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Abstract

We present an investigation into using Reinforcement Learning (RL) agents to ad-
dress the well-established cold-start problem in Al teacher algorithms that require
extensive human learning data. While the challenge of bootstrapping personalized
learning systems is recognized across domains, collecting comprehensive human
learning data remains resource-intensive and often impractical. Our work explores
a novel methodological approach: warm-starting data-hungry teacher algorithms
using RL agents to provide an initial foundation that can be refined and augmented
with human learning data. We emphasize that this approach is not intended to
replace human data, but rather to provide a practical starting point when such data
is scarce. Through exploratory experiments in two game-based environments—a
Super Mario-inspired platformer and an Overcooked-inspired medical training
simulation—we conduct human subjects studies demonstrating that RL-initialized
curricula can achieve comparable performance to expert-crafted sequences. Our
preliminary analysis reveals that while human learning outcomes are positive, there
remain notable gaps between RL agent behavior and human learning patterns, high-
lighting opportunities for improved alignment. This work establishes a promising
potential for RL-initialized teaching systems, opening valuable research directions
at the intersection of RL and human learning.

1 Introduction

Artificial Intelligence (AI) applications in education hold the promise of revolutionizing learning
through scalable, personalized, and adaptive approaches [Doroudi ef al.,2019;|Alrakhawi et al.| [2023].
These Al-driven methods aim to address the limitations of traditional expert-designed curricula, which
often struggle to efficiently meet the diverse needs of a vast and growing student population across
an expanding knowledge base [Lin ef al.,|2023||. In theory, Al tools could simultaneously provide
tailored learning experiences to numerous students, dynamically adapting to individual needs and
learning styles [Mousavinasab et al., [2021]. However, recent studies have shown that learning-
based teacher algorithms often underperform when compared to expert-initialized or even random
algorithms [Green et al.l 2011} |Lindsey et al.l 2014].

These systems require extensive data on student’s learning process in order to design effective
curricula [van der Velde et al., |2024; |Doroudi et al., 2019]. However, gathering comprehensive
human learning data is time-consuming and costly; in one study, it took approximately 900 man-hours
for a Machine Learning-based teacher algorithm to converge [Bassen ef al.|[2020]]. While existing
approaches supplement human data by incorporating demographic information [Zhao et al., [2020;
Patel and Thakkar] 2022], this method introduces potential biases and privacy concerns [Suresh et al.
2022; Wang et al.| 2018], limiting the development of robust teaching strategies. The challenge is
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especially significant in dynamic fields where learning patterns change rapidly, requiring constant
data collection and algorithm updates [Hatzilygeroudis and Prentzas, |2004].

Our work focuses on teacher algorithms that adaptively sequence training tasks to optimize student
learning outcomes. These algorithms interact with students by assigning targeted challenges, creating
personalized curricula that evolve with student progress. Motivated by the capabilities of Reinforce-
ment Learning (RL) agents in mastering complex environments [Silver et al.L[2017,|2016], we propose
leveraging these agents to bootstrap training data for teacher algorithms. This novel methodological
approach aims to augment early algorithm development, reducing initial data requirements while
providing a foundation that can be refined with human learning patterns. We evaluate this approach
through human subjects studies in two contrasting environments: a Super Mario-style platformer for
motor skills and a medical emergency response simulation with discrete tasks. Our findings suggest
this approach offers a promising direction for addressing the cold-start problem in adaptive teaching
systems. We invite the research community to explore advancing RL-based initialization with human
learning patterns, potentially enabling more accessible personalized learning technologies.

Our key contributions are as follows:

1. We introduce a two-stage framework that leverages RL agents to generate training data for
teacher algorithms that optimize student learning through task recommendations.

2. We present two pedagogy-based teacher algorithms under this framework: a human-friendly
adaptation of PERM [Tio and Varakantham, 2023]] for domains with potentially infinite
scenarios, represented by a finite set of parameters; and SimMAC, a novel Task Sequencing
algorithm for domains with a finite and discrete set of scenarios.

3. We demonstrate our approach’s effectiveness through two new environments, the Jumper
game and Emergency Response game, where human trials show our methods outperform
baselines approaches and match expert-handcrafted curricula.

2 Related Work

Unsupervised Environment Design (UED, [Dennis et al.| [2020]) formalizes adaptive curriculum
creation in a teacher-student framework for artificial agents. Domain Randomization (DR; [Tobin e?
al.l2017]]), a foundational UED concept, generates diverse curricula but may not optimize learning.
The current state-of-the-art UED algorithm, ACCEL [Parker-Holder ef al.|, [2022]], while effective for
training agents, faces challenges in direct human application. We examine DR as a baseline and build
on PERM [Tio and Varakantham| 2023, a promising approach based on Item-Response Theory that
doesn’t require extensive student knowledge beyond interaction history.

Sim-to-real research bridges the “reality gap" by training policies in simulation before deploying
them in physical environments while maintaining the same policy architecture [Da et al.,2025]. In
contrast, our method operates within a single environment but addresses the transfer from agents to
humans, using bootstrap teacher algorithms that progressively improve their instructional capabilities.
Unlike Sim-to-real’s focus on environmental domain gaps, we tackle the “simulated-agent and human
gap" which involves differences in learning mechanisms and cognitive processing that we explore in
Section

Recent research has explored using RL to optimize instructional activities in education [Doroudi ef
al.,|2019]. However, across different domains, data-hungry RL teachers have shown mixed results,
often failing to outperform baselines [Green ef al.| 2011} |Segal et al., 2018} |Doroudi et al.l 2017].
A key challenge is the complexity of modeling student states, requiring an “inordinate amount of
data” [Doroudi et al., 2019]]. Recent RL implementations in algebra education show promise but face
challenges, notably the cold-start problem. [Bassen et al.| 2020]] reported their RL teacher needed
nearly 600 learner course completions, or 900 man-hours, to converge on an effective strategy. This
highlights a critical challenge in applying learning-based methods to human learning: the need for
extensive initial data to achieve competency, raising practical and ethical concerns for real-world
educational implementation. To address these issues, our study proposes employing RL agents as
warm-start human learners for data collection. We aim to generate valuable training data for teacher
algorithms, potentially mitigating the cold-start problem and improving the overall effectiveness of
Al-assisted education.
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We focus on two key principles to guide effective learning. First, both human [Van den Akker,
2007; \Grant, [2018}; |Macalister and Nation, [2019]] and artificial learners [Bengio et al.l[2009;|Graves
et al. [2017}; Huang et all |2020]] benefit from progressively challenging curricula, where task dif-
ficulty gradually increases to match student abilities. This alignment with the Zone of Proximal
Development [Vygotsky and Cole} |1978]] ensures optimal learning by maintaining an appropriate
challenge level. Second, learning continuity enhances knowledge acquisition by connecting new
content to prior experiences, creating smoother transitions through content overlap. This spiral
curriculum approach [Bruner, [2009] strategically leverages existing knowledge while increasing
difficulty, making learning more intuitive and effective than introducing entirely new content. Our
proposed teacher algorithms address these principles: both incorporate difficulty progression, while
SimMAC (Section additionally considers task similarity by selecting subsequent tasks based on
the learner’s experience history.

