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Abstract

Online learning in arbitrary and possibly adver-
sarial environments has been extensively studied
in sequential decision-making, with a strong con-
nection to equilibrium computation in game the-
ory. Most existing online learning algorithms are
based on numeric utility feedback from the en-
vironment, which may be unavailable in appli-
cations with humans in the loop and/or with pri-
vacy concerns. In this paper, we study an online
learning setting where only a ranking of a set of
proposed actions is provided to the learning agent
at each timestep. We consider both ranking mod-
els based on either the instantaneous utility at
each timestep, or the time-average utility until the
current timestep, in both full-information and ban-
dit feedback settings. Focusing on the standard
(external-)regret metric, we show that sublinear
regret cannot be achieved with the instantaneous
utility ranking feedback in general. Moreover, we
show that when the ranking model is relatively
deterministic (i.e., with a small temperature in
the Plackett-Luce model), sublinear regret cannot
be achieved with the time-average utility ranking
feedback, either. We then propose new algorithms
to achieve sublinear regret, under the additional
assumption that the utility vectors have a sublinear
variation. Notably, we also show that when time-
average utility ranking is used, such an additional
assumption can be avoided in the full-information
setting. As a consequence, we show that if all
the players follow our algorithms, an approximate
coarse correlated equilibrium of a normal-form
game can be found through repeated play. Fi-
nally, we also validate the effectiveness of our
algorithms via numerical experiments.
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1. Introduction
Online learning has been extensively studied as a model
for sequential decision-making in arbitrary, and possibly ad-
versarial environments (Shalev-Shwartz et al., 2012; Hazan
et al., 2016). At each round of decision-making, the learn-
ing agent commits to a strategy and takes an action, then
receives some feedback from the environment, oftentimes
in a numeric form such as the utility vector (in the full-
information setting) or the realized utility value (in the ban-
dit setting). Numerous algorithms have been developed
to achieve no-regret, i.e., ensuring that the (external) re-
gret grows sublinearly in time (Shalev-Shwartz et al., 2012;
Hazan et al., 2016). Moreover, online learning is known
to also have an inherent connection to equilibrium com-
putation in Game Theory—when all the players are no-
regret in repeatedly playing a normal-form game (NFG), the
time-average strategy will approximate the coarse correlated
equilibrium (CCE) of the game (Cesa-Bianchi and Lugosi,
2006).

However, such numeric feedback of utility values may not
always be available in real-world applications. For example,
when the feedback is provided by an environment with hu-
mans in the loop, it is much more convenient for them
to compare/rank actions instead of numerically scoring
them. This has been acknowledged and exemplified by
the recent successes of reinforcement learning from human
feedback (RLHF) in fine-tuning language models (Ouyang
et al., 2022). Moreover, even if numeric utility values ex-
ist, sometimes they may not be accessible to the learning
agent due to privacy or security concerns. For example,
consider an online platform (cf. Figure 1 (a)) that recom-
mends commodities to a stream of customers in an online
fashion, where the customers at different timesteps may
have different preferences for the commodities. The plat-
form aims to make good recommendations over time, while
the customers may not be able/willing to reveal their actual
valuation of the commodities. Depending on the types of
customers, i.e., either being one-shot (arrive, rank, and leave
forever), or being long-lived with memory, the utility used
for ranking may either be the instantaneous one at each
timestep, or the time-average one over the historical utility
vectors. The platform needs to minimize the regret incurred
by the recommendations with such ranking feedback, and
it remains elusive what fundamental limits and effective

1



Online Learning and Equilibrium Computation with Ranking Feedback

algorithms are in such a setting.

Ranking feedback may become even relevant in game-
theoretic settings, when multiple humans continuously inter-
act with each other, and the objective is to compute a certain
equilibrium of the game. For example, consider an online
dating platform recommending candidates for matching (cf.
Figure 1 (b)). Each user may only have a ranking of the
recommended candidates in each round, and the platform
aims to find an equilibrium (a matching between users) so
that all the users are satisfied. Similar scenarios also appear
in other matching platforms, e.g., ride-sharing platforms that
match drivers and passengers based on their preferences,
such as the drivers’ preference for trip lengths and the users’
preferences for the drivers’ driving manners (being prompt
or cautious). Our focused setting to address these scenarios
may appear related, but fundamentally different from the
classical stable matching one (Gale and Shapley, 1962), see
Appendix A for a detailed comparison.

In this paper, we seek to systematically study online learn-
ing and equilibrium computation with ranking feedback,
where the loss vectors may be non-stochastically and even
adversarially generated. This setting can be viewed as a
generalization of the stochastic bandit with ranking feed-
back studied recently in Maran et al. (2024) (see a detailed
comparison and related work in Appendix A). We aim to un-
derstand when regret minimization in our setting is possible,
and also develop new algorithms with regret and equilibrium
approximation guarantees. We summarize our contributions
as follows.
Contributions. We consider two types of ranking feed-
back, categorized by how the rankings are made: one
based on the instantaneous utility at each timestep (InstUtil
Rank), and one based on the time-average utility until the
current timestep (AvgUtil Rank). We show that: i) sublin-
ear regret cannot be achieved with InstUtil Rank feedback,
nor (up to logarithmic terms) with AvgUtil Rank feedback
when the ranking model is too deterministic (i.e., the temper-
ature τ > 0 of the ranking model in (PL) is small); ii) We
propose new algorithms to achieve sublinear regret, under
an additional assumption on the sublinear variation of the
utility vectors; iii) Such an assumption can be avoided with
full-information AvgUtil Rank feedback and a constant
τ ; iv) When all the players follow our no-regret learning
algorithms in repeatedly playing a normal-form game, an
approximate CCE can be computed. Our results are summa-
rized in Table 1. Experiments that validate the effectiveness
of our algorithms can be found in Appendix C.

2. Preliminaries
2.1. Online Learning

We focus on online learning in a non-stochastic and po-
tentially adversarial environment, where an agent inter-
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Figure 1: Two real-world examples of Online Learning
and Equilibrium Computation with Ranking Feedback. In
Figure (a), the online platform recommends choices of food
to the customer at each timestep and receives a ranking
feedback to improve the recommendation quality. Figure (b)
illustrates an online dating app where the app recommends
matches, the users rank other candidates, and the app uses
the rankings to find matching equilibria among the users
over time.

acts with the environment for multiple timesteps, by tak-
ing an action and then receiving some feedback at each
timestep. The agent’s action set is finite and denoted as
A :=

{
a1, a2, . . . , a|A|} with |A| > 1. At each timestep t,

the agent will commit to a strategy π(t) ∈ ∆A and receive
either a utility vector u(t) ∈ [−1, 1]A or a realized utility
value u(t)(a(t)) for the action a(t) taken from a(t) ∼ π(t),
in the full-information and bandit setting, respectively. The
agent aims to minimize her (external) regret, which is the
difference between her accumulated utility and the highest
accumulated utility in hindsight, by playing a fixed strategy
across all timesteps. Formally, for any integer T > 0, the
regret is defined as

R(T ),external := max
π̂∈∆A

T∑
t=1

〈
u(t), π̂ − π(t)

〉
. (2.1)

Since our goal is to minimize the regret, which is not af-
fected if the vector u(t) is offset by some constant at each
timestep t. Hence, without loss of generality, we assume
u(t)(a|A|) = 0, i.e., the last action always receives a zero
utility for any u(t) and t ∈ [T ].

2.2. Online Learning Algorithms with Numeric
Feedback

Our results later will be modular, in the sense that any
standard online learning algorithms with (full-information)
numeric feedback, including projected gradient descent
(PGD), multiplicative-weight update (MWU), and follow-
the-regularized-leader (FTRL) in general (Hazan et al.,
2016), can be used as a deterministic black-box oracle in
our algorithms to be designed later. As a preliminary, we
formally introduce such deterministic oracles here: we use
Alg :

⋃∞
t=0

(
RA)t → ∆A to denote such an online learn-

ing algorithm, which is a mapping from a sequence of utility
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Lower Bound Full-Information Bandit
InstUtil Rank Ω(T ) for τ ≤ O (1)

AvgUtil Rank Ω̃(T ) for τ ≤ O
(

1
T log T

)
Ω(T ) for τ ≤ O

(
1

log T

)
Upper Bound

(τ = O(1), Sublinear Regret) Full-Information Bandit

InstUtil Rank Assumption 4.2
AvgUtil Rank ✓ Assumption 4.2 (q < 1

3 )

Table 1: Summary of our contributions, including the negative results (top) and the positive results (bottom). The bottom
table shows the necessary assumptions to achieve sublinear regret in that setting (✓means no assumption is required). τ > 0
denotes the temperature of the ranking model in (PL).

vectors to the distribution over the action set A. There-
fore, given utility vectors

(
u(s)

)t
s=1

from timestep 1 to t,

the algorithm will generate π(t+1) = Alg
((

u(s)
)t
s=1

)
as

the strategy at timestep t + 1. Finally, we can denote the
(external-)regret under Alg as

R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
:= max

π̂∈∆A

T∑
t=1

〈
u(t), π̂ −Alg

((
u(s)

)t−1

s=1

)〉
, (2.2)

which can be made sublinear in T for any utility vectors(
u(t)

)T
t=1

.

3. Online Learning with Ranking Feedback
In online learning with ranking feedback, at each timestep t,
the agent does not have direct access to u(t), nor the realized
utility (the utility of the realized action at timestep t). In-
stead, at timestep t, she can propose a multiset (which may
include repeated elements) of actions o(t), and receive a per-
mutation σ(t) ∈ Σ

(
o(t)
)

from the environment, represent-
ing a ranking of those actions in o(t). In the full-information
setting, o(t) = A, i.e., the whole action set is proposed. In
the bandit setting,

∣∣o(t)∣∣ = K < |A|. Suppose the agent’s
strategy at timestep t is π(t) ∈ ∆A, then we assume that
in this bandit setting, the actions in o(t) are proposed in an

unbiased way, such that E
[∑

a∈o(t)
u(t)(a)

K

]
=
〈
u(t), π(t)

〉
,

which may be achieved if all the a ∈ o(t) are sampled i.i.d.
from π(t) (with replacement). Let σ(t)(k) ∈ A be the kth

element of the permutation for any k ∈ [K]. Then, for any
k1 < k2 ∈ [K], action σ(t)(k1) is preferred over action
σ(t)(k2). For notational simplicity, we define ai

σ
< aj if

action ai appears ahead of aj in a permutation σ.

For the ranking model, we consider the standard Plackett-
Luce (PL) model (Luce, 1959; Plackett, 1975), where at
each timestep t, conditioned on the proposed action set o(t),

the ranking σ(t) is sampled according to

P
(
σ(t)

∣∣ o(t)) =

K∏
k1=1

exp
(
1
τ r

(t)
(
σ(t) (k1)

))∑K
k2=k1

exp
(
1
τ r

(t)
(
σ(t) (k2)

)) ,
(PL)

where r(t) ∈ RA is some utility vector based on which the
ranking is determined, τ > 0 is the temperature parameter
that determines how uncertain the ranking model is: when
τ → 0+, the model is absolutely certain, and the action with
a larger utility in r(t) will always be ranked in front of the
actions with a smaller utility in the permutation. The utility
vector r(t) depends on the problem setting, which we will
introduce next.

We consider two types of ranking feedback throughout the
paper, based on the choice of r(t) in (PL): (i) ranking by
the instantaneous utility (InstUtil Rank); (ii) ranking by
the time-average utility (AvgUtil Rank). The two feedback
types may be motivated by different applications (cf. Sec-
tion 1), and have been studied for dueling-bandits (Yue et al.,
2012; Saha and Gaillard, 2022) and multi-armed bandits
with ranking feedback (Maran et al., 2024), respectively.
Both feedback types can also be further separately defined
for the full-information and bandit settings as below.

InstUtil Rank: Ranking with Instantaneous Utility.

The first type of ranking feedback we consider is based on
the instantaneous utility function, i.e., r(t) = u(t) in (PL).
Note that only the utilities at the proposed actions will be
used for ranking. This type is relevant when the feedback
provider is oblivious or one-shot. For example, a stream of
customers arrive in an online fashion, each of whom arrives,
ranks, and then leaves, see e.g., Mansour et al. (2015). When
the environment is stationary and stochastic, the classical
dueling-bandits model also used instantaneous utilities for
comparison/ranking (Yue et al., 2012; Du et al., 2020).

Full-information setting. All the actions can be evaluated
and ranked at each timestep t, even for those she did not
propose. Hence, her performance can be evaluated by
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u(t), π(t)

〉
. Note that this does not mean the agent can

access the full vector u(t), since this defeats the purpose of
our ranking-feedback setting. Hence, the standard (external-
)regretR(T ),external defined in (2.1) will serve as the metric
to evaluate the agent’s performance in this online learning
process.
Bandit setting. Only the proposed actions at each
timestep t can be evaluated and ranked, with the asso-
ciated elements in the vector u(t). In particular, the
proposed actions are evaluated by the average utility of
1
K

∑
a∈o(t) u

(t) (a), leading to the following performance
metric of regret:

R(T ) := max
π̂∈∆A

T∑
t=1

〈u(t), π̂
〉
− 1

K

∑
a∈o(t)

u(t) (a)

 .

(3.1)

Note that such a definition is an external regret, which
differs from the regret studied in (multi-)dueling-bandits
(Yue et al., 2012; Du et al., 2020; Saha et al., 2021; Saha
and Gaillard, 2022), and can be viewed as a generalization
of the one considered in (Maran et al., 2024) when K = 1.

AvgUtil Rank: Ranking with Time-average Utility.

The second type of ranking-feedback is based on the time-
average utility, which differs for the full-information and
bandit settings, as detailed below. This type is relevant when
the feedback provider has memory and can use the history
of utilities for ranking. For example, the customers are
long-lived in the platform, see e.g., Küçükgül et al. (2022)
and Baldwin (2009). Notably, under bandit feedback, when
τ → 0+ and the environment is stationary and stochastic,
such a model aligns with the one studied in the recent work
of Maran et al. (2024).

Full-information setting. The time-average utility vector
of u(t)

avg := 1
t

∑t
s=1 u

(s) will be used as the r(t) in (PL),
and the same (external-)regret R(T ),external from (2.1) will
be used as the metric.
Bandit setting. Only the proposed actions will be given
to the environment to evaluate. For instance, the platform
(learning agent) may recommend K restaurants among all
possibilities to the user (environment) to try out, so that the
user will only know her evaluations of those K restaurants.
As a result, the average utility is now defined as the em-
pirical mean of the utility vectors over time. Formally, for
each action a ∈ A, we define

u
(t)
empirical(a) :=

∑t
s=1 u

(s)(a)
∑

a′∈o(t) 1 (a = a′)∑t
s=1

∑
a′∈o(t) 1 (a = a′)

.

(3.2)

This u
(t)
empirical will then be used as the r(t) in (PL) for

ranking. Note that the discrepancy between the ranking

models in the full-information and bandit settings in this
case (contrast to that with InstUtil Rank), is due to the fact
that when one is allowed to leverage the history, the utility
at actions other than those proposed at timestep t may be
available and still be useful later. In contrast, for InstUtil
Rank, only those proposed at timestep t are relevant for
ranking, i.e., only those elements of u(t)(a) with a ∈ o(t)
are used. The regret metric will still be the one in (3.1).
The background and formalism of equilibrium computation
in the game-theoretic setting (with ranking feedback) can
be found in Appendix B.

4. Hardness Results
In this section, we present hard instances to show that online
learning in non-stochastic and potentially adversarial envi-
ronments can be hard in general, under both InstUtil Rank
and AvgUtil Rank, even when there are only two actions.

Theorem 4.1 in the following shows that for any temperature
τ in (PL) not larger than a constant, there exists a sequence
of utility vectors such that the expected regret is linear under
InstUtil Rank, for both full-information and bandit settings.

