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Abstract
Large transformer models can highly improve001
Answer Sentence Selection (AS2) task, but002
their high computational costs prevent their003
use in many real world applications. In this004
paper, we explore the following research ques-005
tion: How can we make the AS2 models006
more accurate without significantly increas-007
ing their model complexity? To address the008
question, we propose a Multiple Heads Stu-009
dent architecture (MHS), an efficient neural010
network designed to distill an ensemble of011
large transformers into a single smaller model.012
An MHS model consists of two components:013
a stack of transformer layers that is used to en-014
code inputs, and a set of ranking heads; unlike015
traditional distillation technique each of them016
is trained by distilling a different large trans-017
former architecture in a way that preserves the018
diversity of the ensemble members. The re-019
sulting model captures the knowledge of het-020
erogeneous transformer models by using just021
a few extra parameters. We show the effec-022
tiveness of MHS on three English datasets for023
AS2; our proposed approach outperforms all024
single-model distillations we consider, rivaling025
the state-of-the-art large AS2 models that have026
2.7× more parameters and run 2.5× slower.027

1 Introduction028

Answer Sentence Selection (AS2) is a core task029

for designing efficient retrieval-based Web QA sys-030

tems: given a question and a set of answer sen-031

tence candidates (e.g., retrieved by a search en-032

gine), AS2 models select the sentence that correctly033

answers the question with the highest probability.034

AS2 research originated from the TREC compe-035

titions (Wang et al., 2007), which targeted large036

amounts of unstructured text. AS2 models are very037

efficient, and can enable Web-powered question038

answering systems of real-world virtual assistants039

such as Alexa, Google Home, Siri, and others.040

As most research areas in text processing and re-041

trieval, AS2 has been dominated by the use of ever042

question candidate answer

score
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Figure 1: MHS model for answer sentence selection.
The model consists of a shared encoder body and mul-
tiple ranking heads. MHS independently scores up to
hundreds candidate answers ai for question q; The one
with highest likelihood is selected as answer.

larger transformer model architectures (Vaswani 043

et al., 2017). These models are typically pre-trained 044

using language modeling tasks on large amounts of 045

text (Devlin et al., 2019; Liu et al., 2019; Conneau 046

et al., 2019), and then fine-tuned on specific down- 047

stream tasks (Wang et al., 2018, 2019; Hu et al., 048

2020). Garg et al. (2020) achieved an impressive 049

accuracy by fine-tuning pre-trained Transformers 050

to the AS2 task on the target datasets. They estab- 051

lished the new state of the art performance for AS2 052

using a RoBERTaLARGE model. 053

Unfortunately, larger transformer models come 054

at a cost: they require large computing resources, 055

consume a lot of energy (critically impacting the 056

environment (Strubell et al., 2019)), and may have 057

unacceptable latency and/or memory usage. These 058

downsides are critical for AS2 applications, where, 059

for any given query, a model is required to score 060

hundreds or thousands of candidates to select the 061

top-k answers. Therefore, in this work, we investi- 062

gate how AS2 models can be made more accurate 063

without significantly increasing their complexity. 064

Previous work has addressed the general prob- 065

lem of high computational cost of transformer mod- 066

els by developing techniques for reducing their 067
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overall size while maintaining most of their per-068

