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Abstract—We develop connections between some of the most
powerful theories in analysis, tying the Shannon sampling
formula to Cauchy’s integral and residue formulae, Jacobi
interpolation, and Levin’s sine-type functions. The techniques
use tools from complex analysis, and in particular, the Cauchy
theory and the theory of entire functions, to realize sampling
sets Λ as zero sets of well-chosen entire functions (sampling set
generating functions). We then reconstruct the signal from the set
of samples using the Cauchy-Jacobi machinery. These methods
give us powerful tools for creating a variety of general sampling
formulae, e.g., allowing us to derive Shannon sampling and
Papoulis generalized sampling via Cauchy theory and sampling
in radial domains.

I. INTRODUCTION

We develop connections between some of the most powerful
theories in analysis, tying the Shannon sampling formula to
Cauchy’s integral and residue formulae, Jacobi interpolation,
and Levin’s sine-type functions. The main techniques in this
paper use tools from complex analysis, and in particular, the
Cauchy theory and the theory of entire functions, to realize
sampling sets Λ as zero sets of well-chosen entire functions
(sampling set generating functions). We then reconstruct the
signal from the set of samples using the Cauchy-Jacobi ma-
chinery. These methods give us powerful tools for creating
a variety of general sampling formulae, e.g., allowing us to
derive Shannon sampling and Papoulis generalized sampling
via Cauchy theory. The techniques developed are also manifest
in solutions to the analytic Bezout equation associated with
certain multi-channel deconvolution problems, and we show
how these lead to multi-rate sampling. We give specific
examples of non-commensurate lattices associated with multi-
channel deconvolution, and use a generalization of B. Ya.
Levin’s sine-type functions to develop interpolating formulae
on these sets1.

The Jacobi interpolation formula works with the Cauchy
integral formula to extract information from an analytic func-
tion by integrating it against an interpolating function which
places the “right poles” at the “right spots” to extract that
information. This makes it an excellent tool for sampling.
The key to make this work is to choose the correct Jacobi
interpolator G, which is a sampling set generating function.

1Research partially supported by U. S. Air Force Office of Scientific
Research Grant Number FA9550-20-1-0030

Given the analytic function f and Jacobi interpolator G, for
our purposes it has the general form

f(z) =
1

2πi

∮
Γm

f(ζ)

(ζ − z)
· G(ζ)−G(z)

G(ζ)
dζ (1)

+
1

2πi

∮
Γm

f(ζ)

(ζ − z)
· G(z)

G(ζ)
dζ , (2)

where Γm is a sequence of Jordan curves chosen to avoid
zeroes of G. We extract the information from (1) using the
residue calculus, while (2) plays the role of the remainder Rm,
with |(2)| −→ 0 as m −→ ∞. The evaluation of (1) gives
the sampling formula, while |(2)| gives us the convergence
rate of the sampling formula. We will see (1) throughout the
paper, with G(z) equal to sin(πz) for Shannon sampling,
sin2

(
πz
2

)
for Papoulis sampling, sin(2πz) · sin(2πφz) for

multi-rate sampling, and the appropriate Bessel functions for
radial domains.

II. SHANNON AND PAPOULIS SAMPLING

Papoulis gave a generalization of WKS Sampling in the
paper “Generalized sampling expansion,” IEEE Trans. Circuits
and Systems, 24 (11), 652–654 (1977). His technique was to
write sampling down in terms of linear systems and then solve
the resulting system of equations. This gave us formulae for
derivative and bunched samples.

We will use Jacobi interpolation to derive the Papoulis
theorem for derivative sampling. In particular, we derive the
“double point formula,” where the sampling rate is half the
rate of WKS sampling, but for which twice the information,
namely the values of f and f ′, is required at each of the
sample points.

Theorem 1: Let f ∈ PWΩ and let T > 0 be a fixed sampling
rate. Let sinc(t) = sin(πt)

πt . If T ≤ 1/2Ω, then for all t ∈ R,

f(t) =
∑
n∈Z

[
f(2nT )+(t−2nT )f ′(2nT )

][
sinc

(
(t− 2nT )

2T

)]2
.

