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Abstract: Humans are able to outperform robots in terms of robustness, versatility,
and learning of new tasks in a wide variety of movements. We hypothesize that
highly nonlinear muscle dynamics play a large role in providing inherent stability,
which is favorable to learning. While recent advances have been made in applying
modern learning techniques to muscle-actuated systems both in simulation as
well as in robotics, so far, no detailed analysis has been performed to show the
benefits of muscles when learning from scratch. Our study closes this gap and
showcases the potential of muscle actuators for core robotics challenges in terms
of data-efficiency, hyperparameter sensitivity, and robustness 2.
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Figure 1: Key differences between torque actuator morphology and muscle actuator morphology.

1 Introduction
Recent developments in new learning methods allow the generation of complex anthropomorphic
motions such as grasping, jumping or hopping in robotics. However, current systems still struggle
with real-world scenarios beyond the narrow conditions of laboratory experiments. Humans, on the
other hand, are capable of quickly adapting to uncertain, complex, and changing environments in a
sheer endless variety of tasks. One key difference between biological and robotic systems lies in their
actuator morphology: robotic drives are mostly designed to yield a linear relation between control
signal and output torque. In contrast, muscles have complex nonlinear characteristics.

It has already been demonstrated, that muscular nonlinearities may provide a benefit for stability and
robustness, especially under environmental uncertainties or perturbations [1, 2, 3]. A benefit over
linear torque actuator morphology has been observed in computer simulations by exchanging the
actuator morphology (similar to Fig. 1) in otherwise identical anthropomorphic tasks like reaching [4]
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or locomotion [5, 6, 7, 8]. Similarly, reduced demand on the information processing capacity has been
shown for muscles when compared to torque actuator morphology [9, 10, 11, 12, 13]. This opens the
question whether muscular morphology could also be beneficial for robustness and data-efficiency in
the process of learning movement control.

Recent advances in deep learning facilitated the generation of complex movements like point-reaching
[14, 15, 16, 17] and locomotion [18, 19, 20, 21, 17] in simulations with muscular actuator morphology.
In the real world, optimization and learning approaches can also find controllers for robotic systems
with pneumatic muscles exhibiting somewhat muscle-like actuator morphology [22, 23]. These
examples demonstrate that learning and optimization methods can control muscle-driven systems and
may enable benefits such as safe learning and robustness [23]. However, investigating advantages of
nonlinear muscular actuator morphology over linear torque actuator morphology requires a direct
comparison of both, which is—to our knowledge—missing in the literature.

While Peng et al. [24] performed a comparative analysis of different actuator morphologies, their
work was focused on replicating reference trajectories. In contrast, we learn behaviors without
demonstrations, provide extensive hyperparameter ablations and not only employ RL, but also other
optimization methods applied to complex 3D models.

The purpose of this study is to test if learning with muscular actuator morphology is more data-
efficient and results in more robust performance as compared to torque actuator morphology when
learning from scratch. We investigate this in a very broad approach: we employ different learning
strategies on multiple anthropomorphic models for multiple variants of reaching and locomotion
tasks solved in physics simulators of differing levels of detail. This provides new and comprehensive
evidence of the beneficial contribution of muscular morphology to the learning of diverse movements.

2 Morphological difference between torque and muscle actuators
In contrast to idealized torque actuators, where torque is simply proportional to the control signal
utorque ∈ [−1, 1],

τ = τmax utorque (1)
muscular force output nonlinearly depends on the muscle control signal umuscle, the muscle length
lMTU and contraction velocity l̇MTU. These biologically observed dependencies can be predicted by
so-called Hill-type muscle models [25]. In a nutshell, the model captures biochemical processes
transforming muscle stimulation umuscle ∈ [0, 1] to the force-generating calcium ion activity a. This
can be modeled by a first-order differential equation of the form [26]