formance (Polino et al., 2018; Liu et al., 2018; Li069

et al., 2020). In particular, Knowledge Distillation070

(KD) techniques have been shown to be particu-071

larly effective (Sanh et al., 2019; Turc et al., 2019;072

Sun et al., 2019, 2020; Yang et al., 2020; Jiao et al.,073

2020). KD techniques use a larger model, known074

as a teacher, to obtain a smaller and thus more ef-075

ficient model, known as a student (Hinton et al.,076

2015). The student is trained to mimic the output077

of the teacher. However, we empirically show that,078

at least for AS2, BASE models trained through dis-079

tillation are still significantly behind the state of the080

art, i.e., models based on LARGE transformers.081

In this paper, we introduce a new transformer082

model for AS2 that matches the state of the art083

while being dramatically more efficient. Our main084

idea is based on the following considerations: first,085

in recent years, several transformer model families086

have been introduced, each pretrained using differ-087

ent datasets and modeling techniques (Rogers et al.,088

2021). Second, ensembling several diverse models089

has shown to be an effective way to improve per-090

formance in many question answering and ranking091

tasks (Xu et al., 2020; Zhang et al., 2020; Liu et al.,092

2020; Lin and Durrett, 2020). Our contribution093

lies in a new approach to approximate a computa-094

tionally expensive ranking ensemble into a single095

efficient architecture for AS2 tasks.096

More specifically, our investigation proceeds as097

follows. First, we optimize ranking architectures098

for AS2 by training k student models to replicate k099

unique teacher architectures. When ensembled, we100

show that they achieve better performance than any101

standalone models at the cost of increased compu-102

tational burden. Then, to preserve the accuracy of103

this ensemble while achieving lower complexity,104

we propose a new Multiple Heads Student archi-105

tecture, which we refer to as MHS. As shown in106

Fig. 1, MHS is composed of a shared encoder body107

and multiple ranking heads. The encoder body is108

designed to derive a shared representation of in-109

put sequences, which gets fed to ranking heads.110

We show that if each ranking head is trained to111

mimic a unique teacher distribution, it is possible112

to achieve the desirable diversity through ensemble113

model while being significantly more efficient.114

We train an MHS model using three different115

teachers: RoBERTa (Liu et al., 2019), ELEC-116

TRA (Clark et al., 2019), and ALBERT (Lan et al.,117

2019). We conduct experiments on three AS2118

datasets: ASNQ (Garg et al., 2020), WikiQA (Yang 119

et al., 2015), and an internal corpus (IAS2). Our 120

results show that MHS consistently improves over 121

all models trained with single teachers, rivaling 122

performance of much larger models including 123

multiple variants of ensemble models; further, 124

MHS matches current state-of-the-art AS2 models 125

(TANDA by Garg et al. (2020)), while saving 64% 126

and 60% in model size and latency, respectively. 127

In summary, our contribution is four-fold: 128

(i) We propose MHS, an efficient architecture 129

specifically designed to distill an ensemble 130

of heterogeneous transformer models into a 131

single transformer model for AS2 tasks while 132

preserving ensemble diversity. 133

(ii) We conduct large-scale experiments with mul- 134

tiple transformer model families and show that 135

MHS achieves better performance of equally 136

sized distilled model, rivaling much larger en- 137

semble and state-of-the-art AS2 models. 138

(iii) We discuss various training methods for MHS 139

and show three key factors to improve AS2 140

performance: (a) multiple ranking heads in 141

MHS, (b) multiple teachers, and (c) hetero- 142

geneity in teacher models. 143

(iv) We present a comprehensive analysis of the 144

MHS, both in terms of ranking behavior and 145

efficiency, highlighting the effect of several 146

design decisions on its performance. 147

2 Related Work 148

2.1 Answer Sentence Selection (AS2) 149

Several approaches for AS2 have been proposed 150

in recent years. Severyn and Moschitti (2015) 151

used CNNs to learn and score question and an- 152

swer representations, while others proposed align- 153

ment networks (Shen et al., 2017; Tran et al., 2018; 154

Tay et al., 2018). Compare-and-aggregate architec- 155

tures have also been extensively studied (Wang and 156

Jiang, 2016; Bian et al., 2017; Yoon et al., 2019). 157

Tayyar Madabushi et al. (2018) exploited fine- 158

grained question classification to further improve 159

answer selection. Garg et al. (2020) have achieved 160

impressive performance by fine-tuning transformer 161

models using a novel transfer-and-adapt technique. 162

2.2 Single Model Distillation 163

Knowledge distillation for transformer models has 164

recently received significant attention from the 165

NLP community. Sanh et al. (2019) presented Dis- 166

tilBERT, a BERT-like model with 6 layers. This 167
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student was initialized using some of the parame-168