(3)
If T ≤ 1/2Ω and f(2nT ) = 0, f ′(2nT ) = 0 for all n ∈ Z,
then f ≡ 0.
Proof of Papoulis via Cauchy and Jacobi: Let T = 1. Then
T ≤ 1

2Ω . Also let

G(z) = sin2
(πz

2

)
. (4)

An Ω band-limited function f(t) is real analytic and has an
analytic continuation f(z) to C. Moreover, f(z) satisfies the



Paley-Wiener growth bound for Ω, i.e., there exists C = C(n)
such that for all n ∈ N

|f(z)| ≤ C(n)(1 + |z|)−ne2πΩ|ℑz| .

The function G(z) is the Jacobi interpolating function, and
has zeros Z = 2k, k ∈ Z. To avoid these zeros, let Γm be a
circle centered at the origin with radius (2m+1), for m ∈ N.
We apply the Jacobi interpolation formula, getting for m < N ,

f(z)
(1.)
=

G(z)

2πi

∮
Γm

f(ζ)

(ζ − z)
·
[

1

G(z)
− 1

G(ζ)

]
dζ + Rm

(2.)
= lim

N→∞

gN (z)

2πi∮
Γm

f(ζ)

(ζ − z)
·
[

1

gN (z)
− 1

gN (ζ)

]
dζ + Rm

(3.)
= lim

N→∞

gN (z)

2πi∮
Γm

∑
|n|≤N

[
1

(2n− z)2(ζ − 2n)g′′N (n)

+
(−1)

(2n− z)(ζ − 2n)2g′′N (n)

]
dζ + Rm

(4.)
= lim

N→∞
gN (z)∑

|n|≤N

1

2πi

∮
Γm

[
f(ζ)

(2n− z)2(ζ − 2n)g′′N (n)

+
(−1)f(ζ)

(2n− z)(ζ − 2n)2g′′N (n)

]
dζ + Rm

(5.)
= lim

N→∞
gN (z)∑

|n|≤N

[
f(2n)

(z − 2n)2g′′N (n)

+
f ′(2n)

(z − 2n)g′′N (n)

]
+ Rm

(6.)
=

4

π2
sin2

(πz
2

)
∑

|n|≤m

[
f(2n)

(z − 2n)2
+

f ′(2n)

(z − 2n)

]
+ Rm

(7.)
=

∑
|n|≤m

[
f(2n) + (z − 2n)f ′(2n)

]

·
[
sinc

(
(z − 2n)

2

)]2
+ Rm (5)

where (1.) is Jacobi interpolation, (2.) is the Weierstrass prod-
uct, (3.) is the Mittag-Leffler decomposition, (4.) is the switch
between integration and a finite sum, (5.) is the Cauchy residue
calculus, (6.) is the Weierstrass product (and trigonometric
evaluation), and (7.) is the definition of the sinc function. By
showing that |Rm| −→ 0 as m −→ ∞, we get the sampling

formula. We have used the Weierstrass product representation
of a sine function, getting G(z) =

sin2
(
πζ

2

)
= lim

N→∞
gN (ζ) = lim

N→∞
(πζ)2

N∏
j=1

(
1− ζ2

2j2

)2

.

The terms of the Mittag-Leffler partial fraction are repeating,
and therefore telescope. The formula generalizes to the expan-
sion

1

(ζ − z) · gN (ζ)
=

1

(ζ − z)gN (z)

+
∑

|n|≤N

[
(−1)

(2n− z)2(ζ − 2n)g′′N (n)

+
1

(2n− z)(ζ − 2n)2g′′N (n)

]
. (6)

Finally, for f analytic in a neighborhood of z0, the residues
needed are

Res
f(z)

(z − z0)
= f(z0) , Res

f(z)

(z − z0)2
= f ′(z0) .

To finish, we show that the sampling set 2Z is a set of
uniqueness for this sampling scheme.

