
Rethinking Joint Maximum Mean Discrepancy for
Domain Adaptation

Wei Wang1 Haifeng Xia1 Chao Huang1∗ Zhengming Ding2

Cong Wang3 Haojie Li4 Xiaochun Cao1
1Shenzhen Campus of Sun Yat-sen University 2Department of Computer Science, Tulane University

3University of California, San Francisco 4Shandong University of Science and Technology
{wangwei29, xiahf5, huangch253, caoxiaochun}@mail.sysu.edu.cn zding1@tulane.edu

supercong94@gmail.com hjli@sdust.edu.cn

Abstract

In domain adaption (DA), joint maximum mean discrepancy (JMMD), as a fa-
mous distribution-distance metric, aims to measure joint probability distribution
difference between the source domain and target domain, while it is still not fully
explored and especially hard to be applied into a subspace-learning framework as
its empirical estimation involves a tensor-product operator whose partial deriva-
tive is difficult to obtain. To solve this issue, we deduce a concise JMMD based
on the Representer theorem that avoids the tensor-product operator and obtains
two essential findings. First, we reveal the uniformity of JMMD by proving that
previous marginal, class conditional, and weighted class conditional probability
distribution distances are three special cases of JMMD with different label re-
producing kernels. Second, inspired by graph embedding, we observe that the
similarity weights, which strengthen the intra-class compactness in the graph of
Hilbert Schmidt independence criterion (HSIC), take opposite signs in the graph of
JMMD, revealing why JMMD degrades the feature discrimination. This motivates
us to propose a novel loss JMMD-HSIC by jointly considering JMMD and HSIC to
promote discrimination of JMMD. Extensive experiments on several cross-domain
datasets could demonstrate the validity of our revealed theoretical results and the
effectiveness of our proposed JMMD-HSIC.

1 Introduction

Domain adaptation (DA) has emerged as an effective technology to solve the well-known problem of
domain discrepancy that frequently occurs in reality [1–5]. Many promising approaches have been
suggested to mitigate this issue from different perspectives [6–10]. A major issue in DA is how to
formulate a favorable probability distribution distance that can be applied to measure the proximity of
two different probability distributions, thus numerous probability distribution-distance metrics have
been proposed over the years. For example, the Quadratic and Kullback-Leibler distances derived
from the Bregman divergence and generated by different convex functions are introduced to match
two different probability distributions explicitly [11]. However, extending them into different models
may be inflexible since they are parametric and require an intermediate density estimation [12]. The
Wasserstein distance derived from the optimal transport problem exploits a transportation plan to
align two different marginal [13], class conditional [14] or joint [15] probability distributions, but
it might be inconvenient to be applied into a subspace-learning framework because it often comes
down to a complex bi-level optimization problem [16].
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Figure 1: The overview of our revealed theoretical results and proposed JMMD-HSIC. (a) We map
the features (upper part) and labels (lower part) of the source and target domains into the RKHS,
respectively; (b) The application of JMMD (upper part) and HSIC (lower part) in a subspace-learning
framework; (c) The graph embedding interpretation of JMMD (upper part) and HSIC (lower part)
in a subspace-learning framework; (d) Learned feature representations of the source and target
domains after subspace learning. ‘−’ in the module of JMMD means the feature-label dependence
difference, and ‘+’ in the module of HSIC means separately considering feature-label dependence
in the two domains. ψ and ϕ are feature and label mappings for a RKHS. T and B are projection
matrices for a projected RKHS. Tψ(X) ⊗ ϕ(Y) is a tensor-product operator for the covariance.
tr(B⊤KXX(KYY ⊙ MJ/H)KXXB) is the deduced concise JMMD/HSIC in a projected RKHS.

Gretton et al. propose a metric of maximum mean discrepancy (MMD), which empirically estimates
the distance between two probability distributions in a reproducing kernel Hilbert space (RKHS)
[17]. Due to its simplicity and solid theoretical foundation, it has been applied into a wide range
of problems, such as deep generative models [18] and variational autoencoders [19], etc. Although
MMD could establish marginal [12], class conditional [20], and weighted class conditional [21]
probability distribution distances, it is still not fully explored about the joint probability distribution
distance (i.e., joint maximum mean discrepancy, JMMD) and is hard to be applied into a subspace-
learning framework, as its empirical estimation involves a tensor-product operator whose partial
derivative is difficult to obtain.

Specifically, when JMMD is considered in a subspace-learning framework, we project data features
and their corresponding labels into a RKHS (Fig. 1(a)), and aim to exploit a projected RKHS by a
feature projection matrix T with infinite dimensions (the upper part of Fig. 1(b)). In the projected
RKHS or the common feature space, the feature-label dependence difference between the source
domain and target domain is minimized, and their joint probability distributions [22] are aligned
accordingly (Fig. 1(d)). Here, the covariance that involves a tensor-product operator describes the
feature-label dependence. However, one issue remains to be overcome in this process: the partial
derivative with respect to the infinite-dimensional T is hard to obtain. In this paper, based on the
Representer theorem [23], we deduce a concise JMMD that avoids the tensor-product operator and
optimizes a finite-dimensional B instead of T, where the Representer theorem represents T⊤ψ(x) by
finite values of a kernel function with corresponding coefficients from B, and some matrix operation
properties make the tensor-product disappear. Therefore, the derivative can be easily obtained.

With the concise JMMD, we obtain two essential findings. Firstly, we reveal the uniformity of
JMMD by proving that previous popular marginal, class conditional, and weighted class conditional
probability distribution distances are its three special cases with label kernels K1, K2 and K3, and we
also prove that they are reproducing kernels. This finding could provide theoretical guidance to refine
JMMD by designing label kernels for different problems in DA. Moreover, recent work indicates that
the procedure of distribution alignment degrades the feature discrimination unexpectedly [24, 25]

2



but lacks theoretical support. To reveal this, similar to JMMD, we deduce a concise Hilbert Schmidt
independence criterion (HSIC) [26], which models the feature-label dependence and maximizes the
dependence to improve feature discrimination (the features have better discrimination ability if the
feature-label dependence is larger and vice versa) (the lower part of Fig. 1(b)). We design a label
reproducing kernel K4 for HSIC to strengthen the intra-class compactness or feature discrimination.
Then, we explore the relationship between JMMD and HSIC inspired by the graph embedding
viewpoint to better understand the reason for feature discrimination degradation in JMMD.

Specifically, we observe that the similarity weights, which strengthen intra-class compactness in the
graph of HSIC, take opposite signs in the graph of JMMD. Thus, JMMD degrades the discrimination
unexpectedly. As shown in Fig. 1(c), in the feature space, JMMD tries to push data points from the
same classes in the same domain further and draw those from the same classes in different domains
closer. In contrast, in the feature space, HSIC aims to draw data points from the same classes in the
same domain closer (intra-class compactness). To this end, we propose a novel loss JMMD-HSIC
by jointly considering JMMD and HSIC. Therefore, we can improve the discrimination of JMMD,
leading to a better DA capacity (Fig. 1(d)). The whole pipeline of this paper is briefly depicted in Fig.
1, and our main contributions are summarized below,

• Based on the Representer theorem, we deduce a concise JMMD that avoids the tensor-
product operator, and the derivative can be easily obtained so that it can be applied into a
subspace-learning framework.