Theorem 4.1. Consider InstUtil Rank. For any T > 0,
temperature 0 < τ ≤ 0.1, and online learning algo-
rithm, there exists a sequence of utilities

(
u(t)

)T
t=1

such
that min

{
E
[
R(T ),external

]
,E
[
R(T )

]}
≥ Ω (T ) in both

full-information and bandit settings. The expectation is
taken over the randomness of the algorithm and the rank-
ing.

To prove Theorem 4.1, we need to construct two sequences
of utility vectors, which yield the same ranking under InstU-
til Rank in expectation. However, being no-regret in one
of them will result in linear regret in the other. The detailed
proof can be found in Appendix D.

The key challenge in achieving no-regret in the hard instance
above is that the utility vectors

(
u(t)

)T
t=1

change arbitrar-
ily fast, i.e., the accumulated variation grows linearly in
time . Hence, to obtain positive results, we may need to
restrict how fast they change over time, as quantitatively
characterized by the following assumption.

Assumption 4.2 (Sublinear variation of utility vectors). The
utility vectors

(
u(t)

)T
t=1

have a sublinear variation over
time, i.e., for some q < 1,

P (T ) :=

T∑
t=2

∥∥∥u(t) − u(t−1)
∥∥∥ ≤ O(T q). (4.1)

Our result stated in Section 5 next will show that with As-
sumption 4.2, we can achieve sublinear regret, and thus
close the gap. Moreover, note that in a game where the op-
ponents all run common no-regret learning algorithms such
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as follow-the-regularized-leader (FTRL), Assumption 4.2
will be satisfied (cf. Lemma L.3).

Next, we show in Theorem 4.3 that when AvgUtil Rank is
used, and τ is small enough, the minimal regret is still at
least linear in T (up to logarithmic terms).
Theorem 4.3. Consider AvgUtil Rank with full-
information feedback. For any T > 0, temperature 0 <

τ ≤ O
(

1
T log T

)
, and online learning algorithm, there ex-

ists T ′ ≥ T and a sequence of utilities
(
u(t)

)T ′

t=1
such that

E
[
R(T ′),external

]
≥ Ω̃ (T ′) . The expectation is taken over

the randomness of the algorithm and the ranking.

To prove Theorem 4.3, we need to construct log T sequences
of utility vectors, with the same ranking feedback when τ is
small. Then, we can show that at least one of them suffers
an average regret Ω̃(1).

Given Theorem 4.3, it is impossible to achieve õ(T ) with
AvgUtil Rank when τ is very small. However, in Section 6,
we will close the gap by showing that when τ is a constant
(i.e., O(1)), we can achieve sublinear regret with AvgUtil
Rank, even without Assumption 4.2.

Due to the different instantiations of r(t) in the full-
information and the bandit settings under AvgUtil Rank,
we have a separate hardness result for the bandit setting,
stronger than Theorem 4.3, as it allows a larger τ and avoids
logarithmic terms. The result can be viewed as strengthen-
ing the hardness for the adversarial bandit setting in (Maran
et al., 2024), which corresponds to the case with τ → 0+.
Theorem 4.4. Consider AvgUtil Rank with bandit feed-
back. For any T > 0, temperature 0 < τ ≤ O

(
1

log T

)
, and

online learning algorithm, there exists a sequence of utilities(
u(t)

)4T
t=1

such that E
[
R(4T )

]
≥ Ω (T ) . The expectation is

taken over the randomness of the algorithm and the ranking.

To prove Theorem 4.4, we need to construct two utility
sequences such that sublinear regret in the first utility se-
quence will lead to insufficient exploration for the second
sequence. As a result, when τ is small, those two sequences
cannot be differentiated, and a linear regret must be incurred
in one of them. The details are postponed to Appendix D
due to space constraints.

5. Online Learning with InstUtil Rank
Feedback

We start by introducing a novel utility estimation oracle to
be used in our later algorithms.

5.1. Utility Estimation

A natural idea to learn under ranking feedback is to use the

feedback to estimate the numeric utility vectors. At each
timestep t, we propose using the ranking feedback from the
last m steps to predict the utility vector u. When t ≥ m,
we use the past m steps’ permutations

{
σ(s)

}m
s=t−m+1

to
estimate the utility u(t). Due to the non-convexity of the
(PL), the key point to estimate utilities is to decompose the
ranking of K actions into pair-wise rankings. Then, we
can utilize the properties of the logistic function, such as
monotonicity, to convert the estimation error on ranking
probabilities back to utilities. The full algorithm can be
found in Algorithm 1, with the following guarantee.

Theorem 5.1. Consider InstUtil Rank and Algorithm 1.
Suppose each action is proposed with probability at least
p > 0 at each timestep t ∈ [T ] and let ũ(t) =

Estimate
({
σ(s)

}t
s=t−m′+1

)
. Then, for any δ ∈ (0, 1)

and t ≥ m′, when m′p4 ≥ 2 log
(
2
δ

)
, with probability at

least 1− δ, the estimate ũ(t) satisfies,

∥∥∥ũ(t) − u(t)
∥∥∥
∞
≤
τ
(
e

1
τ + 1

)2
p

√
log
(
2
δ

)
m′ +

t−1∑
s=t−m′+1

∥∥∥u(s+1) − u(s)
∥∥∥
∞
.

When taking δ, p, τ as constants, the accumulated esti-
mation error

∑T
t=1

∥∥ũ(t) − u(t)
∥∥
∞ will be bounded by

O
(

T√
m′ +m′P (T )

)
, which implies that sublinear accu-

mulated estimation error is achieved when P (T ) is sublinear
(Assumption 4.2). Moreover, Theorem 5.1 implies that
when τ → 0+, the estimation error upper bound goes to
+∞. This makes sense intuitively: when τ → 0+, only
the action with the highest utility is chosen (deterministi-
cally), so it becomes impossible to estimate the gap between
the utilities of any two actions. At the opposite end, when
τ → +∞, the estimation error upper bound also goes to
+∞, since the ranking is always sampled uniformly regard-
less of the utility vectors.

The full proof of Theorem 5.1 is deferred to Appendix E.
Then, we show how to achieve sublinear regret in both full-
information and bandit settings with InstUtil Rank, based
on such an estimator.

5.2. Sublinear Regret with InstUtil Rank

This section shows that for any online learning algorithm
that can achieve sublinear external regret with numeric util-
ity feedback, we can construct an online learning algorithm
with InstUtil Rank feedback based on it, in a black-box
way.

With full-information feedback, the learning agent proposes
the full action set A at each timestep. In this case, we can
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obtain ũ(t), an estimate of u(t), by Algorithm 1, and obtain
guarantees using Theorem 5.1 with p = 1 (since all actions
are proposed at each timestep).

With bandit feedback, the utility of the online learning agent
at timestep t is 1

K

∑K
k=1 u

(t)
(
σ(t)(k)

)
, i.e., the average util-

ity of the proposed actions. To achieve sublinear R(T ) (de-
fined in (3.1)), each proposed action will be sampled from
π(t) independently with replacement. In other words, an
action may be proposed multiple times at a single timestep.
Therefore, to ensure each action will be proposed with a
positive probability, we need to let π(t)(a) ≥ γ

|A| for some
γ > 0 and every action a ∈ A. To this end, we will let
π(t+1) = (1 − γ)Alg

((
ũ(s)

)t
s=1

)
+ γ 1(A)

|A| , i.e., a con-
vex combination of the strategy generated by the no-regret
learning algorithm Alg and a uniform probability distribu-
tion over A. The diagram of the algorithm can be found in
Figure 5, and the details are in Algorithm 2.

Then, we have the following theorem.

Theorem 5.2. Consider InstUtil Rank with constant τ > 0.
By running Algorithm 2, for any δ ∈ (0, 1), T > 0, and any
full-information no-regret learning algorithm with numeric
utility feedback, Alg, by choosing the window size m and
γ properly, we have that with probability at least 1 − δ,
R(T ),external satisfies

R(T ),external ≤R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
+O

((
P (T )

) 1
3

T
2
3

(
log

(
T

δ

)) 1
3

)
(Full-Info)

R(T ) ≤R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
+O

((
P (T )

) 1
5

T
4
5 log

(
T

δ

))
.

(Bandit)

The proof is deferred to Appendices F and G. Theorem 5.2
implies that when P (T ), the variation of utility vectors, is
sublinear, the regret of Algorithm 2 will be sublinear.

6. Online Learning with AvgUtil Rank
Feedback

6.1. Utility Estimation

We also start by introducing a new utility estimation algo-
rithm. Since σ(t) is generated based on u

(t)
avg, we will esti-

mate u
(t)
avg instead. We will still apply Algorithm 1, which

will generate ũ
(t)
avg, an estimate of u(t)

avg, when the permuta-
tion is sampled under AvgUtil Rank feedback. Moreover,

notice that

∥∥∥u(t)
avg − u(t−1)

avg

∥∥∥
∞

=

∥∥∥∥∥u(t) + (t− 1)u
(t−1)
avg

t
− u(t−1)

avg

∥∥∥∥∥
∞

≤ 1

t

(∥∥∥u(t)
∥∥∥
∞

+
∥∥∥u(t−1)

avg

∥∥∥
∞

)
≤ 2

t
.

Therefore,
∑t−1

s=t−m′+1

∥∥∥u(s+1)
avg − u

(s)
avg

∥∥∥
∞

, the counter-

part of
∑t−1

s=t−m′+1

∥∥u(s+1) − u(s)
∥∥
∞ in Theorem 5.1, can

be bounded by
∑t−1

s=t−m′+1
1

s+1 , which is irrelevant of P (T )

in Assumption 4.2.

6.2. Full-Information Setting

Unlike the case with InstUtil Rank feedback, where any
(full-information) online learning algorithm can be lever-
aged, the algorithm with AvgUtil Rank feedback needs to
be insensitive to the changes in accumulated utility, such
as FTRL. Because we want the strategies generated by the
online learner, given the estimated average utilities as input,
to be close to those generated using the ground-truth utilities.
Then, the regret is sublinear since our strategies are close to
the strategies that yield a sublinear regret.

Assumption 6.1. The (full-information) online learn-
ing algorithm Alg needs to satisfy the following condi-
tion: for any T > 0, t ∈ [T ], sequences of utilities(
u(s)

)t
s=1

,
(
u′(s)

)t
s=1
∈
(
RA)t, we have

∥∥∥∥Alg

((
u(s)

)t
s=1

)
−Alg

((
u′(s)

)t
s=1

)∥∥∥∥
≤L

∥∥∥∥∥
t∑

s=1

u(s) −
t∑

s=1

u′(s)

∥∥∥∥∥ ,
where L = Θ(T−c) for some constant c ∈ (0, 1).

It can be verified that follow-the-regularized-leader with
any strongly convex regularizer satisfies this assumption
(cf. Lemma L.3). Then, similar to Section 5.2, any online
learning algorithm satisfying Assumption 6.1 can achieve
a sublinear regret when equipped with the utility estimator
in Algorithm 1. The overall procedure is summarized in
Algorithm 3 and Figure 6, with the following guarantee.

Theorem 6.2. Consider AvgUtil Rank with constant τ > 0
and full-information feedback. By running Algorithm 3, for
any δ ∈ (0, 1), T > 0, and any full-information no-regret
learning algorithm with numeric utility feedback, Alg, that
satisfies Assumption 6.1, by choosing m properly, we have
that with probability at least 1− δ, R(T ),external satisfies

6



Online Learning and Equilibrium Computation with Ranking Feedback

R(T ),external ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
+O

(
LT

5
3 log

(
2T

δ

))
.

Theorem 6.2 shows that with a small enough L = Θ(T−c)
satisfying c > 2/3, R(T ),external can be made sublinear in
T . The proof and the formal version of Theorem 6.2 are
provided in Appendix H.

6.3. Bandit Setting

By appling Algorithm 1, we can only obtain an esti-
mate of u

(t)
empirical instead of u

(t)
avg. However, almost

all no-regret learning algorithms made decisions accord-
ing to the accumulated utility, such as mirror descent,
FTRL, and regret matching (Zinkevich et al., 2007; Hazan
et al., 2016). Let n(t)(a) :=

∑t
s=1 #o(s) (a) for any

a ∈ A be the number of times action a has been pro-
posed up to timestep t, where #o(s) (a) is the number of
occurrences of a in o(s). A natural idea is to compute
n(t)(a)u

(t)
empirical(a)−n(t−1)(a)u

(t−1)
empirical(a) to get an esti-

mate of u(t)(a). Nonetheless, the variance will be too large
due to the multiplication of n(t)(a) ∝ t.
To address this issue, we divide the timesteps {1, 2, . . . , t}
into ⌈t/M⌉ blocks, with each block containing M
timesteps except for the last one. Then, for each block
{s ·M + 1, s ·M + 2, . . . , (s+ 1)M} (for s ≤

⌊
t
M

⌋
− 1)

and a ∈ A, we estimate 1
M

∑(s+1)M
s′=s·M+1 u

(s′)(a) by comput-
ing

ũ
((s+1)·M)
empirical (a)n((s+1)·M)(a)− ũ(s·M)

empirical(a)n
(s·M)(a)

n((s+1)·M)(a)− n(s·M)(a)
.

In this way, the multiplier on ũ
((s+1)·M)
empirical (a) is

n((s+1)·M)(a)
n((s+1)·M)(a)−n(s·M)(a)

∝ t
M . The trade-off of M is

that the value above estimates the average utility of a when
a is chosen, which may differ significantly from the true
average utility of a in that block. Because when M is
large, the accumulated utility variation is larger. The full
algorithm is illustrated in Algorithm 3 and Figure 6.

Theorem 6.3. Consider AvgUtil Rank with constant τ > 0
and bandit feedback. By running Algorithm 3, for any δ ∈
(0, 1), T > 0, and any full-information no-regret learning
algorithm with numeric utility feedback, Alg, that satisfies
Assumption 6.1, by choosingM,m, γ properly, we have that
with probability at least 1− δ, R(T ) satisfies

R(T ) ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
+

Õ
((

log

(
1

δ

))2

L
1
3T

23
18

(
P (T )

) 1
6

)
,

where Õ hides logarithmic dependence on T .

By choosing L = Θ(T−c) with c ∈
(
5
6 + q

2 , 1
)
,

Õ
((

log
(
1
δ

))2
L

1
3T

23
18

(
P (T )

) 1
6

)
is sublinear when

P (T ) ≤ O (T q) for some q < 1
3 . Theorem 6.3 guaran-

tees sublinear R(T ). We need c < 1 because typically
R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
≤ O

(
1
L + LT

)
, see e.g.,

FTRL with any strongly convex regularizer (Hazan et al.,
2016).

7. Equilibrium Computation with Ranking
Feedback

For a normal-form game
(
N, {Ai}Ni=1 , {Ui}

N
i=1

)
, we de-

fine the external regret of player i ∈ [N ] as

R
(T ),external
i := max

π̂i∈∆Ai

T∑
t=1

〈
u
(t)
i , π̂i − π(t)

i

〉
, (7.1)

where π
(t)
i ∈ ∆Ai is the strategy of player i at

timestep t and u
(t)
i (ai) =

∑
a′∈×N

j=1 Aj
Ui(a′)1 (a′i = ai)∏

j′ ̸=i π
(t)
j′ (a

′
j′) for any ai ∈ Ai. Then, it is known that

the time-average joint strategy π
(T )
avg , where π(T )

avg(a) :=
1
T

∑T
t=1

∏
i∈[N ] π

(t)
i (ai) for any a ∈×N

i=1
Ai, is an ϵ-

CCE, with ϵ := maxi∈[N ]

{
1
TR

(T ),external
i

}
.