Remark: The result generalizes. Using the Jacobi interpolat-
ing function

G(z) =

[
sin

(πz
K

)]K
,

we can sample at 1/K the rate, namely sample points at
KZ. However, at each point, we now require a “K-tuple”
of information, namely the values of f , f ′, f ′′, . . . f (K−1) at
the sample points. The sampling formulae are as follows.

f(t) =
∑
n∈Z

f(nT )

[
sinc

(
(t− nT )

T

)]

f(t) =
∑
n∈Z

[
f(2nT )+(t−2nT )f ′(2nT )

][
sinc

(
(t− 2nT )

2T

)]2
,

and, for general K ∈ N,

f(t) =
∑
n∈Z

[
f(KnT ) + (t−KnT )f ′(KnT ) + . . .

+
(t−KnT )(K−1)

(K − 1)!
f (K−1)(KnT )

][
sinc

(
(t−KnT )

KT

)]K
.

This last formula naturally leads to a discussion of the
coding of information for functions f ∈ PWΩ. We are
exchanging a slower rate of gathering information with a re-
quirement of an exactly corresponding increase in the amount
of information gathered at each sample point. As K −→ ∞,
we are approaching encoding all of the information of the
function at a single point. However, we are requiring an infinite
amount of information about the function f at that point,
namely the values of f, f ′f ′′ . . . – the information in the Taylor
series.



III. MULTI-CHANNEL DECONVOLUTION

We consider, in this section, an overview of the problem
of recovering information from linear translation-invariant
systems (deconvolution). The details of this work are presented
in two papers of Casey and Walnut [4], [5]. A key step in
our solutions of deconvolution problems is the interpolation
from discrete data, using the Cauchy residue calculus and
Jacobi interpolation. This key step essentially boiled down to
a sampling problem.

Multi-channel deconvolution utilizes information recovery
from a given signal by taking several “looks” at the signal,
each of which recovers information possibly missed by one of
the other “looks.” The “looks” are sensors, and can be modeled
as a collection of compactly supported distributions {µi}mi=1 ⊆
E ′(Rd). We discuss the first two steps in this recovery process.
The first is how one chooses {µi}mi=1. The framework of how
this is done is given in a theorem of Hörmander [10]. This first
step gives conditions on the sensors {µi}mi=1 which allow for
this reconstruction. This step gives us the discrete sets which
will act as our sampling sets.

The second step in multi-channel deconvolution is to recover
an arbitrary signal, a function f ∈ C∞(Rd) from the data
{si}mi=1 = {f∗µi}mi=1 This second step is a sampling problem,
an interpolation from discrete data. This step involves the
construction of deconvolvers, which come in a variety of types
but which are essentially a collection of distributions which
(1) depend only on the convolvers {µi}mi=1 and (2) allow for
the solution with only simple linear operations on the data
{si}mi=1. The deconvolvers are constructed via interpolation
from the discrete sets, using the Cauchy residue calculus and
Jacobi interpolation.

We construct a set of distributions {νi}mi=1 ⊆ D′(Rd) which
satisfy

m∑
i=1

µi ∗ νi = δ (7)

or equivalently,
m∑
i=1

µ̂i(γ)ν̂i(γ) = 1 . (8)

The collection {νi}mi=1 is a set of deconvolvers. In this case,
f may be recovered by

m∑
i=1

si ∗ νi =

m∑
i=1

(f ∗ µi) ∗ νi =
m∑
i=1

f ∗ (µi ∗ νi)

= f ∗
m∑
i=1

µi ∗ νi = f ∗ δ = f , (9)

provided that the associative law holds.
Equation (8) is a type of Bezout equation. Many theorems

in elementary number theory, such as Euclid’s lemma or
Chinese remainder theorem, are derived from the basic Bezout
equation, which holds in principal ideal domains. Equation
(8) is an analytic Bezout equation, in which we are dealing
with transcendental entire functions, rather than finite number
theoretic problems. Bezout problems involving transcendental

entire functions have been extensively studied in a variety
of contexts, including the study of division problems, in-
terpolation, analytic continuation, complexity theory, number
theory, and solution to systems of PDE’s. For the purposes
of this paper, we require the following result of Hörmander
which gives necessary and sufficient conditions under which
compactly supported solutions of (7) exist. Hörmander’s result
gives a framework for solving the first step of the problem.