3 Teacher Problem

We study interactive teaching where algorithms dynamically assign tasks based on student perfor-
mance feedback to maximize learning outcomes. Our focus encompasses two paradigms: UED and
Task Sequencing.

Unsupervised Environment Design UED [Dennis et al.l 2020]] generates diverse challenges to
optimize student learning. The core assumption is that exposing students to diverse environments
fosters generalized proficiency across the environment distribution, enhancing generalization.

Formally, UED is conceptualized as an Underspecified Partially Observable Markov Decision Process
(UPOMDP), defined as M = (A,0,0,5,T,1, R,~), where A represents the action space, O the
observation space, S the state space, T : S x A x © — A(S) the transition function, [ : S X © —
A(O) the observation function, R : S x A x S x © — R the reward function, and v € [0,1)
the discount factor. The UPOMDP extends the traditional POMDP by incorporating ©, a set of
environment parameters where 6 € © represents specific configurations that define task instances. At
each timestep ¢, the teacher selects §; € © to generate an environment instance 7 with state s; € S,
allowing dynamic adjustment of challenge complexity based on observed student performance. For
example, in a navigation task, 0 might parameterize obstacle frequency, enabling progressive difficulty
calibration to maximize learning outcomes across O.

Task Sequencing Task Sequencing represents a constrained UPOMDP where © defines a discrete
and finite task pool with varying difficulty levels and knowledge requirements, requiring agents to
apply different knowledge sets for successful completion. A successful teacher would determine
optimal task ordering to maximize learning efficiency and post-training generalization across the task
distribution. Given its versatility and effectiveness, Task Sequencing finds widespread application in
various educational contexts [Bassen et al.l 2020} Segal et al.l 2018].

4 RL-Supported Teacher Algorithms

In this section, we detail our two-stage process for using RL to retrieve data for our teacher algorithms,
consisting of an Exploration Stage and an Exploitation Stage. We then present two algorithms that
benefits from this process: PERM-H, a human-adapted version of existing work, and SimMAC, a
novel approach specifically designed for Task Sequencing.

The Exploration Stage In the first stage, we use RL agents to simulate student-environment
interactions and collect data. These RL agents interact with a variety of levels generated using DR
[Tobin et al.l 2017]]. We record the agents’ performance, the parameters of the levels they encounter,
and other relevant data specific to the teacher algorithms we’re developing. The key idea here is to
use RL agents as stand-ins for human students. This allows us to gather extensive data on learning
progress without requiring actual human participants. An important advantage of this approach is
that RL agents start from scratch and improve over time, much like real students. This enables us to
simulate a diverse group of learners with varying skill levels, providing a rich dataset for our teacher
algorithms to learn from. By using RL agents in this way, we can generate a large amount of valuable
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training data for our teacher algorithms, helping to address the cold-start problem and potentially
improve the effectiveness of Al-assisted education from the outset.

The Exploitation Stage In the exploitation stage, we utilize the data collected during the exploration
stage to train the teacher algorithms and apply compatible algorithms to human training. Similar to
RL training under UPOMDPs, we emulate the process with humans using a continuous loop. We note
here that as more human interaction data is collected, it can be used to supplement, and eventually
replace, RL data for stronger alignment to humans.

The teacher algorithm first makes an inference based on the student’s recent performance r; and
outputs the next task, 6; 1. The student then trains under the new level generated from 6;; and
returns the corresponding reward or performance metric, r,;. This iterative process continues
throughout the training session until a predetermined termination criterion is reached.

4.1 PERM-H

PERM [Tio and Varakanthaml, 2023 is an Item-Response Theory-based model for UED in RL
that infers agent ability a and environment difficulty § from observed parameters and performance
to determine subsequent training environments, motivated by the Zone of Proximal Development
[Vygotsky and Colel [1978|]. We modified PERM’s original assumption that optimal learning occurs
when 6 = a to § = ea (e > 1.0), accommodating potentially faster human learning rates [Tsividis ef
all2017]]. We call this adaptation PERM-H.

During the Exploration Stage, we collect 6 and r to train PERM-H. In the Exploitation stage, PERM-
H operates cyclically by estimating the student’s current ability, using this estimate to specify the
desired difficulty for the next level, and generating a level matching this difficulty, while adapting
to the student’s progress. While effective for difficulty-based progression, PERM-H, without major
modifications, cannot handle domains requiring distinct, non-comparable skills. For these cases, we
developed an alternative algorithm for more diverse task sequencing.

4.2 SimMAC

SimMAC creates effective learning curricula by balancing task difficulty and knowledge continuity.
Our approach is built on two fundamental principles: tasks requiring less training time are inherently
easier, and optimal learning occurs when new tasks build upon previously acquired knowledge.

Quantifying Task Difficulty We measure task difficulty through convergence analysis: training
an RL agent uniformly across tasks and identifying the point at which performance stabilizes. We
consider task 1 easier than task 2 if and only if its convergence point ¢y occurs earlier (cy, < cgp,).
We average results across multiple runs to ensure measurement reliability.

Modeling Knowledge Transfer Between Tasks The core innovation of SImMAC lies in its ability
to identify knowledge overlap between tasks. We approximate a task’s knowledge content through
trajectory analysis, operating on the principle that similar tasks elicit similar behavioral patterns
during solution.

A trajectory T represents the sequence of states and actions, i.e., 7 = {so, ag, S1, @1, ..., a7—1, ST}
The distribution of trajectories, the occupancy measure, provides a mathematical expression of the
knowledge required for task completion:

T

Pro(s,a) = [Pr(st =s,a; = alsg ~po(-), st ~
t=0

p('|5t—17at—1a9)aat ~ 77('|5t)

where T is the horizon limit, py(+) is the initial state distribution.

Tasks with overlapping occupancy measures require similar actions in similar states, indicating
shared knowledge requirements. We quantify this similarity using Wasserstein distance V¥ between
trajectory distributions [Li et al.,[2023b] W(PWT% , p“Tej) ~ W(r;, T;) where plre; and p;% represent

4
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the occupancy measures induced by policy 7 on task 7% and task 7%, respectively, with 7; and Tj
being the resulting trajectories.

Extending beyond |Li er al.| [2023b]’s pairwise comparisons, we measure similarity between a
candidate task and the entire set of previously completed tasks: 7% and a set of tasks, 7%~ =
{79, TP+, ..., T%}. We aggregate the trajectories collected in 7%~/ as 7;~; and compute the
distance d between 7, and 7 ;:

d(Tek ) Teiwj) £ W(p;’ek ) pﬂ—TOiNj ) ~ W(Tk7 TiNj) (1)

In our paper, low distance between task denotes high similarity, which guides our task selection.

