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Fig. 1: We present AnySkin, a skin sensor made for robotic touch that is easy to assemble, compatible with different robot end-effectors
and generalizes to new skin instances. AnySkin senses contact through distortions in magnetic field generated by magnetized iron particles
in the sensing surface. The flexible surface is physically separated from its electronics, which allows for easy replacability when damaged.

Abstract—While tactile sensing is widely accepted as an im-
portant and useful sensing modality, its use pales in comparison
to other sensory modalities like vision and proprioception.
AnySkin addresses the critical challenges that impede the use of
tactile sensing – versatility, replaceability, and data reusability.
Building on the simplistic design of ReSkin, and decoupling the
sensing electronics from the sensing interface, AnySkin simplifies
integration making it as straightforward as putting on a phone
case and connecting a charger. Furthermore, AnySkin is the first
uncalibrated tactile-sensor to report cross-instance generalizabil-
ity of learned manipulation policies. To summarize, this work
makes three key contributions: first, we introduce a streamlined
fabrication process and a design tool for creating an adhesive-
free, durable and easily replaceable magnetic tactile sensor;
second, we characterize slip detection and policy learning with the
AnySkin sensor; third, we demonstrate zero-shot generalization
of models trained on one instance of AnySkin to new instances,
and compare it with popular existing tactile solutions like DIGIT
and ReSkin.

INTRODUCTION

Touch sensing is widely recognized as a crucial modality for
biological movement and control [9]. Unlike vision, sound, or
proprioception, touch provides sensing at the point of contact,
allowing agents to perceive and reason about forces and
pressure. However, a closer examination of robotics literature
reveals a different narrative. Prominent works and current
state-of-the-art in robot learning primarily utilize vision sens-
ing in conjunction with proprioception to train manipulation
skills [4, 1], often ignoring touch. If touch is indeed vital from
a biological perspective, why does it remain a second-class
citizen in sensorimotor control?

In this work we present AnySkin, a new touch sensor
that is cheap, convenient to use and has consistent response
across different sensor instances. AnySkin builds on Re-
Skin [2], a magnetic-field based touch sensor, by improving
its fabrication, separating the sensing mechanism from the
interaction surface, and developing a new self-adhering, self-
aligning attachment mechanism. This allows AnySkin to (a)
have stronger magnetic fields, which significantly improves its
sensor response, (b) be easy to fabricate for arbitrary surface
shapes, which allows easy use on different end-effectors, (c)
be easy to replace the sensor without adversely affecting the
data collection process or the efficacy of models trained on
previous sensors (Fig. 1).

Our main findings from experiments are summarized below:

1) AnySkin can readily be used on a variety of robots
including xArm, Franka, and Leap hand.

2) AnySkin is compatible with ML techniques for slip
detection and visuo-tactile policy learning for precise
tasks such as inserting USBs.

3) AnySkin takes an average of 12 seconds to replace and
can be reused after replacement.

4) Models trained on one AnySkin transfer zero-shot to a
different AnySkin with only a 13% reduction in perfor-
mance on a plug insertion task compared to the 43% drop
in performance with ReSkin [2] sensors.

AnySkin is fully open-sourced. Videos of fabrication, at-
tachment, and robot policies are best viewed on our project
website: https://any-skin.github.io/.

https://any-skin.github.io/
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Fig. 3: Fabrication of AnySkin

Fig. 4: (a) AnySkin is made by mixing Smooth-On DragonSkin 10 Slow and MQFP-15-7(25µm) magnetic particles in a 1:1:2 ratio, and
curing it in the two-part molds shown above. Cured skins are magnetized using a pulse magnetizer. (b) Skins made with MQP-15-7(-80
mesh) and MQFP-15-7(25µm) particles. Note the concentration of particles at the surface of the former due to the larger particle size.

I. ANYSKIN: FABRICATION

AnySkin builds on ReSkin [2], a tactile skin composed
of a soft magnetized skin coupled with magnetometer-based
sensing circuitry. By detecting distortions in magnetic fields,
ReSkin measures skin deformations caused by normal and
shear forces [7, 2]. Its adaptability enables integration across
various applications, from robotic hands [3] to arm sleeves
and even dog shoes. AnySkin uses the same 5-magnetometer
circuitry as ReSkin, while introducing key design and fabri-
cation changes to the skin to improve durability, repeatability,
and replaceability.