ȧ = fa(umuscle − a) (2)
which induces low-pass filter characteristics (Fig. 1). The model further captures the nonlinear
force-length and force-velocity relations [25]. The force-length relation is characterized by a positive
slope (increasing force with increasing muscle fiber length) in the typical operating range of biological
muscle fibres (Fig. 1). The force-velocity relation is characterized by decreasing force for faster
shortening velocities and increasing force if the muscle is externally stretched against its contraction
direction (Fig. 1). A lever arm ρ(α) translates joint angle α into muscle-tendon-unit length lMTU and
muscle force into joint torque

τ =

N∑
i=1

ρi(α)fτ

(
lMTU,i(α), l̇MTU,i(α̇), ai

)
. (3)

for N muscles which span a joint—typically at least two in an antagonistic arrangement.

In practice, we employ two different muscle models: A detailed one with more physiological details,
contained in demoa [27], and a simpler model that efficiently adds muscular properties to existing
MuJoCo [28] simulations without sacrificing computational speed. See Suppl. A for details.

3 Methods
3.1 Learning approaches for movement control
We test if muscle actuator morphology facilitates learning by applying state-of-the-art learning
algorithms covering an extensive range of approaches currently used in robotics. The common thread
of the selected algorithms lies in their independence of the actuator morphology: this allows us to
easily exchange idealized torque actuator morphology with muscle actuator morphology. We choose
optimal control, model-predictive control and reinforcement learning as learning approaches.

2



Table 1: Overview of all models and tasks
Model Task Control Environment

ArmMuJoCo precise reaching RL MuJoCo
ArmMuJoCo fast reaching RL MuJoCo
ArmDemoa smooth point-reaching opt. control, MPC demoa
ArmDemoa hitting ball with high-velocity opt. control, MPC demoa
Biped hopping RL MuJoCo
FullBody squatting opt. control, MPC demoa
FullBody high-jumping opt. control, MPC demoa

(a) ArmMuJoCo (b) ArmDemoa (c) Biped (d) FullBody

Figure 2: Models used for the experiments.

Optimal control (OC) The control problem with horizon N can be defined as:

min
πk

J = min
πk

N∑
k=0

l(x(k), u(k), k), subject to x(k + 1) = f(x(k), u(k), k),

u(k) = πk(x(0), ..., x(k)). (4)

where x(k) ∈ Rnx denotes the current state at time k, and u(k) ∈ Rnu is the applied input at time k.
Furthermore, l specifies the cost function, and f denotes the system dynamics. To optimize for the
best control policy, we use the covariance matrix adaptation evolution strategy (CMA-ES) [29] in
the optimal control case (open-loop strategy). CMA-ES is a derivative-free algorithm and widely
used in machine learning. It combines different learning mechanisms for adapting the parameters of
a multivariate normal distribution. Note, that we choose the same optimization parameters for both
actuator morphologies to allow for a fair comparison even though the number of decision variables
nu is always larger in the muscle-actuated case due to the antagonistic setup.

Model predictive control (MPC) In MPC, we solve the control problem in a receding-horizon
fashion with varying prediction horizons and recursively apply only the first element of the predicted
optimal control sequence u(0) (closed-loop strategy). We employ a warm start procedure using the
CMA-ES optimizer and afterwards start the MPC routine with the local optimizer BOBYQA [30].
The parameters of the optimizers are either varied (see Sec. 4) or given in Suppl. B.

Reinforcement learning (RL) RL allows learning of reusable feedback controllers. Instead of
minimizing a cost function (see Eq. 4), conventionally the discounted expected reward is maximized:

max
π

J = max
π

E

[
N−1∑
k=0

γk−1 r(k)

]
(5)

where r(k) is the reward at time k, π is a control policy and γ ∈ [0, 1] is a discount factor such that
long-term rewards are weighted less strongly. RL consequently solves a similar problem to MPC,
but the resulting controllers are able to act in closed-loop fashion without being given an explicit
prediction model. For the point-reaching tasks, we additionally employ goals g characterizing the
desired hand position, which then constitutes an additional dependence of the reward function. The
aim of the learning process is to learn a controller policy π(u(k)|x(k)) that takes as input the current
sensor values, or state x(k), and outputs a control signal, or action, u(k) such that a task is solved. In
practice, we use the RL algorithm MPO [31], implemented in TonicRL [32].

