
From Machine to Human Learning: Towards
Warm-Starting Teacher Algorithms with

Reinforcement Learning Agents

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present an investigation into using Reinforcement Learning (RL) agents to ad-1

dress the well-established cold-start problem in AI teacher algorithms that require2

extensive human learning data. While the challenge of bootstrapping personalized3

learning systems is recognized across domains, collecting comprehensive human4

learning data remains resource-intensive and often impractical. Our work explores5

a novel methodological approach: warm-starting data-hungry teacher algorithms6

using RL agents to provide an initial foundation that can be refined and augmented7

with human learning data. We emphasize that this approach is not intended to8

replace human data, but rather to provide a practical starting point when such data9

is scarce. Through exploratory experiments in two game-based environments—a10

Super Mario-inspired platformer and an Overcooked-inspired medical training11

simulation—we conduct human subjects studies demonstrating that RL-initialized12

curricula can achieve comparable performance to expert-crafted sequences. Our13

preliminary analysis reveals that while human learning outcomes are positive, there14

remain notable gaps between RL agent behavior and human learning patterns, high-15

lighting opportunities for improved alignment. This work establishes a promising16

potential for RL-initialized teaching systems, opening valuable research directions17

at the intersection of RL and human learning.18

1 Introduction19

Artificial Intelligence (AI) applications in education hold the promise of revolutionizing learning20

through scalable, personalized, and adaptive approaches [Doroudi et al., 2019; Alrakhawi et al., 2023].21

These AI-driven methods aim to address the limitations of traditional expert-designed curricula, which22

often struggle to efficiently meet the diverse needs of a vast and growing student population across23

an expanding knowledge base [Lin et al., 2023]. In theory, AI tools could simultaneously provide24

tailored learning experiences to numerous students, dynamically adapting to individual needs and25

learning styles [Mousavinasab et al., 2021]. However, recent studies have shown that learning-26

based teacher algorithms often underperform when compared to expert-initialized or even random27

algorithms [Green et al., 2011; Lindsey et al., 2014].28

These systems require extensive data on student’s learning process in order to design effective29

curricula [van der Velde et al., 2024; Doroudi et al., 2019]. However, gathering comprehensive30

human learning data is time-consuming and costly; in one study, it took approximately 900 man-hours31

for a Machine Learning-based teacher algorithm to converge [Bassen et al., 2020]. While existing32

approaches supplement human data by incorporating demographic information [Zhao et al., 2020;33

Patel and Thakkar, 2022], this method introduces potential biases and privacy concerns [Suresh et al.,34

2022; Wang et al., 2018], limiting the development of robust teaching strategies. The challenge is35
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especially significant in dynamic fields where learning patterns change rapidly, requiring constant36

data collection and algorithm updates [Hatzilygeroudis and Prentzas, 2004].37

Our work focuses on teacher algorithms that adaptively sequence training tasks to optimize student38

learning outcomes. These algorithms interact with students by assigning targeted challenges, creating39

personalized curricula that evolve with student progress. Motivated by the capabilities of Reinforce-40

ment Learning (RL) agents in mastering complex environments [Silver et al., 2017, 2016], we propose41

leveraging these agents to bootstrap training data for teacher algorithms. This novel methodological42

approach aims to augment early algorithm development, reducing initial data requirements while43

providing a foundation that can be refined with human learning patterns. We evaluate this approach44

through human subjects studies in two contrasting environments: a Super Mario-style platformer for45

motor skills and a medical emergency response simulation with discrete tasks. Our findings suggest46

this approach offers a promising direction for addressing the cold-start problem in adaptive teaching47

systems. We invite the research community to explore advancing RL-based initialization with human48

learning patterns, potentially enabling more accessible personalized learning technologies.49

Our key contributions are as follows:50

1. We introduce a two-stage framework that leverages RL agents to generate training data for51

teacher algorithms that optimize student learning through task recommendations.52

2. We present two pedagogy-based teacher algorithms under this framework: a human-friendly53

adaptation of PERM [Tio and Varakantham, 2023] for domains with potentially infinite54

scenarios, represented by a finite set of parameters; and SimMAC, a novel Task Sequencing55

algorithm for domains with a finite and discrete set of scenarios.56

3. We demonstrate our approach’s effectiveness through two new environments, the Jumper57

game and Emergency Response game, where human trials show our methods outperform58

baselines approaches and match expert-handcrafted curricula.59

2 Related Work60

Unsupervised Environment Design (UED, [Dennis et al., 2020]) formalizes adaptive curriculum61

creation in a teacher-student framework for artificial agents. Domain Randomization (DR; [Tobin et62

al., 2017]), a foundational UED concept, generates diverse curricula but may not optimize learning.63

The current state-of-the-art UED algorithm, ACCEL [Parker-Holder et al., 2022], while effective for64

training agents, faces challenges in direct human application. We examine DR as a baseline and build65

on PERM [Tio and Varakantham, 2023], a promising approach based on Item-Response Theory that66

doesn’t require extensive student knowledge beyond interaction history.67

Sim-to-real research bridges the “reality gap" by training policies in simulation before deploying68

them in physical environments while maintaining the same policy architecture [Da et al., 2025]. In69

contrast, our method operates within a single environment but addresses the transfer from agents to70

humans, using bootstrap teacher algorithms that progressively improve their instructional capabilities.71

Unlike Sim-to-real’s focus on environmental domain gaps, we tackle the “simulated-agent and human72

gap" which involves differences in learning mechanisms and cognitive processing that we explore in73

Section 6.3.74

Recent research has explored using RL to optimize instructional activities in education [Doroudi et75

al., 2019]. However, across different domains, data-hungry RL teachers have shown mixed results,76

often failing to outperform baselines [Green et al., 2011; Segal et al., 2018; Doroudi et al., 2017].77

A key challenge is the complexity of modeling student states, requiring an “inordinate amount of78

data” [Doroudi et al., 2019]. Recent RL implementations in algebra education show promise but face79

challenges, notably the cold-start problem. [Bassen et al., 2020] reported their RL teacher needed80

nearly 600 learner course completions, or 900 man-hours, to converge on an effective strategy. This81

highlights a critical challenge in applying learning-based methods to human learning: the need for82

extensive initial data to achieve competency, raising practical and ethical concerns for real-world83

educational implementation. To address these issues, our study proposes employing RL agents as84

warm-start human learners for data collection. We aim to generate valuable training data for teacher85

algorithms, potentially mitigating the cold-start problem and improving the overall effectiveness of86

AI-assisted education.87
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We focus on two key principles to guide effective learning. First, both human [Van den Akker,88

2007; Grant, 2018; Macalister and Nation, 2019] and artificial learners [Bengio et al., 2009; Graves89

et al., 2017; Huang et al., 2020] benefit from progressively challenging curricula, where task dif-90

ficulty gradually increases to match student abilities. This alignment with the Zone of Proximal91

Development [Vygotsky and Cole, 1978] ensures optimal learning by maintaining an appropriate92

challenge level. Second, learning continuity enhances knowledge acquisition by connecting new93

content to prior experiences, creating smoother transitions through content overlap. This spiral94

curriculum approach [Bruner, 2009] strategically leverages existing knowledge while increasing95

difficulty, making learning more intuitive and effective than introducing entirely new content. Our96

proposed teacher algorithms address these principles: both incorporate difficulty progression, while97

SimMAC (Section 4.2) additionally considers task similarity by selecting subsequent tasks based on98

the learner’s experience history.99

3 Teacher Problem100

We study interactive teaching where algorithms dynamically assign tasks based on student perfor-101

mance feedback to maximize learning outcomes. Our focus encompasses two paradigms: UED and102

Task Sequencing.103

Unsupervised Environment Design UED [Dennis et al., 2020] generates diverse challenges to104

optimize student learning. The core assumption is that exposing students to diverse environments105

fosters generalized proficiency across the environment distribution, enhancing generalization.106

Formally, UED is conceptualized as an Underspecified Partially Observable Markov Decision Process107