ters from a BERTBASE teacher, and subsequently169

distilled from it. Xu et al. (2020) proposed self-170

ensemble/distillation methods for BERT models171

in text classification and NLI tasks; their teachers172

are obtained by ensembling student models or by173

averaging of model parameters from previous time174

steps. Turc et al. (2019) and Sun et al. (2019)175

also explored knowledge distillation for BERT176

model compression, using smaller BERT models177

with fewer transformer blocks as student models.178

Previous studies on transformer distillation have179

also leveraged its intermediate representation (Sun180

et al., 2019, 2020; Jiao et al., 2020; Mukherjee181

and Awadallah, 2020; Liang et al., 2020). These182

approaches typically lead to more accurate perfor-183

mance, but severely limit which pairing of teacher184

and students can be used (e.g., same transformer185

family/tokenization, identical hidden dimensions).186

2.3 Ensemble Distillation187

Yang et al. (2020) discussed two-stage multi-188

teacher knowledge distillation for QA tasks. Sim-189

ilarly, Jiao et al. (2020) used BERT models as190

teachers for their proposed model, TinyBERT, in191

a two-stage learning strategy. Unlike their two-192

stage approach, our study focuses on distilling the193

knowledge of multiple teachers while preserving194

the individual teacher distributions. Furthermore,195

we explore several pretrained transformer models196

for knowledge distillation instead of focusing on197

a specific architecture. More recently, Allen-Zhu198

and Li (2020) formally proved that an ensemble of199

models of the same family can be distilled into a200

single model while retaining the same performance201

of the ensemble; however, their experiments are202

exclusively focus on ResNet models for image clas-203

sification tasks. Kwon et al. (2020) tried to dynam-204

ically select, for each training sample, one among205

a set of teachers. These studies focus distillation206

on models that strictly share the same architecture207

and training strategy, which we show not achieving208

the same accuracy as our MHS model.209

2.4 Multi-head Transformers210

To the best of our knowledge, no previous work dis-211

cusses multi-head transformer models for ranking212

problems; however, some related works exist for213

classification tasks. TwinBERT (Lu et al., 2020)214

may be the most similar approach to MHS; it con-215

sists of two multi-layer transformer encoders and216

a crossing layer to combine their outputs. While217

TwinBERT has two bodies which share one clas- 218

sification head, our model aims at the opposite: 219

MHS consists of one shared body and multiple 220

ranking heads for efficient inference and multi- 221

teacher knowledge distillation. Another similar ap- 222

proach is proposed by Tran et al. (2020). However, 223

this work exclusively focuses on non-transformer 224

models (ResNet-20 V1 from He et al. (2016)) for 225

image classification tasks, and is evaluated only on 226

small datasets such as MNIST and CIFAR. Besides 227

the different domain, this approach also focuses on 228

distilling from architecturally similar models (dis- 229

tilling 50 ResNet-20 teacher models into a ResNet- 230

20 student with 50 heads), rather than aiming at 231

cross-model family training to increase diversity. 232

3 Methodology 233

We build up to introducing MHS by first formaliz- 234

ing the AS2 task (Section 3.1), and then summariz- 235

ing typical transformer distillation and ensembling 236

techniques (Section 3.2). Finally, details of the 237

MHS approach are explained in Section 3.3. 238

3.1 Training Transformer Models for Answer 239

Sentence Selection (AS2) 240

The AS2 task consists of selecting the correct an- 241

swer from a set of candidate sentences for a given 242

question. Like many other ranking problems, it 243

can be formulated as a max element selection task: 244

given a query q ∈ Q and a set of candidates 245

A = {a1, · · · , an}, select aj that is an optimal 246

element for q. We can model the task as a se- 247

lector function π : Q × P(A) → A, defined as 248

π(q, A) = aj , where P(A) is the powerset of A, 249

j = argmaxi (p(ai|q)), and p(ai|q) is the proba- 250

bility of ai to be the required element for q. In this 251

work, we evaluate MHS, as well as all our base- 252

lines, as an estimator for p(ai|q) for the AS2 task. 253

In the remainder of this work, we formally refer to 254

an estimator by using a uppercase calligraphy letter 255

and a set of model parameters Θ, e.g.,MΘ. 256

We fine-tune three models to be used as a 257

teacher TΘ: RoBERTaLARGE, ELECTRALARGE, 258

and ALBERTXXLARGE. The first two share the 259

same architecture, consisting of 24 layers and a hid- 260

den dimension of 1,024, while ALBERTXXLARGE 261

is wider (4,096 hidden units) but shallower (12 lay- 262

ers). All three models are optimized using cross 263

entropy loss in a point-wise setting, i.e., they are 264

trained to maximize the log likelihood of the binary 265

relevance label for each answer separately. 266

3



While approaches that optimize the ranking267

over multiple samples (such as pair-wise or list-268

wise methods) could also be used (Bian et al.,269

2017), they would not change the overall findings270

of our study; further, point-wise methods have271

been shown to achieve competitive performance272

for transformer models (MacAvaney et al., 2019).273

When training models for the IAS2 and WikiQA274

datasets, we follow the TANDA technique intro-275

duced by Garg et al. (2020): models are first fine-276

tuned on ASNQ to transfer to the QA domain, and277

then adapted to the target task.278

Besides the three teacher models, we279

also train their equivalent BASE version,280

namely RoBERTaBASE, ELECTRABASE, and281

ALBERTBASE. These baselines serve as a useful282

comparison for measuring the effectiveness of283

distillation techniques.284

3.2 Distilled Models and Ensembles285

Knowledge distillation (KD), as defined by Hinton286

et al. (2015), is a training technique which a larger,287

more powerful teacher model TΘ is used to train288

a smaller, more efficient model, often dubbed as289

student model SΘ. SΘ is typically trained to mini-290

mize the difference between its output distribution291

and the teacher’s. If labeled data is available, it is292

often used in conjunction with the teacher output293

as it often leads to improved performance (Ba and294

Caruana, 2014). In these cases, we train SΘ using a295

soft loss with respect to its teacher and a hard loss296

with respect to the human-annotated labels.297

To distill the three LARGE models introduced in298

Section 3.1, we use the loss formulation from Hin-299

ton et al. (2015), as it performs comparably to300

other, more recent distillation techniques (Tian301

et al., 2019). Given a pair of input sequence x302

and the target label y, it is defined as follows:303

LKD(x, y) = αLH(SΘ(x), y) +304

(1− α)τ2LS(SΘ(x), TΘ(x)) (1)305

where α and τ indicate a balancing factor306

and temperature for distillation, respectively.307

We independently tune hyperparameters α ∈308

{0.0, 0.1, 0.5, 0.9} and τ ∈ {1, 3, 5} for each309

dataset on their respective dev sets. As previ-310

ously mentioned, we use cross entropy as hard311

loss LH for all our experiments. LS is a soft312