Applying the algorithm in Section 5 (for InstUtil Rank feed-
back) or Section 6 (for AvgUtil Rank feedback), we achieve
sublinear R(T ),external

i for each player i ∈ [N ]. Note that
P (T ) in Assumption 4.2 can be bounded by the summation
of all players’ strategy variation (cf. Lemma K.1). Thus,
to ensure P (T ) is sublinear in T , Alg needs to additionally
satisfy the following assumption.

Assumption 7.1 (Sublinear variation of strategies). The
(full-information) online learning algorithm Alg needs to
satisfy the following condition: for any T > 0, t ∈ [T − 1],
and sequence of utility vectors

(
u(s)

)t
s=1
∈
(
[−1, 1]A

)t
, we

have
∥∥∥Alg

((
u(s)

)t
s=1

)
−Alg

((
u(s)

)t+1

s=1

)∥∥∥ ≤ η, where

η = Θ(T−w) for some constant w ∈ (0, 1).

Mirror descent (cf. Wei et al. (2021, Lemma 1) and Liu
et al. (2023, Lemma C.5)) and FTRL with any strongly
convex regularizer (see Lemma L.3 for the proof), both
satisfy this property. When Assumption 7.1 is satisfied, one
can achieve sublinear regret with InstUtil Rank, under both
full-information and bandit feedback. The formal statement
is as follows.

Theorem 7.2. Consider InstUtil Rank with constant τ > 0
and Algorithm 2. For any δ ∈ (0, 1), T > 0, and any

7
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full-information no-regret learning algorithm with numeric
utility feedback, Alg, that satisfies Assumption 7.1, by choos-
ing M,m, γ according to Theorem 5.2, we have that with
probability at least 1 − δ, the algorithm finds an ϵ-CCE,
with

ϵ ≤max
i∈[N ]

{
1

T
R

(T ),external
i

(
Alg,

(
ũ
(t)
i

)T
t=1

)}
+O

(
η

1
3

(
log

(
T

δ

)) 1
3

)
(Full Information)

ϵ ≤max
i∈[N ]

{
1

T
R

(T ),external
i

(
Alg,

(
ũ
(t)
i

)T
t=1

)}
+O

(
η

1
5 log

(
T

δ

))
. (Bandit)

With AvgUtil Rank feedback, when all the players apply
Algorithm 3 and both Assumption 6.1 and Assumption 7.1
are satisfied for the oracle Alg being used, the external
regret of each player will be sublinear in T according to
Theorem 6.2. Finally, we have the statement below.

Theorem 7.3. Consider AvgUtil Rank with constant τ > 0
and Algorithm 3. For any δ ∈ (0, 1), T > 0, and any
full-information no-regret learning algorithm with numeric
utility feedback, Alg, that satisfies Assumption 6.1, by choos-
ing M,m, γ according to Theorem 6.2, we have that with
probability at least 1 − δ, the algorithm finds an ϵ-CCE
under full-information, with

ϵ ≤max
i∈[N ]

{
1

T
R

(T ),external
i

(
Alg,

(
u
(t)
i

)T
t=1

)}
+O

(
LT

5
3 log

(
2T

δ

))
. (Full Information)

When M,m, γ are chosen according to Theorem 6.3 and
Assumption 7.1 is also satisfied, the following holds under
bandit feedback,

ϵ ≤max
i∈[N ]

{
1

T
R

(T ),external
i

(
Alg,

(
u
(t)
i

)T
t=1

)}
+ Õ

((
log

(
1

δ

))2 (
L

1
3 η

1
6 + L

1
2

)
T

4
9

)
. (Bandit)

Lastly, we would like to remark that although the online
learning setting can be hard with a small τ (cf. the hardness
results in Theorem 4.3 and Theorem 4.4), computing an
equilibrium is still possible even when τ → 0+. A detailed
discussion can be found in Remark K.3.

8. Conclusion and Limitations
In this paper, we studied online learning and equilibrium
computation with ranking feedback, which is particularly

relevant to application scenarios with humans in the loop.
Focusing on the classical (external-)regret metric, we de-
signed novel hardness instances to show that achieving sub-
linear regret can be hard in general, in a few different rank-
ing models and feedback settings. We then developed new
algorithms to achieve sublinear regret under an additional
assumption on the sublinear variation of the utility, leading
to an equilibrium computation result in the repeated game
setting. We believe our work paves the way for promis-
ing avenues of future research. For example, it would be
interesting to close the gap between the lower-bound and
the positive result for AvgUtil Rank under bandit feed-
back, i.e., either show the hardness when τ is a constant
or achieve sublinear regret for constant τ without Assump-
tion 4.2. Moreover, applying our algorithms to real-world
datasets with ranking feedback, such as ride-sharing and
match-dating, would also be of great interest.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Jacob Abernethy, Kevin A Lai, and Andre Wibisono. Fast

convergence of fictitious play for diagonal payoff ma-
trices. In Proceedings of the 2021 ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 1387–1404.
SIAM, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell,
Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort,
Deep Ganguli, Tom Henighan, et al. Training a helpful
and harmless assistant with reinforcement learning from
human feedback. arXiv preprint arXiv:2204.05862, 2022.

Carliss Y Baldwin. The architecture of platforms: A unified
view. Platforms, Markets and Innovation/Edward Elgar
Publishing Limited, 2009.

Soumya Basu, Karthik Abinav Sankararaman, and Abishek
Sankararaman. Beyond log2(t) regret for decentralized
bandits in matching markets. In International Conference
on Machine Learning, pages 705–715. PMLR, 2021.

Ulrich Berger. Fictitious play in 2×n games. Journal of
Economic Theory, 120(2):139–154, 2005.

Avrim Blum and Yishay Mansour. From external to internal
regret. Journal of Machine Learning Research, 8(6),
2007.

George W Brown. Iterative solution of games by fictitious
play. Act. Anal. Prod Allocation, 13(1):374, 1951.

8



Online Learning and Equilibrium Computation with Ranking Feedback

Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun
Dai, Tong Yang, Sherry Yang, Dale Schuurmans, Yuejie
Chi, and Bo Dai. Value-incentivized preference optimiza-
tion: A unified approach to online and offline rlhf. arXiv
preprint arXiv:2405.19320, 2024.
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A. Related Work
Dueling Bandits. Using comparison and/or ranking feedback for sequential decision-making has mostly been studied
under the framework of dueling bandits (Yue et al., 2012; Saha and Gaillard, 2022; Saha and Gopalan, 2019; Du et al.,
2020; Saha et al., 2021; Dudı́k et al., 2015), where the agent takes two (or multiple) actions at each timestep, and receives
a ranking of them as feedback. Different from our setting, the ranking feedback in these works was only based on the
instantaneous utility at that timestep, while our results can address both settings with instantaneous and time-average utilities
for ranking. More importantly, the regret notions studied in these works were particularly designed for the dueling-bandit
setting, and thus different from the classical external regret we focus on here. Finally, dueling bandits mostly focused on
environments that are stationary and stochastic (Yue et al., 2012; Saha and Gaillard, 2022; Saha and Gopalan, 2019; Du
et al., 2020), while we focus on the non-stochastic setting where the environment is arbitrary and potentially adversarial, as
in online learning (Shalev-Shwartz et al., 2012; Hazan et al., 2016). Due to the last two differences, the implication of these
dueling-bandit algorithms in the game-theoretic setting is unclear, while our algorithms find an approximate CCE of the
game, as a corollary of the no-(external-)regret guarantee.

Reinforcement Learning from Human Feedback and Preference-Based RL. Inspired by the successes in aligning
large language models (LLMs) (Ouyang et al., 2022), reinforcement learning from human feedback has received increasing
attention. RLHF is usually instantiated as preference-based learning, where the humans rank the model outputs based on
their preferences, and a reward model is then estimated from the feedback, which will be further used for model fine-tuning.
This way, RLHF is oftentimes implemented in an offline fashion, where batch feedback data are used for reward model
estimation (Ziegler et al., 2019; Bai et al., 2022; Ouyang et al., 2022; Zhu et al., 2023; Park et al., 2024). Recently, online
versions of RLHF have also been developed (Dwaracherla et al., 2024; Du et al., 2024; Xie et al., 2024; Cen et al., 2024;
Zhang et al., 2024), where the exploration issue was addressed with online feedback. In fact, beyond fine-tuning LLMs,
preference-based RL has also been studied in the classical Markov decision process model with online feedback (Novoseller
et al., 2020; Saha et al., 2023; Xu et al., 2020). However, the utility/reward functions in these works are again stationary, and
the regret notions extend those in the dueling-bandits literature, which are thus different from ours. Hence, these results do
not apply to our adversarial online learning and game-theoretic settings.

Learning of Stable Matchings. Some of our motivating scenarios for the game-theoretic setting may also be modeled
as the stable matching problem (Gale and Shapley, 1962), which has been extensively studied when the agents have full
knowledge of their preferences. Recently, growing efforts have been devoted to learning in stable matching markets with
unknown preferences, and through interactions between the agents (Liu et al., 2020; 2021; Basu et al., 2021; Jagadeesan
et al., 2021; Etesami and Srikant, 2025; Shah et al., 2024b;a). Notably, (Etesami and Srikant, 2025; Shah et al., 2024b;a) also
took a game-theoretic perspective, by developing learning dynamics for finding matchings in a decentralized, uncoordinated
fashion. However, one key difference is that the learning agents (e.g., the proposers or the platform) can still receive
numeric feedback of the utilities each round, based on the matching result, while in our model, they can only receive the
ranking feedback. Moreover, the learning dynamics in (Etesami and Srikant, 2025; Shah et al., 2024b;a) were specific to the
matching model, while ours aim to address general normal-form games.

Recent Work by Maran, Bacchiocchi, Stradi, Castiglioni, Gatti, and Restelli (2024). The work closest to ours is
the recent one by Maran et al. (2024), which studied multi-armed bandits with ranking feedback, also under the standard
(external-)regret metric. Different from the ranking model in dueling bandits, the model of Maran et al. (2024) is based on
time-average utilities, a setting also considered in our paper. More importantly, in contrast to our paper, Maran et al. (2024)
focused on the stochastic bandits setting where the utility functions are stationary, while our focus is on the adversarial/online
and game-theoretic settings, with both instantaneous and time-average utility-based rankings. Furthermore, the ranking
model in Maran et al. (2024) corresponds to the case of τ → 0+ in our framework. Finally and notably, Maran et al. (2024)
also provided a hardness result for the adversarial bandit setting (with τ → 0+ in our framework), while our hardness results
(with different hard instances) are stronger in the sense that they allow a wider range of τ for the bandit setting, and also
cover the full-information setting (cf. Table 1).

B. Additional Notation and Preliminaries
Notation. For any integer N > 0, we define [N ] := {1, ..., N} to denote the set of positive integers no larger than N . We
use bold notation x to denote a finite-dimensional vector, and xi to denote the ith element of the vector. For any discrete set

11
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S , let |S| denote its cardinality, ∆S :=
{
x ∈ RS :

∑
s∈S xs = 1, xs ≥ 0 for all s ∈ S

}
be the probability simplex over S ,

and 1 (S) be an all-one vector with each index being elements in S . For any ordered discrete set S , we use RS to denote the
|S| dimensional real space, where the sth ∈ S element of any x ∈ RS is denoted as xs or x(s). For any vector x ∈ Rm, let
∥x∥p be its Lp-norm and we use ∥x∥ to denote the L2-norm by default. For any convex compact set C ⊆ Rn and x ∈ Rn,
let ProjC (x0) = argminx∈C ∥x− x0∥. For any event e, let 1 (e) be its indicator, which is equal to one when e holds and
zero otherwise. Additionally, for any discrete set S , let Σ (S) be the set containing all the permutations of the elements in S .
We will use sig(x) := exp(x)

1+exp(x) : R→ R to denote the logistic function.

B.1. Normal-Form Games

An N -player normal-form game can be characterized by a tuple
(
N, {Ai}Ni=1 , {Ui}

N
i=1

)
, whereAi :=

{
a1i , a

2
i , . . . , a

|Ai|
i

}
is the (finite) action set for player i ∈ [N ]; Ui :×N

i=1
Ai → [−1, 1] (×denotes the Cartesian product of sets) is the

utility function of player i, where Ui(a1, a2, ..., aN ) is the utility of player i when player j ∈ [N ] takes action aj . We call
a : = (a1, a2, ..., aN ) the joint action and let a−i : = (a1, ..., ai−1, ai+1, ..., aN ). Player i ∈ [N ] can choose a strategy
πi ∈ ∆Ai , and we call×N

i=1
∆Ai ∋ π = (π1, π2, . . . , πN ) a strategy profile. When a strategy profile π is implemented,

each player i ∈ [N ] has an expected utility of
∑

a∈×N
j=1 Aj

Ui(a)
∏

j∈[N ] πj(aj). Lastly, we use the unbold notation

π ∈ ∆×N
i=1 Ai to denote the (possibly correlated) joint strategy of all the players, where π(a) is the probability of choosing

the joint action a ∈×N

i=1
Ai.

In this paper, we focus on finding an ϵ-approximate coarse correlated equilibrium (ϵ-CCE) of the NFG, which is a probability
distribution over the joint action set. It is formally defined as follows:

Definition B.1 (ϵ-CCE). For any joint strategy π ∈ ∆×N
i=1 Ai , it is an ϵ-CCE if

max
i∈[N ]

max
π̂i∈∆Ai

∑
a∈×N

j=1 Aj

Ui(a)

π̂i(ai) ∑
a′
i∈Ai

π(a′i,a−i)− π(a)

 ≤ ϵ. (ϵ-CCE)

When ϵ = 0, we refer to it as a(n exact) CCE.

B.2. Equilibrium Computation with Ranking Feedback

There is a mediator (platform) in the game that computes strategies for the players, (e.g., Uber recommends the candidate
drivers and users to each other), but with only access to the ranking feedback from the players, e.g., humans. Specifically,
when the strategy profile π is implemented by the players, player i’s utility of taking action ai ∈ Ai is uπi (ai) :=∑

a′∈×N
j=1 Aj

Ui(a′)1 (a′i = ai)
∏

j ̸=i πj(a
′
j). However, instead of observing the utility directly, the mediator can only

observe the ranking based on it. Therefore, at each timestep t, the mediator will choose a strategy profile π and propose

each player i ∈ [N ] a multiset o(t)i =
{
a
(t),k
i

}K

k=1
consisting of K actions, and in different settings proceed differently as

follows:

• Full-information setting. All the actions of each player i ∈ [N ] can be evaluated and ranked at each timestep t based
on some utility vector, which is uπ(t)

i under InstUtil Rank and u
(t)
avg := 1

t

∑t
s=1 u

π(s)

i under AvgUtil Rank, where

π(t) =
(
π
(t)
1 , . . . , π

(t)
N

)
is the strategy profile at timestep t.

• Bandit setting. For each player i ∈ [N ], only the K actions in o(t)i that are proposed at timestep t will be evaluated
and ranked, with the associated elements in some utility vector. Specifically, under InstUtil Rank, û(t)

i defined below
will be used: for each ai ∈ Ai

û
(t)
i (ai) :=

1

|o(t)−i|
∑

a−i∈o
(t)
−i

∑
a′∈×N

j=1 Aj

Ui(a′)1 (a′i = ai)1
(
a′−i = a−i

)
;

under AvgUtil Rank, the corresponding empirical average utility is as computed in (3.2), with the u(s) therein being

12
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replaced by the û
(s)
i above. As in the online setting, we assume that the actions are proposed in an unbiased way, i.e.,

E

[∑
a−i∈o

(t)
−i

Ui(ai,a−i)

|o(t)−i|

]
=
〈
Ui(ai, ·), π(t)

−i

〉
, for all ai ∈ Ai. In other words, û(t)

i is an unbiased estimate of uπ(t)

i .

The process will be repeated until the mediator finds an (approximate) equilibrium of the game, which is the average of the
joint strategy over all timesteps.