3.2 Models
Arm The Arm model (Fig. 2 a, b) consists of two segments connected with hinge joints (2 joints
total) moving against gravity. The ArmMuJoCo [28, 17] model contains four muscles, two for each
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joint. In the muscle-actuated case in ArmDemoa [33, 34], six Hill-Type muscles generate forces: two
muscles for the shoulder and two for the elbow joint, plus two biarticular muscles acting on both
joints. All joints are individually controllable.
Biped We converted the geometrical model of an OpenSim bipedal human without arms [19] for
use in MuJoCo. The model, consisting of 7 controllable joints (lower back, hips, knees, ankles)
moves in a 2D plane. Each joint is actuated by two antagonistic muscles or one torque actuator.
FullBody The FullBody model [35, 36] consists of two legs and an upper body including arms
based on a human skeletal geometry. It consists of 8 controllable joints (ankles, knees, hips, lumbar
and cervical spine) in 3D, and 14 movable joints in total including the arms. Each controllable joint
was either actuated by two antagonistic muscles (muscle-actuated case) or by one idealized torque
actuator (torque-actuated case). For more details, we refer to Suppl. C.
All models and their respective physics differential equations were solved with variable time step
(max. time step 0.001s) in demoa and fixed time step (0.005s) in MuJoCo.

3.3 Objectives and rewards
We choose anthropomorphic movement objectives which are highly relevant for robotic applications.
We expect that muscular actuator morphology provides benefits for such tasks. All task formulations
allow application in muscle and torque actuator morphologies with an identical reward or objective
function. For a precise formulation of the used functions and conditions, see Suppl. D.
Smooth point-reaching This task encourages smooth point-reaching. Therefore, the objective
minimizes the L2-error between the desired and current joint angle while penalizing the angle velocity
and jerk to ensure a smooth motion. The desired angle is 90◦ for both the shoulder and the elbow
joint, as this requires a large motion.
Precise point-reaching Similar to [13], we incentivize reaching a random hand position in a pre-
determined rectangle, while minimizing the distance of the end effector to the goal. We specifically
add a reward term that gives a much larger reward for precise motions that reach the center of the
target area. The episode does not terminate until a time limit of 1000 steps elapses.
Fast point-reaching The same objective as for precise point-reaching is used, but the episode
terminates if the target is reached, incentivizing reaching speed over precision.
High-velocity ball serve A ball is dropped in front of the Arm model and the controller learns to
hit the ball to achieve maximum ball velocity.
Squatting This squatting objective is taken from [35] and encourages desired hip, knee, and ankle
angles for a squatting position.
Maximum height jump The objective for the high-jumping task is taken from [37] and maximizes
the position and velocity of the centre of mass of the human body model at the time of lift-off. The
model is initialized to start from a squatting position.
Hopping We developed an objective based on the z-axis velocity of the center of mass (COM)
of the system that encourages periodic hopping with maximum height. The episode terminates if
extreme joint angles are exceeded.

4 Results
In the following, we present three major results for the investigated approaches and environments:
(1) Muscle-like actuators in general improve data-efficiency compared to torque-actuators. (2)
The investigated learning and optimization algorithms exhibit greater robustness to hyperparameter
variations when applied to muscle-driven systems. (3) The motions and controllers obtained from
the muscular morphology are more robust against force perturbations that were not present during
learning. We average results over 5 and 8 random seeds for OC/MPC and RL respectively.

4.1 Data efficiency: Learning with limited resources
Robotics applications in real-world scenarios often suffer from limited resources, which holds true
for training and inference time. Therefore, we investigate the advantages of muscle-like actuator
morphology in terms of overall learning efficiency and temporal control resolution.