loss function based on the Kullback-Leibler di-313

vergence KL(p(x), q(x)), where p(x) and q(x)314

are softened-probability distributions of teacher315

TΘ and student SΘ models for a given input x, 316

that is, p(x) = [p1(x), · · · , p|C|(x)] and q(x) = 317

[q1(x), · · · , q|C|(x)] defined as follows: 318

pc(x) = exp(TΘ(x,c)/τ)∑
j∈C exp(TΘ(x,j)/τ) (2) 319

qc(x) = exp(SΘ(x,c)/τ)∑
j∈C exp(SΘ(x,j)/τ) , (3) 320

where C indicates a set of class labels. 321

Using the technique described above, we dis- 322

till three LARGE models into their correspond- 323

ing BASE counterparts: i.e., ALBERTBASE from 324

ALBERTXXLARGE, and so on. Furthermore, we 325

create an ensemble of BASE models by linearly 326

combining their outputs; hyperparameters for en- 327

sembles were tuned by Optuna (Akiba et al., 2019). 328

Finally, we build another ensemble model 329

of three ELECTRABASE distilled from the three 330

LARGE models mentioned above. As we will 331

show in Section 4, ELECTRABASE outperforms all 332

other BASE models; therefore, we are interested 333

in measuring whether it could be used for inter 334

transformer family model distillation. Once again, 335

Optuna was used to tune the ensemble model. 336

We note that the ensemble of the three LARGE 337

models is not used as a teacher. In our prelimi- 338

nary experiment, we found that the ensemble is 339

not a good teacher, as the model was too confident 340

in its prediction, a trend that is studied by Pana- 341

giotatos et al. (2019). Most softmaxed category- 342

probabilities by the ensemble model are close to 343

either 0 or 1 and behave like hard-target rather than 344

soft-target, which did not improve over the KD 345

baselines (rows 7–9) in Table 2. 346

3.3 Multiple-Heads Student (MHS) 347

As mentioned in the previous section, students 348

trained using different teachers can be trivially en- 349

sembled using a linear combination of their out- 350

puts. However, this results in a drastic increase in 351

model size, as well as a synchronization latency 352

overhead, which are both undesirable properties 353

in many applications. In this section, we intro- 354

duce MHS, a transformer architecture designed to 355

emulate the properties of an ensemble of distilled 356

models while being more efficient. As illustrated 357

in Fig. 2, an MHS model consists of two compo- 358

nents: (i) an input encoder comprised of stacked 359

transformer layers, and (ii) a set of k ranking heads, 360

each designed to be trained with respect to a spe- 361

cific teacher. Each ranking head is comprised of 362

one or more transformer layers; it receives as in- 363

put the output of the shared encoder, and produces 364
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Figure 2: Detailed overview of an MHS model that con-
sists of a shared encoder body of b transformer layers,
followed by k ranking heads of h layers each; we use
notation Bb kHh to identify an MHS configuration. All
heads are jointly trained, but each head learns from
a unique teacher model; at inference time, predictions
from heads are combined by a pooler layer.

classification output. To obtain its final prediction,365

the MHS averages the outputs of its ranking heads.366

A schematic representation of MHS is shown in367

Figure 2.368

Formally, let MΘ be a pretrained transformer1369

of n layers. To obtain an MHS model, we first split370

the model into two groups: the first b blocks are371

used for the shared encoder bodyBb, while the next372

h = (n− b) blocks are replicated and assigned as373

initial states for each head H i
h, i = {1, . . . , k}. To374

compute the output for the ith head, we first encode375

an input x using Bb, and then use it as input to H i
h.376

To train MHS, we use a linear combination of377

the loss function of each ranking head:378

LMHS(x, y) =
∑k

i=1 λi · Li(x, y), (4)379

where λi and Li are the weight and loss function380

for the i-th head in the MHS model. Specifically,381

we apply the loss function of Equation 1 to each382

head, i.e., Li = LKD for the ith head-teacher pair.383

We note that, while the encoder body and all rank-384

ing heads are trained jointly, each head is optimized385

only by its own loss. Conversely, when backpropa-386

gating LMHS, the parameters of the encoder body387

are affected by the output of all k ranking heads.388

1In our experiments on ASNQ, we use a pretrained
ELECTRABASE model as starting point; for IAS2 and Wik-
iQA, we use a ELECTRABASE model fine-tuned on ASNQ.

Table 1: Dataset statistics. ASNQ and IAS2 contain
significantly more candidates than WikiQA.

ASNQ IAS2 WikiQA

T
R

A
IN

Questions 57,242 3,074 873
QA pairs 23,662,238 189,050 8,672
Correct answers 69,002 32,284 1,040

D
E

V

Questions 1,336 808 126
QA pairs 539,210 20,135 1,130
Correct answers 4,166 5,945 140

T
E

S
T Questions 1,336 3,000 243

QA pairs 535,116 74,670 2,351
Correct answers 4,250 21,328 293

This ensures that each head learns faithfully from 389

their teacher while the parameters of the encoder 390

body remain suitable for the entire model. 391

For inference, a single score for MHS is obtained 392

by averaging the outputs of all ranking heads: 393

MHS(x) =
1

k

∑k
i=1H

i
h(Bb(x)). (5) 394

In our experiments, we use k = 3 heads, each 395

trained with one of the LARGE models described 396

in Section 3.1. We discuss a variety of combination 397

for values of b and h; the performance for each con- 398

figuration is analyzed in Section 5.3. For training, 399

we set λi = 1 for all i = {1, . . . , k} and reuse the 400

search space of the hyperparameters α and τ for 401

knowledge distillation (see Section 3.2). 402

4 Experimental Setup 403

4.1 Datasets 404

While many studies on Transformer-based mod- 405

els (Devlin et al., 2019; Liu et al., 2019; Clark et al., 406

2019; Lan et al., 2019) are assessed for GLUE tasks 407

(10 classification and 1 regression tasks), our inter- 408

ests are in ranking problems for question answering 409

such as AS2. To fairly assess the AS2 performance 410

of our proposed method against conventional dis- 411

tillation techniques, we report experimental results 412

on a set of three diverse English AS2 datasets: Wik- 413

iQA (Yang et al., 2015), a small academic dataset 414

that has been widely used; ASNQ (Garg et al., 415

2020), a much larger corpus (3 orders of magni- 416

tude larger than WikiQA) that allow us to assess 417

models’ performance in data-unbalanced settings; 418

finally, we measure performance on IAS2, an inter- 419

nal dataset we constructed for AS2. Compared to 420

the other two corpora, IAS2 contains noisier data 421

and is much closer to a real-world AS2 setting. Ta- 422

ble 1 reports the statistics of the datasets, and more 423

details are described in Appendix. 424
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Table 2: Performance on IAS2, ASNQ, and WikiQA. For each metric, we highlight the best, 2nd best, and 3rd best
scores. We compare our MHS model (row 14) with state-of-the-art AS2 models (Garg et al. (2020), rows 2 and 5),
ensembles from distilled models (rows 10–12), and the technique proposed by Tran et al. (2020) (row 13). MHS
achieves equivalent performance (Spearman ρ, p < 0.01) of state-of-the-art AS2 models while 2.7× smaller; it
outperforms all models with a comparable number of parameters (Wilcoxon signed-rank test, p < 0.01).