C. Experiments
We evaluate our algorithms in two-player general-sum games with randomly generated utility, under all the combinations
of full-information and bandit settings, as well as the InstUtil Rank and AvgUtil Rank feedback types. The CCE
approximation ϵ for games with different parameters is provided in the following figures, with a 95% confidence interval.
All the experiments are conducted on 37 cores of the Intel(R) Xeon(R) Platinum 8260 CPU @2.40 GH.
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1Figure 2: The exploitability for the full-information setting under both InstUtil Rank and AvgUtil Rank feedback. The
performance is tested under different temperatures τ . Each parameter combination is tested 10 times with different random
seeds.

The utility estimation of each game utilizes Algorithm 1. The (full-information) no-regret learning oracle with numeric
feedback, Alg, for InstUtil Rank is PGD (Hazan et al., 2016) and for AvgUtil Rank is FTRL with L2-regularization (Hazan
et al., 2016).

To select better hyper-parameters for different game settings, we performed a grid-search for InstUtil Rank on exploration
rate γ and estimation window size m. For AvgUtil Rank, we perform the grid-search on exploration rate γ, estimation
window size m, and the block size M . The parameters searched may differ depending on the full-information or bandit
feedback settings. All the games are run for T = 107 iterations. Each player in the game has 10 actions. The learning rate
was set to η = 1√

T
in all experiments, except in the combination of AvgUtil Rank and bandit feedback, where it was set to

η = 10−6. Each parameter combination is tested 10 times with different random seeds. We pick the best m, M , and γ for
each figure.

For all games, the exploitability decreases as t increases, which shows time-average joint strategy converges to CCE. The
equilibrium of the bandit feedback setting for AvgUtil Rank is reached slower than InstUtil Rank, which fits the regret
bound in Theorem 5.2 and Theorem 6.3.

The code for the experiments is provided at the anonymous github link Online-Learning-and-Equilibrium-Computation-
with-Ranking-Feedback.1

1https://anonymous.4open.science/r/Online-Learning-and-Equilibrium-Computation-with-Ranking-Feedback-FB0C
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1Figure 3: The exploitability for the bandit feedback setting under InstUtil Rank feedback. The performance is tested under
different temperatures τ and sampled action size K. Each parameter combination is tested 10 times with different random
seeds.

D. Proof of Section 4
Note that E

[
R(T )

]
≥ E

[
R(T ),external

]
by definition. Therefore, in the rest of this section, we will focus on showing the

lower bound of E
[
R(T ),external

]
.

D.1. Proof of Theorem 4.1

Theorem 4.1. Consider InstUtil Rank. For any T > 0, temperature 0 < τ ≤ 0.1, and online learning algorithm, there
exists a sequence of utilities

(
u(t)

)T
t=1

such that min
{
E
[
R(T ),external

]
,E
[
R(T )

]}
≥ Ω (T ) in both full-information and

bandit settings. The expectation is taken over the randomness of the algorithm and the ranking.

Proof. Consider an online learning problem with A = {a, b}, so that the utility vector can be represented as (u(a), u(b)).
There are two instances with τ = 0.1.

In the first instance, there are two types of utility vectors (−0.5, 0) and (0.15, 0). At each timestep, the adversary will
choose (−0.5, 0) with probability 4

13 and the other with probability 9
13 .

In the second instance, there are two types of utility vectors (−0.02, 0) and (0.1, 0). Recall sig(x) : R →
R := exp(x)

1+exp(x) is the logistic function. At each timestep, the adversary will choose (−0.02, 0) with probability
4sig(−5)/13+9sig(1.5)/13−sig(1)

sig(−0.2)−sig(1) ≈ 0.58 and the other with probability 0.42.

The expected utility of action b in both instances is 0. The expected utility of action a in the first instance is −0.05. The
expected utility of action a in the second instance is 0.03.

Moreover, the probability of the online learning agent observing permutation (a, b) in the first instance is

4

13
sig(−5) + 9

13
sig(1.5),

which is equal to the probability of observing it in the second instance

4sig(−5)/13 + 9sig(1.5)/13− sig(1)

sig(−0.2)− sig(1)
sig(−0.2) +

(
1− 4sig(−5)/13 + 9sig(1.5)/13− sig(1)

sig(−0.2)− sig(1)

)
sig(1).
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1Figure 4: The exploitability for the bandit feedback setting under AvgUtil Rank feedback. The performance is tested under
different temperatures τ and sampled action size K. Each parameter combination is tested 10 times with different random
seeds.

Therefore, for any algorithm that generates
(
π(t)

)T
t=1

, we have

E

[
T∑

t=1

〈
u(t), π(t)

〉]
=

T∑
t=1

E
[〈

u(t), π(t)
〉]

(i)
=

T∑
t=1

〈
E
[
u(t)

]
,E
[
π(t)

]〉
.

(i) is because u(t) is independent of π(t) given our process of generating both instances. Moreover,

E
[
π(t)

]
=

∑
σ(1),...,σ(t−1)∈Σ(A)

P
(
σ(1), . . . , σ(t−1)

)
E
[
π(t) |σ(1), . . . , σ(t−1)

]
.

The first term P
(
σ(1), . . . , σ(t−1)

)
is equal in the two instances according to the discussion above, and the second term

E
[
π(t) |σ(1), . . . , σ(t−1)

]
is also equal since it only depends on the algorithm. Therefore, E

[
π(t)

]
is the same in both

instances.

However, E
[
u(t)

]
= (−0.05, 0) in the first instance but (0.03, 0) in the second. Therefore, whenever achieving sublinear

regret in the first instance, the algorithm will suffer a linear regret in the second instance, and vice versa.

D.2. Proof of Theorem 4.3

Theorem 4.3. Consider AvgUtil Rank with full-information feedback. For any T > 0, temperature 0 < τ ≤ O
(

1
T log T

)
,

and online learning algorithm, there exists T ′ ≥ T and a sequence of utilities
(
u(t)

)T ′

t=1
such that E

[
R(T ′),external

]
≥

Ω̃ (T ′) . The expectation is taken over the randomness of the algorithm and the ranking.

Proof. We use (u(a), u(b)) to denote the utility vector when the action set is A = {a, b}. In the following, we will show a
hard instance for τ → 0+, i.e., we always observe the action with higher utility ranks first in the permutation. Then, we will
show that τ ≤ O( 1

T log T ) can be reduced to τ → 0+.

The utility vector at timestep 1 is u(1) = (0.5, 0). We will construct the rest of the utility vectors next.

We call the following an action-a construction, since, except for the last timestep, the observation is that action a is always
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better. Let K ∈ N be the smallest integer such that 2K ≥ T , then:

Sequence 0 =(0, 1), (0, 0)

Sequence 1 =(1, 0), (0, 1), (0, 1), (0, 0)

Sequence 2 =(1, 0), (1, 0), (1, 0), (0, 1), (0, 1), (0, 1), (0, 1), (0, 0)

. . . (D.1)
SequenceK − 1 = (1, 0), ..., (1, 0)︸ ︷︷ ︸

2K−1−1

, (0, 1), ..., (0, 1)︸ ︷︷ ︸
2K−1

, (0, 0)

SequenceK =(1, 0), ..., (1, 0)︸ ︷︷ ︸
2K−1

, (0, 0).

Lemma D.1 in the following shows that at least one of the sequences will incur a low average utility for the algorithm.

Lemma D.1. Consider (D.1). For any online learning algorithm, at least one of the K + 1 sequences satisfies that the
expected average utility per timestep is less than 0.5− 1

2(K+1) .

By Lemma D.1, there exists a sequence with length 2k for some k ≤ K such that the average utility per timestep achieved
by the algorithm is less than 0.5− 1

2(K+1) . We will pick this sequence as the next 2k utility vectors. If the current utility
vector sequence is no less than T , then the hard instance is completed. Otherwise, we will establish the following action-b
construction:

Sequence 0 =(1, 0), (0, 0)

Sequence 1 =(0, 1), (1, 0), (1, 0), (0, 0)

Sequence 2 =(0, 1), (0, 1), (0, 1), (1, 0), (1, 0), (1, 0), (1, 0), (0, 0)

. . .

SequenceK − 1 = (0, 1), ..., (0, 1)︸ ︷︷ ︸
2K−1−1

, (1, 0), ..., (1, 0)︸ ︷︷ ︸
2K−1

, (0, 0)

SequenceK =(0, 1), ..., (0, 1)︸ ︷︷ ︸
2K−1

, (0, 0).

Similarly, except for the last observation, action b is the best action in all the observations. Similar to Lemma D.1, we can
show that at least one of the sequences incurs average utility per timestep less than 0.5− 1

2(K+1) . We will add that sequence
to the end of our hard instance.

Let T ′ ≥ T be the length of the final instance. Therefore, the average regret will be 1
2(K+1) = Ω( 1

log T ). Because from the
construction, the best action should get at least 0.5− 1

T utility per timestep.

When τ ≤ O
(

1
T log T

)
, from the construction above, the difference between the cumulative utility of the actions is always

0.5. By definition of AvgUtil Rank, 1 − sig
(
O
(
0.5
Tτ

))
≤ O

(
1
T

)
. Therefore, by union bound, with a non-negligible

probability, all permutations will rank the action with a higher utility at first, so that the problem reduces to the case with
τ → 0+.

Lemma D.1. Consider (D.1). For any online learning algorithm, at least one of the K + 1 sequences satisfies that the
expected average utility per timestep is less than 0.5− 1

2(K+1) .

Proof. Note that in this online learning setting, the strategy π(t) is determined by u(1), . . . ,u(t−1). Therefore, in all the
sequences in the action-a construction, since action a is the best in all the observations, for any two sequences k1 ≤ k2,
the expectation of the strategies is the same for the first 2k1+1 utility vectors. For simplicity, we will use x(t) to denote the
probability of choosing action-a at timestep t.
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The average utility at sequence 0 is 1−x(1)

2 . The average utility at sequence 1 is x(1)

4 + 1−x(2)

4 + 1−x(3)

4 . We can see that the
utility contributed by x(1) to all the sequences is

1− x(1)
2

+
x(1)

4
+
x(1)

8
+ ...+

x(1)

2K
+
x(1)

2K
=

1

2
.

Similarly, the contribution of x(2), x(3) is 1
4 . The contribution of x(4), x(5), . . . , x(7) is 1

8 . Therefore, the total contribution
of x(1), ..., x(2

K−1) is K
2 . There are K + 1 sequences in total, so that at least one of the sequences has average utility per

timestep less than K
2(K+1) =

1
2 − 1

2K+2 .

D.3. Proof of Theorem 4.4

Theorem 4.4. Consider AvgUtil Rank with bandit feedback. For any T > 0, temperature 0 < τ ≤ O
(

1
log T

)
, and online

learning algorithm, there exists a sequence of utilities
(
u(t)

)4T
t=1

such that E
[
R(4T )

]
≥ Ω (T ) . The expectation is taken

over the randomness of the algorithm and the ranking.

Proof. Consider the following two instances. Both of them satisfy A =
{
a1, a2

}
and K = 1.

Instance 1 =(0.1, 0), . . . , (0.1, 0)︸ ︷︷ ︸
T

, (0, 0.2), . . . , (0, 0.2)︸ ︷︷ ︸
T

, (0, 1), . . . , (0, 1)︸ ︷︷ ︸
2T

Instance 2 =(0.1, 0), . . . , (0.1, 0)︸ ︷︷ ︸
T

, (0, 0.2), . . . , (0, 0.2)︸ ︷︷ ︸
T

, (0.4, 0.2), . . . , (0.4, 0.2)︸ ︷︷ ︸
2T

.

We call the first T timesteps as the first phase, the next T timesteps as the second phase, and the last 2T timesteps as the
third phase.

For any online learning algorithm to achieve sublinear expected regret, it must propose action a1 for at least 0.9T timesteps
during the first phase with probability at least 1

2 , since otherwise the expected external regret in the first phase is linear.
During the second phase, it must propose action a2 for at least 0.2T−0.1T

0.2 = T
2 timesteps due to the same reason with

probability at least 1
4 . Then, at the end of the second phase, with probability at least 1

4 , u(2T )
empirical(a

2)− u(2T )
empirical(a

1) ≥
0.5T ·0.2

0.1T+0.5T − 0.1 = 1
15 .

Then, in the third phase of Instance 1, the algorithm needs to propose a2 for at least 0.2T+2T−0.2T−0.1T
1 = 1.9T timesteps

with probability at least 1
8 . In other words, a1 is proposed by no more than 0.1T times. Then, in Instance 2, at the end

of the third phase, u(4T )
empirical(a

2) − u(4T )
empirical(a

1) ≥ 0.5T ·0.2
0.1T+0.5T − 0.9T ·0.1+0.1T ·0.4

0.9T+0.1T ≥ 0.03. Therefore, when τ → 0+,
the observations of Instance 1 and Instance 2 are the same with probability at least 1

8 . Then, with probability at least 1
8 ,

according to the discussion above, any learning algorithm will satisfy one of the following,

• Linear regret at timestep T .

• Linear regret at timestep 2T .

• Linear regret at timestep 4T in either Instance 1 or Instance 2.

Moreover, for any t > 2T in Instance 2, we have u(t)empirical(a
2)− u(t)empirical(a

1) ≥ u(4T )
empirical(a

2)− u(4T )
empirical(a

1) ≥ 0.03.

Therefore, when τ ≤ O
(

1
log T

)
, with high probability, the action with higher empirical average utility will always be

ranked first.

E. Proof of Theorem 5.1
In this section, we proved the high probability bound for the utility estimation error, and with that, we gave the regret upper
bound of our algorithm under InstUtil Rank feedback. Next, we will introduce the key lemma we used for utility estimation,
Lemma E.1, which shows that the ranking of K actions can be decomposed into pair-wise rankings.
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Algorithm 1 Utility Estimation with Action Permutations: Estimate
({
σ(s)

}m′

s=1

)
1: Input: A set consisting of m′ permutations of actions :

{
σ(s)

}m′

s=1
with |σ(s)| = K for all s ∈ [m′], and temperature

τ > 0.
2: for j = 1, 2, . . . , |A| − 1 do
3: for s = 1, . . . ,m′ do
4: Calculate n(s)j,1 , n

(s)
j,2 defined as

n
(s)
j,1 :=

∑
i,k∈[K]

1
(
σ(s) (i) = aj , σ(s) (k) = a|A|and i < k

)
,

n
(s)
j,2 :=

∑
i,k∈[K]

1
(
σ(s) (i) = aj , σ(s) (k) = a|A|and i > k

)
.

5: end for
6: Let Tj :=

{
s ∈ [1,m′] : n

(s)
j,1 + n

(s)
j,2 > 0

}
7: Let sig−1(x) : (0, 1)→ R := log x

1−x be the inverse function of sig(·). The utility of action aj is then estimated as

ũ(aj) =

Proj[−1,1]

(
τsig−1

(
1

|Tj | ·
∑

s∈Tj

(
n
(s)
j,1

n
(s)
j,1+n

(s)
j,2

)))
|Tj | > 0

0 |Tj | = 0.

8: end for
9: Return ũ =

(
ũ(a1), ũ(a2), . . . , ũ

(
a|A|−1

)
, 0
)

E.1. Pair-wise Utility Estimation

Lemma E.1 below shows that when the number of proposed actions K > 2, for any two actions a ̸= b ∈ o(t), the proportion
of pairs that action a appears before b in o(t), is equal to sig

(
u(t)(a)−u(t)(b)

τ

)
in expectation. In other words, the expected

proportion is equal to the probability of the permutation (a, b) occurring when only proposing a, b.