• With the concise JMMD, we reveal its uniformity by proving that previous distribution
distances are its special cases with different label reproducing kernels. This finding yields
theoretical guidance for refining JMMD by designing label kernels for different problems.

• To better understand the reason for feature discrimination degradation in JMMD, we reveal
the relationship between JMMD and HSIC inspired by graph embedding. Then, a novel loss
JMMD-HSIC is proposed to promote discrimination of JMMD.

2 Related Work

2.1 Maximum Mean Discrepancy

Gretton et al. introduce a probability distribution-distance metric MMD [17]. Along this direction,
Pan et al. incorporate MMD into a subspace-learning framework to learn some transfer components
[12] across the source domain and target domain. Duan et al. embed MMD into a multiple kernel
learning framework to jointly learn a kernel function and a robust classifier [27] by minimizing the
structural risk functional and the distribution mismatch. Long et al. down-weighted source instances
irrelevant to target ones to realize more positive knowledge transfer based on MMD [28]. Ghifary et
al. employ MMD to deal with distribution bias in a simple neural network [29]. Tzeng et al. propose
a domain confusion loss based on MMD in a deep neural network [30]. Long et al. present a deep
adaptation network where the multi-kernel MMD is applied into all task-specific layers [31].

To model more complicated probability distribution distances, Long et al. propose a class-wise
MMD to align class conditional probability distributions [20], which can be conveniently optimized
in many subspace-learning frameworks [32, 33]. To deal with an imbalanced dataset, Wang et al.
establish a weighted class-wise MMD where class prior probabilities are introduced [21]. Concerning
the label distribution shift problem, Yan et al. construct a weighted MMD where source instances
are multiplied by special weights [34]. Moreover, Wang et al. raise a dynamic balanced MMD to
quantitatively account for relative importance between the marginal and class conditional probability
distribution distances [35]. Deng et al. propose an extended MMD to simultaneously minimize the
intra-class dispersion and maximize the inter-class compactness [36].

Zhang et al. estimate the joint probability distribution discrepancy based on the Bayesian law and
propose a discriminative joint probability distribution discrepancy [37]. In contrast, Long et al.
estimate the uncentered feature-label covariance in the source and target domains, and consider the
difference in covariance between the two domains as the joint probability distribution discrepancy.
Then, they propose JMMD and construct a transfer network accordingly [22]. However, JMMD is
still not fully explored and is very hard to be applied to a subspace-learning framework as it involves a
tensor-product operator whose partial derivative is difficult to obtain. This paper theoretically deduces
a concise JMMD and obtains two essential findings.
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2.2 Hilbert Schmidt Independence Criterion

HSIC measures dependence between two random variables [26]. To preserve important data features,
Dorri et al. regard original and transformed data features as two random variables and maximize
their dependence during distribution alignment [38, 39]. Yan et al. minimize dependence between
projected features and domain features (e.g., background information) to learn a robust domain-
invariant subspace [40]. Inspired by classifier adaptation, Wang et al. propose a projected HSIC to
maximize feature-label dependence in a reconstruction DA framework [41]. Similarly, we aim to
maximize the feature-label dependence while we further explore the relationship between JMMD and
HSIC, and design a label reproducing kernel K4 for HSIC in this work. Besides, HSIC is computed
on the whole domains [41] while we separately compute HSIC on the source and target domains.

2.3 Graph Embedding

Graph embedding as a prevalent technology has been applied to many problems due to its advantage in
discovering complicated data structures and relationships, such as subspace-learning methods [42, 43]
and graph convolutional networks [44, 45], etc. A lot of subspace-learning-based DA approaches
aim to establish a similarity graph and exploit a feature mapping to embed the graph vertices into a
desirable low-dimensional subspace so that some important data structures (local manifold structure
[35], local discrimination structure [24], etc.) could be respected elegantly during the distribution
alignment process. This paper does not focus on leveraging the graph embedding technique in the
DA problem. Instead, we analyze the relationship between JMMD and HSIC inspired by graph
embedding to illustrate the reason for feature discrimination degradation in JMMD.

3 Rethinking JMMD

In this paper, the bold uppercase letter X denotes a matrix, while the bold lowercase letter x is a
column vector of X. Moreover, xi is the i-th column vector of X and xij is the value of i-th row and
j-th column of X. ⊗ and ⊙ are the tensor-product and dot-product operators.

Domain Adaptation. Given a labeled source domain Ds := (Xs,Ys) and an unlabeled target domain
Dt := (Xt,Yt), where Xs/t ∈ Rm×ns/t

, Ys/t ∈ RC×ns/t
, ‘m’ is the feature dimension, ‘ns/t’ is the number

of source/target instances (ns + nt = n) and ‘C’ is the number of shared categories. DA assumes
that the two domains follow different joint probability distributions, i.e., P s(Xs,Ys) ̸= P t(Xt,Yt),
but share the same feature and label spaces, and Yt is not available during the training process. Ys/t

is the probability soft label, i.e., the probability of a data sample xi that belongs to a class ‘c’ is yci.
Notably, the hard label (one-hot label) is a special case of Ys/t where yci =1 and yc̄i =0 (c̄ ̸=c) if xi
belongs to the c-th class. DA aims to design a distribution-distance metric to minimize the divergence
between their joint probability distributions so that the classifier trained on a source domain can be
generalized into another target domain.

Reproducing Kernel Hilbert Space. RKHS is a Hilbert space (H) of function f : Ω → R on a
domain Ω, and its inner-product and Hilbert-Schmidt norm are ⟨·, ·⟩H and || · ||H. The evaluation
functional f(x) can be reproduced by a reproducing kernel function k(x, x⊤), i.e., ⟨f(·), k(x, ·)⟩H =
f(x), and the RKHS takes its name from this so-called reproducing kernel function. k(x, ·) can be
viewed as an implicit mapping ψ(x) (infinite dimensions) where k(x, x⊤) = ⟨ψ(x), ψ(x⊤)⟩H.

3.1 A Concise JMMD

In DA, JMMD as a famous probability distribution-distance metric is still not fully explored and hard
to be applied into a subspace-learning framework as its empirical estimation involves a tensor-product
operator whose partial derivative is nontrivial to obtain [22]. In this section, we first deduce a concise
JMMD and reveal its uniformity. Then, we deduce a concise HSIC to explore the relationship
between JMMD and HSIC inspired by graph embedding, revealing why JMMD degrades the feature
discrimination. Finally, we propose a novel loss JMMD-HSIC to improve the discrimination of
JMMD and apply it into a general subspace-learning framework.