(UPOMDP), defined as M = ⟨A,O,Θ, S, T, I, R, γ⟩, where A represents the action space, O the108

observation space, S the state space, T : S ×A×Θ → ∆(S) the transition function, I : S ×Θ →109

∆(O) the observation function, R : S × A × S × Θ → R the reward function, and γ ∈ [0, 1)110

the discount factor. The UPOMDP extends the traditional POMDP by incorporating Θ, a set of111

environment parameters where θ ∈ Θ represents specific configurations that define task instances. At112

each timestep t, the teacher selects θt ∈ Θ to generate an environment instance T θt with state st ∈ S,113

allowing dynamic adjustment of challenge complexity based on observed student performance. For114

example, in a navigation task, θ might parameterize obstacle frequency, enabling progressive difficulty115

calibration to maximize learning outcomes across Θ.116

Task Sequencing Task Sequencing represents a constrained UPOMDP where Θ defines a discrete117

and finite task pool with varying difficulty levels and knowledge requirements, requiring agents to118

apply different knowledge sets for successful completion. A successful teacher would determine119

optimal task ordering to maximize learning efficiency and post-training generalization across the task120

distribution. Given its versatility and effectiveness, Task Sequencing finds widespread application in121

various educational contexts [Bassen et al., 2020; Segal et al., 2018].122

4 RL-Supported Teacher Algorithms123

In this section, we detail our two-stage process for using RL to retrieve data for our teacher algorithms,124

consisting of an Exploration Stage and an Exploitation Stage. We then present two algorithms that125

benefits from this process: PERM-H, a human-adapted version of existing work, and SimMAC, a126

novel approach specifically designed for Task Sequencing.127

The Exploration Stage In the first stage, we use RL agents to simulate student-environment128

interactions and collect data. These RL agents interact with a variety of levels generated using DR129

[Tobin et al., 2017]. We record the agents’ performance, the parameters of the levels they encounter,130

and other relevant data specific to the teacher algorithms we’re developing. The key idea here is to131

use RL agents as stand-ins for human students. This allows us to gather extensive data on learning132

progress without requiring actual human participants. An important advantage of this approach is133

that RL agents start from scratch and improve over time, much like real students. This enables us to134

simulate a diverse group of learners with varying skill levels, providing a rich dataset for our teacher135

algorithms to learn from. By using RL agents in this way, we can generate a large amount of valuable136
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training data for our teacher algorithms, helping to address the cold-start problem and potentially137

improve the effectiveness of AI-assisted education from the outset.138

The Exploitation Stage In the exploitation stage, we utilize the data collected during the exploration139

stage to train the teacher algorithms and apply compatible algorithms to human training. Similar to140

RL training under UPOMDPs, we emulate the process with humans using a continuous loop. We note141

here that as more human interaction data is collected, it can be used to supplement, and eventually142

replace, RL data for stronger alignment to humans.143

The teacher algorithm first makes an inference based on the student’s recent performance rt and144

outputs the next task, θt+1. The student then trains under the new level generated from θt+1 and145

returns the corresponding reward or performance metric, rt+1. This iterative process continues146

throughout the training session until a predetermined termination criterion is reached.147

4.1 PERM-H148

PERM [Tio and Varakantham, 2023] is an Item-Response Theory-based model for UED in RL149

that infers agent ability a and environment difficulty δ from observed parameters and performance150

to determine subsequent training environments, motivated by the Zone of Proximal Development151

[Vygotsky and Cole, 1978]. We modified PERM’s original assumption that optimal learning occurs152

when δ = a to δ = ϵa (ϵ ≥ 1.0), accommodating potentially faster human learning rates [Tsividis et153

al., 2017]. We call this adaptation PERM-H.154

During the Exploration Stage, we collect θ and r to train PERM-H. In the Exploitation stage, PERM-155

H operates cyclically by estimating the student’s current ability, using this estimate to specify the156

desired difficulty for the next level, and generating a level matching this difficulty, while adapting157

to the student’s progress. While effective for difficulty-based progression, PERM-H, without major158

modifications, cannot handle domains requiring distinct, non-comparable skills. For these cases, we159

developed an alternative algorithm for more diverse task sequencing.160

4.2 SimMAC161

SimMAC creates effective learning curricula by balancing task difficulty and knowledge continuity.162

Our approach is built on two fundamental principles: tasks requiring less training time are inherently163

easier, and optimal learning occurs when new tasks build upon previously acquired knowledge.164

Quantifying Task Difficulty We measure task difficulty through convergence analysis: training165

an RL agent uniformly across tasks and identifying the point at which performance stabilizes. We166

consider task 1 easier than task 2 if and only if its convergence point cθ occurs earlier (cθ1 < cθ2).167

We average results across multiple runs to ensure measurement reliability.168

Modeling Knowledge Transfer Between Tasks The core innovation of SimMAC lies in its ability169

to identify knowledge overlap between tasks. We approximate a task’s knowledge content through170

trajectory analysis, operating on the principle that similar tasks elicit similar behavioral patterns171

during solution.172

A trajectory τ represents the sequence of states and actions, i.e., τ = {s0, a0, s1, a1, ..., aT−1, sT }.173

The distribution of trajectories, the occupancy measure, provides a mathematical expression of the174

knowledge required for task completion:175

ρπT θ (s, a) =

T∑
t=0

[
Pr(st = s, at = a|s0 ∼ p0(·), st ∼

p(·|st−1, at−1, θ), at ∼ π(·|st)
]

where T is the horizon limit, p0(·) is the initial state distribution.176

Tasks with overlapping occupancy measures require similar actions in similar states, indicating177

shared knowledge requirements. We quantify this similarity using Wasserstein distance W between178

trajectory distributions [Li et al., 2023b] W(ρπT θi
, ρπT θj

) ≈ W(τi, τj) where ρπT θi
and ρπT θj

represent179
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the occupancy measures induced by policy π on task T θi and task T θj , respectively, with τi and τj180

being the resulting trajectories.181

Extending beyond Li et al. [2023b]’s pairwise comparisons, we measure similarity between a182

candidate task and the entire set of previously completed tasks: T θk and a set of tasks, T θi∼j =183 {
T θi , T θi+1 , ..., T θj

}
. We aggregate the trajectories collected in T θi∼j as τi∼j and compute the184

distance d between τk and τi∼j :185

d(T θk , T θi∼j ) ≜ W(ρπT θk
, ρπT θi∼j

) ≈ W(τk, τi∼j) (1)

In our paper, low distance between task denotes high similarity, which guides our task selection.186

4.2.1 Implementation of Exploration-Exploitation Process in SimMAC187

During the Exploration Stage, we deploy multiple RL agents trained uniformly across the task188

space, systematically collecting trajectory data and measuring convergence points to quantify both189

task difficulty (cθ) and occupancy distributions (ρπT θ ). These measurements provide the empirical190

foundation for our similarity metrics.191

In the subsequent Exploitation Stage, we leverage these metrics to construct optimal learning se-192

quences. Drawing inspiration from spiral curriculum [Bruner, 2009], we design a process that193

systematically builds upon existing knowledge while incrementally increasing difficulty. Beginning194

with the task exhibiting the lowest convergence point (minθ cθ), we iteratively select subsequent195

tasks that maximize similarity to the accumulated experience, formally selecting T θj+1 to minimize196

d(T θj+1 , T θ1∼j ) while ensuring a gradual progression in difficulty. This implementation enables197

the creation of personalized curricula that maintain coherent knowledge pathways while systemati-198

cally introducing more challenging concepts, thereby optimizing both learning continuity and skill199

development.200

5 Human Subjects Experiment Design201

We evaluate our RL-supported teacher algorithms against baselines using human participants who202

undergo training in the Jumper and Emergency Response games. All studies received local IRB203

approval. Further details of the environments and the experiment procedure can be found in Appendix.204

Jumper Environment The Jumper Environment is a 2D obstacle course game developed in Unity205

(Juliani et al., 2020), inspired by classic platformers. Players navigate a character through spiked206

pathways using keyboard controls, aiming to reach the level’s end without collisions (Figure 14).207