• Magnetizing skins post-curing using a pulse magnetizer.
• Introducing physical separation between magnetic elas-

tomer and magnetometer circuit.
• Utilizing finer magnetic particles to achieve a more

uniform particle distribution.
• Implementing a self-aligning design for reduced variabil-

ity in the positioning of elastomers and circuitry.
While some of these additions have been used in isolation in
prior work [3, 11], there has been little discussion on their
effect on sensor response.

Applying a magnetic field during elastomer curing increases
variability in the signal response. Before curing, magnetic
particles are free to move through the liquid elastomer under
the effect of the magnetic field. As a result, the distribution
of particles is influenced by the temporal evolution of the
applied magnetic field, i.e. how you move the magnets into
place, which can be difficult to control when fabricating. To
circumvent these disadvantages, we propose using a pulse
magnetizer to magnetize the skins post-curing in line with
[3], as shown in Fig. 3. The pulse magnetizer can apply a
large enough magnetic field to magnetize the dipoles in the
magnetic elastomer. Curing outside the influence of magnetic

fields allows for a more uniform distribution of magnetic
particles through the bulk of the sensor, thereby improving
magnetic field consistency.

II. EXPERIMENTS AND RESULTS

In this section, we perform extensive experiments to demon-
strate the capabilities of AnySkin as a tactile sensor, and within
the context of policy learning. These experiments are designed
to answer the following questions:

• How do the fabrication changes outlined in Section I
influence signal characteristics?

• Can AnySkin sensors be used to detect slip?
• How does AnySkin’s ease of replaceability compare with

other sensors like DIGIT and ReSkin?
• How does replacing AnySkin affect the performance of

learned policies, and compare with other sensors like
ReSkin and DIGIT?

A. Comparison between ReSkin and AnySkin signal

To quantitatively demonstrate the effect of each of the
fabrication changes listed in Section I towards improving
the consistency of AnySkin, we present the following set of
experiments analyzing the raw signal from the four different
skins shown in Table I, tracking the progression from ReSkin
to AnySkin:

1) Effect of pulse magnetizer on signal strength: To un-
derstand the effect of the pulse magnetizer on signal strength,
we take five instances of each skin type and measure the raw
signal corresponding to each instance. We average the absolute
values across the three axes of the five magnetometers, and
report the results in Table I. We see a significant increase in
the raw magnetic field for both sets of pulse magnetized skins.
This increase allows us to add a physical separation between
sensing skin and the sensory electronics, which improves



TABLE I: AnySkin’s signal strength is comparable to ReSkin with lower variability across instances, and physical separation from the
magnetometer electronics. Statistics computed over 5 samples of each type (PM: Pulse magnetizer, FP: finer particles, SA: self-aligning).

Experiment ReSkin +PM +FP +SA (AnySkin)
Bxy Bz Bxy Bz Bxy Bz Bxy Bz

Average strength, in µT 1062 302 1818 5212 1602 5784 283 1265
Normalized std. deviation across instances 0.54 0.87 0.34 0.12 0.21 0.15 0.12 0.10
Normalized std. deviation across 1mm misalignments 1.38 1.43 0.25 0.11 0.18 0.07 Self-aligning
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Fig. 5: Training and test locations of the target objects interacted with for plug insertion, card swiping and USB insertion (left to right).
The blue region represents the extent of variation in the location of the target object, while the green-orange blocks denote held-out test
configurations used for evaluation.

replaceability, as well as repeatability of the signal as discussed
below.

2) Comparison of signal consistency across skins: To com-
pare signal consistency across the sensing skins, we compute
the standard deviation along each axis of the five magnetome-
ters across the five instance of each skin type. To account
for the larger signal strengths of the pulse magnetized skins
and allow for a fairer comparison, we normalize the computed
standard deviations by the mean absolute values along xy and
z axes for each skin type. Aggregated statistics for the different
skins are presented in Table I.