Theorem 2: [10] There exist compactly supported distribu-
tions

{νi}mi=1 ⊆ E ′(Rd)

solving (7) if and only if there exist constants A, B, N > 0
such that

m∑
i=1

|µ̂i(z)| ≥ A(1 + |z|)−N e−B|ℑz| for all z ∈ Cd. (10)

A collection {µi}mi=1 ⊆ E ′(Rd) which satisfies (10) is said
to be strongly coprime2. Several different classes of strongly
coprime convolving systems are discussed in [4], [5]. The most
relevant systems for our discussion on sampling are due to
Petersen and Meisters.

Definition 1: A real number α is poorly approximated by
rationals provided that there exist constants C, N > 0 such
that for all integers p, q,

|α− p/q| ≥ C|q|−N . (11)

For example, quadratic irrationals of the form
√
n, where

n ∈ N is not a perfect square, are poorly approximated by
rationals. The Golden Mean φ = (1 +

√
5)/2 is the most

poorly approximated, as discussed in Hardy and Wright (see
[4]).

Theorem 3: [4] Let 0 < r1 < · · · < rm, m ≥ d+ 1 satisfy
ri/rj is poorly approximated by rationals whenever i ̸= j.
Then the collection {χ[−ri,ri]d}mi=1 is a strongly coprime set.

The next step of the problem involves solving an interpola-
tion problem, reconstructing functions (the deconvolvers) in a
space of restricted growth (Ê ′) from discrete data (their values
on the zero sets of the convolvers). This gives solutions to
the Bezout equation. Note, this step is essentially a sampling
problem. See [4], [5] for details.

IV. MULTI-RATE SAMPLING

Let φ = 1+
√
5

2 be the Golden Mean, and let f be a (1+φ)-
band-limited function. We use the functions G1(z) = sin(2πz)
and G2(z) = sin(2πφz), which each generate sampling sets.
The functions can be multiplied, which gives the generating
function G(z) = G1 ·G2(z) for a multi-rate sampling. Let

Λ1 =

{
±k

2

}
, Λ2 =

{
±k

2φ

}
,

for k ∈ N, and let {λk} = Λ = Λ1 ∪ Λ2 ∪ {0} . We have
that G(z) is an entire function, which is almost periodic on

2It is of interest to compare the envelope condition above with the Paley-
Wiener-Schwartz growth condition. Note that Hörmander’s envelope condition
is essentially the inversion of the Paley-Wiener-Schwartz growth condition.



R, has simple zeros on Λ \ {0}, and a double zero at {0}.
Following Levin ([13]), we conditionally reconstructed f from
{f(λk)} ∪ {f(0), f ′(0)} .

The sampling set Λ has infinitely many pairs of “clustering
points” of the form { j

2 ,
k
2φ} – Λ is not separated. This

interpolation problem requires tools beyond the “standard
toolbox,” which can be found in Levin ([13]), and which are
described in Rom and Walnut ([17]).

By the Cauchy-Jacobi machinery,

f(z) =
1

2πi

∮
Γm

f(ζ)

(ζ − z)
· G(ζ)−G(z)

G(ζ)
dζ (12)

+
1

2πi

∮
Γm

f(ζ)

(ζ − z)
· G(z)

G(ζ)
dζ , (13)

where Γm is a sequence of circles with increasing radii chosen
to avoid zeroes of G. Let ρm be the radius of Γm. We choose
the circles so that ρm −→ ∞ as m −→ ∞. We also let the
second integral be denoted by Rm (the remainder), which will
−→ 0 as m −→ ∞.

f(z) =
1

2πi

∮
Γn

f(ζ)

(ζ − z)
dζ

=
1

2πi

∮
Γm

f(z)[G1(ζ)G2(ζ)−G1(z)G2(z)]

(ζ − z) (G1(ζ)G2(ζ))
dζ +Rm.

Now, for z ∈ Λ1 or z ∈ Λ2, (G1(z)G2(z)) = 0, but
d
dζ (G1(z)G2(z)) ̸= 0. Thus,

f(z)[G1(ζ)G2(ζ)−G1(z)G2(z)]

(ζ − z)(G1(ζ)G2(ζ))

has simple poles in Λ1 ∪ Λ2, and so by the Cauchy Residue
Theorem, ∮

Γm

f(ζ)[G1(ζ)G2(ζ)−G1(z)G2(z)]

(ζ − z) (G1(ζ)G2(ζ))
dζ

=
∑
z∈Λ2

|z|<ρm

f(z)

G1(z)
d
dζG2(z)

(
G1(ζ)G2(ζ)

(ζ − z)

)

+
∑
z∈Λ1

|z|<ρn

f(z)

G2(z)
d
dζG1(z)

(
G1(ζ)G2(ζ)

(ζ − z)

)
.