The environment has two adjustable parameters θ for level generation: spike density and ground208

roughness; these parameters directly influence the difficulty of the level, enabling systematic study of209

learning progression and adaptive difficulty.210

Participants were recruited through an online chat group connecting researchers and screened for211

device compatibility. To control for prior gaming experience, participants rated their familiarity with212

2D side-scrolling games (e.g., Super Mario Bros) to balance experimental conditions.213

First, participants received visual instructions on the Jumper gameplay and a trial to familiarize214

themselves with the controls. After the trial, participants were randomly assigned to one of three215

conditions:216

1. No Training (Control): Participants received no training and proceeded directly to the test217

stage after the trial. (n = 80)218

2. Random: Participants played randomly generated training levels. (n = 78)219

3. PERM-H: Participants received training levels generated by a Jumper-tuned model trained220

on RL data. The model adapted level difficulty based on inferred player ability. (n = 72)221

In the Random and PERM-H conditions, participants received 10 different levels with a maximum of222

15 attempts per level. Upon completing a level or exhausting attempts, participants progressed to the223

next level. Finally, after the respective training intervention, they would receive a test level on which224

we use to measure post-training performance. We initially recruited 240 participants for our study,225
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and filtered out low-effort participants. Finally, there were no significant differences in prior gaming226

experience across groups (one-way ANOVA: F (2, 237) = 0.902, p > .05).227

To further investigate the effectiveness of our approach, we conducted a follow-up study comparing228

PERM-H to a handcrafted curriculum. This handcrafted curriculum, designed by our research team,229

featured a fixed sequence of training levels with increasing difficulty. We recruited 120 participants230

via Prolific1, representing a different sample group from the initial study. After excluding outliers, our231

final counts were 52 participants in the PERM-H group and 61 in the Handcrafted group. Results from232

this follow-up study are presented separately from the main study to distinguish between participant233

pools.234

Emergency Response Environment We present a 3D Emergency Response Environment2 sim-235

ulating time-critical medical care scenarios (Figure 15). Developed with paramedic services, this236

environment requires players to select and apply appropriate treatments to patients with evolving237

conditions during hospital transport. The simulation features stochastic patient state transitions, real-238

time feedback, and contextual tool information, replicating the decision pressure faced by emergency239

medical personnel while allowing limited attempts per intervention.240

We conducted an experiment with 121 participants, randomly assigned to one of the four groups:241

1. Reading Only (control): Learned solely through reading materials, without engaging in242

gameplay. (n = 31)243

2. Random: Played tasks selected at random from the pool, without replacement. (n = 30)244

3. Handcrafted: Followed a predefined task sequence designed by the research team. (n = 30)245

4. SimMAC: Experienced an adaptively curated task order generated by SimMAC. (n = 30)246

Except for the Reading group, all participants completed all 17 unique tasks within 45 minutes after a247

25-minute reading session on medical knowledge. After the respective treatments, participants were248

given a multiple-choice questionnaire to assess their knowledge of appropriate measures to take in a249

medical emergency. One-way ANOVA confirmed no significant differences in prior game experience250

(F (3, 117) = 1.34, p = .27) or emergency handling experience (F (3, 117) = 1.88, p = .14) across251

groups.252

6 Evaluation253

In our evaluation, we investigate three key research questions: differences in post-training perfor-254

mance across conditions, distinguishing characteristics between curricula, and fundamental differ-255

ences between RL agents and human learners. For all statistical tests described, we used α = 0.05.256

6.1 Post-Training Evaluation257

We analyzed the effectiveness of teacher-guided training in improving post-training performance on258

the final test. In Jumper, competence was measured by fewer attempts to complete the test level. In259

Emergency Response, we counted correct responses on the final multiple-choice test.260

Jumper Environment A one-way ANOVA revealed significant differences in final test attempts261

across groups, F (2, 237) = 16.461, p < .001, partial η2 = .122, signifying a moderately large262

effect. Tukey’s HSD post-hoc test showed significant differences between No Training and PERM-H263

(∆µ = −2.599, p < .001) and between Random and PERM-H (∆µ = −1.380, p < .001). No264

significant difference was found between the No Training Group and Random Group (∆µ = −1.219,265

p = .115).266

PERM-H vs. Handcrafted Training An independent-samples t-test comparing PERM-267

H (µ = 5.904, σ = 5.558) and Handcrafted (µ = 4.705, σ = 5.022)268

conditions on the Jumper post-training test results showed no significant difference,269

t(112) = 1.193, p = .235, with Cohen’s d = .23, suggesting a small effect size.270
1https://www.prolific.com/
2Medical content from West Virginia Department of Health and Human Resources

(https://www.wvoems.org/), verified by medical experts during IRB approval.
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Figure 1: Number of attempts across different conditions for Jumper test. Lower numbers denote
better performance. ‘X’ represents mean number of attempts.

Figure 2: Results of Emergency Response knowl-
edge test. ‘X’ denotes mean score on test.

271

Emergency Response Game A one-way272

ANOVA showed significant differences in the273

test scores among groups, F (3, 117) = 12.46,274

p < .001, partial η2 = .24, signifying a large275

effect. Tukey’s HSD post-hoc comparisons re-276

vealed significant differences between SimMAC277

and both random (∆µ = −3.21, p < .001)278

and reading-only conditions (∆µ = −3.53,279

p < .001). The handcrafted condition also dif-280

fered significantly from random (∆µ = −1.81,281

p = .03) and reading conditions (∆µ = −2.13,282

p = .009). No significant differences were283

found between SimMAC and handcrafted con-284

ditions (∆µ = −1.40, p = .155) or between285

random and reading conditions (∆µ = −0.326,286

p = .960).287

In summary:288

1. Students trained using our proposed teacher algorithms significantly outperformed those in289

the control and Random curricula groups in both environments.290

2. Students trained under the handcrafted curriculum also outperformed those in the control291

and Random curricula groups.292

3. No significant performance difference was observed between students trained with our293

algorithms and those trained with the Handcrafted curriculum. Similarly, no significant294

difference was found between the Random and control groups.295

The results for Jumper and Emergency Response game are visualized in Figure 1 and 2 respectively.296

Discussion These findings demonstrate that our RL-bootstrapped teacher algorithms (PERM-H297

and SimMAC) significantly outperformed both random and control curricula groups while achieving298

comparable results to expert-designed curricula—despite requiring no manual design effort. Overall,299

these results lend credibility to the efficacy of algorithms supported by RL agents in curriculum design.300

Surprisingly, the Random group showed no improvement over the No Training group despite greater301

domain exposure, highlighting that unstructured practice offers minimal benefit and reinforcing the302

value of intelligently sequenced learning experiences.303

6.2 Comparisons to Other Teacher Algorithms304

Given the central focus on level difficulty (PERM-H) and task similarity (Sim-305

MAC) in the respective environments, we draw comparisons between our306

proposed teacher algorithms and baselines in the context of these metrics.307
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Figure 3: Difficulty progression across curricula
for Jumper. PERM-H introduces challenges earlier
than alternatives. RL agents reach difficulty levels
comparable to humans, supporting their viability
as warm-start learners.

308

Jumper Figure 3 shows PERM-H-generated309

levels consistently exhibited higher difficulty310

compared to random curricula. This rigorous311

training benefited students when encountering312

the complex final test level. Contrary to ex-313

pectations of a logarithmic training curve with314

initial growth followed by plateauing, such as315

the one exhibited by the Handcrafted group,316

PERM-H participants faced challenging environ-317

ments early, resulting in a performance ceiling318

effect. Many PERM-H group participants ap-319

peared to reach this upper bound during training320

due to the Jumper domain’s relative simplicity.321

PERM-H demonstrated the ability to quickly322

infer learner ability levels and present challeng-323

ing levels early in training, contrasting with the324

random curriculum’s potentially wasted training325

opportunities.326

The Handcrafted curriculum began with ex-327

tremely easy levels, slowly increasing difficulty328

to reach a plateau comparable to PERM-H’s level around the 5th training level. Compared to the329

adaptive curriculum provided by PERM-H, this suggests that initial levels provided minimal training330

value, and participants could have benefited from a shorter, more efficient training regimen beginning331

at a higher difficulty level.332

Figure 4: Cumulative distance comparisons
across different curricula for Emergency Response.
Higher distance means lower similarity.