B. Slip Detection

We quantify AnySkin’s ability to detect slip through a
controlled experiment. Our setup consists of a Kinova Jaco
arm and an Onrobot RG-2 gripper with integrated AnySkin.
An object held by a human operator is grasped and lifted up
slowly for 1 second. We use a set of 40 daily objects – 30 for
training and 10 evaluation – with varying shapes, weights and
materials. We collect 6 trajectories for each object by changing
the grasping force, width and location. After the data collection
is complete, a human annotator labels the sequence as slip or
no-slip from the corresponding videos. Our model is able to
detect slip on unseen objects with 92% accuracy.

C. Replaceability in Policy Learning

The most important consequence of the signal consistency
and replaceability of AnySkin outlined so far, is its ability
to enable policy generalization across different instances of
the skin. In this section, we demonstrate the cross-instance
generalizability of AnySkin across three precise manipulation

tasks. We follow this up with a comparison of the cross-
instance generalizability of policies trained on DIGIT, ReSkin
and AnySkin on the plug insertion task.

1) Experimental Setup: For our policy learning experi-
ments, we train behavior cloning models for a set of precise
manipulation tasks. Our experimental setup consists of an
X-Arm 7DOF robot in a robot cage. A Meta Quest 3 and
the accompanying joystick controller are used to teleoperate
the robot using Open-Teach [8], an open-source teleoperation
framework.

We demonstrate the replaceability of AnySkin on a set of
three contact-rich manipulation tasks - Plug Insertion, Card
Swiping and USB Insertion (See Fig. 5 for test variations).

2) Model Architecture and Training: Our policies are
trained using behavior cloning. The BAKU [5] architecture
is used as the policy architecture. BAKU tokenizes each input
using a modality-specific encoder: image inputs from cameras
and DIGITs are encoded using ResNet-18 [6] encoders, while
AnySkin and ReSkin inputs are encoded using an MLP en-
coder. An action token is appended to the set of encoded tokens
before passing the sequence through a transformer encoder,
and the output corresponding to the action token is used to
predict actions. We use action chunking [12] and predict the
next 10 actions at every timestep. For every training setting,
we train three separate models corresponding to three different
seeds, and present aggregated statistics on 10 policy rollouts.

3) Evaluating cross-instance generalizability: To investi-
gate the replaceability of AnySkin in the context of policy
learning, we evaluate behavior cloning policies trained using a
single instance of AnySkin on a new instance. Table II presents
a comparison between policy performance with the original



and swapped skins for each of the precise, contact-rich tasks
outlined above.

4) Comparison across sensors: To better contextualize the
significance of this result, we present a replaceability compar-
ison with DIGIT [10] and ReSkin [2] sensors. We collect two
additional datasets of 96 demonstration trajectories each for
the plug insertion task with these sensors similar to AnySkin.
Replaceability is evaluated by swapping the training skin for a
new skin during evaluation as outlined in the previous section.
Success rates from 10 evaluations across three seeds for each
setting are reported in Table II.

TABLE II: Success rates (out of 10) for policies when swapping out
tactile skins. All statistics computed over 3 training seeds

Task Cameras only Cameras + Skin

Original skin Swapped skin

Cross-instance generalization
Plug Insertion 1.7± 0.6 6.7± 1.5 5.3± 2.5
Card Swiping 2.0± 1.0 7.0± 1.7 6.3± 0.6
USB Insertion 1.7± 1.2 5.7± 1.5 3.0± 1.0

Comparison across sensors – Plug Insertion
AnySkin 1.7± 0.6 6.7± 1.5 5.3± 2.5
ReSkin 1.7± 1.2 6.0± 1.7 1.7± 1.2
DIGIT 1.7± 1.5 2.3± 0.6 1.3± 0.6

Based on these results, we find that visuotactile policies
trained with ReSkin and AnySkin have similar performance
on solving the plug insertion task, while DIGIT policies are
unable to capture the minute interactions. However, when the
sensor instance is replaced, the performance of the ReSkin
policy falls 43% to the same level as the camera-only policy,
while the performance of AnySkin policies only drops by 13%.
This transferability is evidence of AnySkin’s superior signal
consistency, and is a significant boost to scaling efforts like
training large tactile models as well as real world deployment
of models trained in the laboratory.
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