets, encompassing a broader range of open-set
objects and exhibiting more diverse occlusion patterns. Therefore, compared with existing methods,
we further decoupled the de-occlusion model and train it on image datasets for richer occlusion
priors. The de-occlusion model is formulated as follow:

ϵdθ(I
d
t ; t, I) → Id, (1)

where ϵdθ , I , Id, t denote our decoupled de-occlusion model, occluded images, de-occluded images,
and timesteps in diffusion models, respectively.

Since existing 3D native object generation models (Zhao et al., 2025; Zhang et al., 2024b; Li et al.,
2024; Xiang et al., 2025) have achieved impressive performance, we simply adopt existing methods
for image-3d generation after de-occlusion, as shown in Equation 2:

ϵoθ(Ot; t, I
d) → O, (2)

where ϵoθ and O denote the 3D generation model and generated 3D objects, respectively.

3.2.1 DE-OCCLUSION MODEL

To acquire sufficient open-set priors, we directly use the image editing model (Labs et al., 2025) as
the initialization for the de-occlusion model. Although both editing (Labs et al., 2025) and inpaint-
ing (Ju et al., 2024) models can achieve de-occlusion, their performance is often suboptimal in cases
of severe occlusion. The fundamental cause is the lack of diverse and severe occlusion patterns in
the training data. To address this, we construct an additional 10K object image de-occlusion dataset
to finetune the model and enhance its de-occlusion capability.

De-occlusion Datasets. We first use GPT (Achiam et al., 2023) to generate detailed captions of
objects, and then employ an image generation model (Flux, 2024) to produce high-quality target
images. Considering that occluded images are derived from the segmentation model (Ren et al.,
2024) based on predefined class labels (Liu et al., 2024), we generate 20 captions per class, and
further expand them as detailed as possible to ensure high-quality images. Meanwhile, we create
a universal template as the de-occlusion text prompt for all classes. Next, we carefully design
three masking strategies to simulate real-world occlusions: object cutouts without background for
object occlusion, right-angle cropping for image borders, and random brush strokes for user prompts.
Finally, the final de-occlusion dataset is constructed by 10K triplets formed by masked images, de-
occlusion text prompts, and target images.
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Figure 4: Qualitative comparison of de-occlusion models. Our model has better performance on
both indoor and open-set objects, especiallt under severe occlusion.
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Figure 5: Qualitative comparison of object generation under occlusion. Our model has better per-
formance on both indoor and open-set objects.

3.2.2 COMPARISON

Methods PSNR ↑ SSIM ↑ CLIP ↑
BrushNet 11.07 0.6760 0.2659
Flux Kontext 13.91 0.7309 0.2674
Ours 15.03 0.7566 0.2698

Table 1: Quantitative comparison of de-occlusion.

De-occlusion. We conduct both quantitative
and qualitative experiments to demonstrate the
superiority of our de-occlusion model. We
mainly compare our model with the state-of-
the-art methods in image painting (Ju et al.,
2024) and image editing (Labs et al., 2025). We
evaluate these methods on our collected validation set of 1K images spanning over 500 classes.
We use PSNR and SSIM between the prediction and ground truth images, as well as the CLIP
score (Radford et al., 2021) between the prediction image and class labels, as evaluation metrics. As
shown in Figure 4 and Table 1, our de-occlusion model achieve better performance on both indoor
and open-set scenes, especially under severe occlusions.

Methods CD ↓ F-Score ↑ Volume IoU ↑
MIDI 0.0508 0.5533 0.4214
Amodal3R 0.0443 0.7124 0.5279
Ours 0.0409 0.7454 0.5985

Table 2: Quantitative comparison of object gener-
ation under occlusion.

Object Generation under Occlusion. To
demonstrate the superiority of our decoupled
pipeline, we compare it with existing 3D native
methods (Wu et al., 2025; Huang et al., 2024)
on the 3D object generation task. As shown in
Table 2, we conduct quantitative experiments
on 3D Front datasets (Fu et al., 2021) and im-
ages with more severe occlusions rendered by InstPifu (Liu et al., 2022). We further conduct qualita-
tive experiments on indoor and open-set scenes in Figure 5. Both qualitative and quantitative results
show that our decoupled framework achieves superior performance in object generation under oc-
clusion across both indoor and open-set scenes.