4.2.1 Implementation of Exploration-Exploitation Process in SimMAC

During the Exploration Stage, we deploy multiple RL agents trained uniformly across the task
space, systematically collecting trajectory data and measuring convergence points to quantify both
task difficulty (cp) and occupancy distributions (p7). These measurements provide the empirical
foundation for our similarity metrics.

In the subsequent Exploitation Stage, we leverage these metrics to construct optimal learning se-
quences. Drawing inspiration from spiral curriculum [Bruner, [2009], we design a process that
systematically builds upon existing knowledge while incrementally increasing difficulty. Beginning
with the task exhibiting the lowest convergence point (ming cg), we iteratively select subsequent
tasks that maximize similarity to the accumulated experience, formally selecting 7%+ to minimize
d(T %+ T9~i) while ensuring a gradual progression in difficulty. This implementation enables
the creation of personalized curricula that maintain coherent knowledge pathways while systemati-
cally introducing more challenging concepts, thereby optimizing both learning continuity and skill
development.

5 Human Subjects Experiment Design

We evaluate our RL-supported teacher algorithms against baselines using human participants who
undergo training in the Jumper and Emergency Response games. All studies received local IRB
approval. Further details of the environments and the experiment procedure can be found in Appendix.

Jumper Environment The Jumper Environment is a 2D obstacle course game developed in Unity
(Juliani et al., 2020), inspired by classic platformers. Players navigate a character through spiked
pathways using keyboard controls, aiming to reach the level’s end without collisions (Figure [I4).
The environment has two adjustable parameters 6 for level generation: spike density and ground
roughness; these parameters directly influence the difficulty of the level, enabling systematic study of
learning progression and adaptive difficulty.

Participants were recruited through an online chat group connecting researchers and screened for
device compatibility. To control for prior gaming experience, participants rated their familiarity with
2D side-scrolling games (e.g., Super Mario Bros) to balance experimental conditions.

First, participants received visual instructions on the Jumper gameplay and a trial to familiarize
themselves with the controls. After the trial, participants were randomly assigned to one of three
conditions:

1. No Training (Control): Participants received no training and proceeded directly to the test
stage after the trial. (n = 80)

2. Random: Participants played randomly generated training levels. (n = 78)

3. PERM-H: Participants received training levels generated by a Jumper-tuned model trained
on RL data. The model adapted level difficulty based on inferred player ability. (n = 72)

In the Random and PERM-H conditions, participants received 10 different levels with a maximum of
15 attempts per level. Upon completing a level or exhausting attempts, participants progressed to the
next level. Finally, after the respective training intervention, they would receive a test level on which
we use to measure post-training performance. We initially recruited 240 participants for our study,
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and filtered out low-effort participants. Finally, there were no significant differences in prior gaming
experience across groups (one-way ANOVA: F'(2,237) = 0.902,p > .05).

To further investigate the effectiveness of our approach, we conducted a follow-up study comparing
PERM-H to a handcrafted curriculum. This handcrafted curriculum, designed by our research team,
featured a fixed sequence of training levels with increasing difficulty. We recruited 120 participants
via Proliﬁ<ﬂ representing a different sample group from the initial study. After excluding outliers, our
final counts were 52 participants in the PERM-H group and 61 in the Handcrafted group. Results from
this follow-up study are presented separately from the main study to distinguish between participant
pools.

Emergency Response Environment We present a 3D Emergency Response EnvironmenlE] sim-
ulating time-critical medical care scenarios (Figure[I3]). Developed with paramedic services, this
environment requires players to select and apply appropriate treatments to patients with evolving
conditions during hospital transport. The simulation features stochastic patient state transitions, real-
time feedback, and contextual tool information, replicating the decision pressure faced by emergency
medical personnel while allowing limited attempts per intervention.

We conducted an experiment with 121 participants, randomly assigned to one of the four groups:

1. Reading Only (control): Learned solely through reading materials, without engaging in
gameplay. (n = 31)

2. Random: Played tasks selected at random from the pool, without replacement. (n = 30)

3. Handcrafted: Followed a predefined task sequence designed by the research team. (n = 30)

4. SimMAC: Experienced an adaptively curated task order generated by SimMAC. (n = 30)

Except for the Reading group, all participants completed all 17 unique tasks within 45 minutes after a
25-minute reading session on medical knowledge. After the respective treatments, participants were
given a multiple-choice questionnaire to assess their knowledge of appropriate measures to take in a
medical emergency. One-way ANOVA confirmed no significant differences in prior game experience
(F(3,117) = 1.34,p = .27) or emergency handling experience (F'(3,117) = 1.88,p = .14) across
groups.

6 Evaluation

In our evaluation, we investigate three key research questions: differences in post-training perfor-
mance across conditions, distinguishing characteristics between curricula, and fundamental differ-
ences between RL agents and human learners. For all statistical tests described, we used o« = 0.05.

6.1 Post-Training Evaluation

We analyzed the effectiveness of teacher-guided training in improving post-training performance on
the final test. In Jumper, competence was measured by fewer attempts to complete the test level. In
Emergency Response, we counted correct responses on the final multiple-choice test.

Jumper Environment A one-way ANOVA revealed significant differences in final test attempts
across groups, F(2,237) = 16.461, p < .001, partial n°> = .122, signifying a moderately large
effect. Tukey’s HSD post-hoc test showed significant differences between No Training and PERM-H
(Ap = —2.599, p < .001) and between Random and PERM-H (Ap = —1.380, p < .001). No
significant difference was found between the No Training Group and Random Group (Ap = —1.219,
p = .115).

PERM-H vs. Handcrafted Training An independent-samples t-test comparing PERM-
H (¢ = 5904, o = 5.558) and Handcrafted (¢ = 4.705, o = 5.022)
conditions on the Jumper post-training test results showed no significant difference,
t(112) = 1193 p = 235 with Cohen’s d = .23, suggesting a small effect size.
"https://www.prolific.com/
’Medical content from West Virginia Department of Health and Human Resources
(https://www.wvoems.org/), verified by medical experts during IRB approval.
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Number of Attempts on Test by Group

LETRITN

No Training Random PERM-H Handcrafted PERM-H

Number of Attempts
® o

o

Number of Attempts

Figure 1: Number of attempts across different conditions for Jumper test. Lower numbers denote
better performance. ‘X’ represents mean number of attempts.