Advantages of muscular morphology Smooth and precise point-reaching generally require more
data with torque-driven systems, as seen in Fig. 3. The performance of the muscle actuator, in contrast
to torque morphology, varies very little for different settings of the temporal control resolution c.
Precise reaching with RL also results in stable performance with fewer training iterations, and a very
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Figure 3: Cost value or returns for different tasks. Plotting the mean and standard deviation
(shaded area) for 5 (OC/MPC) or 8 (RL) repeated runs for the two actuator morphologies (muscle in
red, torque in blue). Additionally, the temporal control resolution c was varied in the OC cases.
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Figure 4: Cost value or return in comparison with PD-control for torque. Left: Muscles
outperform all other considered morphologies with OC, while PD-control achieves lower cost than
torque actuation with large control resolution c = 0.3. Right: PD-control does not yield an advantage
over torque actuators with RL when applied to the precise point-reaching task.

small standard deviation across runs. Similar findings are seen for the squatting and hopping task,
where muscle-actuators achieve better data-efficiency and smaller variation across runs and are able
to find a good-enough optimum with fewer iterations.

Advantages of torque morphology In tasks requiring fast and strong motions, without emphasis
on stabilization, we find torque actuators to hold certain advantages. In ball hitting and fast reaching,
the torque cases show similar or smaller variance, even though both actuators perform well for
singular runs. The high-jumping task, where only a strong, swift motion is required to launch the
system upwards, is solved much faster in the torque case. We can also observe in the hopping task
that, although only after a considerable number of training iterations and exhibiting a large variance,
some torque-actuated runs achieve a larger overall return than the best muscle-actuated runs.

We additionally investigated a PD controller for the torque actuator morphology, see Fig. 4. While
the PD controller slightly improves the data-efficiency for some cases, for both OC as well as for RL,
the muscle actuator outperforms all baselines. See Sec. F.2 for more experiments.

4.2 Robustness to hyperparameter variations

Tuning a growing number of hyperparameters for learning models typically requires considerable
time and computational resources. By analysing hyperparameter sensitivity, we test if tuning with
torque or muscle actuator morphologies requires less resources.
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the final performance is evaluated and used to adapt the sampling distributions for the next iteration.
We plot the return distributions over the sampled parameters at different iterations.

Figure 5 shows the cost curves for smooth point-reaching for the evolutionary optimization algorithm
CMA-ES for different values of σ, which is the principal tuneable parameter for this algorithm. The
performance curves vary much more for torque actuators for all considered cases. Furthermore, all
muscle-actuated cases find a good-enough optimum with fewer iterations and a smaller variance,
independent of the hyperparameter σ and the control resolution c.

The same task was repeated using MPC while varying the main hyperparameter tpred, which represents
the prediction horizon in moving horizon strategies. The performance curves and the final cost vary
much more for torque actuators (Fig. 7a, note, the cost is plotted logarithmically).

Finally, we performed an extensive hyperparameter optimization for precise point-reaching. For each
iteration, 50 sets of parameters are randomly chosen and the final task performance is evaluated after
2 × 106 learning iterations. The sampling distributions for the parameters are then fit to the best
performing runs and 50 additional sets are evaluated for the next iteration. We optimize the learning
rates of MPO, as well as gradient-clipping thresholds, as these have a strong influence on learning
speed and stability. Muscle actuators already outperform torque-actuators in the first iteration, with a
greater number of well performing parameter sets (Fig. 6). Almost no low-performing runs remain
for iteration 7, while a large torque-performance is only achieved by a small subset of parameter
settings. See Suppl. E for more hyperparameter variations.