Given a domain D sampled from a joint probability distribution P(X,Y) [46], we project the data
feature x and its corresponding label y into a RKHS, i.e., ψ(x) and ϕ(y), where ψ and ϕ are the
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feature and label mappings. Then, we utilize the uncentered covariance between the feature and
label to represent a joint probability distribution, i.e., CXY := EXY(ψ(x)⊗ ϕ(y)). Here, we estimate
the covariance CXY of domain D with the expectation EXY or mean µXY of all samples’ covariance
ψ(x) ⊗ ϕ(y) in a RKHS. The covariance essentially describes the dependence between feature
and label. Due to the impossibility of obtaining all possible samples in domain D (an infinite
number), JMMD [22] adopts the maximum likelihood estimate principle and utilizes finite samples
to empirically estimate µXsYs and µXtYt for source domain and target domain, and then minimizes the
loss of ||µXsYs − µXtYt ||2H to draw joint probability distributions of the two domains closer. Formally,
JMMD and its concise form in a RKHS is defined as below,

DH(P s(Xs,Ys),P t(Xt,Yt)) =
∣∣∣∣µXsYs − µXtYt

∣∣∣∣2
H = tr(KXX(KYY ⊙ MJ)), (1)

where KXX,KYY ∈ Rn×n are the kernel matrices and they are computed by kXX
ij = kX(xi, x⊤

j ),
kYY

ij = kY(yi, y⊤j ). kX and kY are feature and label kernels. MJ ∈ Rn×n is the MMD matrix for
JMMD. Remarkably, the nonlinear functions ψ and ϕ do not need to be explicit, and the tensor-
product operator disappears, more details could be found in Section A of the supplementary material.
To incorporate JMMD into a subspace-learning framework, we deduce the concise form of JMMD in
a projected RKHS as below,

|| 1ns

∑ns

i=1(T
⊤ψ(xs

i )⊗ ϕ(ys
i ))− 1

nt

∑nt

j=1(T
⊤ψ(xt

j)⊗ ϕ(yt
j))||2H = tr(B⊤KXX(KYY ⊙ MJ)KXXB).

(2)

As shown in the left side of Eq. (2), the dimension of feature projection matrix T ∈ R∞×d is infinite
since ψ is an infinite mapping, and a tensor-product operator is involved so that it is nontrivial to
obtain the partial derivative with respect to T. To overcome this issue, we utilize the Representer
theorem and some matrix operation properties to obtain the right side of Eq. (2). Remarkably,
the infinite-dimensional T does not need to be optimized because we resort to optimize a finite-
dimensional B, and the tensor-product operator disappears. Therefore, it is easy to obtain the partial
derivative with respect to B, and JMMD could be applied into a subspace-learning framework. More
details about the proof of Eq. (2) can be found in Section B of the supplementary material.

3.2 The Uniformity of JMMD

In this section, we introduce a theorem to illustrate that JMMD is a unified form of existing popular
marginal, class conditional, and weighted class conditional probability distribution distances.

Theorem 1 The marginal, class conditional, and weighted class conditional probability distribution
distances are three special cases of JMMD with label reproducing kernels K1, K2 and K3, and more
details about these three distances could be found in Section C of the supplementary material.
K1 = 1n×n is a matrix whose elements are all 1 with size of n × n, and K2, K3 are defined as below,

k2ij =



(nsns)/(ns,cns,c), xi ∈ Ds,c, xj ∈ Ds,c

(ntnt)/(nt,cnt,c), xi ∈ Dt,c, xj ∈ Dt,c

(nsnt)/(ns,cnt,c), xi ∈ Ds,c, xj ∈ Dt,c

(ntns)/(nt,cns,c), xi ∈ Dt,c, xj ∈ Ds,c

0, otherwise,

k3ij =



1, xi ∈ Ds,c, xj ∈ Ds,c

1, xi ∈ Dt,c, xj ∈ Dt,c

1, xi ∈ Ds,c, xj ∈ Dt,c

1, xi ∈ Dt,c, xj ∈ Ds,c

0, otherwise,

(3)

where the superscript ‘s/t,c’ denotes data points from the c-th class in the source/target domain. The
proof of this theorem could be found in Section D of the supplementary material, and we also prove
that K1, K2 and K3 are the reproducing kernels in Section E of the supplementary material. Notably,
Theorem 1 yields theoretical guidance to refine JMMD by designing more delicate label kernels for
different problems in DA, and we will leave this open direction in our future work.
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3.3 A Concise HSIC

HSIC [26] also utilizes the covariance to establish the feature-label dependence, and aims to maximize
the dependence for a given domain to improve its feature discrimination. A problem is that the domain-
specific dependence may be decreased or the feature discrimination is degraded unexpectedly when
minimizing JMMD. In the next section, we will illustrate the reason for discrimination degradation
in JMMD from the graph embedding viewpoint. Following JMMD, we utilize finite samples to
empirically estimate CXsYs and CXtYt , and maximize these two terms separately. Similarly, HSIC
involves a tensor-product operator whose derivative is hard to obtain, thus we deduct a concise HSIC
in an RKHS and a concise HSIC in a projected RKHS as follows,

tr(KXX(KYY ⊙ MH)), tr(B⊤KXX(KYY ⊙ MH)KXXB). (4)

Notably, the concise HSIC is consistent with JMMD. Thus, it is easy to jointly consider them in a
concise form, which will be introduced in 3.5. Besides, we design a label kernel for HSIC as below,

k4ij =



(−nsns)/(ns,cns,c), xi, xj ∈ Ds,c, i ̸= j(
nsns(ns,c − 1)

)
/
(
ns,cns,c

)
, xi, xj ∈ Ds,c, i=j

(−ntnt)/(nt,cnt,c), xi, xj ∈ Dt,c, i ̸= j(
ntnt(nt,c − 1)

)
/
(
nt,cnt,c

)
, xi, xj ∈ Dt,c, i=j

0, otherwise.

(5)

There are some advantages with K4: 1) (4) will be a minimization problem which can be easily
analyzed from the graph embedding viewpoint; 2) In 3.4, we will illustrate that the intra-class
compactness (discrimination) of source domain and target domain can be improved with label kernel
K4; 3) K4 is a reproducing kernel which is proved in Section E of the supplementary material.

3.4 A Graph Embedding Viewpoint

In this section, we reveal that JMMD degrades the feature discrimination from the graph embedding
viewpoint. Given a data matrix X = [x1, · · · , xn], we establish a nearest neighbor graph G with n
vertices, where each vertex denotes a data point. Let W be the weight matrix of G, and wij measures
the similarity weight between xi and xj in original feature space (the larger wij is and the closer they
are and vice versa). Graph embedding technique [42] tries to find a desirable feature representation of
X so that it could respect the relationship between each two data points in the original feature space.
Formally, it aims to minimize the following objective function,

∑n
i=1

∑n
j=1(wij||zi − zj||22) = tr(ZLZ⊤), (6)

where Z is the embedding representation of X. L = Q − W is the graph Laplacian matrix where
Q = diag(q1, · · · ,qn) is a diagonal matrix and qi =

∑n
j=1 wij. Inspired by graph embedding, we

regard LJ = K2 ⊙ MJ and LH = K4 ⊙ MH as two graph Laplacian matrices. Then, we reveal the
similarity weight matrices WJ and WH of JMMD and HSIC as follows,

wJ
ij =



−1/(ns,cns,c), xi ∈ Ds,c, xj ∈ Ds,c

−1/(nt,cnt,c), xi ∈ Dt,c, xj ∈ Dt,c

1/(ns,cnt,c), xi ∈ Ds,c, xj ∈ Dt,c

1/(nt,cns,c), xi ∈ Dt,c, xj ∈ Ds,c

0, otherwise,

wH
ij =


1/(ns,cns,c), xi ∈ Ds,c, xj ∈ Ds,c

1/(nt,cnt,c), xi ∈ Dt,c, xj ∈ Dt,c

0, otherwise.