Emergency Response Figure 4 illustrates333

the cumulative distance during training under334

SimMAC-generated and Handcrafted curricula,335

calculated by Equation 1. The SimMAC cur-336

riculum results in a lower cumulative distance337

throughout training compared to both Random338

and Handcrafted curricula. The Random cur-339

riculum’s cumulative distance is similar to the340

Handcrafted curriculum but less effective due341

to higher variation in task similarity and lack342

of easy-to-hard ordering. Students’ better per-343

formance under the SimMAC curriculum indi-344

cates that emphasizing learning continuity and345

smoother experiences leads to positive learning346

outcomes.347

6.3 Comparisons to RL Agents348

This section attempts to investigate whether RL349

agents are suitable as warm-start human learners by comparing RL Agent and human training.350

Jumper We trained a PPO [Schulman et al., 2017] student agent using PERM as the teacher351

algorithm for 24,000 episodes. Figure 3 compresses the 24,000 RL training episodes into 10352

levels, matching the human training scale. As training progresses, the artificial student agent353

encounters increasingly challenging environments, ultimately reaching difficulty levels comparable354

to handcrafted levels and, to some extent, humans trained under PERM-H.355

Figure 5: Inter-task similarity as derived from
agents versus humans. Red line represents a re-
gression line of r = .490

Emergency Response For each task-pair i, j,356

we calculate the Wasserstein distance between357

performance distributions for both RL agents358

and human students, and plotted these paired dis-359
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tances in Figure 5, right. A Pearson correlation360

coefficient was computed to assess the relation-361

ship between them, and we found a moderate362

positive correlation between the two variables363

(r = .490, n = 287, p < .001).364

Discussion Our findings across two environ-365

ments demonstrate both the potential and limi-366

tations of using RL agents as warm-start human367

learners. In the Jumper environment, we corrob-368

orate the results of Tsividis et al. [2017], with hu-369

mans demonstrated superior learning efficiency,370

reaching high performance levels quickly while371

RL agents required millions of experiences to achieve even minimal human performance levels.372

Despite this gap, RL agents and humans showed consistent agreement on task difficulty rankings.373

The alignment suggests that in carefully designed domains, RL can effectively provide valid initial374

training data in place of human learners.375

In the Emergency Response domain, a moderately positive correlation emerged between inter-task376

similarities derived from humans and agents, indicating some alignment between artificial and human377

learning patterns. Notably, when selecting tasks during human trials, we relied on the distance378

between human task trajectories and task trajectories, without updating the similarity metrics with379

human data. Despite this direct comparison of task similarity from artificial to human learners, the380

approach yielded excellent learning outcomes, demonstrating RL agents’ effectiveness as warm-start381

substitutes for human learning data.382

While differences between human and RL agents persist across both domains, our findings highlight383

both the current limitations of RL in matching human learning efficiency and its potential to inform384

and enhance human learning processes. The ability to automatically collect training data without385

expert intervention, combined with positive student outcomes, justifies our approach of using RL386

agents to train teacher algorithms. This lays the groundwork for developing more sophisticated387

adaptive learning systems.388

7 Conclusion and Future Work389

We investigated using RL agents as warm-start proxies to address the cold-start problem in teacher390

algorithms. Our approach trains PERM-H and SimMAC through structured Exploration and Ex-391

ploitation stages. Human studies showed that our RL-bootstrapped curricula outperformed baseline392

methods and matched expert-designed curricula without requiring extensive human data or domain393

expertise.394

While our findings suggest a viable pathway for reducing initial data dependencies in adaptive learning395

systems, our approach is not without limitations. First, our approach is currently constrained to396

environments that can effectively model both RL and human learning patterns, and notable alignment397

gaps exist between these modalities. Second, our analysis revealed that RL agents has distinct398

differences from human learners, suggesting the need for better alignment techniques.399

Future work should investigate methods to better calibrate and evaluate the gap between RL agent400

behavior and human learning patterns, perhaps through transfer learning approaches or hybrid models401

that incorporate limited human data earlier in the process. Additionally, researchers might explore402

how this bootstrapping methodology generalizes across more diverse learning domains, particularly403

those with abstract reasoning requirements or social components. We invite the community to build404

upon our testbed environments to develop improved alignment metrics and evaluation frameworks,405

potentially expanding this approach to broader educational contexts. As this nascent field develops,406

integrating generative AI with RL-based curriculum design could open new avenues for creating407

more accessible, effective, and personalized learning experiences.408
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A Technical Appendices and Supplementary Material510

A.1 Further Details on Teacher Algorithms511

A.1.1 PERM-H512

Figure 6: Training results of RL Agents trained under PERM (orange) and a random curricula (blue).
Left: Agents trained under PERM-H increased in ability over time, despite levels of increasing
difficulty. Centre: PERM trainees are more likely to complete the level than those under random.
Right: Agents trained under PERM travelled deeper into the level than the counterparts in the random
condition.

Pre-study To determine if PERM applies well to our Jumper environment, we conducted a pre-study513

in which we use PERM to train a student RL agent.514

We first train a Jumper-tuned version of PERM. For the Jumper environment, we collected a tuple of515

(spike density, height variance, rewards) for every episode of the RL training. In this development516

phase, we obtained a total of 14506 environment-student interaction data, over a course of 12 hours,517

with a single V100 GPU. Thereafter, we deploy the trained PERM-H as a teacher algorithm to a518

new PPO Schulman et al. [2017] RL student trained using Unity’s ml-agents package Juliani et al.519

[2020]. We also provide the results of a RL student trained under a random curricula. The results are520

shown in Figure 6.521

Based on the obtained results, it is evident that the adoption of an Item Response Theory-driven522

curriculum with the PERM teacher yields remarkable outcomes for RL agents, surpassing the523

performance achieved by the random curriculum. Notably, RL agents trained using the IRT-driven524

curriculum exhibit a higher level of proficiency in completing levels and, on average, traversed525

deeper into these levels compared to their counterparts trained using the random curriculum. These526

impressive outcomes are noteworthy considering that PERM continually challenges the student by527

evolving the levels in the same pace.528

Futher Analysis on Performance We compared participant’s completion rate. We also compared529

participant’s self-reported familiarity with side-scrolling games against their completion rates. A530

successful completion meant that participants took lesser than 15 attempts on the final test. Lastly, we531

analyzed the duration it took per attempt for them to complete. We perform the above analysis based532

on the assumption that more competent participants would complete the test with lesser attempts,533
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Figure 7: Participant’s self-report of their familiarity with 2D games, against their completion
rates in the final test. A score of 0 represents ”No Experience at all" while 5 represents ”Highly
Experienced". All participants under PERM-H were successful in completing the test, with the
exception of individuals who had ”No experience at all" in 2D Games.

Name Jumper
Environment Type UED
Short Description A Super-Mario inspired 2D game, where players have to control a character to

jump across obstacles to reach the end
Student Objective Reach the end of the level, while avoiding obstacles
Student Actions Keyboard controls to control main character’s movement and jumping
Env Parameters to
adjust θ

Spike Density; Ground Roughness

Skills Imparted Motor-skills, hand-eye coordination
Table 1: Overview of Jumper Game Environment

with a shorter duration. We used Student’s t-test to compare the duration and the attempts made in534

the final test, and chi-squared test of goodness of fit to compare completion rates.535

Figure 8: Participants under PERM-H took a longer time per
attempt during the test (p < 0.01).