Final Test Scores by Group

16 —
Emergency Response Game A one-way
ANOVA showed significant differences in the
test scores among groups, F'(3,117) = 12.46, 12
p < .001, partial n? = .24, signifying a large
o

Score

effect. Tukey’s HSD post-hoc comparisons re-
vealed significant differences between SimMAC
and both random (Ap = —3.21, p < .001)
and reading-only conditions (Ay = —3.53, 4
p < .001). The handcrafted condition also dif- T T T T

fered significantly from random (Ap = —1.81, Reading Random Handcrafted SimMAc

p = .03) and reading conditions (A = —2.13,

p = .009). No significant differences were Figure 2: Results of Emergency Response knowl-
found between SimMAC and handcrafted con- edge test. ‘X’ denotes mean score on test.

ditions (Ap = —1.40, p = .155) or between

random and reading conditions (Ap = —0.326,

p = .960).

In summary:

1. Students trained using our proposed teacher algorithms significantly outperformed those in
the control and Random curricula groups in both environments.

2. Students trained under the handcrafted curriculum also outperformed those in the control
and Random curricula groups.

3. No significant performance difference was observed between students trained with our
algorithms and those trained with the Handcrafted curriculum. Similarly, no significant
difference was found between the Random and control groups.

The results for Jumper and Emergency Response game are visualized in Figure [T and 2] respectively.

Discussion These findings demonstrate that our RL-bootstrapped teacher algorithms (PERM-H
and SIimMAC) significantly outperformed both random and control curricula groups while achieving
comparable results to expert-designed curricula—despite requiring no manual design effort. Overall,
these results lend credibility to the efficacy of algorithms supported by RL agents in curriculum design.
Surprisingly, the Random group showed no improvement over the No Training group despite greater
domain exposure, highlighting that unstructured practice offers minimal benefit and reinforcing the
value of intelligently sequenced learning experiences.

6.2 Comparisons to Other Teacher Algorithms

Given the central focus on level difficulty (PERM-H) and task similarity (Sim-
MAC) in the respective environments, we draw comparisons between our
proposed teacher algorithms and Dbaselines in the context of these metrics.
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Figure 3: Difficulty progression across curricula
for Jumper. PERM-H introduces challenges earlier
than alternatives. RL agents reach difficulty levels
comparable to humans, supporting their viability

as warm-start learners.

Jumper Figure3]shows PERM-H-generated
levels consistently exhibited higher difficulty
compared to random curricula. This rigorous
training benefited students when encountering
the complex final test level. Contrary to ex-
pectations of a logarithmic training curve with
initial growth followed by plateauing, such as
the one exhibited by the Handcrafted group,
PERM-H participants faced challenging environ-
ments early, resulting in a performance ceiling
effect. Many PERM-H group participants ap-
peared to reach this upper bound during training
due to the Jumper domain’s relative simplicity.
PERM-H demonstrated the ability to quickly
infer learner ability levels and present challeng-
ing levels early in training, contrasting with the
random curriculum’s potentially wasted training
opportunities.

The Handcrafted curriculum began with ex-
tremely easy levels, slowly increasing difficulty

to reach a plateau comparable to PERM-H’s level around the 5th training level. Compared to the
adaptive curriculum provided by PERM-H, this suggests that initial levels provided minimal training
value, and participants could have benefited from a shorter, more efficient training regimen beginning

at a higher difficulty level.

Emergency Response Figure [ illustrates
the cumulative distance during training under
SimMAC-generated and Handcrafted curricula,
calculated by Equation [} The SimMAC cur-
riculum results in a lower cumulative distance
throughout training compared to both Random
and Handcrafted curricula. The Random cur-
riculum’s cumulative distance is similar to the
Handcrafted curriculum but less effective due
to higher variation in task similarity and lack
of easy-to-hard ordering. Students’ better per-
formance under the SImMAC curriculum indi-
cates that emphasizing learning continuity and

Cumulative Task Distance Across Curricula

8 10 '
S —— SimMAc
® Random
()
° 5 = Handcrafted
2
©
E
£
0
© T T 1
1 8 17
Task Index
Figure 4: Cumulative distance comparisons

smoother experiences leads to positive learning  across different curricula for Emergency Response.

outcomes.

6.3 Comparisons to RL Agents

This section attempts to investigate whether RL

Higher distance means lower similarity.

agents are suitable as warm-start human learners by comparing RL Agent and human training.

Jumper

We trained a PPO [Schulman et all [2017] student agent using PERM as the teacher

algorithm for 24,000 episodes. Figure [3| compresses the 24,000 RL training episodes into 10
levels, matching the human training scale. As training progresses, the artificial student agent
encounters increasingly challenging environments, ultimately reaching difficulty levels comparable
to handcrafted levels and, to some extent, humans trained under PERM-H.

Emergency Response For each task-pair ¢, j,
we calculate the Wasserstein distance between
performance distributions for both RL agents
and human students, and plotted these paired dis-

Human vs Agent Task Similarity

Agent Task Similarity
o
(&)}

Human Task Similarity
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tances in Figure[5] right. A Pearson correlation
coefficient was computed to assess the relation-
ship between them, and we found a moderate
positive correlation between the two variables
(r = .490,n = 287, p < .001).

Discussion Our findings across two environ-

ments demonstrate both the potential and limi-

tations of using RL agents as warm-start human

learners. In the Jumper environment, we corrob-

orate the results of Tsividis et al.|[2017]], with hu-

mans demonstrated superior learning efficiency,

reaching high performance levels quickly while

RL agents required millions of experiences to achieve even minimal human performance levels.
Despite this gap, RL agents and humans showed consistent agreement on task difficulty rankings.
The alignment suggests that in carefully designed domains, RL can effectively provide valid initial
training data in place of human learners.

In the Emergency Response domain, a moderately positive correlation emerged between inter-task
similarities derived from humans and agents, indicating some alignment between artificial and human
learning patterns. Notably, when selecting tasks during human trials, we relied on the distance
between human task trajectories and task trajectories, without updating the similarity metrics with
human data. Despite this direct comparison of task similarity from artificial to human learners, the
approach yielded excellent learning outcomes, demonstrating RL agents’ effectiveness as warm-start
substitutes for human learning data.

While differences between human and RL agents persist across both domains, our findings highlight
both the current limitations of RL in matching human learning efficiency and its potential to inform
and enhance human learning processes. The ability to automatically collect training data without
expert intervention, combined with positive student outcomes, justifies our approach of using RL
agents to train teacher algorithms. This lays the groundwork for developing more sophisticated
adaptive learning systems.

7 Conclusion and Future Work

We investigated using RL agents as warm-start proxies to address the cold-start problem in teacher
algorithms. Our approach trains PERM-H and SimMAC through structured Exploration and Ex-
ploitation stages. Human studies showed that our RL-bootstrapped curricula outperformed baseline
methods and matched expert-designed curricula without requiring extensive human data or domain
expertise.