(7)
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Then, the concise JMMD (2) and HSIC (4) in a projected RKHS can be rewritten as follows,

∑n
i=1

∑n
j=1(w

J
ij||B

⊤kXX
i − B⊤kXX

j ||2F),
∑n

i=1

∑n
j=1

(
wH

ij ||B
⊤kXX

i − B⊤kXX
j ||2F), (8)

where B⊤kXX is the embedded feature representation and (8) is similar to (6). Specifically, the
distance between B⊤kXX

i and B⊤kXX
j should be closer if wij > 0 but further if wij < 0 since the goal

is to minimize (8). From (7), we observe that JMMD will push two data points from the same classes
in the same domain further, and draw those from the same classes in different domains closer. HSIC
will draw two data points from the same classes in the same domain closer (intra-class compactness).
These observations illustrate that JMMD degrades feature discrimination as the similarity weights
which strengthen intra-class compactness in the graph of HSIC, take opposite signs in the graph of
JMMD. Besides, the designed K4 makes (4) a minimization problem.

3.5 The Proposed JMMD-HSIC

From the above analysis, we consider JMMD and HSIC by jointly minimizing (1)/(2) and (4) to
propose JMMD-HSIC. With a little abuse of notations, we denote KJ and KH for label kernels of
JMMD and HSIC, then JMMD-HSIC in an RKHS and a projected RKHS are finalized as follows,

tr(KXX(KJ ⊙ MJ + δKH ⊙ MH)), tr(B⊤KXX(KJ ⊙ MJ + δKH ⊙ MH)KXXB), (9)

where δ aims to balance the relative importance between JMMD and HSIC, and we can adopt K1,
K2 or K3 for KJ and K4 for KH. To validate our revealed theoretical results and the effectiveness of
JMMD-HSIC, we incorporate it into a general subspace-learning framework, i.e., argmin L⋆(B) +
L(B), where L⋆(B) is the JMMD-HSIC loss in a projected RKHS, and its partial derivative with
respect to B is 2KXX(KJ ⊙ MJ + δKH ⊙ MH)KXXB. L(B) is a general form for other losses.

4 Experiments

4.1 Datasets and Experimental Settings

To validate our revealed theoretical results and the effectiveness of JMMD-HSIC, we conduct
extensive experiments on four benchmark datasets in cross-domain object recognition. D1: Office10-
Caltech10 [47] consists of four domains, i.e., Amazon, Dslr, Webcam, Caltech; D2: ImageCLEF-DA
includes three domains, i.e., Caltech-256, ImageNet ILSVRC 2012, Pascal VOC 2012; D3: Office-31
[48] contains three domains, i.e., Amazon, Dslr, Webcam; D4: Office-Home [49] has four domains,
i.e., Art, Clipart, Product, Real-world.

As this paper mainly focuses on the problem that JMMD is hard to be applied into a subspace-
learning framework, we incorporate the proposed JMMD-HSIC into three subspace-learning-based
DA approaches, i.e., joint distribution adaptation (JDA) [20], selective pseudo-labeling (SPL) [50],
and optimal graph learning-based label propagation (OGL2P) [51]. We abbreviate these three variants
as JDA+JMMD-HSIC, SPL+JMMD-HSIC, and OGL2P+JMMD-HSIC, respectively. For a fair
comparison, all hyper-parameters remain consistent with the three approaches. Regarding δ, we
uniformly set it to 0.5 for JDA+JMMD-HSIC, while assigning different values on the corresponding
datasets for the other two variants after trials. On Office10-Caltech10, we use the SURF features
with 800 dimensions [47] and the DECAF-6 features with 4096 dimensions [52]. On the other three
datasets, we utilize the ResNet-50 features with 2048 dimensions [53]. Moreover, we adopt K2 for
JMMD due to its superiority and K4 for HSIC.

4.2 Results

We compare our proposed approach with existing state-of-the-art shallow (SPL [50], PGCD [54],
RMMD [55]) and deep DA approaches (BSP+MetaReg [56], DRDA [57], RSDA-MSTN [58],
Jeffreys-DD [59], OGL2P [51]) on D3 and D4. As can be seen from Tabs. 1 and 2, our proposed
approach is better than the baseline methods SPL and OGL2P on average, and has achieved 1.4%/0.8%
and 0.9/0.8% improvements on the two datasets, respectively. Besides, OGL2P+JMMD-HSIC could
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Table 1: Comparison results on Office-31 with ResNet-50 features. A, D, W in the second row
denotes domains of Amazon, Dslr, and Webcam, respectively.

Source Venue Amazon Dslr Webcam Avg.
Target D W A W A D
PGCD [54] TIP’23 95.2 94.0 76.4 99.0 76.5 100.0 90.2
RMMD-I [55] TNNLS’23 90.4 88.4 74.1 98.7 74.8 99.8 87.7
BSP+MetaReg [56] TKDE’23 96.2 95.2 76.8 99.2 74.6 100.0 90.3
DRDA [57] TIP’23 94.5 95.8 75.6 98.8 76.6 100.0 90.2
RSDA-MSTN [58] TPAMI’24 96.1 95.9 77.8 99.3 78.2 100.0 91.2
Jeffreys-DD [59] NeurIPS’24 95.9 94.9 76.0 99.1 74.6 100.0 90.1
SPL [50] AAAI’20 93.0 92.7 76.4 98.7 76.8 99.8 89.6
SPL+JMMD-HSIC - 95.8 95.5 78.5 99.1 77.0 100.0 91.0
OGL2P [51] TIP’25 96.2 95.5 77.5 98.7 76.8 99.4 90.7
OGL2P+JMMD-HSIC - 96.5 95.8 78.8 99.3 78.8 100.0 91.5

Table 2: Comparison results on Office-Home with ResNet-50 features. A, C, P, R in the second row
denotes domains of Artistic, Clipart, Product, and Real-World, respectively.
Source Venue Artistic Clipart Product Real-World Avg.
Target C P R A P R A C R A C P
PGCD [54] TIP’23 57.7 77.2 79.1 59.1 74.3 72.7 61.2 54.2 79.3 70.0 58.4 82.7 68.8
RMMD-I [55] TNNLS’23 58.4 77.8 79.3 61.6 72.8 73.0 62.7 55.3 78.9 70.4 60.1 83.2 69.5
BSP+MetaReg [56] TKDE’23 58.0 75.5 78.9 65.0 74.7 75.0 67.9 57.2 81.8 74.7 63.5 83.8 71.3
DRDA [57] TIP’23 58.2 74.2 81.2 65.6 75.1 73.3 65.8 57.1 80.4 75.6 63.2 85.1 71.2
RSDA-MSTN [58] TPAMI’24 59.6 79.2 81.1 68.7 77.7 77.7 67.8 61.0 82.2 75.3 60.8 85.9 73.1
Jeffreys-DD [59] NeurIPS’24 55.5 74.9 79.5 64.3 73.8 73.9 63.9 54.7 81.3 75.2 61.6 84.2 70.2
SPL [50] AAAI’20 54.5 77.8 81.9 65.1 78.0 81.1 66.0 53.1 82.8 69.9 55.3 86.0 71.0
SPL+JMMD-HSIC - 56.8 77.1 81.6 66.5 79.4 81.2 67.9 55.0 83.4 70.9 57.1 85.8 71.9
OGL2P [51] TIP’25 57.8 78.8 82.1 68.4 81.6 80.4 68.9 56.6 82.9 71.7 59.1 85.0 72.8
OGL2P+JMMD-HSIC - 58.3 79.6 82.5 69.3 81.9 80.9 69.5 57.9 83.3 73.4 61.2 85.3 73.6

achieve the best average results among all compared approaches, which has achieved 0.3% and 0.5%
improvements compared with the second-best methods, i.e., RSDA-MSTN. The comparison results
on the other datasets could be found in Section F of the supplementary material. Generally speaking,
these results can show the effectiveness and competitiveness of our proposed JMMD-HSIC.