Results The completion rate of the536

tests are presented in Figure 7. Partic-537

ipants under the PERM-H were more538

likely to complete the test (i.e. reach539

the goal with less than 15 attempts),540

regardless of prior experience with541

games, than the other conditions. Fig-542

ure 7 depicts the completion rate of543

each condition, compared to their self-544

reported prior experience. The ef-545

fect of curriculum was found to be546

significant, i.e. the completion rates547

were not equally distributed amongst548

the 3 conditions (χ2(2, N = 230) =549

9.24, p < 0.01).550

Lastly, the duration per attempt551

for groups under PERM-H (µ =552

61.02, σ = 66.41) were significantly553

longer than that of the random curricula (µ = 45.01, σ = 19.68, p < 0.01) and control condition554

(µ = 29.86, σ = 16.42, p < 0.01). The average duration is plotted in Figure 8.555

Discussion Collectively, these findings suggest that students trained with PERM-H were not only556

more likely to succeed on the test but also required fewer attempts to do so. Crucially, this positive557

impact of PERM-H on students remains consistent across individuals with diverse levels of prior558

experience with similar games. This consistency underscores the effectiveness of the adaptive559

curriculum implemented by PERM-H, demonstrating its capacity to benefit participants regardless of560

their varied backgrounds.561
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Name Emergency Response
Environment Type Task Sequencing
Short Description A Overcooked-inspired game, where players take the role of a paramedic

providing medical assistance to a patient enroute to the hospital
Student Objective Provide the necessary medical assistance, in reaction to a description of pa-

tient’s conditions
Student Actions Mouse to control paramedic’s movement, and to guide and pick up the neces-

sary medical devices
Env Parameters to
adjust θ

Task from a pre-determined pool

Skills Imparted Medical knowledge and decision making, working under time pressures
Table 2: Overview of Emergency Response Game Environment

Figure 9: Possible segments of levels generated by PERM-H. The easy level (left) has lesser spikes
and lesser variation in the terrain. In contrast, players have to navigate uneven terrains and jump
across more spikes in the difficult level (right).

We were surprised that students under PERM-H had took significantly longer per attempt to complete562

the test. This observation hints at distinct behavioral differences among the learners, especially563

those exposed to higher difficulty levels. It’s worth highlighting that participants were not explicitly564

informed that their performance was being evaluated based on the speed of level completion. This565

absence of explicit information could have influenced the more deliberate approach adopted by566

students exposed to the PERM-H framework.567

Enjoyment During Training568

Method At the end of the training trial, we conducted a short survey that queried participants on569

how fun they found the training.570

Results Participants assigned to the PERM-H condition rated the game as less fun (µ = 3.18, σ =571

1.06) as compared to participants in the no training condition (µ = 3.43, σ = 1.16, p = 0.027) but not572

significantly different from the participants in the random curricula (µ = 3.29, σ = 1.29, p = 0.044).573

Discussion We noticed that participants who did not undergo any form of training tended to rate the574

game as more enjoyable than those who received training. This disparity in enjoyment levels might575

be linked to the potential fatigue induced by the training process. A closer analysis showed that,576

on average, both participants with average (µ = 4.08, σ = 2.98) performance under the PERM-H577

framework required more attempts to complete their training compared to their peers in the random578

curricula (µ = 3.43, σ = 2.28, p < 0.01). It’s important to note that this increased number of training579
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attempts was a desired outcome of PERM-H, as it consistently provided levels within the grasp of the580

participant’s ability.581

A.2 SimMAC582

In this section, we provide more details of the SimMAC algorithm and related backgrounds of583

SimMAC.584

Background: Wasserstein Distance Wasserstein distance was employed to estimate the distance585

between two tasks in DIPLR Li et al. [2023a]. DIPLR focuses on the pair-wise distance and calculates586

the distance between two tasks d(T θ1 , T θ2) as:587

W(ρπT θ1
, ρπT θ2

) =

 inf
ψ∈Π(ρπ

T θ1
,ρπ

T θ2
)

E(ϕ1,ϕ2)∼ψ[d(ϕ1, ϕ2)
p]

1/p

(2)
where ϕ ∈ (S,A) is a sample from the occupancy distribution. By Equation (2), DIPLR collects588

state-action samples in trajectories to compute the empirical Wasserstein distance between two tasks.589

I.e., d(T θi , T θj ) ≜ W(ρπT θi
, ρπT θj

) ≈ W(τi, τj) is our empirical estimation of the Wasserstein590

distance between two tasks.591

We extend the methodology in DIPLR and employ Wasserstein distance to calculate the distance592

between one task and a set of tasks, d(T θk , T θi∼æ):593

W(ρπT θk
, ρπT θi∼j

) =

 inf
ψ∈Π(ρπ

T θk
,ρπ

T θi∼j
)

E(ϕ1,ϕ2)∼ψ[d(ϕ1, ϕ2)
p]

1/p

(3)

Exploration Stage During the Exploration Stage of SimMAC, we initialize a diverse set of RL594

agents and train them uniformly on all tasks. We collect the trajectories at different stages during595

training such that the agent trajectories have a wide coverage over each task and we can use them596

to obtain a good occupancy measure for each task. Assume we have k tasks and we denote the597

trajectories associated with each task by Γ1,Γ2, ...,Γk. The complete procedures of the SimMAC598

algorithm are summarized in Algorithm A.2.599

[th] SimMAC for Emergency Response Game k training tasks: T θ1 , T θ2 , ..., T θk , training curriculum600

length N (N ≤ k), empty trajectory buffer Γ601

Measure the difficulty of each task602

Select task with the lowest difficulty, denoted by T θ1603

Train human learner in T θ1 and collect the trajectories, τ1 ∼ T θ1604

Insert τ1 into Γ605

t = 2, 3, ..., N i = 1, 2, ..., N Calculate task similarity between T θi and the rest of the tasks by606

d = W(Γ,Γi)607

Select the task with the lowest distance, denoted by T θt608

Train the human learner in T θt and collect the trajectories, τt ∼ T θt609

Insert τt into Γ610

611

Qualtitative Feedback from Participants At the end of the experiment, we conducted a short612

survey to gather participants’ feedback on how enjoyable they found the game, the coherence of613

their learning experiences, and whether they felt fatigued afterward. Our primary focus was on their614

feedback regarding the consistency and coherence of the curriculum.615

Participants in the Random group frequently complained about the lack of coherence in their learning616

experience, as tasks were randomly shuffled, leading to a disjointed progression for some. In contrast,617

participants in the SimMAC group reported a more coherent and continuous learning experience.618
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In addition to smooth knowledge accumulation, human learners showed a strong preference for619

progressing from easy to more difficult tasks. This preference is interesting because it contrasts with620

what is typically effective for training reinforcement learning (RL) agents. In RL, numerous studies621

Wang et al. [2019]; Dennis et al. [2020]; Jiang et al. [2021]; Parker-Holder et al. [2022] highlight the622

benefits of training in novel and challenging environments. This difference in learning preferences623

can be attributed to the distinct objectives and constraints in RL training versus human training. In624

RL, the goal is to develop agents with general capabilities that can transfer to unseen challenges, often625

involving billions of training timesteps. On the other hand, human training emphasizes maximizing626

learning efficiency within a limited timeframe, as extended curricula can lead to fatigue.627

A.2.1 Extended Experiment Results628

Figure 10: Game time by various groups.

All participants were compensated for their participation in our study, at a rate that629

is above or the same as Prolific’s recommended payment principles (https://researcher-630

help.prolific.com/en/article/2273bd).631

Game Time Figure 10 compares the game time across three different experimental groups: Hand-632

crafted, SimMAC, and Random. The Reading group is the control group, which did not participate in633

the game but instead focused on reading materials related to emergency response knowledge. Key634

observations include:635

1. The SimMAC group, which used the proposed SimMAC teacher for curriculum training,636

has a median game time of about 18 minutes, with a relatively tight interquartile range (IQR)637

from around 15 to 22 minutes. This suggests that participants in this group were able to638

complete the game efficiently.639

2. The Handcrafted group shows a similar median game time, also around 18 minutes, but with640

a slightly wider IQR compared to the SimMAC group. This indicates a bit more variability641

in performance.642

3. The Random group has the highest median game time, approximately 22 minutes, with643

the broadest IQR, suggesting greater variability in how long participants took to complete644

the game. There is also an outlier, indicating that at least one participant took significantly645

longer than others.646

In summary, the results highlight the effectiveness of the SimMAC teacher in providing a training647

curriculum that allows human learners to complete the task more efficiently, as evidenced by the648
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lower game times. Moreover, participants in the SimMAC group achieved the highest post-test scores,649

demonstrating that the efficiency gained in game time did not come at the cost of learning quality.650

Figure 11: Averaged remaining attempts in each task during the game.