Because the sampling set Λ is not separated, we have to
proceed in several steps.

We first establish that Λ is a set of uniqueness for PW(1+φ).
We denote elements in Λ as λm,n, containing elements that
are multiples of both 1

2 and 1
2φ .

Lemma 1: Let f be a (1 + φ)-bandlimited function. Then
f is uniquely determined by {f(λm,n)} ∪ {f(0), f ′(0)} . In
other words, Λ is a set of uniqueness for PW(1+φ). Therefore,
{e2πiλm,nt} ∪ {t, t2} is complete.

The lemma is equivalent to the statement that {e2πiλm.nt}∪
{t, t2} is complete. It is not, however, minimal, for it is not
a Riesz basis because sample points are not separated. The
sampling set has to be split up, into parts that are separated
and clusters of points where the set is not. Convergence is

conditional and works because, given any collection of clus-
tering sample points, the cluster contains only two elements.
Moreover, given any ϵ > 0, there exist infinitely many pairs
of sample points of the form {n/2,m/(2φ)} in an interval of
length ϵ centered at either point. We reconstruct Λ as follows.
Let η be given, 0 < η < 1

4(1+φ) . Let

Λη = {λ ∈ Λ : dist(λ,Λ \ {λ}) < η} . (14)

Elements in Λη occur in pairs, with each pair containing one
element from Λ1 =

{±k
2

}
and the other from Λ2 =

{
±j
2φ

}
for

k, j ∈ N. Let Λσ = Λ \ Λη , and so {λk} = Λ = Λ1 ∪ Λ2 =
Λη ∪ Λσ . The set Λσ is separated.

Lemma 2: Let λ ∈ Λσ . The sequence{
G(z)

G′(λ)(z − λ)

}
λ∈Λσ

is a Bessel sequence in PW(1+φ).
Following Levin, we treat the sample points in Λη , letting

them form their own “sampling blocks.”
Definition 2: Let H be a Hilbert space, and H = {Hi}

be a collection of subspaces of H. Then H is a generalized
basis if there exist projection operators Pn such that Pn

restricted to Hk equals δn,k, and given x ∈ H, x =
∑

Pnx
unconditionally.

Lemma 3: Let λk, λk′ ∈ Λη . The sequence{
G(z)

G′(λk)(z − λk)
,

G(z)

G′(λk′)(z − λk′)

}
is a Bessel sequence in PW(1+φ).

Theorem 4: Let f be a (1 + φ)-bandlimited function.
Then f can be reconstructed conditionally (in the sense of
a generalized basis) by {f(λm,n)} ∪ {f(0), f ′(0)} . In other
words, Λ is a set of conditional reconstruction for PW(1+φ),
and so {e2πiλm,nt} ∪ {t, t2} is minimal.

Let G(z) = sin(2πz) · sin(2πφz). The reconstruction
formula is f(z) =

f(0)
G(z)

4πφz
+ f ′(0)

G(z)

4πφz2
+

∑
λ∈Λσ

f(λ)
G(z)

G′(λ)(z − λ)
+

∑
λk,λk′∈Λη

[f(λk)
G(z)

G′(λk)(z − λk)
+ f(λk′)

G(z)

G′(λk′)(z − λk′)
] .