While our findings suggest a viable pathway for reducing initial data dependencies in adaptive learning
systems, our approach is not without limitations. First, our approach is currently constrained to
environments that can effectively model both RL and human learning patterns, and notable alignment
gaps exist between these modalities. Second, our analysis revealed that RL agents has distinct
differences from human learners, suggesting the need for better alignment techniques.

Future work should investigate methods to better calibrate and evaluate the gap between RL agent
behavior and human learning patterns, perhaps through transfer learning approaches or hybrid models
that incorporate limited human data earlier in the process. Additionally, researchers might explore
how this bootstrapping methodology generalizes across more diverse learning domains, particularly
those with abstract reasoning requirements or social components. We invite the community to build
upon our testbed environments to develop improved alignment metrics and evaluation frameworks,
potentially expanding this approach to broader educational contexts. As this nascent field develops,
integrating generative Al with RL-based curriculum design could open new avenues for creating
more accessible, effective, and personalized learning experiences.
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A Technical Appendices and Supplementary Material

A.1 Further Details on Teacher Algorithms

A.1.1 PERM-H

Training Results for RL Agents

—— Random PERM
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Figure 6: Training results of RL Agents trained under PERM (orange) and a random curricula (blue).
Left: Agents trained under PERM-H increased in ability over time, despite levels of increasing
difficulty. Centre: PERM trainees are more likely to complete the level than those under random.
Right: Agents trained under PERM travelled deeper into the level than the counterparts in the random
condition.

Pre-study To determine if PERM applies well to our Jumper environment, we conducted a pre-study
in which we use PERM to train a student RL agent.

We first train a Jumper-tuned version of PERM. For the Jumper environment, we collected a tuple of
(spike density, height variance, rewards) for every episode of the RL training. In this development
phase, we obtained a total of 14506 environment-student interaction data, over a course of 12 hours,
with a single V100 GPU. Thereafter, we deploy the trained PERM-H as a teacher algorithm to a
new PPO Schulman ez al.|[2017] RL student trained using Unity’s m1-agents package |Juliani ef al.
[2020]]. We also provide the results of a RL student trained under a random curricula. The results are
shown in Figure 6]

Based on the obtained results, it is evident that the adoption of an Item Response Theory-driven
curriculum with the PERM teacher yields remarkable outcomes for RL agents, surpassing the
performance achieved by the random curriculum. Notably, RL agents trained using the IRT-driven
curriculum exhibit a higher level of proficiency in completing levels and, on average, traversed
deeper into these levels compared to their counterparts trained using the random curriculum. These
impressive outcomes are noteworthy considering that PERM continually challenges the student by
evolving the levels in the same pace.

Futher Analysis on Performance We compared participant’s completion rate. We also compared
participant’s self-reported familiarity with side-scrolling games against their completion rates. A
successful completion meant that participants took lesser than 15 attempts on the final test. Lastly, we
analyzed the duration it took per attempt for them to complete. We perform the above analysis based
on the assumption that more competent participants would complete the test with lesser attempts,

13



535

536
537
538
539
540
541
542
543
544
545
546
547

549
550

552
553
554
555

556
557
558
559
560
561

Success Rates at Test vs Familiarity Ratings

No Training Random PERM

Success Rates
o o o =
> (=2} =] o

o
N

o
o

2
Familiarity

Figure 7: Participant’s self-report of their familiarity with 2D games, against their completion
rates in the final test. A score of O represents "No Experience at all" while 5 represents "Highly
Experienced". All participants under PERM-H were successful in completing the test, with the
exception of individuals who had ”No experience at all" in 2D Games.

Name Jumper
Environment Type | UED
Short Description A Super-Mario inspired 2D game, where players have to control a character to

jump across obstacles to reach the end
Student Objective Reach the end of the level, while avoiding obstacles

Student Actions Keyboard controls to control main character’s movement and jumping
Env Parameters to | Spike Density; Ground Roughness

adjust 6

Skills Imparted Motor-skills, hand-eye coordination

Table 1: Overview of Jumper Game Environment

with a shorter duration. We used Student’s t-test to compare the duration and the attempts made in
the final test, and chi-squared test of goodness of fit to compare completion rates.

Results The completion rate of the

tests are presented in Figure[7] Partic-

ipants under the PERM-H were more Time Taken per Test Attempt
likely to complete the test (i.e. reach
the goal with less than 15 attempts),
regardless of prior experience with
games, than the other conditions. Fig-
ure [7] depicts the completion rate of
each condition, compared to their self-
reported prior experience. The ef-
fect of curriculum was found to be
significant, i.e. the completion rates
were not equally distributed amongst No Training Random PERM

the 3 conditions (x?(2, N = 230) =

9.24,p < 0.0). Figure 8: Participants under PERM-H took a longer time per
Lastly, the duration per attempt attempt during the test (p < 0.01).

for groups under PERM-H (¢ =

61.02,0 = 66.41) were significantly

longer than that of the random curricula (u = 45.01,0 = 19.68,p < 0.01) and control condition
(= 29.86,0 = 16.42,p < 0.01). The average duration is plotted in Figure@

o)
o
]

Duration (s)
N
o
|

N
(=)
|

Discussion Collectively, these findings suggest that students trained with PERM-H were not only
more likely to succeed on the test but also required fewer attempts to do so. Crucially, this positive
impact of PERM-H on students remains consistent across individuals with diverse levels of prior
experience with similar games. This consistency underscores the effectiveness of the adaptive
curriculum implemented by PERM-H, demonstrating its capacity to benefit participants regardless of
their varied backgrounds.
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Name Emergency Response

Environment Type | Task Sequencing

Short Description A Overcooked-inspired game, where players take the role of a paramedic
providing medical assistance to a patient enroute to the hospital

Student Objective Provide the necessary medical assistance, in reaction to a description of pa-
tient’s conditions

Student Actions Mouse to control paramedic’s movement, and to guide and pick up the neces-
sary medical devices

Env Parameters to | Task from a pre-determined pool
adjust 0

Skills Imparted Medical knowledge and decision making, working under time pressures

Table 2: Overview of Emergency Response Game Environment

Figure 9: Possible segments of levels generated by PERM-H. The easy level (left) has lesser spikes
and lesser variation in the terrain. In contrast, players have to navigate uneven terrains and jump
across more spikes in the difficult level (right).

We were surprised that students under PERM-H had took significantly longer per attempt to complete
the test. This observation hints at distinct behavioral differences among the learners, especially
those exposed to higher difficulty levels. It’s worth highlighting that participants were not explicitly
informed that their performance was being evaluated based on the speed of level completion. This
absence of explicit information could have influenced the more deliberate approach adopted by
students exposed to the PERM-H framework.

Enjoyment During Training

Method At the end of the training trial, we conducted a short survey that queried participants on
how fun they found the training.