Remaining Attempts in the Game Figure 11 provides the average remaining attempts in each651

task during the game. In general, participants in Random group required more attempts to complete652

the scenario. SimMAC and Handcrafted, on the other hand required lesser attempts. This can be653

attributed to the easy-hard progression that is a feature of SimMAC and Handcrafted curriculum, so654

that participants do not face a difficult task even before they have learned about it.655

Figure 12: Averaged remaining attempts in each task during the game.

Participant’s Assessment of Fun and Usefulness After the experiment ended, participants were656

tasked to complete a survey on their training experience. The results pertaining to the fun factor657
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("How do you rate the fun factor of the game?") and usefulness of their curricula ("Did you feel the658

order in which these scenarios were presented to you to play, helped you to learn these scenarios659

better?") are presented in Figure 12 and Figure 13 respectively. Overall, all participants found the

Figure 13: Averaged remaining attempts in each task during the game.
660

Emergency Response Game fun with average scores well above 3 points (µ = 3.78). Notably,661

participants were more likely to find the curriculum generated by SimMAC to be helpful.662

A.3 Environment Details663

A.3.1 Emergency Response Environment664

Our research team designed the emergency response game for paramedic training for non-expert665

human learners. The participants engaged in our experiment will learn emergency response knowledge666

through interactive video games.667

A clear illustration of the game interface is presented in Figure 15. In the game, the human player668

navigates the ambulance, selecting appropriate medical items to treat patients with various conditions.669

The patient’s condition transitions stochastically, meaning it can change to different states after the670

application of a particular medical item. The current condition of the patient is displayed in the top671

right corner, and this description updates dynamically as the condition evolves. When the mouse672

hovers over a specific medical item, a description of the item and its functions appears in the bottom673

right corner.674

Players must complete a series of treatments to stabilize the patient before the ambulance reaches675

the hospital. Our research team designed 10 different medical conditions, including Allergy, Seizure,676

BreathingDifficulty, HeatStroke, ExternalBleeding, ColdExposure, AbdominalTrauma, Musculoskele-677

talTrauma, AcuteCoronarySyndrome, Bronchospasm. Two of these conditions (Seizure and ColdExpo-678

sure) were used to create a demo video to instruct participants on gameplay. The remaining conditions679

form the task pool for training. Depending on the natural complexity of each condition, we developed680

easy, medium, and hard versions for some diseases. However, conditions like ExternalBleeding and681

HeatStroke may have only easy or medium versions due to a lack of diverse condition variations. In682

total, 17 tasks were constructed to form the training curriculum.683

Figure 16 presents a segment of the flowchart for the BreathingDifficulty condition. For instance, in684

the stochastic transition, the patient’s state can evolve to either patient-state=1 or patient-state=10685

after the player applies CPAP. The player navigates the flowchart by selecting different actions686

(i.e., medical items) and eventually reaches various termination states. Condition variations refer687

to different severities of the same disease, such as mild HeatStroke versus severe HeatStroke. Vital688
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Figure 14: Jumper Game’s test level. Players control the red figure to navigate the spiked maze, with
the objective of reaching the final goal in blue.

variations involve changes in vital signs, like blood pressure and body temperature, which influence689

the treatment approach. Additionally, vital variations trigger dynamic updates in the game, displaying690

the relevant vital value and range (indicated by the green bar). Through this interactive game, players691

progressively accumulate knowledge and skills for handling various emergency response situations.692
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Figure 15: Blown-up version of the Emergency Response Game, providing a bird-eye view of the
interior of an ambulance enroute to the hospital. Participants have to control the medical officer (in
blue) to retrieve appropriate medical equipment to address patient’s condition. The Information Panel
on the left describes the patient’s condition, and a short description of the item when participant’s
mouse hovers over an item.

Figure 16: Flowchart of the BreathingDifficulty disease.
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Figure 17: Public Experiment Flow.

A.3.2 Additional Procedures for Human Subjects Training693

Based on feedback from 8 volunteer testers, we adjusted our experimental setup. We reduced the694

number of diseases from 10 to 8 and decreased total tasks from 21 to 17 to mitigate participant fatigue.695

We also added 2 simpler tasks for a demo video and warm-up to familiarize participants with the696

game. Figure 17 illustrates the detailed experiment flow.697

Pilot test feedback revealed participants prefer completing one topic before moving to another, even698

if tasks in new topics have higher similarity to past experiences. Consequently, we adjusted SimMAC699

to complete all tasks within a current condition before introducing a new one.700
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The participants’ initial reading materials were adapted from West Virginia Department of Health701

and Human Resources3. Prior to the commencement of the study, the research team had consulted702

a medical expert and they had confirmed that the medical information provided above are not703

misrepresented, even in the local context, and poses no harm to the participants. As an added measure,704

participants were debriefed after the experiment and explicitly advised to disregard the session as705

indicative of local medical emergency protocols. They were directed to context-specific online706

resources for more localized information.707

A.4 Participant Background Analysis708

A.4.1 Emergency Response Game709

We conducted a comprehensive ablation analysis to ensure that the performance of the SimMAC710

curriculum is not influenced by participants’ backgrounds. Most participants in our experiment were711

university students with similar demographics, including age, learning abilities, reading skills and712

etc. We focused on three key factors: whether participants held a job related to healthcare, their713

experience with 3D games, and their initial proficiency in emergency procedures.714

Healthcare Job Participants with healthcare-related jobs might perform better during the game715

and in post-test questionnaires. Therefore, we collected this background information in the pre-test716

questionnaire and summarized the job backgrounds of all participants in Figure18.717

Figure 18: Participants’ background of healthcare job.

3D Game Experience Experience718

with 3D games could also influence719

performance. The distribution of 3D720

game experience by group is shown721

in Figure 19.722

A two-way ANCOVA was conducted723

to examine the effects of Group as-724

signment and Game Experience on the725

final test scores, with Game Experi-726

ence serving as a covariate. The anal-727

ysis revealed a significant main effect728

of Group (F (3, 113) = 10.32, p <729

.001). However, the covariate, Game730

Experience, did not show a signifi-731

cant effect (F (1, 113) = 1.79, p =732

.183). The interaction between Group733

and Game Experience was also not734

statistically significant (F (3, 113) =735

0.07, p = .974).736

In summary, our experiment design737

was successful in mitigating for prior experience in games as a potential confounding factor for our738

final test scores, and thus was not discussed in the main text.739

Proficiency in Emergency Procedures Finally, we analyzed participants’ proficiency in emergency740

procedures, i.e., prior knowledge of handling emergency situations, as shown in Figure 20. A two-way741

ANCOVA was conducted to examine the effects of Group assignment and Emergency Proficiency742

on test scores, while controlling for Emergency Proficiency as a covariate. The results revealed a743

significant main effect of Group (F (3, 113) = 10.34, p < .001). There was also a significant effect744

of the covariate, Emergency Proficiency (F (1, 113) = 8.92, p = .003). However, the interaction745

between Group and Emergency Proficiency was not statistically significant (F (3, 113) = 1.49, p =746

.221).747

Taken together, it would suggest that while Emergency Proficiency and Group independently influ-748

enced the final test scores, Emergency Proficiency was not a confound of group assignment. Our749