Lemma E.1. Let #S (a) :=
∑

a′∈S 1 (a′ = a) represent the number of elements in a multiset S that are equal to a ∈ A.
For any utility vector u, temperature τ > 0, a multiset of proposed actions S with cardinality |S| = K, and any two actions
a ̸= b ∈ S, we have

1

#S (a) · #S (b)
Eσ

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

∣∣∣∣S
]
= sig

(
u(a)− u(b)

τ

)
.

The expectation is taken over the distribution of σ under the ranking model (PL).

The proof can be found in Appendix E.2. With Lemma E.1, the general cases where K > 2 actions are proposed can be
cast into the case with only two actions being proposed, by enumerating all possible action pairs. Therefore, to estimate
u(t)(aj) for some aj ∈ A, we will first construct an unbiased estimator of sig

(
u(s)(aj)−u(s)(a|A|)

τ

)
using Lemma E.1,

for all timesteps s ∈ [t − m + 1, t] when both aj , a|A| ∈ o(s). Since we have assumed without loss of generality that

u(s)(a|A|) = 0, these values coincide with sig
(

u(s)(aj)
τ

)
. Then, by Hoeffding’s inequality and the monotonicity of the

logistic function sig(·), with high probability, the mean of the logistic function estimators will be bounded between the

minimum and maximum of
{
sig
(

u(s)(aj)
τ

)}t

s=t−m+1
. By Assumption 4.2, since the utility vectors are changing slowly,

that mean can be shown close to sig
(

u(t)(aj)
τ

)
. With a good estimate of sig

(
u(t)(aj)

τ

)
, we can then take an inverse of sig(·)

to estimate u(t)(aj). This estimation algorithm is summarized in Algorithm 1 and analyzed in Theorem 5.1 below.

In the following, we will prove Theorem 5.1, which gives the estimation error bound of the utility vector for each timestep.

Theorem 5.1. Consider InstUtil Rank and Algorithm 1. Suppose each action is proposed with probability at least p > 0
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at each timestep t ∈ [T ] and let ũ(t) = Estimate
({
σ(s)

}t
s=t−m′+1

)
. Then, for any δ ∈ (0, 1) and t ≥ m′, when

m′p4 ≥ 2 log
(
2
δ

)
, with probability at least 1− δ, the estimate ũ(t) satisfies,

∥∥∥ũ(t) − u(t)
∥∥∥
∞
≤
τ
(
e

1
τ + 1

)2
p

√
log
(
2
δ

)
m′ +

t−1∑
s=t−m′+1

∥∥∥u(s+1) − u(s)
∥∥∥
∞
.

Proof. Due to the symmetry of timesteps, we will only prove Theorem 5.1 for t = m′ for notational simplicity.

For any j ∈ [|A| − 1], we assume that the probability for action aj being chosen at each timestep is at least p. Let the
number of action pairs

(
aj , a|A|) chosen in the m′ timestep be m1, by Hoeffding’s Inequality, we have that with probability

at least 1− δ:

m1 ≥ m′p2 −
√
m′

2
log

(
2

δ

)
.

For these chosen pairs, the probability that a ranks before |Ai| is
exp
(

1
τ u(m′)(aj)

)
exp( 1

τ u(m′)(aj))+exp( 1
τ u(m′)(|Ai|))

=
exp
(

1
τ u(m′)(aj)

)
exp( 1

τ u(m′)(aj))+1
.

We define

Sm1
:=

m′∑
s=1

1
(
aj , a|A| ∈ σ(s)

) ∑K
k1=1

∑K
k2=k1+1 1 (σ(k1) = a) · 1 (σ(k2) = b)

#σ(s)(aj)#σ(s)(a|A|)
.

Due to the monotonicity of the function sig,

ũ(m
′)(aj) = τsig−1

(
Proj[sig(− 1

τ ),sig( 1
τ )]

(
Sm1

m1

))
,

where ũ(m
′)(aj) is the estimation of u(m

′)(aj). Then also by Hoeffding’s Inequality, we have that with probability at least
1− δ, ∣∣∣∣∣∣Sm1

m1
− 1

m1

m′∑
s=1

1
(
aj , a|A| ∈ σ(s)

)
sig

(
1

τ
u(s)(aj)

)∣∣∣∣∣∣ ≤
√

1

2m1
log

(
2

δ

)
.

Let u(m
′),∗(aj) ∈ R be the scalar satisfying

sig

(
1

τ
u(m

′),∗(aj)

)
=

1

m1

m′∑
s=1

1
(
aj , a|A| ∈ σ(s)

)
· sig

(
1

τ
u(s)(aj)

)
.

Since the logistic function is monotone and continuous, u(m
′),∗(aj) is unique and must exist. Then since

[
sig(− 1

τ ), sig(
1
τ )
]

is a convex set, with probability at least 1− δ,∣∣∣∣Proj[sig(− 1
τ ),sig( 1

τ )]

(
sig

(
1

τ
ũ(m

′)(aj)

))
− Proj[sig(− 1

τ ),sig( 1
τ )]

(
sig

(
1

τ
u(m

′),∗(aj)

))∣∣∣∣
≤
∣∣∣∣sig(1

τ
ũ(m

′)(aj)

)
− sig

(
1

τ
u(m

′),∗(aj)

)∣∣∣∣ ≤
√

1

2m1
log

(
2

δ

)
.

Lemma E.2 in the following shows that ũ(m
′)(aj) is bounded between the minimum and maximum of

{
u(s)(aj)

}m′

s=1
. Then,

by further utilizing the assumption that the variation of the utility vectors is small, we can bound the distance between our
estimated utility vector and u(m′).
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Lemma E.2. Let x1, . . . , xn ∈ [−1, 1] and sigavg := 1
n

∑n
i=1 sig(xi), we have

min
i∈[n]

xi ≤ log

(
sigavg

1− sigavg

)
≤ max

i∈[n]
xi.

The proof is postponed to Appendix E.2.

By Lemma E.2, we have that u(m
′),∗ ∈ [−1, 1],

Proj[sig(− 1
τ ),sig( 1

τ )]

(
sig

(
1

τ
u(m

′),∗(aj)

))
= sig

(
1

τ
u(m

′),∗(aj)

)
.

For any u ∈ [−1, 1], we have

dsig
(
1
τ u
)

du
=

1

τ
sig
(u
τ

)(
1− sig

(
−u
τ

))
≥ 1

τ
sig

(
−1

τ

)(
1− sig

(
1

τ

))
=

1

τ

(
sig

(
−1

τ

))2

=
1

τ
(
e

1
τ + 1

)2 .
Recall that with probability at least 1− δ,∣∣∣∣Proj[sig(− 1

τ ),sig( 1
τ )]

(
sig

(
1

τ
ũ(m

′)(aj)

))
− sig

(
1

τ
u(m

′),∗(aj)

)∣∣∣∣ ≤
√

1

2m1
log

(
2

δ

)
.

Since function sig is monotonic, by Taylor expansion and the fact that ũ(m
′)(aj), u(m

′),∗(aj) ∈ [−1, 1], we get that with
probability at least 1− δ, ∣∣∣ũ(m′)(aj)− u(m′),∗(aj)

∣∣∣ ≤ τ (e 1
τ + 1

)2√ 1

2m1
log

(
2

δ

)
.

By Lemma E.2, we have

u(t),∗(aj) ∈
[
min

{
u(s)(aj)

}m′

s=1
,max

{
u(s)(aj)

}m′

s=1

]
,

which implies that∣∣∣ũ(t)(aj)− u(t)(aj)∣∣∣ ≤τ (e 1
τ + 1

)2√ 1

2m1
log

(
2

δ

)
+ max

s∈{1,2,...,m′−1}

∣∣∣u(s)(aj)− u(t)(aj)∣∣∣
≤τ
(
e

1
τ + 1

)2√ 1

2m1
log

(
2

δ

)
+

m′−1∑
s=1

∣∣∣u(s+1)(aj)− u(s)(aj)
∣∣∣ .

When m′p4 ≥ 2 log
(
2
δ

)
, with probability at least 1− δ,

m1 ≥
m′

2
p2.

So we have that with a probability at least 1− δ,∣∣∣ũ(m′)(aj)− u(m′)(aj)
∣∣∣ ≤ τ (e 1

τ + 1
)2√ 1

m′p2
log

(
2

δ

)
+

m′−1∑
s=1

∣∣∣u(s+1)(aj)− u(s)(aj)
∣∣∣ .

20



Online Learning and Equilibrium Computation with Ranking Feedback

After estimating the utility of each action, we have

∥∥∥ũ(m′) − u(m′)
∥∥∥
∞
≤
τ
(
e

1
τ + 1

)2
p

√
log
(
2
δ

)
m′ +

m′−1∑
s=1

∥∥∥u(s+1) − u(s)
∥∥∥
∞
.

Remark E.3. Due to the monotonicity of the logistic function sig, the following two projections on sig
(
x
τ

)
are equivalent:

Proj[sig(− 1
τ ),sig( 1

τ )]

(
sig
(x
τ

))
:=min

(
max

(
sig
(x
τ

)
, sig

(
−1

τ

))
, sig

(
1

τ

))
,

sig

(
Proj[−1,1] (x)

τ

)
:=sig

(
min (max (x,−1) , 1)

τ

)
.

E.2. Omitted Proofs

Lemma E.1. Let #S (a) :=
∑

a′∈S 1 (a′ = a) represent the number of elements in a multiset S that are equal to a ∈ A.
For any utility vector u, temperature τ > 0, a multiset of proposed actions S with cardinality |S| = K, and any two actions
a ̸= b ∈ S, we have

1

#S (a) · #S (b)
Eσ

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

∣∣∣∣S
]
= sig

(
u(a)− u(b)

τ

)
.

The expectation is taken over the distribution of σ under the ranking model (PL).

Proof. We will abuse the notion
σ
< from permutations to subsets of actions. When proposing a set of actions S, let a

S
< b

denote the event that a is ahead of b in the permutation given by the environment.

In PL model, the probability that action a ranks before action b is that

Pτ,u

(
a

{a,b}
< b

)
:=

exp
(
1
τ u(a)

)
exp

(
1
τ u(a)

)
+ exp

(
1
τ u (b)

) .
By definition, let the multiset of the K proposed actions be S . Then, the probability of the K-wise permutation is

Pτ,u (σ | S) :=
K∏

k1=1

exp
(
1
τ u (σ (k1))

)∑K
k2=k1

exp
(
1
τ u (σ (k2))

) . (E.1)

Recall that Σ(S) denotes the set that contains all the permutations of the elements in S. Hence, we have

E

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

∣∣∣∣S
]

=
∑

σ∈Σ(S)

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=
∑

σ∈Σ(S) :
σ(1)=a

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) (E.2)

+
∑

σ∈Σ(S) :
σ(1)=b

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) (E.3)

+
∑

σ∈Σ(S) :
σ(1) ̸∈{a,b}

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) . (E.4)
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We deal with (E.2) first:

∑
σ∈Σ(S) :
σ(1)=a

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=
∑

σ∈Σ(S) :
σ(1)=a

Pτ,u (σ | S)
(
#S(b) +

K∑
k1=2

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

)

=#S(b)Pτ,u (σ(1) = a | S) +
∑

σ∈Σ(S) :
σ(1)=a

Pτ,u (σ | S)
K∑

k1=2

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=#S(b)Pτ,u (σ(1) = a | S)

+ Pτ,u (σ(1) = a | S)
∑

σ∈Σ(S\{a})

Pτ,u (σ | S \ {a})
K∑

k1=2

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=#S(b)Pτ,u (σ(1) = a | S) + Pτ,u (σ(1) = a | S)E
[
K−1∑
k1=1

K−1∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) | S \ {a}
]
.

Similarly, for (E.3), we have

∑
σ∈Σ(S) :
σ(1)=b

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=Pτ,u (σ(1) = b | S)E
[
K−1∑
k1=1

K−1∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) | S \ {b}
]
.

Let Unique (S) be the set of non-repeated elements in S. Then, (E.4) can be written as,

∑
σ∈Σ(S) :
σ(1) ̸∈{a,b}

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=
∑

c∈Unique(S) :
c̸∈{a,b}

Pτ,u (σ(1) = c | S)E
[
K−1∑
k1=1

K−1∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) | S \ {c}
]
.

Next, we will use induction to show that for any actions a ̸= b ∈ S, the following holds:

E

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

∣∣∣∣S
]
= #S(a)#S(b)sig

(
u(a)− u(b)

τ

)
. (E.5)

Base case. When #S(a) = 0 or #S(b) = 0, (E.5) trivially holds. When |S| = 2 and #S(a) = #S(b) = 1,

E

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) | S
]
=Pτ,u (σ = ((a, b)) | {a, b})

=sig

(
u(a)− u(b)

τ

)
=#{a,b}(a)#{a,b}(b)sig

(
u(a)− u(b)

τ

)
.
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Lemma E.4. For any utility vector u, temperature τ > 0, and a multiset of actions S, the marginal probability of any
action a ∈ A ranking at the first place of the permutation can be written as

Pτ,u (σ(1) = a | S) = #S (a)
exp

(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) .

The proof is presented later in this section.

Induction step. When (E.5) holds for any S with |S| = K − 1. Then, we will show that it still holds for any S with
|S| = K. By Lemma E.4, (E.2) is equal to

#S(b)Pτ,u (σ(1) = a | S)

+ Pτ,u (σ(1) = a | S)
∑

σ∈Σ(S\{a})

Pτ,u (σ | S \ {a})
K∑

k1=2

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=#S(a)#S(b)
exp

(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
)

+ #S(a)
exp

(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) (#S\{a}(a) · #S\{a}(b)sig

(
u(a)− u(b)

τ

))
=#S(a)#S(b)

exp
(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) + #S(a)

exp
(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) (#S(a)− 1) · #S(b)sig

(
u(a)− u(b)

τ

)
.

Similarly, (E.3) is equal to

#S(b)
exp

(
1
τ u (b)

)∑
a′∈S exp

(
1
τ u (a

′)
)#S(a) · (#S(b)− 1) sig

(
u(a)− u(b)

τ

)
,

and (E.4) is equal to(
1− #S(a) exp

(
1
τ u (a)

)
+ #S(b) exp

(
1
τ u (b)

)∑
a′∈S exp

(
1
τ u (a

′)
) )

#S(a) · #S(b)sig

(
u(a)− u(b)

τ

)
.

Lastly, by summing them up, we have

E

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) | S
]

=#S(a)#S(b)
exp

(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) − #S(a)

exp
(
1
τ u (a)

)
+ exp

(
1
τ u (b)

)∑
a′∈S exp

(
1
τ u (a

′)
) · #S(b)sig

(
u(a)− u(b)

τ

)
+ #S(a) · #S(b)sig

(
u(a)− u(b)

τ

)
.

Note that sig
(

u(a)−u(b)
τ

)
=

exp(u(a)−u(b)
τ )

exp(u(a)−u(b)
τ )+1

=
exp(u(a)

τ )
exp(u(a)

τ )+exp(u(b)
τ )

. Therefore,

E

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

∣∣∣∣S
]
= #S(a) · #S(b)sig

(
u(a)− u(b)

τ

)
,

and we complete the induction.

Proof. Let Σ (S) be the set containing all permutations of S. By definition, for any action a ∈ A,

Pτ,u (σ(1) = a | S) =
∑

σ∈Σ(S) :
σ(1)=a

Pτ,u (σ | S) =
∑

σ∈Σ(S) :
σ(1)=a

|S|∏
k1=1

exp
(
1
τ u (σ (k1))

)∑|S|
k2=k1

exp
(
1
τ u (σ (k2))

) .
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Since there are #S(a) action a in S, by rearranging the terms, we have

Pτ,u (σ(1) = a | S) =#S(a)
exp

(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) ∑

σ∈Σ(S\{a})

|S|−1∏
k1=1

exp
(
1
τ u (σ (k1))

)∑|S|−1
k2=k1

exp
(
1
τ u (σ (k2))

)
=#S(a)

exp
(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) ∑

σ∈Σ(S\{a})

Pτ,u (σ | S \ {a})

=#S(a)
exp

(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) .