Teacher Student #params IAS2 ASNQ WikiQA
P@1 MAP MRR P@1 MAP MRR P@1 MAP MRR

1 N/A ALBERTXXLARGE 222M 63.9 60.5 69.9 60.8 72.7 72.6 87.2 91.4 92.6

2 N/A RoBERTaLARGE

Garg et al. (2020) 335M 64.2 60.6 70.3 62.6 73.6 73.7 89.3 92.6 93.6

3 N/A ELECTRALARGE 335M 65.0 61.3 70.7 64.7 74.4 74.7 86.7 91.0 92.2

4 N/A ALBERTBASE 11M 58.8 55.6 66.1 49.3 63.2 62.5 83.5 88.9 90.1

5 N/A RoBERTaBASE

Garg et al. (2020) 109M 59.6 56.6 67.0 54.9 67.2 67.0 82.7 88.7 89.8

6 N/A ELECTRABASE 109M 62.2 58.8 68.7 61.8 71.9 72.3 86.3 90.7 91.9

7 ALBERTXXLARGE ALBERTBASE 11M 61.5 57.2 68.0 56.5 68.5 68.6 84.0 89.0 90.3
8 RoBERTaLARGE RoBERTaBASE 109M 63.4 59.4 69.7 62.4 72.2 72.6 83.5 89.2 90.6
9 ELECTRALARGE ELECTRABASE 109M 63.2 61.1 69.6 63.7 73.9 74.1 88.1 91.6 92.9

10 Ensemble of 3 BASE (rows 4–6) 247M 63.7 59.5 69.6 62.2 72.5 72.9 88.1 91.4 92.7
11 Ensemble of 3 distilled (rows 7–9) 247M 64.2 60.0 70.1 62.7 72.8 73.1 88.1 91.7 92.9

12 Ensemble of 3 ELECTRABASE

distilled from ∗LARGE (rows 1–3) 327M 65.1 60.8 70.8 63.6 73.5 74.0 88.6 91.5 92.8

13 Hydra (Tran et al., 2020) 124M 63.4 59.9 69.7 62.7 73.0 73.3 88.1 91.5 92.8

14 ∗LARGE (rows 1–3) MHS B113H1

(our approach) 124M 64.3 60.8 70.3 64.3 75.1 75.2 89.3 92.4 93.5

4.2 Evaluation Metrics425

We assess AS2 performance on ASNQ, WikiQA426

and IAS2 using three metrics: mean average preci-427

sion (MAP), mean reciprocal rank (MRR), and pre-428

cision at top-1 candidate (P@1). The first two met-429

rics are commonly used to measure overall perfor-430

mance of ranking systems, while P@1 is a stricter431

metric that captures effectiveness of high-precision432

applications such as AS2.433

Our models are implemented with PyTorch434

1.6 (Paszke et al., 2019) using Hugging Face Trans-435

formers 3.0.2 (Wolf et al., 2020); all models are436

trained on a machine with 4 NVIDIA Tesla V100437

GPUs, each with 16GB of memory. Latency bench-438

marks are executed on a single GPU to eliminate439

variability due to inter-accelerator communication.440

5 Results441

Here we present our main experimental findings.442

In Section 5.1, we compare MHS to state-of-the-art443

models and other distillation techniques using three444

datasets (IAS2, ASNQ, WikiQA). In sections 5.2445

and 5.3, we motivate our design and hyperparame-446

ter choices for MHS by empirically validating them.447

Finally, in Section 5.4, we discuss inference latency448

of MHS comparing to other transformer models.449

5.1 Answer Sentence Selection Performance 450

The performance of MHS on IAS2, ASNQ, and 451

WikiQA datasets are reported in Table 2. Specif- 452

ically, we compared our approach (row 14) to 453

four groups of baselines: larger transformer-based 454

models (rows 1–3), including the state-of-the-art 455

AS2 models by Garg et al. (2020) (rows 2 and 456

5); equivalently sized models, either directly fine- 457

tuned on target datasets (rows 4–6), or distilled 458

using their corresponding LARGE model as teacher 459

(rows 7–9); ensembles of BASE models (rows 10– 460

12). We also adapted the ensembling technique of 461

Hydra (Tran et al., 2020), which is originally de- 462

signed for image recognition, to work in our AS2 463

setting2 and used it as a baseline (row 13). All the 464

comparisons are done with respect to a B113H1 465

MHS model initialized from an ELECTRABASE 466

model: performance of other model configurations 467

are discussed in Section 5.3. Due to the volume 468

of experiments, we train a model with a random 469

seed for each model given a set of hyperparame- 470

ters and report the AS2 performance with the best 471

hyperparameter set according to each dev set. 472

2Instead of 50 ResNet-20 V1 teachers paired with a 50-
head ResNet-20 V1 student, we train 3 ELECTRABASE teach-
ers with different seeds and distill them into an MHS model (re-
ferred to as Hydra in Table 2) initialized from ELECTRABASE.
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5.1.1 Vs. TANDA (BASE) & Single-Model473