4.3 Robustness to perturbations

In this section, we probe the robustness of the obtained policies against unknown perturbations. In
precise point-reaching, we evaluated the RL reaching policies for two modifications that were not
present during training: First, the hand-weight of the model is increased by 1.5 kg (dynamic load),
and secondly a free spherical weight is attached to the end effector with a cable (chaotic load). We
can see in Fig. 8 that the muscle-based policy does not suffer significant changes in performance,
except for a small circular motion (3 cm) around the goal position in the chaotic load case. In contrast,
the torque actuator morphology leads to unstable reaching and strong oscillations. Both morphologies
seem to handle the dynamic load well. See Suppl. E for more goals.
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prediction horizon. Left: The unperturbed case. Right: The prediction model is not aware of the
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For the MPC controller, we evaluated robustness by introducing environment changes that are un-
known to the prediction model. One example is the lifting of an object with unknown weight, a typical
robotics task. When adding 1 kg to the lower arm of the ArmDemoa model (Fig. 7), the performance in
both actuator cases is worse than in the unperturbed case (left); the movement is also slower. However,
the variance and absolute value of the final cost in the muscle-actuated case are still much lower com-
pared to the torque-actuated case (plotted logarithmically). See Suppl. F.3 for more weight variations.

For periodic hopping with the Biped model, we evaluated trained RL policies with random forces
that were drawn from a Gaussian distribution F ∼ N (·|0, σF ) and applied to the hip, knee, and
ankle joints with a probability of 0.05 at each time step. We see in Fig. 10 that the torque actuator
morphology is stronger affected in relative performance than the muscle morphology. In the robustness
investigation with MPC in the FullBody squatting task, a force is applied to the hip joint after the
system has reached its desired position. Figure 9 (left) shows that the desired joint angles are much
less affected by the perturbation when muscle actuators are controlled. Furthermore, the cost value
associated with the movement recovers much slower for torque actuators (Fig. 9 right).
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5 Discussion
We investigated if muscle-like actuators have beneficial effects for modern learning methods in terms
of data-efficiency, hyperparameter sensitivity and robustness to perturbations. A multitude of varia-
tions across physics simulators, learning algorithms and task domains was considered in order to show-
case the potential of the considered morphologies independently of the underlying implementation.
We showed that muscles yield benefits in tasks requiring stable motion, even when compared to ideal-
ized torque actuators, which can be considered an upper performance bound. Indeed, the used torque
actuators are able to instantaneously output any desired force at any point of the trajectory, while
muscles only slowly change their output due to activation dynamics and can only produce kinematics-
dependent force output. Despite these limitations, the considered learning algorithms learn more effi-
ciently with muscle actuation in all tasks, except for extreme motions where objectives require a strong
force application without stability considerations, such as ball-hitting and high-jumping. In bipedal
hopping, it was found that muscles result in more efficient learning, even though some torque-runs
achieve higher asymptotic performance. Finally, we observe muscle actuation to result in increased ro-
bustness to perturbations and hyperparameter variations, which can facilitate learning on real robotic
systems that not only present sensor and motor noise, but also prohibit extensive parameter searches.

Outlook for real-world robotics We see two use-cases of our findings: (1) Muscular force-length-
velocity and low-pass filter characteristics can be implemented as low-level actuator control for
torque-controlled robotic systems (e.g., [38, 39, 40, 41]). This could allow us to exploit the improved
data efficiency and robustness observed in our study for RL on a real robotic system. (2) Novel
soft robotic actuators, such as artificial muscles [42, 43, 44, 45], promise to revolutionize specific
application scenarios of robotics, e.g., wearable rehabilitation devices [46]. While soft actuated
systems are hard to control from a classical control theory point of view, our results and other works
[24] suggest that RL may even benefit from their properties. In our study, the simplified MuJoCo
muscle model is applicable as a low-level controller in the sense of the first use case, while the results
with the complex series-elastic muscle model in Demoa highlights the second use-case, making both
cases strong arguments to consider RL and muscle properties a promising combination.

Limitations Although we have reported results for a wide variety of algorithms and tasks, we
cannot give theoretical statements about the general applicability of our findings. Additionally, some
of the tasks we employed were limited in complexity and might also be solvable with classical
control algorithms. The MuJoCo muscle model, while computationally efficient, only captures
rudimentary properties of biological systems. The demoa implementation, on the other hand, includes
visco-elastic, passive tendon characteristics and muscle routing as joint angle-dependent lever arms
to account for many physiological details—at substantial additional computational cost. Finally,
learning with intermediate control signals given to impedance or position controllers, instead of direct
torque commands, might also improve learning performance, while muscle-like properties could have
been introduced by learning priors or additional cost terms.
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[21] S. Song, Ł. Kidziński, X. B. Peng, C. Ong, J. Hicks, S. Levine, C. G. Atkeson, and S. L.
Delp. Deep reinforcement learning for modeling human locomotion control in neuromechanical
simulation. Journal of NeuroEngineering and Rehabilitation, Aug 2021.