3.3 UNIFIED POSE ESTIMATION MODEL

The goal of the pose estimation model is to predict each object’s rotation R, translation T , and size
S in the scene based on its canonical geometry O. Existing methods (Wen et al., 2024; Zhang et al.,
2024a; 2023; Huang et al., 2024; Yao et al., 2025) mainly face three challenges. First, they often
miss size prediction when they are employed in scene generation task, since object geometries are
usually generated in canonical space. Second, they do not properly decouple different pose variables
when interacting with scene-level and object-level features, resulting in performance degradation.
To address these two issues, we propose a unified pose estimation model that incorporates both
global and local attention mechanisms in Section 3.3.1. Third, existing methods often struggle on
open-set scenarios due to limited datasets. We build a large-scale open-set dataset containing over
200K synthesized scenes to tackle the generalization challenge in Section 3.3.2.
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Unified pose estimation
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Figure 6: Attention mechanisms in the pose estimation model. The global self-attention module
enables tokens of all objects in the scene to interact with each other. The local cross-attention module
enables rotation tokens independently interact with conditions in the object canonical space. The
global cross-attention module enables translation and size tokens attend to scene-level conditions.

3.3.1 PIPELINE

As shown in Figure 3, we propose a unified pose estimation model that introduces both global and
local attention mechanisms specific for the scene generation task. We directly incorporate object
size into the prediction and jointly estimate it with rotation and translation, to address the adaptation
challenge in scene generation task. Specifically, we take scene images X , scene masks M , cropped
object images I , point clouds C, and object geometries O as inputs, and predict object rotation R,
translation T , and size S as outputs, where rotation is represented in 6D.

To improve learning efficiency, all scenes are normalized to a unified space for pose estimation.
Since all pose variables can be well represented within a Gaussian distribution, we employ the
diffusion model (Ho et al., 2020; Lipman et al., 2022; Peebles & Xie, 2023) for pose estimation from
a generative perspective, where poses are denoised from Gaussian noise with the input modalities
serving as conditioning signals. The final formulation can be represented in Equation 3.

ϵpθ(Pt; t,X,M, I, C,O) → P,

P = {R, T, S}, (3)

where ϵpθ , t denote the pose estimation model and timestep in diffusion models, respectively.

As shown in Figure 3, the trainable object pose encoder and decoder are composed of MLPs. Object
geometries, images, and point clouds are encoded into features using a pretrained 3D object VAE,
Dinov2 (Oquab et al., 2023), and a point encoder pretrained on 3D reconstruction tasks, all of
which are kept frozen during training. Object geometry is injected through concatenation with pose
tokens, while image and point cloud features are injected via cross-attention. We implement our
model using a flow matching framework (Lipman et al., 2022) with a DiT architecture (Peebles &
Xie, 2023), where each transformer block consists of global and local self-attention, global and local
cross-attention, and a feed-forward network.

Attention Mechanisms. As shown in Figure 6, we adopt both global and local mechanisms for self-
attention and cross-attention. Each pose variable is separately encoded as a token, so each object
in the diffusion model is uniquely represented by a quadruple of tokens: rotation, translation, size,
and geometry. The local self-attention module enables the interaction inside the quadruple of each
object. The global self-attention module enables tokens of all objects in the scene to interact with
each other, leading to more coherent relative object poses. Considering that rotation can be indepen-
dently estimated in the object canonical space and scene-level conditions provide little benefit, we
introduce a local cross-attention module, allowing the rotation token to attend only to the cropped
object image and normalized object point cloud. Meanwhile, we retain a global cross-attention mod-
ule for the translation and size tokens, allowing them to attend to the scene-level point cloud and
image. This decoupled attention mechanism is demonstrated to improve model performance in our
comprehensive experiments.