Results Participants assigned to the PERM-H condition rated the game as less fun (@ = 3.18,0 =
1.06) as compared to participants in the no training condition (1 = 3.43, 0 = 1.16, p = 0.027) but not
significantly different from the participants in the random curricula (¢ = 3.29,0 = 1.29, p = 0.044).

Discussion We noticed that participants who did not undergo any form of training tended to rate the
game as more enjoyable than those who received training. This disparity in enjoyment levels might
be linked to the potential fatigue induced by the training process. A closer analysis showed that,
on average, both participants with average (u = 4.08, 0 = 2.98) performance under the PERM-H
framework required more attempts to complete their training compared to their peers in the random
curricula (¢ = 3.43, 0 = 2.28, p < 0.01). It’s important to note that this increased number of training
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attempts was a desired outcome of PERM-H, as it consistently provided levels within the grasp of the
participant’s ability.

A2 SimMAC

In this section, we provide more details of the SImMMAC algorithm and related backgrounds of
SimMAC.

Background: Wasserstein Distance Wasserstein distance was employed to estimate the distance
between two tasks in DIPLR |Li ef al.|[2023a]. DIPLR focuses on the pair-wise distance and calculates
the distance between two tasks d(771,772) as:

1/p

W(pg‘elapg‘%) = an E(¢1,¢2 Nw[ (¢1 ¢2) ]
Yell(pT 5, P 0,)

@)
where ¢ € (S, A) is a sample from the occupancy distribution. By Equation , DIPLR collects
state-action samples in trajectories to compute the empirical Wasserstein distance between two tasks.
Le., d(T%,T%) £ W(pTo,, p50;) & W(7i,7;) is our empirical estimation of the Wasserstein

distance between two tasks.

We extend the methodology in DIPLR and employ Wasserstein distance to calculate the distance
between one task and a set of tasks, d(7 0%, T%~=):

1/p

W(p;ek Y p?}@i,\,j) = an E(¢>1,¢2 Ndf’[ (¢17 ¢2) ]

YEI(pT g, 2P o,
Tinvd

3

Exploration Stage During the Exploration Stage of SimMAC, we initialize a diverse set of RL
agents and train them uniformly on all tasks. We collect the trajectories at different stages during
training such that the agent trajectories have a wide coverage over each task and we can use them
to obtain a good occupancy measure for each task. Assume we have k tasks and we denote the
trajectories associated with each task by I'', T'2, ..., T'"*. The complete procedures of the SimMAC
algorithm are summarized in Algorithm[A.2]

[th] SimMAC for Emergency Response Game  training tasks: 791, 7%, ..., 7%/ training curriculum
length N (N < k), empty trajectory buffer I"

Measure the difficulty of each task

Select task with the lowest difficulty, denoted by 71

Train human learner in 79t and collect the trajectories, 7 ~ T

Insert 71 into I

t =2,3,..,Ni=1,2, ... N Calculate task similarity between 7% and the rest of the tasks by
d=W(T,T?)

Select the task with the lowest distance, denoted by T

Train the human learner in 7% and collect the trajectories, 74 ~ T

Insert 7 into I

Qualtitative Feedback from Participants At the end of the experiment, we conducted a short
survey to gather participants’ feedback on how enjoyable they found the game, the coherence of
their learning experiences, and whether they felt fatigued afterward. Our primary focus was on their
feedback regarding the consistency and coherence of the curriculum.

Participants in the Random group frequently complained about the lack of coherence in their learning
experience, as tasks were randomly shuffled, leading to a disjointed progression for some. In contrast,
participants in the SInMAC group reported a more coherent and continuous learning experience.
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In addition to smooth knowledge accumulation, human learners showed a strong preference for
progressing from easy to more difficult tasks. This preference is interesting because it contrasts with
what is typically effective for training reinforcement learning (RL) agents. In RL, numerous studies
(Wang et al.| [2019]; Dennis et al.|[2020]; Jiang et al.|[[2021]]; Parker-Holder et al.|[2022] highlight the
benefits of training in novel and challenging environments. This difference in learning preferences
can be attributed to the distinct objectives and constraints in RL training versus human training. In
RL, the goal is to develop agents with general capabilities that can transfer to unseen challenges, often
involving billions of training timesteps. On the other hand, human training emphasizes maximizing
learning efficiency within a limited timeframe, as extended curricula can lead to fatigue.

A.2.1 Extended Experiment Results

Time Spent In-Game by Group
2500 O

2000 — _

1500 —

500 = -1 -

Time Spent In-Game (Seconds)

| | | |
Reading Random Handcrafted SimMAc

Figure 10: Game time by various groups.

All participants were compensated for their participation in our study, at a rate that
is above or the same as Prolific’s recommended payment principles (https://researcher-
help.prolific.com/en/article/2273bd).

Game Time Figure[I0]compares the game time across three different experimental groups: Hand-
crafted, SImMAC, and Random. The Reading group is the control group, which did not participate in
the game but instead focused on reading materials related to emergency response knowledge. Key
observations include:

1. The SImMAC group, which used the proposed SImMAC teacher for curriculum training,
has a median game time of about 18 minutes, with a relatively tight interquartile range (IQR)
from around 15 to 22 minutes. This suggests that participants in this group were able to
complete the game efficiently.

2. The Handcrafted group shows a similar median game time, also around 18 minutes, but with
a slightly wider IQR compared to the SimMAC group. This indicates a bit more variability
in performance.

3. The Random group has the highest median game time, approximately 22 minutes, with
the broadest IQR, suggesting greater variability in how long participants took to complete
the game. There is also an outlier, indicating that at least one participant took significantly
longer than others.

In summary, the results highlight the effectiveness of the SimMAC teacher in providing a training
curriculum that allows human learners to complete the task more efficiently, as evidenced by the
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649 lower game times. Moreover, participants in the SImMAC group achieved the highest post-test scores,
650 demonstrating that the efficiency gained in game time did not come at the cost of learning quality.

Average Remaining Attempts by Group

—

| | | |
Reading Random Handcrafted SimMAc

w
]

N
]

Remaining Attempts
'_l
|

o
l

Figure 11: Averaged remaining attempts in each task during the game.

st Remaining Attempts in the Game Figure [IT] provides the average remaining attempts in each
652 task during the game. In general, participants in Random group required more attempts to complete
653 the scenario. SImMAC and Handcrafted, on the other hand required lesser attempts. This can be
654 attributed to the easy-hard progression that is a feature of SiImMAC and Handcrafted curriculum, so
655 that participants do not face a difficult task even before they have learned about it.

Average Fun Factor of Emergency Response

4 —

Average Fun

SimMAC Handcrafted Random Reading

Figure 12: Averaged remaining attempts in each task during the game.

es6 Participant’s Assessment of Fun and Usefulness After the experiment ended, participants were
657 tasked to complete a survey on their training experience. The results pertaining to the fun factor
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("How do you rate the fun factor of the game?") and usefulness of their curricula ("Did you feel the
order in which these scenarios were presented to you to play, helped you to learn these scenarios
better?") are presented in Figure[I2]and Figure[I3]respectively. Overall, all participants found the

Did you feel the order in which you played was helpful?