[22] D. Driess, H. Zimmermann, S. Wolfen, D. Suissa, D. Haeufle, D. Hennes, M. Toussaint, and
S. Schmitt. Learning to control redundant musculoskeletal systems with neural networks and
sqp: exploiting muscle properties. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 6461–6468. IEEE, 2018.

[23] D. Büchler, R. Calandra, and J. Peters. Learning to control highly accelerated ballistic move-
ments on muscular robots. Robotics and Autonomous Systems, 2019.

[24] X. B. Peng and M. van de Panne. Learning locomotion skills using deeprl: Does the choice
of action space matter? In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 1–13, 2017.

[25] T. Siebert and C. Rode. Computational modeling of muscle biomechanics. In Computational
Modelling of Biomechanics and Biotribology in the Musculoskeletal System, chapter 6, pages
173–204. Woodhead Publishing, Elsevier, 1 edition, 2014.

[26] R. Rockenfeller, M. Günther, S. Schmitt, and . Götz, Thomas. Comparative sensitivity analysis
of muscle activation dynamics. Computational and Mathematical Methods in Medicine, 2015:
1–16, 2015. doi:10.1155/2015/585409.

[27] S. Schmitt. demoa-base: A Biophysics Simulator for Muscle-driven Motion, 2022. URL
https://doi.org/10.18419/darus-2550.

[28] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, Oct.
2012. doi:10.1109/IROS.2012.6386109.

[29] N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time complexity of the derandom-
ized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary computation,
11(1):1–18, 2003.

[30] M. J. Powell. The bobyqa algorithm for bound constrained optimization without derivatives.
Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, 26, 2009.

[31] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller. Maxi-
mum a posteriori policy optimisation. In International Conference on Learning Representations,
2018. URL https://arxiv.org/abs/1806.06920.

10

https://arxiv.org/abs/2205.13600
https://arxiv.org/abs/2205.13600
https://arxiv.org/abs/2206.00484
https://arxiv.org/abs/2206.00484
https://arxiv.org/abs/2112.06061
http://arxiv.org/abs/1804.00361
http://arxiv.org/abs/1804.00361
http://dx.doi.org/10.1155/2015/585409
https://doi.org/10.18419/darus-2550
http://dx.doi.org/10.1109/IROS.2012.6386109
https://arxiv.org/abs/1806.06920


[32] F. Pardo. Tonic: A deep reinforcement learning library for fast prototyping and benchmarking.
arXiv preprint arXiv:2011.07537, 2020.

[33] I. Wochner and S. Schmitt. arm26: A Human Arm Model, 2022. URL https://doi.org/
10.18419/darus-2871.

[34] I. Wochner, D. Driess, H. Zimmermann, D. F. Haeufle, M. Toussaint, and S. Schmitt. Optimality
principles in human point-to-manifold reaching accounting for muscle dynamics. Frontiers in
Computational Neuroscience, 14:38, 2020.

[35] J. R. Walter, M. Günther, D. F. Haeufle, and S. Schmitt. A geometry-and muscle-based control
architecture for synthesising biological movement. Biological Cybernetics, 115(1):7–37, 2021.

[36] J. R. Walter, I. Wochner, M. Jacob, K. Stollenmaier, P. Lerge, and S. Schmitt. allmin: A Reduced
Human All-Body Model, 2022. URL https://doi.org/10.18419/darus-2982.

[37] M. G. Pandy, F. E. Zajac, E. Sim, and W. S. Levine. An optimal control model for maximum-
height human jumping. Journal of Biomechanics, 23(12):1185–1198, 1990.