Distillation474

We find BASE models trained by TANDA (rows475

4–6), the state-of-the-art training method for AS2476

tasks, are further improved (rows 7–9) by introduc-477

ing knowledge distillation to its 2nd fine-tuning478

stage. Our MHS achieves a significantly improve-479

ment over all single BASE models for all the480

considered datasets (Wilcoxon signed-rank test,481

p < 0.01). We empirically show in Section 5.2482

that this significant improvement was achieved by483

both the architecture of our MHS and using hetero-484

geneous teacher models rather than a small amount485

of extra parameters.486

5.1.2 Vs. TANDA (LARGE)487

We observe that our MHS equals (Spearman’s rank488

correlation, p < 0.01) LARGE models trained489

by TANDA (rows 1–3), including the state-of-490

the-art AS2 model (Garg et al., 2020) (row 2),491

while the MHS has 2.7 times fewer parameters.492

Furthermore, our MHS consistently outperforms493

ALBERTXXLARGE, which has 1.8 times more pa-494

rameters than the MHS.495

5.1.3 Vs. Ensembles & Hydra496

For all the datasets we considered, our MHS497

achieves similar or better performance of much498

larger ensemble models, including an en-499

semble of ALBERTBASE, RoBERTaBASE, and500

ELECTRABASE trained with and without distil-501

lation (rows 10 and 11), as well as the en-502

semble of three ELECTRABASE models each503

trained using ALBERTXXLARGE, RoBERTaLARGE,504

and ELECTRALARGE as teachers (row 12). We505

also note that MHS outperforms our adaptation506

of Hydra (Tran et al., 2020) (row 13), which em-507

phasizes the importance of using heterogeneous508

teacher models for AS2.509

5.2 Are Multiple Ranking Heads and510

Heterogeneous Teachers Necessary?511

Using the heterogeneous teacher models shown in512

Table 2, we discuss how AS2 performance varies513

when using different combinations of teachers for514

knowledge distillation. The first method, KDSum,515

simply combines loss values from multiple teachers516

to train a single transformer model, similarly to the517

task-specific distillation stage with multiple teach-518

ers in Yang et al. (2020). In the second method,519

KDRR, we switch teacher models for each training520

Table 3: Comparison of single and multiple teachers
distillation for ELECTRABASE and MHSB113H1 mod-
els on the IAS2 test set. Overall, we found that the
combination of MHS architecture and use of multiple
teachers is essential to achieve the best performance.

Distillation Strategy Model P@1 MAP MRR

TANDA (No Teacher) ELECTRABASE 62.2 58.8 68.7
Single Teacher ELECTRABASE 63.2 61.1 69.6
KDSum ELECTRABASE 63.5 60.1 69.8
KDRR ELECTRABASE 63.1 60.2 69.6

TANDA (No Teacher) MHS B113H1 62.1 59.5 68.8
Single Teacher MHS B113H1 63.2 60.5 69.5
Hydra2 (Tran et al., 2020) MHS B113H1 63.4 59.9 69.7
One Teacher per Head MHS B113H1 64.3 60.8 70.3

batch in a round-robin style; i.e., the student trans- 521

former model will be trained with the first teacher 522

model in the first batch, with the second teacher 523

model in the second batch, and so forth. 524

Table 3 compares performance of the multiple- 525

teacher knowledge distillation strategies described 526

above to that of our proposed method; we also eval- 527

uate the effect of using one teacher per head, rather 528

than a single teacher (ELECTRALARGE), on MHS. 529

For ELECTRABASE, we found that KDSum method 530

slightly outperforms KDRR; this result highlights 531

the importance of leveraging multiple teachers for 532

knowledge distillation in the same mini-batch. For 533

MHS, we found that using multiple heterogeneous 534

teachers (specifically, one per ranking head) is cru- 535

cial in achieving the best performance; without it, 536

MHS B113H1 achieves the same performance of 537

ELECTRABASE despite having more parameters. 538

Besides these two trends, the results of rows 13 539

and 14 in Table 2 emphasize the importance of 540

heterogeneity in the set of teacher models. 541

As a result, MHS B113H1 performs the best and 542

achieves the comparable performance with some of 543

the teacher (LARGE) models, while saving between 544

45% and 63% of model parameters. From the afore- 545

mentioned three trends, we can confirm that the 546

improved AS2 performance was achieved thanks 547

to the multiple ranking heads in MHS, the use of 548

multiple teachers, and heterogeneity in teacher 549

model families; on the other hand, the slightly in- 550

creased parameters compared to ELECTRABASE 551

did not contribute to performance uplift. 552

5.3 How Many Blocks Should Heads Have? 553

In Table 2, we examined the performance of an 554

MHS model with configuration B113H1; that is, a 555

body composed of 11 blocks, and 3 ranking heads 556
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Table 4: Performance of different MHS configurations
on the IAS2 test set. Overall, we found that MHS is
stable with respect to the configuration.