Lemma E.2. Let x1, . . . , xn ∈ [−1, 1] and sigavg := 1
n

∑n
i=1 sig(xi), we have

min
i∈[n]

xi ≤ log

(
sigavg

1− sigavg

)
≤ max

i∈[n]
xi.

Proof. The logistic function sig(x) is increasing monotonically with respect to x, since dsig
dx = exp(x)

(exp(x)+1)2
> 0. Then,

without loss of generality, let x1 ≤ x2 ≤ · · · ≤ xn. Thus, sig(x1) ≤ sigavg ≤ sig(xn).

Since sig(x) is monotonic and continuous, there exists only one ζ ∈ [x1, xn] such that sig(ζ) = sigavg. As the inverse

function of sig(x) is log
(

sig(y)
1−sig(y)

)
, we have

min
i∈[n]

xi ≤ log

(
sigavg

1− sigavg

)
≤ max

i∈[n]
xi.

F. Proof of Theorem 5.2 (Full-Information)
In this section, we prove the regret upper bound under InstUtil Rank and full-information feedback.
Theorem F.1 (Formal version of Theorem 5.2 (Full-Information)). Consider Algorithm 2 and full-information feedback.
For any δ ∈ (0, 1), T > 0, and any no-regret learning algorithm with numeric utility feedback, Alg, with probability at least

(1− δ), by choosing m =
(

T
P (T )

) 2
3
(
log
(
2T
δ

)) 1
3 , R(T ),external satisfies

R(T ),external ≤R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
+
√
2τ
(
e

1
τ + 1

)2 (
P (t)

) 1
3

T
2
3

(
log

(
2T

δ

)) 1
3

+ 2
(
P (t)

) 1
3

T
2
3

(
log

(
2T

δ

)) 1
3

+ 2
(
P (t)

)− 2
3

T
2
3

(
log

(
2T

δ

)) 1
3

. (F.1)

Proof. By Theorem 5.1, we have∣∣∣∣R(T ),external −R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)∣∣∣∣
=

∣∣∣∣∣max
π̂∈∆A

T∑
t=1

〈
u(t), π̂ − π(t)

〉
− max

π̂∈∆A

T∑
t=1

〈
ũ(t), π̂ − π(t)

〉∣∣∣∣∣
≤ max

π̂∈∆A

∣∣∣∣∣
T∑

t=1

〈
u(t) − ũ(t), π̂ − π(t)

〉∣∣∣∣∣
≤

T∑
t=1

∥∥∥u(t) − ũ(t)
∥∥∥
∞
· max
π̂∈∆A

∥∥∥π̂ − π(t)
∥∥∥
1
.

When t ≥ m, the estimation error between ũ(t) and u(t) is given by Theorem 5.1. When t < m, it becomes trivial that the
estimation error satisfies ∥∥∥u(t) − ũ(t)

∥∥∥
∞
≤ 2.
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For any given δ, we require the utility estimation bound to hold with probability at least 1− δ
T , then by union bound, with

probability at least 1− δ,∣∣∣∣R(T ),external −R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)∣∣∣∣ ≤ 2τ
(
e

1
τ + 1

)2√ log
(
2T
δ

)
2m1

T + 2m
(
P (T ) + 1

)
.

By choosing m =
(

T
P (T )

) 2
3
(
log
(
2T
δ

)) 1
3 , we conclude the proof.

G. Proof of Theorem 5.2 (Bandit)
In this section, we prove the regret upper bound under InstUtil Rank and bandit feedback.

Theorem G.1 (Formal version of Theorem 5.2 (Bandit)). Consider Algorithm 2 and bandit feedback. For any δ ∈ (0, 1),
T > 0, and any no-regret learning algorithm with numeric utility feedback, Alg, with probability at least (1 − δ), by

choosing γ =
(

P (T )

T

) 1
5

,m = 32|A|4
K4

(
T

P (T )

) 4
5 log

(
2T
δ

)
, R(T ) satisfies

R(T ) ≤R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
+ 2

√
2T log

(
1

δ

)
+

τK
(
e

1
τ + 1

)2
|A| + 1

(P (T )
) 1

5

T
4
5 (G.1)

+
64|A|4
K4

(
P (T )

) 1
5

T
4
5 log

(
2T

δ

)
+

64|A|4
K4

(
T

P (T )

) 4
5

log

(
2T

δ

)
.

Proof. Firstly, we define:

R(T ) := max
π̂∈∆A

T∑
t=1

〈u(t), π̂
〉
− 1

K

K∑
j=1

u(t)
(
σ(t)(j)

)
R̃(T ) := max

π̂∈∆A

T∑
t=1

〈
ũ(t), π̂ − π(t)

〉
.

Then,

R(T ) ≤R(T ) −R(T ),external︸ ︷︷ ︸
♥

+
∣∣∣R(T ),external − R̃(T )

∣∣∣︸ ︷︷ ︸
♠

+

∣∣∣∣R̃(T ) −R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)∣∣∣∣︸ ︷︷ ︸
♦

+R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
︸ ︷︷ ︸

♣

.

Note that ♠ can be bounded by bounding
∥∥ũ(t) − u(t)

∥∥
∞ as in Appendix F. ♣ is sublinear by the definition of Alg. Next,

we will introduce lemmas that individually bound ♥,♦. The proofs are postponed to Appendices G.1 and G.2.

Lemma G.2 (♥). For any T > 0 and δ ∈ (0, 1), with probability at least 1− δ:

R(T ) −R(T ),external ≤ 2

√
2T log

(
1

δ

)
.

Lemma G.3 (♦). The difference between R̃(T ) and R(T ),external
(
Alg,

(
ũ(t)

)T
t=1

)
satisfies:∣∣∣∣R̃(T ) −R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)∣∣∣∣ ≤ 2γT.
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With Lemma G.2 and Lemma G.3, under the conditions in Theorem 5.2, by letting Theorem 5.1 hold with probability 1− δ
T

at each timestep, with probability at least (1− δ), the regret satisfies

R(T ) ≤R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
+ 2

√
2T log

(
1

δ

)

+ 2
τ
(
e

1
τ + 1

)2
p

√
log
(
2T
δ

)
m

T + 2m
(
P (T ) + 1

)
+ γT.

In this case, each action a ∈ A is chosen with probability at least p that satisfies

p ≥1−
(
1− γ

|A|

)K

≥ 1− exp

(
−K γ

|A|

)
≥1−

(
1−K γ

|A| +
1

2

(
K

γ

|A|

)2
)

= K
γ

|A| −
1

2

(
K

γ

|A|

)2

.

Since K γ
|A| ≤ 1, we have

1

2
K

γ

|A| ≥
1

2

(
K

γ

|A|

)2

⇒ p ≥ Kγ

2 |A| .

By letting γ =
(

P (T )

T

) 1
5

,m = 32|A|4
K4

(
T

P (T )

) 4
5 log

(
2T
δ

)
, we have

R(T ) ≤ R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
+O

(
T

4
5

(
P (T )

) 1
5

log

(
T

δ

))
.

The condition m ≥ 2 log( 2T
δ )

p4 is also satisfied since

mp4 ≥ m K4γ4

16|A|4 = 2 log

(
2T

δ

)
.

G.1. Bounding ♥

We will show that
∣∣R(T ) −R(T ),external

∣∣ is sublinear by using a standard concentration bound.

Lemma G.2 (♥). For any T > 0 and δ ∈ (0, 1), with probability at least 1− δ:

R(T ) −R(T ),external ≤ 2

√
2T log

(
1

δ

)
.

Proof. Let

d(t) :=
1

K

∑
a∈o(t)

u(t)(a)−
〈
u(t), π(t)

〉
.

By our algorithm design, each element of o(t) is sampled i.i.d. from π(t) and the update rule of π(t) is deterministic,
E
[
d(t) |

{
σ(s)

}t−1

s=1

]
= 0, so that

{
d(t)
}

is a martingale difference sequence.

Due to the bounds of
∣∣ 1
K

∑
a∈o(t) u

(t)(a)
∣∣ ≤ 1,

∣∣〈u(t), π(t)
〉∣∣ ≤ 1, we have

∣∣∣d(t)∣∣∣ =
∣∣∣∣∣∣ 1K

∑
a∈o(t)

u(t)(a)−
〈
u(t), π(t)

〉∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1K

∑
a∈o(t)

u(t)(a)

∣∣∣∣∣∣+
∣∣∣〈u(t), π(t)

〉∣∣∣ ≤ 2.
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Furthermore, we have

T∑
t=1

d(t) =

T∑
t=1

 1

K

∑
a∈o(t)

u(t)(a)

− T∑
t=1

(〈
u(t), π(t)

〉)

= max
π̂∈∆A

T∑
t=1

(〈
u(t), π̂

〉
−
〈
u(t), π(t)

〉)
− max

π̂∈∆A

T∑
t=1

〈u(t), π̂
〉
− 1

K

K∑
j=1

u(t)
(
σ(j)

)
=R(T ),external −R(T ).

Next, we will introduce Azuma-Hoeffding inequality to finish the concentration bound.

Theorem G.4 (Azuma-Hoeffding inequality). For any martingale difference sequence Y1, . . . , Yn such that ∀j ∈ [n] , aj ≤
Yj ≤ bj , the following holds for any w ≥ 0.

P

 n∑
j=1

Yj ≥ w

 ≤ exp

(
− 2w2∑n

j=1 (bj − aj)
2

)
.

Then by Theorem G.4, with probability at least 1− δ

R(T ) ≤ R(T ),external + 2

√
2T log

(
1

δ

)
.

G.2. Bounding ♦

♦ can be bounded by O (γT ) by definition of π(t) in Algorithm 2.

Lemma G.3 (♦). The difference between R̃(T ) and R(T ),external
(
Alg,

(
ũ(t)

)T
t=1

)
satisfies:∣∣∣∣R̃(T ) −R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)∣∣∣∣ ≤ 2γT.

Proof. Let π(t+1) = Alg
((

ũ(s)
)t
s=1

)
. Then,

∣∣∣∣R̃(T ) −R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)∣∣∣∣ =
∣∣∣∣∣max
π̂∈∆A

T∑
t=1

〈
ũ(s), π̂ − π(t)

〉
− max

π̂∈∆A

T∑
t=1

〈
ũ(t), π̂ − π(t)

〉∣∣∣∣∣
=

∣∣∣∣∣
T∑

t=1

〈
ũ(t), π(t) − π(t)

〉∣∣∣∣∣
=

∣∣∣∣∣
T∑

t=1

〈
ũ(t), π(t) −

(
(1− γ)π(t) + γ

1 (A)
|A|

)〉∣∣∣∣∣
≤γ

T∑
t=1

∥∥∥ũ(t)
∥∥∥
∞
·
(∥∥∥π(t)

∥∥∥
1
+

∥∥∥∥1 (A)|A|

∥∥∥∥
1

)
≤ 2γT.

H. Proof of Theorem 6.2
Theorem H.1 (Formal version of Theorem 6.2). Consider AvgUtil Rank with full-information feedback and Algorithm 3. For
any δ ∈ (0, 1), T > 0, and any no-regret learning algorithm with numeric utility feedback Alg that satisfies Assumption 6.1,
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with probability at least (1− δ), by choosing m = 2 |A|4
K4 T

2
3 log

(
2T
δ

)
, R(T ),external satisfies

R(T ),external ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
+ LτK

(
e

1
τ + 1

)2
L

1
3T + 4

|A|4
K4

L− 2
3 log

(
2T

δ

)
(H.1)

+ 4
|A|9
K8

L− 1
3 log

(
2T

δ

)
(log T + 1) + 4

|A|5
K4

log

(
2T

δ

)
L

1
3T.

Proof. Let π(t+1) = Alg
((

u(s)
)t
s=1

)
, i.e., the strategy generated by Alg when the ground-truth utility vectors are given.

Then, ∣∣∣∣R(T ),external −R(T ),external

(
Alg,

(
u(t)

)T
t=1

)∣∣∣∣
=

∣∣∣∣∣max
π̂∈∆A

T∑
t=1

〈
u(t), π̂ − π(t)

〉
− max

π̂∈∆A

T∑
t=1

〈
u(t), π̂ − π(t)

〉∣∣∣∣∣
=

∣∣∣∣∣
T∑

t=1

〈
u(t), π(t) − π(t)

〉∣∣∣∣∣
≤

m−1∑
t=1

∥∥∥u(t)
∥∥∥
∞
·
∥∥∥π(t) − π(t)

∥∥∥
1
+

T∑
t=m

∥∥∥u(t)
∥∥∥ · ∥∥∥π(t) − π(t)

∥∥∥
≤2m+

T∑
t=m

∥∥∥u(t)
∥∥∥ · ∥∥∥π(t) − π(t)

∥∥∥ .
By Assumption 6.1 and Theorem 5.1, for any t ≥ m, with probability at least 1− δ we have

∥∥∥π(t) − π(t)
∥∥∥ ≤ Lt ∥∥∥ũ(t)

avg − u(t)
avg

∥∥∥ ≤Lt√|A|
τ (e 1

τ + 1
)2√ log

(
2T
δ

)
2m

+

t−1∑
s=t−m+1

2

s+ 1

 .

Then, ∣∣∣∣R(T ),external −R(T ),external

(
Alg,

(
u(t)

)T
t=1

)∣∣∣∣
≤2m+ L|A|τ

(
e

1
τ + 1

)2√ log
(
2T
δ

)
2m

T 2 + 2L|A|
T∑

t=m

t
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s=t−m+1
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s+ 1
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1
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)
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(
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1
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)2√ log
(
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)
2m
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By choosing m = 2 |A|4
K4 T

2
3 log

(
2T
δ

)
, we have

R(T ),external ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
+O

(
LT

5
3 log

(
2T

δ

))
.

Moreover, now m ≥ 2 log( 2T
δ )

p4 , where p = K
|A| .
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Timestep t (Full-Information)

Estimate(·) Oracle Alg(·)

{
σ(s)

}t
s=max{t−m+1,1} ũ(t) π(t+1)

(
ũ(s)

)(t−1)

s=1

Timestep t (Bandit)

Estimate(·) Oracle Alg(·)

{
σ(s)

}t
s=max{t−m+1,1} ũ(t)

+
·(1 − γ)

γ 1(A)
|A|

π(t+1)

(
ũ(s)

)(t−1)

s=1

Figure 5: The diagram of Algorithm 2 with InstUtil Rank under full-information feedback (top) and bandit feedback
(bottom). +⃝ represents the addition of (1− γ) times the output the Alg and γ times a uniform distribution over A.

I. Algorithms and Diagrams
In this section, we present the algorithms’ diagrams and pseudo-code of learning with InstUtil Rank and AvgUtil Rank
individually.

I.1. The Algorithm and Diagram for InstUtil Rank

We present the diagram and the algorithm pseudo-code of learning with InstUtil Rank: Figure 5 and Algorithm 2.

I.2. The Algorithm and Diagram for AvgUtil Rank

We present the diagram and the algorithm pseudo-code of learning with AvgUtil Rank: Figure 6 and Algorithm 3.

J. Proof of Theorem 6.3
Theorem J.1 (Formal version of Theorem 6.3). Consider AvgUtil Rank with bandit feedback and Algorithm 3. For any
δ ∈ (0, 1), T > 0, and any no-regret learning algorithm with numeric utility feedback Alg that satisfies Assumption 6.1,

with probability at least (1 − δ), by choosing M = 4T
5
6

(
P (T )

)− 1
2 |A|4 log

(
6|A|T

δ

)
, m = 2T

2
3 |A|4 log

(
6
δ

)
, and γ =

L
1
3T

5
18

(
P (T )

) 1
6 , R(T ) satisfies

R(T ) ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
+ L|A|TW (T ) + 2γ

√
|A|T + 2

√
2T log

(
3

δ

)
, (J.1)
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Algorithm 2 Online Learning with InstUtil Rank Feedback

1: Input: Action space A, any full-information no-regret learning algorithm Alg with numeric utility feedback, selected
action number K, estimation window size m, and exploration rate γ.