3https://www.wvoems.org/
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Figure 19: Left: Proportion of self-reported experience with games by Group. Right: Scores by
Group and prior Game Experience

experimental procedure had sufficiently controlled for prior experience in Emergency situations and750

thus was not discussed in the main text.751

Figure 20: Left: Proportion of self-reported experience with emergencies and medical procedures by
Group. Right: Scores by Group and prior experience with medical emergencies.
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NeurIPS Paper Checklist752

1. Claims753

Question: Do the main claims made in the abstract and introduction accurately reflect the754

paper’s contributions and scope?755

Answer: [Yes]756

Justification: We have highlighted the main direction of where we want to encourage757

research towards, and highlighted the aspirations of this line of research.758

Guidelines:759

• The answer NA means that the abstract and introduction do not include the claims760

made in the paper.761

• The abstract and/or introduction should clearly state the claims made, including the762

contributions made in the paper and important assumptions and limitations. A No or763

NA answer to this question will not be perceived well by the reviewers.764

• The claims made should match theoretical and experimental results, and reflect how765

much the results can be expected to generalize to other settings.766

• It is fine to include aspirational goals as motivation as long as it is clear that these goals767

are not attained by the paper.768

2. Limitations769

Question: Does the paper discuss the limitations of the work performed by the authors?770

Answer: [Yes]771

Justification: We have included it and discussed it briefly in the Conclusion section.772

Guidelines:773

• The answer NA means that the paper has no limitation while the answer No means that774

the paper has limitations, but those are not discussed in the paper.775

• The authors are encouraged to create a separate "Limitations" section in their paper.776

• The paper should point out any strong assumptions and how robust the results are to777

violations of these assumptions (e.g., independence assumptions, noiseless settings,778

model well-specification, asymptotic approximations only holding locally). The authors779

should reflect on how these assumptions might be violated in practice and what the780

implications would be.781

• The authors should reflect on the scope of the claims made, e.g., if the approach was782

only tested on a few datasets or with a few runs. In general, empirical results often783

depend on implicit assumptions, which should be articulated.784

• The authors should reflect on the factors that influence the performance of the approach.785

For example, a facial recognition algorithm may perform poorly when image resolution786

is low or images are taken in low lighting. Or a speech-to-text system might not be787

used reliably to provide closed captions for online lectures because it fails to handle788

technical jargon.789

• The authors should discuss the computational efficiency of the proposed algorithms790

and how they scale with dataset size.791

• If applicable, the authors should discuss possible limitations of their approach to792

address problems of privacy and fairness.793

• While the authors might fear that complete honesty about limitations might be used by794

reviewers as grounds for rejection, a worse outcome might be that reviewers discover795

limitations that aren’t acknowledged in the paper. The authors should use their best796

judgment and recognize that individual actions in favor of transparency play an impor-797

tant role in developing norms that preserve the integrity of the community. Reviewers798

will be specifically instructed to not penalize honesty concerning limitations.799

3. Theory assumptions and proofs800

Question: For each theoretical result, does the paper provide the full set of assumptions and801

a complete (and correct) proof?802

Answer:[NA] .803
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Justification: We use empirical results from our human subjects study to justify.804

Guidelines:805

• The answer NA means that the paper does not include theoretical results.806

• All the theorems, formulas, and proofs in the paper should be numbered and cross-807

referenced.808

• All assumptions should be clearly stated or referenced in the statement of any theorems.809

• The proofs can either appear in the main paper or the supplemental material, but if810

they appear in the supplemental material, the authors are encouraged to provide a short811

proof sketch to provide intuition.812

• Inversely, any informal proof provided in the core of the paper should be complemented813

by formal proofs provided in appendix or supplemental material.814

• Theorems and Lemmas that the proof relies upon should be properly referenced.815

4. Experimental result reproducibility816

Question: Does the paper fully disclose all the information needed to reproduce the main ex-817

perimental results of the paper to the extent that it affects the main claims and/or conclusions818

of the paper (regardless of whether the code and data are provided or not)?819

Answer: [Yes]820

Justification: We have accurately described all algorithms and approaches highlighted in our821

paper. Upon acceptance, we intend to open-source the environment such that researchers822

can also use our environments to run their own studies.823

Guidelines:824

• The answer NA means that the paper does not include experiments.825

• If the paper includes experiments, a No answer to this question will not be perceived826

well by the reviewers: Making the paper reproducible is important, regardless of827

whether the code and data are provided or not.828

• If the contribution is a dataset and/or model, the authors should describe the steps taken829

to make their results reproducible or verifiable.830

• Depending on the contribution, reproducibility can be accomplished in various ways.831

For example, if the contribution is a novel architecture, describing the architecture fully832

might suffice, or if the contribution is a specific model and empirical evaluation, it may833

be necessary to either make it possible for others to replicate the model with the same834

dataset, or provide access to the model. In general. releasing code and data is often835

one good way to accomplish this, but reproducibility can also be provided via detailed836

instructions for how to replicate the results, access to a hosted model (e.g., in the case837

of a large language model), releasing of a model checkpoint, or other means that are838

appropriate to the research performed.839

• While NeurIPS does not require releasing code, the conference does require all submis-840

sions to provide some reasonable avenue for reproducibility, which may depend on the841

nature of the contribution. For example842

(a) If the contribution is primarily a new algorithm, the paper should make it clear how843

to reproduce that algorithm.844

(b) If the contribution is primarily a new model architecture, the paper should describe845

the architecture clearly and fully.846

(c) If the contribution is a new model (e.g., a large language model), then there should847

either be a way to access this model for reproducing the results or a way to reproduce848

the model (e.g., with an open-source dataset or instructions for how to construct849

the dataset).850

(d) We recognize that reproducibility may be tricky in some cases, in which case851

authors are welcome to describe the particular way they provide for reproducibility.852

In the case of closed-source models, it may be that access to the model is limited in853

some way (e.g., to registered users), but it should be possible for other researchers854

to have some path to reproducing or verifying the results.855

5. Open access to data and code856
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Question: Does the paper provide open access to the data and code, with sufficient instruc-857

tions to faithfully reproduce the main experimental results, as described in supplemental858

material?859

Answer: [Yes]860

Justification: We intend to open-source the code and environments for further research. As861

our human subjects study contains sensitive data, we will not be releasing it at the moment.862

Guidelines:863

• The answer NA means that paper does not include experiments requiring code.864

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/865

public/guides/CodeSubmissionPolicy) for more details.866

• While we encourage the release of code and data, we understand that this might not be867

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not868

including code, unless this is central to the contribution (e.g., for a new open-source869

benchmark).870

• The instructions should contain the exact command and environment needed to run to871

reproduce the results. See the NeurIPS code and data submission guidelines (https:872

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.873

• The authors should provide instructions on data access and preparation, including how874

to access the raw data, preprocessed data, intermediate data, and generated data, etc.875

• The authors should provide scripts to reproduce all experimental results for the new876

proposed method and baselines. If only a subset of experiments are reproducible, they877

should state which ones are omitted from the script and why.878

• At submission time, to preserve anonymity, the authors should release anonymized879

versions (if applicable).880

• Providing as much information as possible in supplemental material (appended to the881

paper) is recommended, but including URLs to data and code is permitted.882

6. Experimental setting/details883

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-884

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the885

results?886

Answer: [Yes]887

Justification: We have described all our experiments and human subject interactions in the888

Experiment section, as well as additional details in the Appendix.889

Guidelines:890

• The answer NA means that the paper does not include experiments.891

• The experimental setting should be presented in the core of the paper to a level of detail892

that is necessary to appreciate the results and make sense of them.893

• The full details can be provided either with the code, in appendix, or as supplemental894

material.895

7. Experiment statistical significance896

Question: Does the paper report error bars suitably and correctly defined or other appropriate897

information about the statistical significance of the experiments?898

Answer: [Yes]899

Justification: We have taken due care to all statistical tests and plots we have done.900