MHS Config #params P@1 MAP MRR

B113H1 124M 64.3 60.8 70.3
B103H2 139M 64.9 61.2 70.8
B8 3H4 169M 64.7 60.7 70.4
B6 3H6 199M 64.3 60.6 70.3

with one transformer block each. In order to un-557

derstand how specific hyperparameters setting for558

MHS influences model performance, we examine559

different MHS configurations in this section. Due560

to space constraints, we only report results on IAS2;561

we observed similar trends on ASNQ and IAS2. In562

order to keep a latency comparable to that of other563

BASE models, we keep the total depth of MHS con-564

stant, and vary the number of blocks in the ranking565

heads and shared encoder body.566

Table 4 shows the results for alternative MHS567

configurations. Overall, we noticed that the perfor-568

mance is not significantly affected by the specific569

configuration of MHS, which yields consistent re-570

sults regardless of the number of transformer layers571

used (1 to 6, B113H1 to B63H6). All MHS mod-572

els are trained with a combination of hard and soft573

losses, which makes it more likely to have different574

configurations converge on a set of stable but simi-575

lar configurations. Despite the similar performance,576

we note that B63H6 is comprised of significantly577

more parameters than our leanest configuration,578

B113H1 (199M vs 124M). Given the lack of im-579

provement from the additional parametrization, all580

experiments in this work were conducted by using581

11 body blocks and 1 head block (B113H1).582

5.4 Benchmarking Inference Latency583

Besides AS2 performance, we examine the infer-584

ence latency for MHS and baseline models evalu-585

ated in Section 5.1, using an NVIDIA Tesla V100586

GPU. The results are summarized in Table 5. For587

a fair comparison between the models, we used588

the same batch size (128) for all benchmarks, and589

ignored any tokenization and CPU/GPU commu-590

nication overhead while recording wall clock time.591

Overall, we confirm that MHS achieves a compa-592

rable latency of other BASE models. All four are593

within the one standard deviation of each other.594

All the LARGE models including the state-of-595

the-art AS2 model (RoBERTaLARGE by Garg et al.596

(2020)) produce significantly higher latency, e.g.597

about 3.4 times slower than MHS; specifically,598

Table 5: Inference Latency. For a fair comparison,
batch size is set to 128 for all models. MHS achieves
latency similar to those of BASE models.

Model #params Latency (µs)
avg std

ALBERTBASE 11M 2.3 0.017
RoBERTaBASE 109M 1.9 0.017
ELECTRABASE 109M 2.0 0.018

ALBERTXXLARGE 222M 47.0 0.370
RoBERTaLARGE 335M 6.5 0.066
ELECTRALARGE 335M 6.7 0.089

Ensemble of BASE (rows 10–11) 247M 6.3 0.060
Ensemble of 3 ELECTRABASE 327M 6.1 0.064

MHS B113H1 124M 2.6 0.020

ALBERTXXLARGE, which is comprised of 12 very 599

wide transformer blocks, shows the worst latency 600

among single models. Further, the latency of the 601

two ensemble models are comparable to some of 602

the LARGE models, thus supporting our argument 603

that they are not suitable for high performance ap- 604

plications. On the other hand, our MHS model 605

saves up to 59% latency and 62% model size com- 606

pared to the ensemble model, while achieving com- 607

parable answer sentence selection performance. 608

6 Conclusions 609

In this work, we introduce a technique for obtain- 610

ing a single efficient AS2 model from a committee 611

of heterogeneous transformer models. This effi- 612

cient approach, which we call MHS, consists of a 613

sequence of transformer blocks, followed by mul- 614

tiple ranking heads; each head is trained with a 615

unique teacher, ensuring proper distillation of the 616

ensemble. Results show that the proposed model 617

outperforms traditional, single teacher techniques, 618

rivaling those of the state-of-the-art AS2 models 619

while saving 64% and 60% in model size and la- 620

tency, respectively. MHS enables LARGE-like AS2 621

accuracy while maintaining BASE-like efficiency. 622

Further analysis demonstrates that our MHS 623

improved the AS2 performance thanks to the 3 624

key factors: (i) multiple ranking heads in MHS, 625

(ii) multiple teachers, and (iii) heterogeneity in 626

teacher models. The core idea of MHS can be ex- 627

tended to other tasks beside ranking, such as classi- 628

fication e.g., GLUE (Wang et al., 2018). As such 629

tasks come with a different objective and metrics, 630

we leave them for future work. 631
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A WikiQA 935

This dataset was introduced by Yang et al. (2015) 936

and consists of 1,231 questions and 12,139 can- 937

didate answers. It was created using queries sub- 938

mitted by Bing search engine users between May 939

1st, 2010 and July 31st, 2011. The dataset includes 940

queries that start with a wh- word and end with 941

a question mark. Candidates consist of sentences 942

extracted from the first paragraph from Wikipedia 943

page retrieved for each question; they were anno- 944

tated using Mechanical Turk workers. Some of 945

the questions in WikiQA have no correct answer 946

candidate; following (Wang and Jiang, 2017; Garg 947

et al., 2020), we remove them from the training set, 948

but leave them in the development and test sets. 949

B ASNQ 950

Garg et al. (2020) introduced Answer Sentence 951

Natural Questions, a large-scale answer sentence 952

selection dataset. It was derived from the Google 953

Natural Questions (NQ) (Kwiatkowski et al., 2019), 954

and contains over 57k questions and 23M answer 955

candidates. Its large-scale (at least two orders of 956

magnitude larger than any other AS2 dataset) and 957

class imbalance (approximately one correct answer 958
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every 400 candidates) properties make it partic-959