Remark: The result generalizes. Given {ri}ℓi=1 such that
(ri/rj) is irrational for i ̸= j, let R =

∑
k rk, and let

Λk =
{

±n
2rk

}
for n ∈ N. Let Λ =

⋃ℓ
k=1 Λk ∪ {0}. Then,

G(z) =

ℓ∏
k=1

sin(2πrkz) (15)

is a generating function for the multi-rate sampling scheme.
We let z = 0 be a sample point of multiplicity ℓ. By
a generalization of the lemma above Λ will be a set of
uniqueness for PWR. Clusters of sample point will occur in
different combinations, from clusters of k points requiring the
data f j(λ) , 0 ≤ j ≤ k − 1, down to pairs of points. For



example, if k = 3, we will have clusters of three points
containing n

2r1
, m
2r2

, p
2r3

, for some n,m, p ∈ Z, and three
different set of clusters of two points generated by different
pairs of rates ri, rj , i ̸= j. Convergence again is in the sense
of a generalized basis. Once again, develop Λ = Λσ ∪ Λη ,
and construct f ∈ PWR with z = 0 being a sample point of
multiplicity ℓ, single element generalized basis elements on
Λσ , and appropriate clusterings on Λη .

V. RADIAL SAMPLING

Let x ∈ R2, and let f ∈ L2(R2) be radial, i.e. f(x) =
f(|x|) = f(r). Then

f̂(ω) =

∫
R2

f(x)e−2πix·ωdx

=

∫ ∞

0

f(r)r dr

∫ 2π

0

e−2πi|ω|r cos(θ)dθ

= 2π

∫ ∞

0

f(r)J0(2π|ω|r) r dr

J0 is a Bessel function, and can generate other Bessel
functions. In particular, for ν > −1, the Bessel function of
order ν is given by

Jν(t) =
tν

2νΓ(ν + 1)
[1 +

∞∑
n=1

(−1)n

n!(1 + ν) . . . (n+ ν)
(
t

2
)2n] .

Let λn be the nth positive zero of Jν(t). For radial functions
in L2(0, 1), the Fourier-Bessel set {

√
xJν(xλn)}∞n=1 is an ON

basis. We also have that, for fixed t > 0

√
xtJν(xt) =

∞∑
n=1

2
√
tλnJν(t)

(J ′
ν(λn)(t2 − λ2

n)

√
xJν(xλn) , (16)

converging in L2(0, 1). Let

G(z) =
√
zJν(z) . (17)

Applying the Cauchy-Jacobi machinery gives the sampling
formula

f(t) =

∞∑
n=1

f(λn)
2
√
tλnJν(t)

J ′
ν(λn)(t2 − λ2

n)
. (18)

VI. RADIAL MULTI-RATE SAMPLING

We finish with a conjecture. We can use tools from Levin’s
multi-rate sampling in rectangular coordinates to get multi-
rate sampling in radial coordinates. Given {ri}ℓi=1 such that
(ri/rj) is rational for i ̸= j, then the conjectured generating
function is

G(z) =

ℓ∏
k=1

√
rkzJν(rkz) .

The first thing to notice is that the criterion on the zeroes
is considerably less rigid then the one for rectangular coor-
dinates. The reason lies in the following. This goes back to
work of Berenstein et al. on multichannel deconvolution.

Multi-channel deconvolution utilizes information recovery
from a given signal by taking several “looks” at the signal,
each of which recovers information possibly missed by one

of the other “looks.” The “looks” are sensors, and can be
modeled as a collection of compactly supported distributions
{µi}mi=1 ⊆ E ′(Rd). The first set in this recovery process is
how one chooses {µi}mi=1. The framework of how this is
done is given in a theorem of Hörmander [10]. This first step
gives conditions on the sensors {µi}mi=1 which allow for this
reconstruction. This step gives us the discrete sets which will
act as our sampling sets. Creation of these sets requires clever
manipulation of decay and zeroes in the transform domain.
The tricks for these manipulations come from number theory.

Cubes in Rd (Petersen and Meisters) Let 0 < r1 < · · · <
rm, m ≥ d + 1 satisfy ri/rj is poorly approximated by
rationals whenever i ̸= j. Then the collection {χ[−ri,ri]d}mi=1

is a strongly coprime set.
Balls in Rd (Berenstein and Yger) Let µ1 and µ2 be the

characteristic functions of the disks B(0, r1) and B(0, r2) ⊆
R2 respectively. Then the system {µ1, µ2} is strongly coprime
if and only if there is a constant A > 0 such that

|r2/r1 − ξ/η| ≥ (1/A) |η|−A

for any pair ξ, η > 0 with J1(ξ) = J1(η) = 0 where J1 is the
Bessel function of order 1. This is true if r2/r1 ∈ Q.
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