3.3.2 OPEN-SET SCENE DATASETS

Since existing datasets currently lack the necessary prior for training a 3D scene generation model
in an open-set domain, we addressed this by constructing our own training data. This involved
using a carefully curated subset of the existing Objaverse (Deitke et al., 2023) dataset along with
Blender (ble, 2025). A significant number of models in Objaverse are either scanned data or have
low-quality textures and materials, which necessitated a rigorous curation process. To filter the
models, we assessed their material information, excluding any that were transparent, lacked a BSDF
node, or did not have an albedo map. To further refine the selection, we also excluded models with
pure or excessively dark albedo colors. Ultimately, this process resulted in a high-quality subset of
90k models with a superior appearance to construct a dataset of 200k scenes for our work.
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Method 3D-Front Open-set

CD-S↓ F-Score-S↑ CD-O↓ F-Score-O↑ IoU-B↑ CD-S↓ F-Score-S↑ CD-O↓ F-Score-O↑ IoU-B↑
PartCrafter 0.1846 0.3844 - - - 0.2171 0.2613 - - -
MIDI3D 0.1672 0.3420 0.0663 0.5495 0.3855 0.1425 0.3211 0.0807 0.5602 0.5079

SceneMaker
(w/o open-set data) 0.0381 0.6840 0.0681 0.6160 0.7658 0.1538 0.4644 0.0847 0.5771 0.6248

SceneMaker(Ours) 0.0470 0.6312 0.0885 0.6812 0.7693 0.0285 0.6125 0.0671 0.5948 0.7549

Table 3: Quantitative comparison with scene generation methods.

We composed each scene by combining 2 to 5 randomly selected objects. To enhance realism,
we used random environment maps sampled from Polyhaven (Poly Haven, 2025) to serve as the
background of the scenes. Additionally, we added a ground plane with a high-quality texture beneath
the objects, using Perlin noise to enhance the surface and add realistic variations. Finally, each object
was given a random rotation to serve as an augmentation of the level of the object to train the pose
estimation module. This entire process resulted in a dataset of 200k scenes, comprising a total of 8
million images for model training.

3.3.3 TRAINING

We directly apply L2 loss to rotation, translation, and size, with equal weighting for each term.
To demonstrate the superiority of our framework, we first train our model only on the 3D Front
datasets (Fu et al., 2021) for fair comparison. We mix the datasets curated by MIDI3D (Huang et al.,
2024) and Instpifu (Liu et al., 2022). We align their render results according to room IDs, resulting
in 20K scenes. We take 1K scenes as test sets and the rest as training sets. We train the model from
scratch for 25K steps until it converged. To extend the generalization on open-set, we further mix
our 200K open-set datasets into the indoor datasets, and take 1K scenes as open-set test sets. We
train the model from scratch for 40K steps until the model converged.

4 EXPERIMENTS

4.1 SETTINGS

Datasets. We conduct experiments on both indoor and open-set datasets. Specifically, we randomly
select 1K scenes with no overlap with the training set from 3D-front (Fu et al., 2021) as indoor test
sets, and 1K scenes from our collected open-set data as open-set test sets. It is worth noting that our
3D-Front scenes contain significantly more occlusions compared to MIDI. To further evaluate the
generalization, we conduct qualitative comparison on synthetic, in-the-wild, and multi-scale images.

Baselines. We compare our method with the state-of-art methods (Lin et al., 2025; Huang et al.,
2024) on both indoor scenes and open-set datasets. Since CAST3D (Yao et al., 2025) has not re-
leased its code or dataset, we can only provide qualitative comparisons in Figure 7.

Metrics. Following existing scene generation methods (Yao et al., 2025; Huang et al., 2024; Lin
et al., 2025), we use scene-level Chamfer Distance (CD-S), F-Score (F-Score-S), and IoU Bounding
Box (IoU-B) to evaluate the quality of the whole scene. And we use object-level Chamfer Distance
(CD-O) and F-Score (F-Score-O) to evaluate the quality of generated object geometry.