2: Initialize π(1) as uniform distribution 1
|A| over A

3: for timestep t = 1, 2, . . . , T do
4: if Full-information setting then
5: K = |A| in this case. Select all |A| actions.
6: else if Bandit setting then
7: Sample K actions independently with replacement from π(t).
8: end if
9: Receive a ranking feedback σ(t) =

(
σ(t)(1), σ(t)(2), . . . , σ(t)(K)

)
from the environment.

10: ũ(t) = Estimate
({
σ(s)

}t
s=max{t−m+1,1}

)
by calling Algorithm 1.

11: if Full-information setting then
12: π(t+1) ← Alg

((
ũ(s)

)t
s=1

)
.

13: else if Bandit setting then
14: π(t+1) ← (1− γ)Alg

((
ũ(s)

)t
s=1

)
+ γ 1(A)

|A| .
15: end if
16: end for

Algorithm 3 Online Learning with AvgUtil Rank Feedback

1: Input: Action space A, any full-information no-regret algorithm Alg under numeric feedback, selected action number
K, estimation window size m, exploration rate γ, and block size M .

2: Initialize π(1) as uniform distribution 1
|A| over A

3: for timestep t = 1, 2, . . . , T do
4: if Full-information setting then
5: K = |A| in this case. Select all |A| actions.
6: else if Bandit setting then
7: Sample K actions independently with replacement from π(t).
8: end if
9: Receive a ranking feedback σ(t) =

(
σ(t)(1), σ(t)(2), . . . , σ(t)(|A|)

)
from the environment.

10: if Full-information setting then
11: ũ

(t)
avg = Estimate

({
σ(s)

}t
s=max{t−m+1,1}

)
by calling Algorithm 1.

12: π(t+1) ← Alg

((
ũ
(t)
avg

)t
s=1

)
, i.e., the strategy generated by Alg by setting all utility vectors from timestep 1 to t

as ũ(t)
avg.

13: else if Bandit setting then
14: ũ

(t)
empirical = Estimate

({
σ(s)

}t
s=max{t−m+1,1}

)
by calling Algorithm 1.

15: Let n(t)(a) :=
∑t

s=1 #o(s) (a) for any a ∈ A as the number of times action a has been proposed up to timestep t.
Then, the estimated average utility is

ũ
(t)
avg−est(a) :=

 1
⌊t/M⌋

∑⌊t/M⌋
s=1

ũ
(s·M)
empirical(a)n

(s·M)(a)−ũ
((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)−n((s−1)M)(a)
t ≥M

0 t < M
(I.1)

16: π(t+1) ← (1− γ)Alg

((
ũ
(t)
avg−est

)t
s=1

)
+ γ 1(A)

|A| .

17: end if
18: end for
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Timestep t (Full-Information)

Estimate(·) Oracle Alg(·)
{
σ(s)

}t

s=max{t−m+1,1} ũ
(t)
avg

(
ũ

(t)
avg

)t
s=1 π(t+1)

Timestep t (Bandit)

Estimate(·) (I.1) Oracle Alg(·)
{
σ(s)

}t

s=max{t−m+1,1} ũ
(t)
avg−est

(
ũ

(t)
avg−
est

)t

s=1 +
·(1 − γ)

γ 1(A)
|A|

π(t+1)

(
ũ
(s)
empirical

)(t−1)

s=1

Figure 6: The diagram of Algorithm 3 with AvgUtil Rank under full-information feedback (top) and bandit feedback
(bottom). represents copying the estimated utility vector for t times. +⃝ represents the addition of (1 − γ) times the
output the Alg and γ times a uniform distribution over A.

where

Cδ :=
|A| log

(
3|A|T

δ

)
γ

W (T ) :=4Cδ (log T + 1)

T 2

M

τ |A|
(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+ 16KCδ
m

M
T


+M (log T + 1)P (T ) + 2M (log T + 2) .

Proof. In the first part of the proof, we will bound
∥∥∥ũ(t)

empirical − u
(t)
empirical

∥∥∥
∞

. According to Theorem 5.1 and union bound,

since each action is proposed with probability at least γ
|A| , with probability at least 1− δ

3 , for any t ≥ m, we have

∥∥∥ũ(t)
empirical − u

(t)
empirical

∥∥∥
∞
≤
τ |A|

(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+

t−1∑
s=t−m+1

∥∥∥u(s+1)
empirical − u

(s)
empirical

∥∥∥
∞
.
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Let #o(t) (a) be the number of action a ∈ A being proposed in o(t). Then, for any t ∈ [T − 1] and a ∈ A, we have∣∣∣u(t+1)
empirical(a)− u

(t)
empirical(a)

∣∣∣ = ∣∣∣∣∣u
(t)
empirical(a)

∑t
s=1 #o(s) (a) + u(t+1)(a)#o(t+1) (a)∑t

s=1 #o(s) (a) + #o(t+1) (a)
− u(t)empirical(a)

∣∣∣∣∣
≤
∣∣∣∣∣ u

(t)
empirical(a)#o(t+1) (a)∑t

s=1 #o(s) (a) + #o(t+1) (a)

∣∣∣∣∣+
∣∣∣∣∣ u(t+1)(a)#o(t+1) (a)∑t

s=1 #o(s) (a) + #o(t+1) (a)

∣∣∣∣∣
≤K

∣∣∣∣∣ u
(t)
empirical(a)∑t

s=1 #o(s) (a) + #o(t+1) (a)

∣∣∣∣∣+K

∣∣∣∣∣ u(t+1)(a)∑t
s=1 #o(s) (a) + #o(t+1) (a)

∣∣∣∣∣ .
Next, we will show that since each action will be proposed with probability at least γ

|A| , with high probability, there is a

lowerbound for
∑t

s=1 #o(s) (a) for any timestep t.

Lemma J.2. Consider the case when actions are proposed with probability at least p > 0 at each timestep. Then, for any

δ > 0, any action a ∈ A, and T > 0, with probability at least 1− δ, the following holds for any t ≥ log( |A|T
δ )

p :

∃t′ ∈ [T ], such that t−
log
(

|A|T
δ

)
p

≤ t′ ≤ t and a ∈ o(t′). (J.2)

Proof. For any t ≥ log( |A|T
δ )

p and action a ∈ A, the probability of (J.2) does not hold is at most

(1− p)
log( |A|T

δ )
p ≤ exp

(
− log

( |A|T
δ

))
=

δ

|A|T .

Therefore, by union bound, with probability 1− δ, (J.2) holds for any t ∈ [T ] and any action a ∈ A.

For notational simplicity, let Cδ :=
|A| log( 3|A|T

δ )
γ . According to Lemma J.2, with probability at least 1− δ

3 , for any timestep
t ≥ Cδ , we have

t∑
s=1

#o(s) (a) ≥
⌊
t

Cδ

⌋
≥ t

2Cδ
.

Therefore, for any t ∈ [T − 1] and a ∈ A, we have∣∣∣u(t+1)
empirical(a)− u

(t)
empirical(a)

∣∣∣ ≤ 4K
Cδ

t+ 1
.

It holds for t < Cδ − 1 because 4K Cδ

t+1 ≥ 4K ≥ 2 and all utilities are bounded in [−1, 1]. Finally, by Theorem 5.1 and
union bound, with probability at least 1− 2δ

3 , we have

∥∥∥ũ(t)
empirical − u

(t)
empirical

∥∥∥
∞
≤
τ |A|

(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+ 4KCδ

t−1∑
s=t−m+1

1

s+ 1
.

Let n(t)(a) :=
∑t

s=1 #o(s) (a) for any a ∈ A as the number of times action a is proposed up to timestep t. For any a ∈ A
and t ≥M , we define

u
(t)
avg−est(a) :=

1

⌊t/M⌋

⌊t/M⌋∑
s=1

u
(s·M)
empirical(a)n

(s·M)(a)− u((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)

ũ
(t)
avg−est(a) :=

1

⌊t/M⌋

⌊t/M⌋∑
s=1

ũ
(s·M)
empirical(a)n

(s·M)(a)− ũ((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
.

For t < M , we define u(t)avg−est(a) = ũ
(t)
avg−est(a) = 0 for any action a ∈ A. In the rest of the proof, we will bound∥∥∥ũ(t)

avg−est − u
(t)
avg−est

∥∥∥
∞

and
∥∥∥u(t)

avg−est − u
(t)
avg

∥∥∥
∞

individually.
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J.1.
∥∥∥ũ(t)

avg−est − u
(t)
avg−est

∥∥∥
∞

upper bound

For any a ∈ A, we have

∣∣∣ũ(t)avg−est(a)− u(t)avg−est(a)
∣∣∣ ≤ 1

⌊t/M⌋

⌊t/M⌋∑
s=1

n(s·M)(a)

n(s·M)(a)− n((s−1)M)(a)

∣∣∣ũ(s·M)
empirical(a)− u

(s·M)
empirical(a)

∣∣∣
+

1

⌊t/M⌋

⌊t/M⌋∑
s=1

n((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)

∣∣∣ũ((s−1)M)
empirical (a)− u

((s−1)M)
empirical (a)

∣∣∣ .
According to Lemma J.2, n(s·M)(a)− n((s−1)M)(a) ≥ M

2Cδ
when M ≥ Cδ . Therefore, when M ≥ Cδ , since n(s·M)(a) ≤

s ·M , we have

∣∣∣ũ(t)avg−est(a)− u(t)avg−est(a)
∣∣∣ ≤ 2Cδ

⌊t/M⌋

⌊t/M⌋∑
s=1

s
(∣∣∣ũ(s·M)

empirical(a)− u
(s·M)
empirical(a)

∣∣∣+ ∣∣∣ũ((s−1)M)
empirical (a)− u

((s−1)M)
empirical (a)

∣∣∣) .
For any a ∈ A, ∣∣∣∣∣∣ 1

⌊t/M⌋

⌊t/M⌋∑
s=1

u
(s·M)
empirical(a)n

(s·M)(a)− u((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
− u(t)avg(a)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

⌊t/M⌋

⌊t/M⌋∑
s=1

u
(s·M)
empirical(a)n

(s·M)(a)− u((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
− u(M⌊t/M⌋)

avg (a)

∣∣∣∣∣∣︸ ︷︷ ︸
♠

+
∣∣∣u(t)avg(a)− u(M⌊t/M⌋)

avg (a)
∣∣∣︸ ︷︷ ︸

♣

.

Note that ♣ can be bounded by

♣ =

∣∣∣∣∣ (M ⌊t/M⌋)u
(M⌊t/M⌋)
avg (a) +

∑t
s=M⌊t/M⌋+1 u

(s)(a)

t
− u(M⌊t/M⌋)

avg (a)

∣∣∣∣∣
≤M
t

∣∣∣u(M⌊t/M⌋)
avg (a)

∣∣∣+ 1

t

∣∣∣∣∣∣
t∑

s=M⌊t/M⌋+1

u(s)(a)

∣∣∣∣∣∣ ≤ 2M

t
.

For ♠, we have

♠ =

∣∣∣∣∣∣ 1

⌊t/M⌋

⌊t/M⌋∑
s=1

u(s·M)
empirical(a)n

(s·M)(a)− u((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
− 1

M

s·M∑
s′=(s−1)M+1

u(s
′)(a)

∣∣∣∣∣∣
≤ 1

⌊t/M⌋

⌊t/M⌋∑
s=1

∣∣∣∣∣∣u
(s·M)
empirical(a)n

(s·M)(a)− u((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
− 1

M

s·M∑
s′=(s−1)M+1

u(s
′)(a)

∣∣∣∣∣∣ .
When n(s·M)(a) − n((s−1)M)(a) > 0, both

u
(s·M)
empirical(a)n

(s·M)(a)−u
((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)−n((s−1)M)(a)
and 1

M

∑s·M
s′=(s−1)M+1 u

(s′)(a)
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are in the convex hull of
{
u(s

′)(a)
}s·M

s′=(s−1)M+1
. Therefore,

∣∣∣∣∣∣u
(s·M)
empirical(a)n

(s·M)(a)− u((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
− 1

M

s·M∑
s′=(s−1)M+1

u(s
′)(a)

∣∣∣∣∣∣
≤ max

(s−1)M+1≤s′,s′′≤s·M

∣∣∣u(s′)(a)− u(s′′)(a)∣∣∣
≤

s·M−1∑
s′=(s−1)M+1

∣∣∣u(s′+1)(a)− u(s′)(a)
∣∣∣ .

Therefore, for any t ≥M and a ∈ A, we have

∣∣∣u(t)avg−est(a)− u(t)avg(a)
∣∣∣
∞
≤ 1

⌊t/M⌋

⌊t/M⌋∑
s=1

s·M−1∑
s′=(s−1)M+1

∣∣∣u(s′+1)(a)− u(s′)(a)
∣∣∣+ 2M

t
.

By combining all the pieces together, we have∣∣∣ũ(t)avg−est(a)− u(t)avg(a)
∣∣∣

≤ 2Cδ

⌊t/M⌋

⌊t/M⌋∑
s=1

s
(∣∣∣ũ(s·M)

empirical(a)− u
(s·M)
empirical(a)

∣∣∣+ ∣∣∣ũ((s−1)M)
empirical (a)− u

((s−1)M)
empirical (a)

∣∣∣)

+
1

⌊t/M⌋

⌊t/M⌋∑
s=1

s·M−1∑
s′=(s−1)M+1

∣∣∣u(s′+1)(a)− u(s′)(a)
∣∣∣+ 2M

t
.

Then,

T∑
t=1

∣∣∣ũ(t)avg−est(a)− u(t)avg(a)
∣∣∣

=

T∑
t=M

∣∣∣ũ(t)avg−est(a)− u(t)avg(a)
∣∣∣+ M−1∑

t=1

∣∣∣ũ(t)avg−est(a)− u(t)avg(a)
∣∣∣

≤2Cδ

⌊T/M⌋∑
s=1

s
(∣∣∣ũ(s·M)

empirical(a)− u
(s·M)
empirical(a)

∣∣∣+ ∣∣∣ũ((s−1)M)
empirical (a)− u

((s−1)M)
empirical (a)

∣∣∣) ⌊T/M⌋∑
s′=1

M

s′

+

⌊T/M⌋∑
s=1

 s·M−1∑
s′=(s−1)M+1

∣∣∣u(s′+1)(a)− u(s′)(a)
∣∣∣
 ·

⌊T/M⌋∑
s′=1

M

s′

+

T∑
t=1

2M

t
+ 2M

≤2CδM

⌊T/M⌋∑
s=1

s
(∣∣∣ũ(s·M)

empirical(a)− u
(s·M)
empirical(a)

∣∣∣+ ∣∣∣ũ((s−1)M)
empirical (a)− u

((s−1)M)
empirical (a)

∣∣∣) (log (⌊T/M⌋) + 1)

+M

⌊T/M⌋∑
s=1

 s·M−1∑
s′=(s−1)M+1

∣∣∣u(s′+1)(a)− u(s′)(a)
∣∣∣
 · (log (⌊T/M⌋) + 1) + 2M (log T + 1) + 2M.

When s = 1, s
∣∣∣ũ((s−1)M)

empirical (a)− u
((s−1)M)
empirical (a)

∣∣∣ = 0 by definition. When s > 1, since M ≥ 2m, we have

s

(s− 1)M −m+ 2
≤ s

(s− 1)M/2 + 2
≤ s

(s− 1)M/2
≤ 4s

s ·M =
4

M
.
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Hence,

s
∣∣∣ũ((s−1)M)

empirical (a)− u
((s−1)M)
empirical (a)

∣∣∣ ≤sτ |A|
(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+ 4KCδ

(s−1)M−1∑
s′=(s−1)M−m+1

s

s′ + 1

≤ T

M

τ |A|
(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+ 16KCδ
m

M
.