4.3 Feature Visualization

To further show the results of JMMD-HSIC, we visualize the feature distributions using the t-SNE
algorithm as a common practice in this field [31, 22]. Fig. 2 shows the related results for JMMD,
HSIC, and JMMD-HSIC in the SPL framework. The better the matching of points with the same
color but different shapes, the smaller the distribution difference; disregarding shape, the tighter the
clustering of points with the same color, the better the discriminability. As illustrated in Fig. 2(a),
the original features perform badly on both the distribution alignment and discrimination. From
Fig. 2(b), JMMD tries to align the feature distributions of the source domain and target domain, but
damages the discrimination greatly. As depicted in Fig. 2(c), HSIC aims to enhance the discriminative
structure in both the source and target domains. However, it exhibits poor distribution alignment, as
highlighted by the dashed boxes where points of the same color but different shapes are distributed
in different regions. As shown in Fig. 2(d), the feature distributions are matched better compared
to HSIC (as highlighted by the dashed boxes where points of the same color but different shapes
are distributed in the same region) and data points from the same classes tend to be closer (better
discrimination) compared to JMMD. These observations could validate our revealed theoretical
results and the effectiveness of JMMD-HSIC compared to JMMD and HSIC.
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Table 3: Ablation study with different losses on Office-31 (average accuracy on 6 tasks) and Office-
Home (average accuracy on 12 tasks) with ResNet-50 features.

Dataset SPL SPL
OGL2P

OGL2P
JMMD HSIC JMMD-HSIC JMMD HSIC JMMD-HSIC

Office-31 89.6 87.3 89.9 91.0 90.7 88.5 90.6 91.5
Office-Home 71.0 68.7 69.0 71.9 72.8 71.3 71.5 73.6

Table 4: Ablation study with different label kernels on Office-31 (average accuracy on 6 tasks) and
Office-Home (average accuracy on 12 tasks) with ResNet-50 features.

Dataset SPL SPL+JMMD-HSIC
OGL2P

OGL2P+JMMD-HSIC
K1 K2 K3 K1 K2 K3

Office-31 89.6 85.6 91.0 90.9 90.7 86.7 91.5 91.5
Office-Home 71.0 64.9 71.9 71.8 72.8 69.8 73.6 73.6

4.4 Ablation Study

We further validate our revealed theoretical results by inspecting the feature distribution distance
(JMMD metric) and feature-label independence. The smaller the JMMD metric, the better the
distribution alignment; the smaller the feature-label independence, the better the discriminability.
We run the methods of PCA, JDA+JMMD, JDA+HSIC and JDA+JMMD-HSIC on the dataset of
D1 with SURF features and utilize four different classifiers (1-nearest neighbor (1-NN), SVM, label
propagation (LP) [60] and nearest class prototype (NCP) [50]) and two different label forms (hard
and soft). We report average results of the two metrics on all DA tasks. Then, we compute these two
metrics of each method on their embedded feature representations. Note that, in order to compute the
true distance or metric, we have to use the ground-truth labels instead of the pseudo ones. However,
the ground-truth target labels are only used for verification, not for training procedure [20]. As
shown in Fig. 3, we could obtain the following observations. With JMMD, the JMMD metric is the
smallest among the four methods but the feature-label independence is the largest among them, which
indicates good distribution alignment but compromises discriminative structure. Conversely, with
HSIC, the feature-label independence is the smallest among the four methods but the JMMD metric
is the largest among them, which suggests consideration of discriminative structure but overlooking
distribution alignment. In contrast, the proposed JMMD-HSIC strikes a good balance between
distribution alignment and discriminability, which could lead to a better DA capacity. Moreover,
PCA performs poorly in both aspects. In Tab. 3, we conduct ablation experiments using different
loss functions on baselines of SPL and OGL2P and have the following observations. Considering
that the classifiers employed in SPL and OGL2P frameworks require higher feature discriminability,
we can observe that HSIC outperforms JMMD. Since the Office-31 dataset has smaller distribution
discrepancies, the performance improvement of HSIC over JMMD is more significant on the Office-
31 dataset (2.6%, 2.1%) compared to the Office-Home dataset (0.3%, 0.2%). Our proposed loss
function achieves optimal results. Although both SPL and OGL2P also incorporate loss functions for
feature distribution alignment and discriminative feature learning, our approach provides more precise
balancing between these two objectives by fundamentally analyzing how JMMD compromises feature
discriminability. In other words, we more effectively mitigate the impact of distribution alignment on
feature discriminability. Consequently, our method achieves superior performance compared to SPL
and OGL2P. These observations could validate our revealed theoretical results and the effectiveness
of proposed JMMD-HSIC compared to JMMD and HSIC.

In Tab. 4, we conduct ablation experiments to validate why we adopt the label kernel K2. It can
be observed that the marginal distribution kernel K1, which neglects label information, leads to
inaccurate distribution alignment and thus performs the worst. The results of the weighted class-
conditional distribution kernel K3 and the conditional distribution kernel K2 are nearly identical
because the class imbalance issue in the experimental dataset used in this paper is not severe—whereas
the weighted class-conditional distribution kernel is specifically designed to address class imbalance.
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(a) original features (b) SPL+JMMD (c) SPL+HSIC (d) SPL+JMMD-HSIC

Figure 2: Feature visualization of the DA task Amazon (source domain) → Webcam (target domain)
from Office-31 dataset for SPL+JMMD, SPL+HSIC, and SPL+JMMD-HSIC. Different colors
represent various classes, and ‘◦’ and ‘×’ represent source domain and target domain, respectively.

(a) Different classifiers and labels (b) Different classifiers and labels (c) δ

Figure 3: Quantitative analysis for the JMMD (distribution distance, (a)) and HSIC (feature-label
independence, (b)) metrics and sensitivity analysis for δ (c).

4.5 Sensitivity of Hyper-Parameter

We conduct the sensitivity analysis of δ in SPL+JMMD-HSIC to validate that the optimal results
could be achieved under a stable range. We report average accuracy results of SPL+JMMD-HSIC on
D1, D2, and D3 with deep features. We plot average classification accuracy w.r.t., different values
of δ in Fig. 3(c), and choose δ ∈ [0.1, 2], which reflects the importance of HSIC for discrimination
reinforcement in JMMD. It can be observed that the average accuracy often achieves its optimal value
on a wide range for each dataset, which could display the stability of δ. Notably, the average results
of D4 with different values of δ fluctuate between 68.1%∼71.7%, smaller than those of D1 ∼ D3.
Therefore, we do not plot the change for D4 to observe the fluctuation trends more distinctively. The
rationale behind selecting δ within the range of [0.1, 2] is as follows: we are gradually mitigating
the negative effects of JMMD on discriminability when δ ∈ [0.1, 1]. We completely eliminate the
negative effects of JMMD, and gradually promote discriminability when δ ∈ [1, 2]. Therefore, the
model performs better when δ takes larger values within this range.