20

15 =

Count

10 -

SimMAC Handcrafted Random Reading

s Do not know mm No s Yes

Figure 13: Averaged remaining attempts in each task during the game.

Emergency Response Game fun with average scores well above 3 points (¢ = 3.78). Notably,
participants were more likely to find the curriculum generated by SimMAC to be helpful.

A.3 Environment Details
A.3.1 Emergency Response Environment

Our research team designed the emergency response game for paramedic training for non-expert
human learners. The participants engaged in our experiment will learn emergency response knowledge
through interactive video games.

A clear illustration of the game interface is presented in Figure[T5} In the game, the human player
navigates the ambulance, selecting appropriate medical items to treat patients with various conditions.
The patient’s condition transitions stochastically, meaning it can change to different states after the
application of a particular medical item. The current condition of the patient is displayed in the top
right corner, and this description updates dynamically as the condition evolves. When the mouse
hovers over a specific medical item, a description of the item and its functions appears in the bottom
right corner.

Players must complete a series of treatments to stabilize the patient before the ambulance reaches
the hospital. Our research team designed 10 different medical conditions, including Allergy, Seizure,
BreathingDifficulty, HeatStroke, ExternalBleeding, ColdExposure, AbdominalTrauma, Musculoskele-
talTrauma, AcuteCoronarySyndrome, Bronchospasm. Two of these conditions (Seizure and ColdExpo-
sure) were used to create a demo video to instruct participants on gameplay. The remaining conditions
form the task pool for training. Depending on the natural complexity of each condition, we developed
easy, medium, and hard versions for some diseases. However, conditions like ExternalBleeding and
HeatStroke may have only easy or medium versions due to a lack of diverse condition variations. In
total, 17 tasks were constructed to form the training curriculum.

Figure[I6|presents a segment of the flowchart for the BreathingDifficulty condition. For instance, in
the stochastic transition, the patient’s state can evolve to either patient-state=1 or patient-state=10
after the player applies CPAP. The player navigates the flowchart by selecting different actions
(i.e., medical items) and eventually reaches various termination states. Condition variations refer
to different severities of the same disease, such as mild HeatStroke versus severe HeatStroke. Vital
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Figure 14: Jumper Game’s test level. Players control the red figure to navigate the spiked maze, with
the objective of reaching the final goal in blue.

variations involve changes in vital signs, like blood pressure and body temperature, which influence
the treatment approach. Additionally, vital variations trigger dynamic updates in the game, displaying
the relevant vital value and range (indicated by the green bar). Through this interactive game, players
progressively accumulate knowledge and skills for handling various emergency response situations.
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Information Panel

Heat exhaustion
The patient is sufferring from a heat stroke
due to the hot weather condition. Patient ha
warm, moist skin, with general weakness, Icepack Electrolyte CPAP Defibrillat
dizziness, or occasionally syncope. Replenish or

er

Albuterol

Albuterol is used to prevent and treat
difficulty breathing, wheezing, shortness
of breath, coughing, and chest tightness

Stability 50%

Observe .’ Chances: 4
v
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Albuterol

Figure 15: Blown-up version of the Emergency Response Game, providing a bird-eye view of the
interior of an ambulance enroute to the hospital. Participants have to control the medical officer (in
blue) to retrieve appropriate medical equipment to address patient’s condition. The Information Panel
on the left describes the patient’s condition, and a short description of the item when participant’s
mouse hovers over an item.

Breathing Difficulty
(initial_state=0)

(patient-state=1) patient-state =10
Vital variation = 0 Vital variation = 1

|
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1

Figure 16: Flowchart of the BreathingDifficulty disease.

21



693

694
695
696
697

698
699
700

Pre-test questionnaire
[Online]
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across 4 groups:

[Reading, Random, Handcrafted, SimMAC].

Assign them unique IDs.
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Y

Reading material
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A.3.2 Additional Procedures for Human Subjects Training

Based on feedback from 8 volunteer testers, we adjusted our experimental setup. We reduced the
number of diseases from 10 to 8 and decreased total tasks from 21 to 17 to mitigate participant fatigue.
We also added 2 simpler tasks for a demo video and warm-up to familiarize participants with the

Post-test survey
10 mins

Figure 17: Public Experiment Flow.

game. Figure[I7]illustrates the detailed experiment flow.

Pilot test feedback revealed participants prefer completing one topic before moving to another, even
if tasks in new topics have higher similarity to past experiences. Consequently, we adjusted SImMAC

Online, before the
experiment day

In-person experiment

Around 2 hours and
Remuneration

NV

to complete all tasks within a current condition before introducing a new one.
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The participants’ initial reading materials were adapted from West Virginia Department of Health
and Human Resourcesﬂ Prior to the commencement of the study, the research team had consulted
a medical expert and they had confirmed that the medical information provided above are not
misrepresented, even in the local context, and poses no harm to the participants. As an added measure,
participants were debriefed after the experiment and explicitly advised to disregard the session as
indicative of local medical emergency protocols. They were directed to context-specific online
resources for more localized information.

A.4 Participant Background Analysis
A.4.1 Emergency Response Game

We conducted a comprehensive ablation analysis to ensure that the performance of the SimMAC
curriculum is not influenced by participants’ backgrounds. Most participants in our experiment were
university students with similar demographics, including age, learning abilities, reading skills and
etc. We focused on three key factors: whether participants held a job related to healthcare, their
experience with 3D games, and their initial proficiency in emergency procedures.

Healthcare Job Participants with healthcare-related jobs might perform better during the game
and in post-test questionnaires. Therefore, we collected this background information in the pre-test
questionnaire and summarized the job backgrounds of all participants in FigurdI8]

3D Game Experience Experience
with 3D games could also influence

performance. The distribution of 3D Healthcare Experience by Group
game experience by group is shown 100 =—

in Figure[T9]

A two-way ANCOVA was conducted
to examine the effects of Group as-
signment and Game Experience on the
final test scores, with Game Experi-
ence serving as a covariate. The anal-
ysis revealed a significant main effect (e
of Group (F(3,113) = 10.32,p < < S S
.001). However, the covariate, Game \g & S &
Experience, did not show a signifi- 5)\@ bé L o
cant effect (F(1,113) = 1.79,p = Q@Q

.183). The interaction between Group

and Game Experience was also not

statistically sig)niﬁcant (F(3,113) = Figure 18: Participants’ background of healthcare job.
0.07,p = .974).

In summary, our experiment design
was successful in mitigating for prior experience in games as a potential confounding factor for our
final test scores, and thus was not discussed in the main text.