4.2 QUANTITATIVE RESULTS

We conducted a quantitative evaluation of our indoor scene dataset against the standard 3D-Front (Fu
et al., 2021) dataset. Since there is no existing open-set 3D scene generation benchmark, we con-
structed our own datasets specifically for this purpose. As shown in Table 3, our method consis-
tently outperforms existing baselines, achieving the highest quantitative metrics for both indoor and
the more challenging open-set scene generation tasks. Remarkably, even without being trained on
the open-set dataset we constructed, our approach still obtained the best quantitative results. This
underscores the superior performance of our proposed framework and designed modules.

4.3 QUALITATIVE RESULTS

As shown in Figure 7, our method generates visually compelling scenes that are not only realistic
but also rich in detail. Crucially, our model demonstrates a robust ability to handle severe occlusions
in Figure(a)(b), accurately reasoning about the relative spatial relationships between objects and
places objects in plausible poses in Figure(c)(d)(f). Besides, our model can also handle small objects
without geometry degradation in Figure(e).
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scene generation comparison
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Figure 7: Qualitative comparison with scene generation methods.

4.4 ABLATION STUDY

Method CD-S↓ FS-S↑ CD-O↓ FS-O↑ IoU-B↑
SceneMaker 0.0242 0.7502 0.0294 0.8121 0.7555
w/o GSA 0.0340 0.6610 0.0556 0.6293 0.7336
w/o LSA 0.0293 0.7434 0.0901 0.7142 0.7733
w/o LCA 0.0274 0.7368 0.0429 0.7113 0.7882
+ Complete points 0.0064 0.9197 0.0124 0.8432 0.8550

Table 4: Quantitative results of ablation studies. Bold and
underline indicate the best and the second best, respectively.

Attention Mechanism. We ablate
the contribution of the global and
local self-attention mechanism, and
the decoupled cross-attention mech-
anism in the pose estimation model
respectively. For the self-attention
mechanism, we simply remove the
global and local attention modules re-
spectively for comparison. For the
decoupled cross-attention mechanism, we remove the local attention and merge the rotation update
into the global attention for comparison. We train the above models from scratch and use ground-
truth meshes to eliminate the influence of geometry on pose estimation. As shown in Table 4, all
modules in our proposed attention mechanisms contribute positively to model performance.

Open-set Datasets. We demonstrate the necessity of our proposed scene datasets on the open-set
images as shown in Table 3. Our model faces severe degradation in open-set scenario without the
datasets. The datasets mainly provide open-set patterns of diverse objects, which help build pose
mappings across different geometries and are essential for open-set scene generation.

Upper Bound of Pose Estimation. Compared to a single image, videos or multi-image can provide
richer scene structure information through point cloud reconstruction. When the reconstruction
algorithm (Wang et al., 2025a; 2024) reaches its upper limit, it is equivalent to providing our model
with a complete point cloud. We discuss the upper bound of our pose estimation model by giving
the complete point clouds of the scene. As shown in Table 4, with a complete point cloud, our
model achieves a significant performance boost, demonstrating its strong potential under video or
multi-image conditions.

5 CONCLUSION

In this paper, we propose a decoupled 3D scene generation framework called SceneMaker. To
obtain sufficient occlusion priors, we decouple and develop the robust de-occlusion model from 3D
object generation by leveraging image generation models and a 10K curated de-occlusion dataset for
training. To improve the accuracy of the pose estimation model, we propose a unified pose estima-
tion diffusion model with both local and global attention mechanisms. We further construct a 200K
synthesized scene dataset for open-set generalization. Comprehensive experiments demonstrate the
superiority of our framework on both indoor and open-set scenes.

Limitations. Although our framework effectively generalizes to arbitrary objects, the real-world
arrangement of objects is often much more complex than what our datasets capture, particularly
when force interactions are involved. Therefore, a key future research topic is how to construct or
refine 3D scenes more accurately in a physically plausible manner, including interpenetration and
force interactions. Meanwhile, existing methods can only control scene generation through images
or simple captions, and further development is needed for more control signals and natural language
interactions. Moreover, how to perform more in-depth understanding tasks and adapt embodied
decision-making based on generated high-quality 3D scenes is also an unsolved challenge.
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