5 Conclusions

JMMD is still not fully explored and is especially hard to be applied to a subspace-learning framework.
To overcome this problem, we deduce a concise JMMD and obtain two essential findings, i.e., the
uniformity of JMMD and the reason for feature discrimination degradation in JMMD. To strengthen
the discrimination of JMMD, we jointly consider JMMD and HSIC to propose a novel loss dubbed
as JMMD-HSIC. Comprehensive tests carried out on some benchmark datasets could validate our
revealed theoretical results, and show promising performance with our proposed JMMD-HSIC. For
future work, we plan to explore: 1) designing an advanced label kernel to handle more diverse
domain adaptation scenarios; 2) extending the framework to more complex visual tasks; 3) designing
novel label kernels by systematically analyzing how different classifiers vary in their sensitivity to
feature distribution alignment and feature discriminability.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper aims to fully explore the distribution-distance metric, i.e., JMMD,
in the field of DA.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]
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Justification: We did not discuss the limitations of this work due to space constraints.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
Justification: We provided a complete proof for the theoretical results in the supplementary
file due to space constraints.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided comprehensive information to facilitate the reproducibility of our
work.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provided the references for the data and code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have conducted sensitivity analysis of hyper-parameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Our experiments do not require significant computational resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and ensured that the paper
conforms, in every respect, with the Code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper focuses on a statistical distribution-distance metric JMMD in
traditional machine learning and does not involve LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A A Concise JMMD in an RKHS

Theorem 2 In an RKHS, JMMD could be rewritten as the following concise form,
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,

(10)

where DH denotes a distance metric between two joint probability distributions, i.e., P s and P t. We
empirically estimate JMMD with the following steps: i) we utilize ψ and ϕ to map features and labels
from the source domain and target domain to the RKHS, respectively; ii) we calculate the mean of
the tensor product between feature and label for each domain; iii) we compute the difference between
these two means. Notably, xi and xj are the i-th and j-th column vectors of X.

Proof:

For convenience, we define Γs(xs, ys) and Γt(xt, yt) as shown in the following equations,
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[
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nt)
]
∈ R∞×nt

.

(11)

Then, (10) could be rewritten as below,
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where 1ns×1 and 1nt×1 are two column vectors whose elements are all ones with sizes of ns and nt.

Moreover, we have the following equations,

Γs(xs, ys)⊤Γs(xs, ys) = KXsXs
⊙ KYsYs

, (13)

Γt(xt, yt)⊤Γt(xt, yt) = KXtXt
⊙ KYtYt

, (14)

Γs(xs, ys)⊤Γt(xt, yt) = KXsXt
⊙ KYsYt

, (15)

Γt(xt, yt)⊤Γs(xs, ys) = KXtXs
⊙ KYtYs

. (16)

where KXsXs
, · · · ,KYsYs

, · · · ∈ Rns×ns
, · · ·Rns×ns

, · · · are the kernel matrices and they are computed
by kXsXs

ij = kX(xs
i , xs⊤

j ), · · · , kYsYs

ij = kY(ys
i , ys⊤

j ), · · · . Here kX and kY are feature and label kernels.

Therefore, we can rewrite (12) using the feature kernel matrix KXX and the label kernel matrix KYY

as below,
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where KXX ∈ Rn×n and KYY ∈ Rn×n are feature and label kernel matrices for all source and target
domains, and n = ns + nt.

According to tr
(
A ⊙ BC

)
= tr

(
A(B ⊙ C)

)
where A,B and C are symmetric matrices [61], thus

tr
(
KXX ⊙ KYYMJ) = tr

(
KXX(KYY ⊙ MJ)

)
. MJ is calculated as below,

mJ
ij =

{
1/(nsns), xi, xj ∈ Ds

1/(ntnt), xi, xj ∈ Dt

−1/(nsnt), otherwise.
(18)

where Ds and Dt denote source and target domains.

□

B A Concise JMMD in a Projected RKHS

Theorem 3 In a projected RKHS, JMMD could be rewritten as the following concise form,
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(19)
where T ∈ R∞×d is the feature projection matrix and ‘d’ is the dimension in the embedded subspace.
Different from (10), we project ψ(xs

i ) and ψ(xt
j) into an embedded subspace, and then empirically

estimate JMMD.

Proof:

We begin by introducing the Representer theorem [23] as below,

Theorem 4 (Representer theorem) It says that any function can be decomposed into finite values
of a kernel function with corresponding coefficients [23].
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,

(20)

where bi ∈ Rd×1 and we definite a new projection matrix B = [b⊤
1 ; · · · ;b⊤

n ] ∈ Rn×d.
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For convenience, we define Θs(xs, ys) and Θt(xt, yt) as shown in the following equations according
to the Representer theorem,
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where bi ∈ Rd×1 and we definite a new projection matrix B = [b⊤
1 ; · · · ;b⊤

n ] ∈ Rn×d (n = ns + nt).

Then, (19) could be rewritten as below,
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Similar to the proof of Theorem 2, we rewrite Θs(xs, ys)⊤Θs(xs, ys), Θs(xs, ys)⊤Θt(xt, yt),
Θt(xt, yt)⊤Θs(xs, ys), · · · using feature and label kernels. First,
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(23)

where ⟨•, •⟩ denotes the inner product between two vectors. Moreover, we have the following
equation,
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〈(∑n
l=1 blψ(xl)

⊤)ψ(xs
i )⊗ ϕ(ys

j ),
(∑n

l=1 blψ(xl)
⊤)ψ(xk)⊗ ϕ(ym)

〉
=
((∑n

l=1 blψ(xl)
⊤)ψ(xs

i )⊗ ϕ(ys
j )
)⊤((∑n

l=1 blψ(xl)
⊤)ψ(xk)⊗ ϕ(ym)

)
=
(
ψ(xs

i )
⊤(∑n

l=1 ψ(xl)b⊤
l

)
⊗ ϕ(ys

j )
⊤
)((∑n

l=1 blψ(xl)
⊤)ψ(xk)⊗ ϕ(ym)

)
=
(
ψ(xs

i )
⊤(∑n

l=1 ψ(xl)b⊤
l

)(∑n
l=1 blψ(xl)

⊤)ψ(xk)
)
⊗
(
ϕ(ys

j )
⊤ϕ(ym)

)
=
[
kX(xs

i , x1), kX(xs
i , x2), · · · , kX(xs

i , xn)
]
BB⊤

[
kX(x1, xk), k

X(x2, xk), · · · , kX(xn, xk)
]⊤

⊗ kY(ys
j , ym)

=
[
kX(xs

i , x1), kX(xs
i , x2), · · · , kX(xs

i , xn)
]
BB⊤

[
kX(x1, xk), k

X(x2, xk), · · · , kX(xn, xk)
]⊤
kY(ys

j , ym)

= KXX
(i,•)BB⊤KXX

(•,k)k
Y(yj, ym),

(24)

where the subscripts (i, •) and (•, k) denote the i-th row vector and the k-th column vector of a given
matrix, respectively. Then, we can obtain the following equation,

Θs(xs, ys)⊤Θs(xs, ys) =

KXX
(1,•)BB⊤KXX

(•,1)k
Y(y1, y1) · · · KXX

(1,•)BB⊤KXX
(•,ns)k

Y(y1, yns)

KXX
(2,•)BB⊤KXX

(•,1)k
Y(y2, y1) · · · KXX

(2,•)BB⊤KXX
(•,ns)k

Y(y2, yns)

· · · · · · · · ·

KXX
(ns,•)BB⊤KXX

(•,1)k
Y(yns , y1) · · · KXX

(ns,•)BB⊤KXX
(•,ns)k

Y(yns , yns)


.