[38] F. Garcia-Cordova, A. Guerrero-Gonzalez, J. Pedreno-Molina, and J. Moran. Emulation of the
animal muscular actuation system in an experimental platform. In IEEE International Confer-
ence on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace.
IEEE, 2001. doi:10.1109/icsmc.2001.969789.

[39] A. Seyfarth, K. T. Kalveram, and H. Geyer. Simulating Muscle-Reflex Dynamics in a Simple
Hopping Robot. In Proceedings of Fachgespräche Autonome Mobile Systeme, pages 294–300.
Springer, 2007. doi:10.1007/978-3-540-74764-2_45. URL http://link.springer.
com/10.1007/978-3-540-74764-2%5F45.

[40] J. Knüsel, A. Crespi, J.-M. Cabelguen, A. J. Ijspeert, and D. Ryczko. Reproducing five motor
behaviors in a salamander robot with virtual muscles and a distributed cpg controller regulated
by drive signals and proprioceptive feedback. Frontiers in Neurorobotics, 14, 2020. ISSN
1662-5218. doi:10.3389/fnbot.2020.604426. URL https://www.frontiersin.org/
articles/10.3389/fnbot.2020.604426.

[41] A. Rai, R. Antonova, S. Song, W. Martin, H. Geyer, and C. Atkeson. Bayesian optimization
using domain knowledge on the atrias biped. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1771–1778. IEEE, 2018.

[42] I. Boblan, R. Bannasch, A. Schulz, and H. Schwenk. A human-like robot torso zar5 with fluidic
muscles: Toward a common platform for embodied ai. In 50 Years of Artificial Intelligence,
pages 347–357. Springer, 2007.

[43] G. K. Klute, J. M. Czerniecki, and B. Hannaford. Mckibben artificial muscles: pneumatic
actuators with biomechanical intelligence. In 1999 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (Cat. No. 99TH8399), pages 221–226. IEEE, 1999.

[44] B. Vanderborght, A. Albu-Schäffer, A. Bicchi, E. Burdet, D. G. Caldwell, R. Carloni, M. Cata-
lano, O. Eiberger, W. Friedl, G. Ganesh, et al. Variable impedance actuators: A review. Robotics
and autonomous systems, 61(12):1601–1614, 2013.

[45] S. Wolfen, J. Walter, M. Günther, D. F. Haeufle, and S. Schmitt. Bioinspired pneumatic muscle
spring units mimicking the human motion apparatus: benefits for passive motion range and
joint stiffness variation in antagonistic setups. In 2018 25th International Conference on
Mechatronics and Machine Vision in Practice (M2VIP), pages 1–6. IEEE, 2018.

[46] M. Zhu, S. Biswas, S. I. Dinulescu, N. Kastor, E. W. Hawkes, and Y. Visell. Soft, wearable
robotics and haptics: Technologies, trends, and emerging applications. Proceedings of the IEEE,
110(2):246–272, 2022. doi:10.1109/JPROC.2021.3140049.

11

https://doi.org/10.18419/darus-2871
https://doi.org/10.18419/darus-2871
https://doi.org/10.18419/darus-2982
http://dx.doi.org/10.1109/icsmc.2001.969789
http://dx.doi.org/10.1007/978-3-540-74764-2_45
http://link.springer.com/10.1007/978-3-540-74764-2%5F45
http://link.springer.com/10.1007/978-3-540-74764-2%5F45
http://dx.doi.org/10.3389/fnbot.2020.604426
https://www.frontiersin.org/articles/10.3389/fnbot.2020.604426
https://www.frontiersin.org/articles/10.3389/fnbot.2020.604426
http://dx.doi.org/10.1109/JPROC.2021.3140049

	Introduction
	Morphological difference between torque and muscle actuators
	Methods
	Learning approaches for movement control
	Models
	Objectives and rewards

	Results
	Data efficiency: Learning with limited resources
	Robustness to hyperparameter variations
	Robustness to perturbations

	Discussion