ularly suitable to evaluate how well our models960

generalize. Samples in Google NQ consist of tu-961

ples 〈question, answerlong, answershort,962

label〉, where answerlong contains multiple963

sentences, answershort is fragment of a sentence,964

and label indicates whether answerlong is cor-965

rect. Google NQ has long and short answers for966

each question. To construct ASNQ, Garg et al.967

(2020) labeled any sentence from answerlong968

that contains answershort as positive; all other969

sentences are labeled as negative. The original970

release of ANSQ only contains train and develop-971

ment splits; We use the dev and test splits intro-972

duced by Soldaini and Moschitti (2020).973

C IAS2974

This is an in-house dataset, called Internal Answer975

Sentence Selection, we built as part of our efforts976

of understanding and benchmarking web-based977

question answering systems. To obtain questions,978

we first collected a non-representative sample of979

queries from traffic log of our commercial virtual980

assistant system. We then used a retrieval system981

containing hundreds of million of web pages to ob-982

tain up to 100 web pages for each question. From983

the set of retrieved documents, we extracted all984

candidate sentences and ranked them using AS2985

models trained by TANDA Garg et al. (2020); at986

least top-25 candidates for each question are an-987

notated by humans. Overall, IAS2 contains 6,939988

questions and 283,855 candidate answers. We re-989

serve 3,000 questions for evaluation, 808 for devel-990

opment, and use the rest for training. Compared991

to ASNQ and WikiQA, whose candidate answers992

are mostly from Wikipedia pages, IAS2 contains993

answers that are from a diverse set of pages, which994

allow us to better estimate robustness with respect995

to content obtained from the web.996

D Do Heads Resemble Their Teachers?997

To better understand the relationship between998

MHS’s ranking heads and the teachers used to train999

them, we analyze the top candidates chosen by each1000

of teacher and student models. Figure 3 shows how1001

often each MHS head agrees with its respective1002

teacher model. To calculate agreement, we normal-1003

ize number of correct candidates heads and teachers1004

agree on by the total number of correct answer for1005

each head.1006

Intuitively, we might expect that ranking heads1007

ALBERT
XXLarge

ELECTRA
Large

RoBERTa
Large

MHS Head
 ALBERT

MHS Head
ELECTRA

MHS Head
RoBERTa

0.535 0.536 0.522

0.522 0.578 0.532

0.498 0.542 0.522

Figure 3: Agreement between each head and its teacher
model for MHS. It is obtained by diving the number of
correct candidates each head and teacher agree on by
the total number of correct answer for each head.

would agree the most with their respective teach- 1008

ers; however, in practice, we notice that the high- 1009

est agreement for all heads is measured with 1010

ELECTRALARGE. However, one should consider 1011

that the agreement measurement is confounded by 1012

the fact that all heads are more likely to agree with 1013

the head that is correct the most (ELECTRALARGE). 1014

Furthermore, in all our experiments, MHS is ini- 1015

tialized from a pretrained ELECTRABASE, which 1016

also increase the likelihood of agreement with 1017

ELECTRALARGE. Nevertheless, we do note that 1018

both the head distilled from ALBERTXXLARGE and 1019

from RoBERTaBASE achieve high agreement with 1020

their teachers, suggesting that MHS ranking heads 1021

do indeed resemble their teachers. 1022

E Common Training Configurations 1023

Besides the method-specific hyperparameters de- 1024

scribed in Sections 3.2 and 3.3, we describe train- 1025

ing strategies and hyperparameters commonly used 1026

to train AS2 models in this study. Unless we 1027

specified, we used Adam optimizer (Kingma and 1028

Ba, 2015) with a linear learning rate scheduler 1029

with warm up3 to train AS2 models. The num- 1030

ber of training iterations was 20,000, and we as- 1031

sess a AS2 model every 250 iterations using the 1032

dev set for validation. If the dev MAP is not im- 1033

proved within the last 50 validations4, we termi- 1034

3We used the warm up strategy only for the
first 2.5 - 10% of training iterations, using https:
//huggingface.co/docs/transformers/main_
classes/optimizer_schedules#transformers.
get_linear_schedule_with_warmup

4For the ASNQ dataset, we considered the last 25 valida-
tions as “patience”.
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nate the training session. As described in Sec-1035

tion 5.1, we independently tuned hyperparameters1036

based on the dev set for each dataset, including an1037

initial learning rate {10−6, 10−5} and batch size1038

{8, 16, 24, 32, 64}. Note that we train AS2 models1039

on the ASNQ dataset for 200,000 iterations due to1040

the size of the dataset.1041

For model configurations, we used the default1042

configurations available in Hugging Face Trans-1043

formers 3.0.2 (Wolf et al., 2020). For instance,1044

the number of attention heads are 12 and 64 for1045

ALBERTBASE and ALBERTXXLARGE, 12 and 161046

for RoBERTaBASE and RoBERTaLARGE, and 12 and1047

16 for ELECTRABASE and ELECTRALARGE, re-1048

spectively. In this paper, we designed MHS lever-1049

aging the default ELECTRABASE architecture, thus1050

the number of attention heads is 12.1051
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