(25)

Similarly, Θt(xt, yt)⊤Θt(xt, yt) =



KXX
(ns+1,•)BB⊤KXX

(•,ns+1)k
Y(yns+1, yns+1) · · · KXX

(ns+1,•)BB⊤KXX
(•,n)k

Y(yns+1, yn)

KXX
(ns+2,•)BB⊤KXX

(•,ns+1)k
Y(yns+2, yns+1) · · · KXX

(ns+2,•)BB⊤KXX
(•,n)k

Y(yns+2, yn)

· · · · · · · · ·

KXX
(n,•)BB⊤KXX

(•,ns+1)k
Y(yn, yns+1) · · · KXX

(n,•)BB⊤KXX
(•,n)k

Y(yn, yn)


. (26)

Θs(xs, ys)⊤Θt(xt, yt) =



KXX
(1,•)BB⊤KXX

(•,ns+1)k
Y(y1, yns+1) · · · KXX

(1,•)BB⊤KXX
(•,n)k

Y(y1, yn)

KXX
(2,•)BB⊤KXX

(•,ns+1)k
Y(y2, yns+1) · · · KXX

(2,•)BB⊤KXX
(•,n)k

Y(y2, yn)

· · · · · · · · ·

KXX
(ns,•)BB⊤KXX

(•,ns+1)k
Y(yns , yns+1) · · · KXX

(ns,•)BB⊤KXX
(•,n)k

Y(yns , yn)


. (27)

Θt(xt, yt)⊤Θs(xs, ys) =
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

KXX
(ns+1,•)BB⊤KXX

(•,1)k
Y(yns+1, y1) · · · KXX

(ns+1,•)BB⊤KXX
(•,ns)k

Y(yns+1, yns)

KXX
(ns+2,•)BB⊤KXX

(•,1)k
Y(yns+2, y1) · · · KXX

(ns+2,•)BB⊤KXX
(•,ns)k

Y(yns+2, yns)

· · · · · · · · ·

KXX
(n,•)BB⊤KXX

(•,1)k
Y(yn, y1) · · · KXX

(n,•)BB⊤KXX
(•,ns)k

Y(yn, yns)


. (28)

According to (25) ∼ (28), we could obtain the following equation,

DH = tr

( Θs(xs, ys)⊤Θs(xs, ys) Θs(xs, ys)⊤Θt(xt, yt)

Θt(xt, yt)⊤Θs(xs, ys) Θt(xt, yt)⊤Θt(xt, yt)


 1ns×11⊤ns×1

nsns

−1ns×11⊤nt×1

nsnt

−1nt×11⊤ns×1

ntns

1nt×11⊤nt×1

ntnt

)

= tr
(

B⊤KXX(KYY ⊙ MJ)KXXB
)
.

(29)

□

C Probability Distribution Distances

C.1 Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) [12] establishes the mean embedding of the marginal
probability distribution in a RKHS endowed by the kernel kX (feature mapping ψ), and using finite
samples to empirically estimate the distance between µXs (mean embedding of source domain) and
µXt (mean embedding of target domain) with the Hilbert-Schmidt norm as the following equation,

DH

(
P s(Xs),P t(Xt)

)
=
∣∣∣∣∣∣E(ψ(Xs)

)
− E

(
ψ(Xt)

)∣∣∣∣∣∣2
H

=
∣∣∣∣∣∣µXs − µXt

∣∣∣∣∣∣2
H

= || 1ns

∑ns

i=1 ψ(xi)− 1
nt

∑nt

j=1 ψ(xj)
∣∣∣∣∣∣2
H

= tr(KXXMM),

(30)

where KXX = ψ(X)⊤ψ(X) ∈ Rn×n and kXX
ij = kX(xi, xj). Besides, the MMD matrix MM can be

computed as below,

mM
ij =


1/(nsns), xi, xj ∈ Ds

1/(ntnt), xi, xj ∈ Dt

−1/(nsnt), otherwise.

(31)

Moreover, the MMD in a projected RKHS is tr(B⊤KXXMmKXXB).

C.2 Class-Wise Maximum Mean Discrepancy

The class-wise maximum mean discrepancy (CMMD) [20] constructs the sum of MMD for each
specific class as the following equation,
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DH

(
P s(Xs|Ys),P t(Xt|Yt)

)
=
∑C

c=1

∣∣∣∣∣∣E(ψ(Xs,c)
)
− E

(
ψ(Xt,c)

)∣∣∣∣∣∣2
H

=
∑C

c=1

∣∣∣∣∣∣µXs,c − µXt,c

∣∣∣∣∣∣2
H

=
∑C

c=1

∣∣∣∣∣∣ 1
ns,c

∑ns,c

i=1 ψ(xi)− 1
nt,c

∑nt,c

j=1 ψ(xj)
∣∣∣∣∣∣2
H

=
∑C

c=1 tr(KXXMC,c),

(32)

where the MMD matrix MC,c can be computed as below,

mC,c
ij =



1/(ns,cns,c), xi ∈ Ds,c, xj ∈ Ds,c

1/(nt,cnt,c), xi ∈ Dt,c, xj ∈ Dt,c

−1/(ns,cnt,c), xi ∈ Ds,c, xj ∈ Dt,c

−1/(nt,cns,c), xi ∈ Dt,c, xj ∈ Ds,c

0, otherwise.

(33)

Similarly, the CMMD in a projected RKHS is
∑C

c=1 tr(B⊤KXXMC,cKXXB).

C.3 Weighted Class-Wise Maximum Mean Discrepancy

To deal with class imbalanced dataset, the weighted class-wise maximum mean discrepancy
(WCMMD) introduces the class prior probability P(Y) into the CMMD [21], which pays more
attention on the large-size categories and is formulated as the following equation,

∑C
c=1

∣∣∣∣∣∣P s(ys=c)
ns,c

∑ns,c

i=1 ψ(xi)− P t(yt=c)
nt,c

∑nt,c

j=1 ψ(xj)
∣∣∣∣∣∣2
H

=
∑C

c=1

∣∣∣∣∣∣ 1ns

∑ns,c

i=1 ψ(xi)− 1
nt

∑nt,c

j=1 ψ(xj)
∣∣∣∣∣∣2
H

=
∑C

c=1 tr(KXXMWC,c),

(34)

where MWC,c can be computed with the following equation,

mWC,c
ij =



1/(nsns), xi ∈ Ds,c, xj ∈ Ds,c

1/(ntnt), xi ∈ Dt,c, xj ∈ Dt,c

−1/(nsnt), xi ∈ Ds,c, xj ∈ Dt,c

−1/(ntns), xi ∈ Dt,c, xj ∈ Ds,c

0, otherwise.

(35)

Similarly, the WCMMD in a projected RKHS is
∑C

c=1 tr(B⊤KXXMWC,cKXXB).