Therefore,

T∑
t=1

∣∣∣ũ(t)avg−est(a)− u(t)avg(a)
∣∣∣

≤4CδM · ⌊T/M⌋ (log T + 1)

 T

M

τ |A|
(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+ 16KCδ
m

M


+M (log T + 1)P (T ) + 2M (log T + 1)

≤4Cδ (log T + 1)

T 2

M

τ |A|
(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+ 16KCδ
m

M
T


+M (log T + 1)P (T ) + 2M (log T + 2) .

Lastly, similar to the proof in Appendix H, let π(t+1) = Alg
((

u(s)
)t
s=1

)
. Then, we have

∣∣∣∣R(T ),external −R(T ),external

(
Alg,

(
u(t)

)T
t=1

)∣∣∣∣
=

∣∣∣∣∣
T∑

t=1

〈
u(t), π(t) − π(t)

〉∣∣∣∣∣
≤

T∑
t=1

∥∥∥u(t)
∥∥∥ · ∥∥∥π(t) − π(t)

∥∥∥
≤
√
|A|

T∑
t=1

∥∥∥∥(1− γ)Alg

((
ũ
(t)
avg−est

)t
s=1

)
+ γ

1 (A)
|A| − π

(t)

∥∥∥∥
≤(1− γ)

√
|A|

T∑
t=1

∥∥∥∥Alg

((
ũ
(t)
avg−est

)t
s=1

)
− π(t)

∥∥∥∥+ γ
√
|A|

T∑
t=1

∥∥∥∥1 (A)|A| − π
(t)

∥∥∥∥
≤
√
|A|

T∑
t=1

∥∥∥∥Alg

((
ũ
(t)
avg−est

)t
s=1

)
− π(t)

∥∥∥∥+ 2γ
√
|A|T.

Further, by Assumption 6.1, we have

√
|A|

T∑
t=1

∥∥∥∥Alg

((
ũ
(t)
avg−est

)t
s=1

)
− π(t)

∥∥∥∥ ≤L√|A| T∑
t=1

t
∥∥∥ũ(t)

avg−est − u(t)
avg

∥∥∥
≤L|A|T

T∑
t=1

∥∥∥ũ(t)
avg−est − u(t)

avg

∥∥∥
∞
.
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By combining all the pieces together, we have

R(T ),external ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)

+ Õ

(log ( 1δ )) 3
2

γ2
LT 3

M
√
m

+
m
(
log
(
1
δ

))2
γ2M

LT 2 + LMP (T )T + 2γT

 ,

where Õ hides all the log T terms.

Let M = 4T
5
6

(
P (T )

)− 1
2 |A|4 log

(
6|A|T

δ

)
, m = 2T

2
3 |A|4 log

(
6
δ

)
, and γ = L

1
3T

5
18

(
P (T )

) 1
6 , we have

R(T ),external ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
+O

((
log

(
1

δ

))2

L
1
3T

23
18

(
P (T )

) 1
6

)
.

It is easy to verify that M ≥ max {Cδ, 2m} and m ≥ 2 log( 6
δ )

γ4 |A|4.

Lastly, by Lemma G.2, with probability at least 1− δ
3 , we have

R(T ) ≤ R(T ),external + 2

√
2T log

(
3

δ

)
.

By a union bound argument, we complete the proof.

K. Proof of Section 7
Lemma K.1. For any T > 0 and sequence of strategy profiles

(
π(1),π(2), . . . ,π(T )

)
, the variation of utility vectors of any

player i ∈ [N ] satisfies that
T∑

t=2

∥∥∥u(t)
i − u

(t−1)
i

∥∥∥ ≤ √A N∏
j′=1

|Aj′ |
T∑

t=2

N∑
j=1

∥∥∥π(t)
j − π

(t−1)
j

∥∥∥ , (K.1)

where A = maxj |Aj |.

Proof. For any timestep t, player i ∈ [N ], and joint action a−i ∈×j ̸=i
Aj , let π(t)

−i(a−i) :=
∏

j ̸=i π
(t)
j (aj).

Then, for any timestep t, player i ∈ [N ], and action ai ∈ Ai, we have∣∣∣u(t)i (ai)− u(t−1)
i (ai)

∣∣∣ ≤
∣∣∣∣∣∣

∑
a′∈×N

j=1 Aj

Ui(a′)1 (a′i = ai)
(
π
(t)
−i(a

′
−i)− π(t−1)

−i (a′
−i)
)∣∣∣∣∣∣

=
∣∣∣〈(Ui(ai,a′

−i)
)
a′

−i∈×j ̸=i Aj
, π

(t)
−i − π

(t−1)
−i

〉∣∣∣
≤
∥∥∥(Ui(ai,a′

−i)
)
a′

−i∈×j ̸=i Aj

∥∥∥
∞
·
∥∥∥π(t)

−i − π
(t−1)
−i

∥∥∥
1

≤
∥∥∥π(t)

−i − π
(t−1)
−i

∥∥∥
1
.

Further, for any a, b, a′, b′ ∈ [0, 1], we have |ab− a′b′| = |ab− ab′ + ab′ − a′b′| ≤ a |b− b′| + |a− a′| b′ ≤ |a− a′| +
|b− b′|. Therefore, by recursively using it, for any a−i ∈×j ̸=i

Aj , we have

∣∣∣π(t)
−i(a−i)− π(t−1)

−i (a−i)
∣∣∣ =
∣∣∣∣∣∣
∏
j ̸=i

π
(t)
j (aj)−

∏
j ̸=i

π
(t−1)
j (aj)

∣∣∣∣∣∣ ≤
∑
j ̸=i

∣∣∣π(t)
j (aj)− π(t−1)

j (aj)
∣∣∣ .

Finally, ∥∥∥u(t)i − u
(t−1)
i

∥∥∥ ≤√|Ai|
∥∥∥π(t)

−i − π
(t−1)
−i

∥∥∥
1
≤
√
|Ai|

N∏
j=1

|Aj |
∑
j′ ̸=i

∥∥∥π(t)
j′ − π

(t−1)
j′

∥∥∥
1
.
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K.1. Proof of Theorem 7.2 and Theorem 7.3

Before proving Theorem 7.2 and Theorem 7.3, we will show that when Assumption 7.1 is satisfied, the strategy variation is
bounded.
Lemma K.2. Suppose Assumption 7.1 is satisfied. For both full-information and bandit settings, Algorithm 2 satisfies the
following,

T−1∑
t=1

∥∥∥π(t) − π(t+1)
∥∥∥ ≤ O (ηT ) .

Suppose Assumption 6.1 is also satisfied, then the following holds for Algorithm 3 in the bandit setting,

T−1∑
t=1

∥∥∥π(t) − π(t+1)
∥∥∥ ≤ O (ηT + LT ) .

Proof. For Algorithm 2 and the full-information setting, the proof simply follows from the fact that ũ(t) ∈ [−1, 1]A and
Assumption 7.1.

For Algorithm 2 and the bandit setting, we have∥∥∥π(t+1) − π(t)
∥∥∥ = (1− γ)

∥∥∥∥Alg

((
ũ(s)

)t+1

s=1

)
−Alg

((
ũ(s)

)t
s=1

)∥∥∥∥ ≤ η.
Thus, we can conclude the proof.

For Algorithm 3 and the bandit setting, for any t ̸≡ 0 (mod M), we have ũ
(t)
avg−est = ũ

(t−1)
avg−est. Therefore, by Assump-

tion 7.1, we have ∥∥∥π(t−1) − π(t)
∥∥∥ ≤∥∥∥∥Alg

((
ũ
(t−1)
avg−est

)t−1

s=1

)
−Alg

((
ũ
(t)
avg−est

)t
s=1

)∥∥∥∥
=

∥∥∥∥Alg

((
ũ
(t−1)
avg−est

)t−1

s=1

)
−Alg

((
ũ
(t−1)
avg−est

)t
s=1

)∥∥∥∥ ≤ η.
For any t ≡ 0 (mod M), let u =

ũ
(t)
empirical(a)n

(t)(a)−ũ
(t−M)
empirical(a)n

(t−M)(a)

n(t)(a)−n(t−M)(a)
, then we have

∥∥∥ũ(t)
avg−est − ũ

(t−1)
avg−est

∥∥∥ =

∥∥∥∥∥
(
(t/M − 1)ũ

(t−1)
avg−est + u

t/M

)
− ũ

(t−1)
avg−est

∥∥∥∥∥
≤M
t

(∥∥∥ũ(t−1)
avg−est

∥∥∥+ ∥u∥) ≤ 2M

t

√
|A|.

Therefore,∥∥∥π(t−1) − π(t)
∥∥∥ ≤ ∥∥∥∥Alg

((
ũ
(t−1)
avg−est

)t−1

s=1

)
−Alg

((
ũ
(t)
avg−est

)t
s=1

)∥∥∥∥
≤
∥∥∥∥Alg((ũ(t−1)

avg−est

)t−1

s=1

)
−Alg

((
ũ
(t−1)
avg−est

)t
s=1

)∥∥∥∥+ ∥∥∥∥Alg

((
ũ
(t−1)
avg−est

)t
s=1

)
−Alg

((
ũ
(t)
avg−est

)t
s=1

)∥∥∥∥
(i)

≤η + Lt

(
2M

t

√
|A|
)

=η + 2LM
√
|A|,

where (i) uses Assumption 6.1. Then, the accumulated variation of π(t) over time is bounded by

T−1∑
t=1

∥∥∥π(t+1) − π(t)
∥∥∥ ≤ O(ηT + LM

T

M

)
≤ O (ηT + LT ) ,

since there are at most T
M timesteps of t ∈ [T ] satisfying t ≡ 0 (mod M).
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With Lemma K.2, we can prove that R(T ),external
i is sublinear for any player i ∈ [N ] by Theorem 5.2, Theorem 6.2, and

Theorem 6.3. Then, by the folklore result that no-external-regret learning leads to approximate CCE (Hart and Mas-Colell,
2000; Blum and Mansour, 2007), Theorem 7.2 and Theorem 7.3 are proved.

Remark K.3. With the hardness in Theorem 4.3, under AvgUtil Rank feedback, both of our no-regret result for the online
setting and the equilibrium computation result for the game setting hold for a constant τ > 0 (that cannot be arbitrarily
small). However, we note that the equilibrium computation result may still be possible when τ → 0+ in the game setting:
with such a deterministic ranking model, the best-response action against the history play of the opponents is now available,
precisely leading to the celebrated algorithm of fictitious-play (FP) (Robinson, 1951; Brown, 1951). FP is known to
converge to an equilibrium in certain games (Robinson, 1951; Monderer and Shapley, 1996; Sela, 1999; Berger, 2005)
(with (slow) convergence rates (Robinson, 1951; Daskalakis and Pan, 2014; Abernethy et al., 2021)), despite that it fails to
be no-regret in the online setting (Fudenberg and Levine, 1995; 1998).

L. Properties of Follow-the-Regularized-Leader (FTRL)
Firstly, we will define strongly convex function and its conjugate function.

Definition L.1. For any integer n, a differentiable function ψ(x) : Rn → R is called c0-strongly convex (c0 > 0) when

ψ(x) ≥ ψ(x′) + ⟨∇ψ(x′),x− x′⟩+ c0
2
∥x− x′∥2 (L.1)

holds for any x,x′ ∈ Rn. Its conjugate function is defined as

ψ∗(y) : Rn → R := sup
x∈Rn

⟨x,y⟩ − ψ(x).

Specifically, if (L.1) holds for c0 = 0, then we call ψ a convex function.

Next, we will introduce the well-known no-regret learning algorithm of follow-the-regularized-leader (Hazan et al., 2016;
Shalev-Shwartz et al., 2012).

Definition L.2 (Follow-the-Regularized-Leader (FTRL)). For any T > 0 and at any timestep t ∈ {0} ∪ [T − 1], given the
utility vectors

(
u(s)

)t
s=1

, the strategy at timestep t+ 1, π(t+1), is defined as,

π(t+1) = argmax
π∈∆A

(
λ

t∑
s=1

〈
u(s), π

〉
− ψ(π)

)
, (FTRL)

for some constant λ > 0. Typically, λ is taken to be Θ(T−r) for some constant r > 0.

Now, we can introduce the smoothness of (FTRL).

Lemma L.3. For any c0-strongly convex and differentiable function ψ : ∆A → R, (FTRL) satisfies Assumption 6.1 and
Assumption 7.1 with L = λ

c0
and η = λ

c0

√
|A|.

Proof. By first-order optimality, at any timestep t ∈ {0} ∪ [T − 1] for any two sequences of utility vectors
(
u(s)

)t
s=1

and(
u′(s)

)t
s=1

, let the corresponding strategy generated by (FTRL) be π(t+1) and π′(t+1) respectively, we have〈
λ

t∑
s=1

u(s) −∇ψ
(
π(t+1)

)
, π′(t+1) − π(t+1)

〉
≤ 0〈

λ

t∑
s=1

u′(s) −∇ψ
(
π′(t+1)

)
, π(t+1) − π′(t+1)

〉
≤ 0.

By summing them up and rearranging the terms, we have〈
λ

t∑
s=1

u′(s) − λ
t∑

s=1

u(s), π′(t+1) − π(t+1)

〉
≥
〈
∇ψ

(
π′(t+1)

)
−∇ψ

(
π(t+1)

)
, π′(t+1) − π(t+1)

〉
.
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Since ψ is c0-strongly convex, we have

ψ
(
π(t+1)

)
≥ ψ

(
π′(t+1)

)
+
〈
∇ψ

(
π′(t+1)

)
, π(t+1) − π′(t+1)

〉
+
c0
2

∥∥∥π(t+1) − π′(t+1)
∥∥∥2

ψ
(
π′(t+1)

)
≥ ψ

(
π(t+1)

)
+
〈
∇ψ

(
π(t+1)

)
, π′(t+1) − π(t+1)

〉
+
c0
2

∥∥∥π(t+1) − π′(t+1)
∥∥∥2 .

By summing them up and rearranging the terms, we have〈
∇ψ

(
π′(t+1)

)
−∇ψ

(
π(t+1)

)
, π′(t+1) − π(t+1)

〉
≥ c0

∥∥∥π(t+1) − π′(t+1)
∥∥∥2 .

Therefore,

c0

∥∥∥π(t+1) − π′(t+1)
∥∥∥2 ≤〈λ t∑

s=1

u′(s) − λ
t∑

s=1

u(s), π′(t+1) − π(t+1)

〉
(i)

≤
∥∥∥∥∥λ

t∑
s=1

u′(s) − λ
t∑

s=1

u(s)

∥∥∥∥∥ · ∥∥∥π′(t+1) − π(t+1)
∥∥∥ ,

where (i) is by Hölder’s Inequality. Then,∥∥∥∥∥λ
t∑

s=1

u′(s) − λ
t∑

s=1

u(s)

∥∥∥∥∥ ≤ c0 ∥∥∥π(t+1) − π′(t+1)
∥∥∥ ,

so that (FTRL) satisfies Assumption 6.1 with L = λ
c0

. Furthermore, note that the results above also hold for sequences of
utility vectors of different lengths (not necessarily equal to length t simultaneously). As a result, we have∥∥∥π(t+1) − π(t)

∥∥∥ ≤ λ

c0

∥∥∥u(t)
∥∥∥ ≤ λ

c0

√
|A|,

for any t ∈ {0} ∪ [T − 1], which implies that η = λ
c0

√
|A| in Assumption 7.1 for (FTRL).
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