Guidelines:901

• The answer NA means that the paper does not include experiments.902

• The authors should answer "Yes" if the results are accompanied by error bars, confi-903

dence intervals, or statistical significance tests, at least for the experiments that support904

the main claims of the paper.905

• The factors of variability that the error bars are capturing should be clearly stated (for906

example, train/test split, initialization, random drawing of some parameter, or overall907

run with given experimental conditions).908
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• The method for calculating the error bars should be explained (closed form formula,909

call to a library function, bootstrap, etc.)910

• The assumptions made should be given (e.g., Normally distributed errors).911

• It should be clear whether the error bar is the standard deviation or the standard error912

of the mean.913

• It is OK to report 1-sigma error bars, but one should state it. The authors should914

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis915

of Normality of errors is not verified.916

• For asymmetric distributions, the authors should be careful not to show in tables or917

figures symmetric error bars that would yield results that are out of range (e.g. negative918

error rates).919

• If error bars are reported in tables or plots, The authors should explain in the text how920

they were calculated and reference the corresponding figures or tables in the text.921

8. Experiments compute resources922

Question: For each experiment, does the paper provide sufficient information on the com-923

puter resources (type of compute workers, memory, time of execution) needed to reproduce924

the experiments?925

Answer: [No]926

Justification: As our work mainly involves running Unity environments, and less about927

large models, we do not specify the hardware requirements. We do not forsee any problems928

running our work with the standard University lab setups.929

Guidelines:930

• The answer NA means that the paper does not include experiments.931

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,932

or cloud provider, including relevant memory and storage.933

• The paper should provide the amount of compute required for each of the individual934

experimental runs as well as estimate the total compute.935

• The paper should disclose whether the full research project required more compute936

than the experiments reported in the paper (e.g., preliminary or failed experiments that937

didn’t make it into the paper).938

9. Code of ethics939

Question: Does the research conducted in the paper conform, in every respect, with the940

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?941

Answer: [Yes]942

Justification: As far as possible, we adhere to any ethics guidelines, including seeking IRB943

for our human subjects studies.944

Guidelines:945

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.946

• If the authors answer No, they should explain the special circumstances that require a947

deviation from the Code of Ethics.948

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-949

eration due to laws or regulations in their jurisdiction).950

10. Broader impacts951

Question: Does the paper discuss both potential positive societal impacts and negative952

societal impacts of the work performed?953

Answer: [Yes]954

Justification: Our work is preliminary and aspirational. As such, we discuss this in a bid to955

spur research in a nascent field such as ours.956

Guidelines:957

• The answer NA means that there is no societal impact of the work performed.958
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• If the authors answer NA or No, they should explain why their work has no societal959

impact or why the paper does not address societal impact.960

• Examples of negative societal impacts include potential malicious or unintended uses961

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations962

(e.g., deployment of technologies that could make decisions that unfairly impact specific963

groups), privacy considerations, and security considerations.964

• The conference expects that many papers will be foundational research and not tied965

to particular applications, let alone deployments. However, if there is a direct path to966

any negative applications, the authors should point it out. For example, it is legitimate967

to point out that an improvement in the quality of generative models could be used to968

generate deepfakes for disinformation. On the other hand, it is not needed to point out969

that a generic algorithm for optimizing neural networks could enable people to train970

models that generate Deepfakes faster.971

• The authors should consider possible harms that could arise when the technology is972

being used as intended and functioning correctly, harms that could arise when the973

technology is being used as intended but gives incorrect results, and harms following974

from (intentional or unintentional) misuse of the technology.975

• If there are negative societal impacts, the authors could also discuss possible mitigation976

strategies (e.g., gated release of models, providing defenses in addition to attacks,977

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from978

feedback over time, improving the efficiency and accessibility of ML).979

11. Safeguards980

Question: Does the paper describe safeguards that have been put in place for responsible981

release of data or models that have a high risk for misuse (e.g., pretrained language models,982

image generators, or scraped datasets)?983

Answer: [No]984

Justification: The environments released are cleared by IRB and deemed suitable for general985

adult audiences. As such, we do not go into detail in this paper. The IRB approval can be986

provided, upon request.987

Guidelines:988

• The answer NA means that the paper poses no such risks.989

• Released models that have a high risk for misuse or dual-use should be released with990

necessary safeguards to allow for controlled use of the model, for example by requiring991

that users adhere to usage guidelines or restrictions to access the model or implementing992

safety filters.993

• Datasets that have been scraped from the Internet could pose safety risks. The authors994

should describe how they avoided releasing unsafe images.995

• We recognize that providing effective safeguards is challenging, and many papers do996

not require this, but we encourage authors to take this into account and make a best997

faith effort.998

12. Licenses for existing assets999

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1000

the paper, properly credited and are the license and terms of use explicitly mentioned and1001

properly respected?1002

Answer: [NA] .1003

Justification: The environment, and code, are all developed by authors.1004

Guidelines:1005

• The answer NA means that the paper does not use existing assets.1006

• The authors should cite the original paper that produced the code package or dataset.1007

• The authors should state which version of the asset is used and, if possible, include a1008

URL.1009

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1010
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• For scraped data from a particular source (e.g., website), the copyright and terms of1011

service of that source should be provided.1012

• If assets are released, the license, copyright information, and terms of use in the1013

package should be provided. For popular datasets, paperswithcode.com/datasets1014

has curated licenses for some datasets. Their licensing guide can help determine the1015

license of a dataset.1016

• For existing datasets that are re-packaged, both the original license and the license of1017

the derived asset (if it has changed) should be provided.1018

• If this information is not available online, the authors are encouraged to reach out to1019

the asset’s creators.1020

13. New assets1021

Question: Are new assets introduced in the paper well documented and is the documentation1022

provided alongside the assets?1023

Answer: [Yes]1024

Justification: We release the environment on a best effort basis.1025

Guidelines:1026

• The answer NA means that the paper does not release new assets.1027

• Researchers should communicate the details of the dataset/code/model as part of their1028

submissions via structured templates. This includes details about training, license,1029

limitations, etc.1030

• The paper should discuss whether and how consent was obtained from people whose1031

asset is used.1032

• At submission time, remember to anonymize your assets (if applicable). You can either1033

create an anonymized URL or include an anonymized zip file.1034

14. Crowdsourcing and research with human subjects1035

Question: For crowdsourcing experiments and research with human subjects, does the paper1036

include the full text of instructions given to participants and screenshots, if applicable, as1037

well as details about compensation (if any)?1038

Answer: [Yes]1039

Justification: All details are provided in the Appendix, as far as possible.1040

Guidelines:1041

• The answer NA means that the paper does not involve crowdsourcing nor research with1042

human subjects.1043

• Including this information in the supplemental material is fine, but if the main contribu-1044

tion of the paper involves human subjects, then as much detail as possible should be1045

included in the main paper.1046

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1047

or other labor should be paid at least the minimum wage in the country of the data1048

collector.1049

15. Institutional review board (IRB) approvals or equivalent for research with human1050

subjects1051

Question: Does the paper describe potential risks incurred by study participants, whether1052

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1053

approvals (or an equivalent approval/review based on the requirements of your country or1054

institution) were obtained?1055

Answer: [Yes]1056

Justification: We have mentioned in our main paper that IRB approval has been sought ans1057

received.1058

Guidelines:1059

• The answer NA means that the paper does not involve crowdsourcing nor research with1060

human subjects.1061
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1062

may be required for any human subjects research. If you obtained IRB approval, you1063

should clearly state this in the paper.1064

• We recognize that the procedures for this may vary significantly between institutions1065

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1066

guidelines for their institution.1067

• For initial submissions, do not include any information that would break anonymity (if1068

applicable), such as the institution conducting the review.1069

16. Declaration of LLM usage1070

Question: Does the paper describe the usage of LLMs if it is an important, original, or1071

non-standard component of the core methods in this research? Note that if the LLM is used1072

only for writing, editing, or formatting purposes and does not impact the core methodology,1073

scientific rigorousness, or originality of the research, declaration is not required.1074

Answer: [NA] .1075

Justification: No LLMs were used in the experiments.1076

Guidelines:1077

• The answer NA means that the core method development in this research does not1078

involve LLMs as any important, original, or non-standard components.1079

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1080

for what should or should not be described.1081
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