75 —

50 —

Percentage

25 =

Proficiency in Emergency Procedures Finally, we analyzed participants’ proficiency in emergency
procedures, i.e., prior knowledge of handling emergency situations, as shown in Figure20] A two-way
ANCOVA was conducted to examine the effects of Group assignment and Emergency Proficiency
on test scores, while controlling for Emergency Proficiency as a covariate. The results revealed a
significant main effect of Group (F'(3,113) = 10.34, p < .001). There was also a significant effect
of the covariate, Emergency Proficiency (F'(1,113) = 8.92,p = .003). However, the interaction
between Group and Emergency Proficiency was not statistically significant (F'(3,113) = 1.49,p =
.221).

Taken together, it would suggest that while Emergency Proficiency and Group independently influ-
enced the final test scores, Emergency Proficiency was not a confound of group assignment. Our

*https://www.wvoems.org/
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Proportion of 3D Game Experience by Group Scores by Group and Game Experience
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1-No 3D Game 2 - Some 3D game

[ ] w3 - Expert 3D gamer

Experience experience

Figure 19: Left: Proportion of self-reported experience with games by Group. Right: Scores by
Group and prior Game Experience

750 experimental procedure had sufficiently controlled for prior experience in Emergency situations and
751 thus was not discussed in the main text.

Proportion of Emergency Proficiency by Group Scores by Group and Emergency Proficiency

Random

2

S

O

\a
Handcrafted
SIimMAC

I T T T T T
0% 20% 40% 60% 80% 100% SimMAC Handcrafted Random Reading

1-1do not have

any knowledge about — 2 - Basic idea about
any emergency emergency procedures
procedures

3 - Good
mmm understanding about
emergency procedures

Figure 20: Left: Proportion of self-reported experience with emergencies and medical procedures by
Group. Right: Scores by Group and prior experience with medical emergencies.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have highlighted the main direction of where we want to encourage
research towards, and highlighted the aspirations of this line of research.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have included it and discussed it briefly in the Conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:|[NA] .
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804 Justification: We use empirical results from our human subjects study to justify.

805 Guidelines:

806 * The answer NA means that the paper does not include theoretical results.

807  All the theorems, formulas, and proofs in the paper should be numbered and cross-
808 referenced.

809 * All assumptions should be clearly stated or referenced in the statement of any theorems.
810 * The proofs can either appear in the main paper or the supplemental material, but if
811 they appear in the supplemental material, the authors are encouraged to provide a short
812 proof sketch to provide intuition.

813 * Inversely, any informal proof provided in the core of the paper should be complemented
814 by formal proofs provided in appendix or supplemental material.

815 * Theorems and Lemmas that the proof relies upon should be properly referenced.

816 4. Experimental result reproducibility

817 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
818 perimental results of the paper to the extent that it affects the main claims and/or conclusions
819 of the paper (regardless of whether the code and data are provided or not)?

820 Answer: [Yes]

821 Justification: We have accurately described all algorithms and approaches highlighted in our
822 paper. Upon acceptance, we intend to open-source the environment such that researchers
823 can also use our environments to run their own studies.

824 Guidelines:

825 * The answer NA means that the paper does not include experiments.

826 * If the paper includes experiments, a No answer to this question will not be perceived
827 well by the reviewers: Making the paper reproducible is important, regardless of
828 whether the code and data are provided or not.

829 * If the contribution is a dataset and/or model, the authors should describe the steps taken
830 to make their results reproducible or verifiable.

831 * Depending on the contribution, reproducibility can be accomplished in various ways.
832 For example, if the contribution is a novel architecture, describing the architecture fully
833 might suffice, or if the contribution is a specific model and empirical evaluation, it may
834 be necessary to either make it possible for others to replicate the model with the same
835 dataset, or provide access to the model. In general. releasing code and data is often
836 one good way to accomplish this, but reproducibility can also be provided via detailed
837 instructions for how to replicate the results, access to a hosted model (e.g., in the case
838 of a large language model), releasing of a model checkpoint, or other means that are
839 appropriate to the research performed.

840 * While NeurIPS does not require releasing code, the conference does require all submis-
841 sions to provide some reasonable avenue for reproducibility, which may depend on the
842 nature of the contribution. For example

843 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
844 to reproduce that algorithm.

845 (b) If the contribution is primarily a new model architecture, the paper should describe
846 the architecture clearly and fully.

847 (c) If the contribution is a new model (e.g., a large language model), then there should
848 either be a way to access this model for reproducing the results or a way to reproduce
849 the model (e.g., with an open-source dataset or instructions for how to construct
850 the dataset).

851 (d) We recognize that reproducibility may be tricky in some cases, in which case
852 authors are welcome to describe the particular way they provide for reproducibility.
853 In the case of closed-source models, it may be that access to the model is limited in
854 some way (e.g., to registered users), but it should be possible for other researchers
855 to have some path to reproducing or verifying the results.

856 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We intend to open-source the code and environments for further research. As
our human subjects study contains sensitive data, we will not be releasing it at the moment.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described all our experiments and human subject interactions in the
Experiment section, as well as additional details in the Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We have taken due care to all statistical tests and plots we have done.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: As our work mainly involves running Unity environments, and less about
large models, we do not specify the hardware requirements. We do not forsee any problems
running our work with the standard University lab setups.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: As far as possible, we adhere to any ethics guidelines, including seeking IRB
for our human subjects studies.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work is preliminary and aspirational. As such, we discuss this in a bid to
spur research in a nascent field such as ours.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: The environments released are cleared by IRB and deemed suitable for general
adult audiences. As such, we do not go into detail in this paper. The IRB approval can be
provided, upon request.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .
Justification: The environment, and code, are all developed by authors.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We release the environment on a best effort basis.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: All details are provided in the Appendix, as far as possible.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: We have mentioned in our main paper that IRB approval has been sought ans
received.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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1062 * Depending on the country in which research is conducted, IRB approval (or equivalent)

1063 may be required for any human subjects research. If you obtained IRB approval, you
1064 should clearly state this in the paper.

1065 * We recognize that the procedures for this may vary significantly between institutions
1066 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1067 guidelines for their institution.

1068 * For initial submissions, do not include any information that would break anonymity (if
1069 applicable), such as the institution conducting the review.

1070 16. Declaration of LLLM usage

1071 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1072 non-standard component of the core methods in this research? Note that if the LLM is used
1073 only for writing, editing, or formatting purposes and does not impact the core methodology,
1074 scientific rigorousness, or originality of the research, declaration is not required.

1075 Answer: [NA] .

1076 Justification: No LLMs were used in the experiments.

1077 Guidelines:

1078 * The answer NA means that the core method development in this research does not
1079 involve LLMs as any important, original, or non-standard components.

1080 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1081 for what should or should not be described.
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