D The Uniformity of JMMD

Theorem 5 The marginal, class conditional and weighted class conditional probability distribution
distances are three special cases of JMMD with label reproducing kernels K1, K2 and K3. K1 = 1n×n

is a matrix whose elements are all 1 with the size of n × n, and K2, K3 are defined as below,
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k2ij =



(nsns)/(ns,cns,c), xi ∈ Ds,c, xj ∈ Ds,c

(ntnt)/(nt,cnt,c), xi ∈ Dt,c, xj ∈ Dt,c

(nsnt)/(ns,cnt,c), xi ∈ Ds,c, xj ∈ Dt,c

(ntns)/(nt,cns,c), xi ∈ Dt,c, xj ∈ Ds,c

0, otherwise,

(36)

k3ij =



1, xi ∈ Ds,c, xj ∈ Ds,c

1, xi ∈ Dt,c, xj ∈ Dt,c

1, xi ∈ Ds,c, xj ∈ Dt,c

1, xi ∈ Dt,c, xj ∈ Ds,c

0, otherwise,

(37)

where the superscript ‘s/t,c’ denotes data points from the c-th class in the source/target domain.

Proof:

As proved before, the formulations of concise JMMD are tr(KXX(KYY ⊙ MJ)) (in a RKHS) and
tr(B⊤KXX(KYY ⊙ MJ)KXXB) (in a projected RKHS). Moreover, the formulations of marginal prob-
ability distribution distance are tr(KXXMM) (in a RKHS) and tr(B⊤KXXMMKXXB) (in a projected
RKHS). The formulations of class conditional probability distribution distance are tr(KXXMC,c) (in a
RKHS) and tr(B⊤KXXMC,cKXXB) (in a projected RKHS). The formulations of weighted class condi-
tional probability distribution distance are tr(KXXMWC,c) (in a RKHS) and tr(B⊤KXXMWC,cKXXB)
(in a projected RKHS). It is easy to verify that K1 ⊙ MJ = MM, K2 ⊙ MJ = MC,c and
K3 ⊙ MJ = MWC,c. Therefore, the marginal, class conditional and weighted class conditional
probability distribution distances are three special cases of JMMD with different label reproducing
kernels K1, K2 and K3. We will prove K1, K2 and K3 are the reproducing kernels in next Subsection.

□

E Reproducing Kernels

Theorem 6 K1, K2, K3 and K4 are the reproducing kernels, where K1, K2, K3 are defined in Theorem
5.

Proof:

K1, K2 and K3: According to the Mercer’s theorem [23], we only have to prove that the Gram
matrices G1, G2 and G3 corresponding to K1, K2 and K3 are semi-positive definite matrices. In fact,
the Gram matrices G2 and G3 can be decomposed into the following equation,

G2 =
∑C

c=1 G2,c, G3 =
∑C

c=1 G3,c. (38)

It is obvious that the sum of several semi-positive definite matrices is also a semi-positive definite
matrix, thus we only have to prove that the Gram matrices G1, G2,c and G3,c are semi-positive
definite. G1, G2,c and G3,c can be decomposed into the following equations,

G1 = p1p1⊤, G2,c = p2,cp2,c⊤, G3,c = p3,cp3,c⊤, (39)

where p1 = 1n is a column vector whose elements are all 1, and p2,c ∈ Rn, p3,c ∈ Rn could be
defined as below,
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p2,c
i =


ns/ns,c, xi ∈ Ds,c

nt/nt,c, xi ∈ Dt,c

0, otherwise,

(40)

p3,ci =


1, xi ∈ Ds,c

1, xi ∈ Dt,c

0, otherwise,

(41)

where p2/3,c
i is the value of the i-th component of l2/3,c. For ∀ x ∈ Rn and x ̸= 0, we have,

x⊤G1x = x⊤p1p1⊤x = x⊤1n1⊤n x

= (x1 + x2 + ...+ xn)
2 ≥ 0,

(42)

x⊤G2,cx = x⊤p2,cp2,c⊤x

= (x1p2,c
1 + x2p2,c2 + ...+ xnp2,c

n )2 ≥ 0.
(43)

and,

x⊤G3,cx = x⊤p3,cp3,c⊤x

= (x1p3,c1 + x2p3,c
2 + · · ·+ xnp3,cn )2 ≥ 0.

(44)

Therefore, G1, G2 and G3 are semi-positive definite matrices. Then, K1, K2 and K3 are the
reproducing kernels.

K4: For ∀ x ∈ Rn and x ̸= 0, due to wij ≥ 0, we have,

x⊤G4x =

n∑
i=1

n∑
j=1

wij(xi − xj)
2 ≥ 0, (45)

where G4 is the Gram matrix of K4 and W is defined as below,

wij =


(nsns)/(ns,cns,c), xi ∈ Ds,c, xj ∈ Ds,c

(ntnt)/(nt,cnt,c), xi ∈ Dt,c, xj ∈ Dt,c

0, otherwise.

(46)

Therefore, G4 is a semi-positive matrix and K4 is the reproducing kernel.

□

F Experiments

We run the JDA+JMMD/HSIC/Our(JMMD-HSIC) and adopt the classifiers of 1-nearest neighbor
(1-NN), support vector machines (SVM*), label propagation (LP†) [60] and nearest class prototype

*https://www.csie.ntu.edu.tw/ cjlin/libsvm
†https://www.escience.cn/people/fpnie/index.html
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Table 5: Ablation study using different classifiers/labels on the Office10-Caltech10 dataset with
SURF features.

Classifier 1-NN SVM LP NCP

Original Features 40.9 47.7 48.3 45.7

Label Hard Hard Soft Hard Soft Hard Soft

JDA+JMMD 47.7 50.2 49.2 54.2 52.8 47.8 41.4

JDA+HSIC 47.9 49.0 48.5 54.0 52.8 48.8 46.8

JDA+Our 49.6 50.9 49.9 55.4 54.3 49.6 47.1

Table 6: Comparison average results of our proposed SPL+JMMD-HSIC with state-of-the-art DA
methods on Office10-Caltech10 dataset with DECAF-6 features. A, C, D, W in the second row
denotes domains of Amazon, Caltech, Dslr, and Webcam, respectively.

Source
Venue

Amazon Caltech Dslr Webcam
Avg.

Target C D W A D W A C W A C D

PGCD [54] TIP’23 86.5 90.4 84.1 92.5 92.4 91.2 92.5 87.6 100.0 91.6 85.3 100.0 91.2

RMMD-II [55] TNNLS’23 88.4 91.7 92.9 93.4 96.8 95.9 93.6 88.9 100.0 92.2 88.9 100.0 93.6

SPL [50] AAAI’20 87.4 89.2 95.3 92.7 98.7 93.2 92.9 88.6 98.6 92.0 87.0 100.0 93.0

SPL+Our - 90.0 96.8 93.9 93.7 99.4 93.9 93.8 90.3 100.0 93.3 89.4 99.4 94.5

OGL2P [51] TIP’25 89.7 97.5 91.9 94.3 98.7 95.9 94.2 90.2 99.3 94.6 89.5 100.0 94.6

OGL2P+Our - 90.2 97.8 93.2 95.3 99.2 95.7 94.6 90.5 100.0 94.2 89.3 100.0 95.0

Table 7: Comparison of average results of our proposed SPL+JMMD-HSIC with state-of-the-art DA
methods on ImageCLEF-DA dataset with ResNet-50 features. C, I, P in the second row denotes
domains of Caltech-256, ImageNet ILSVRC, and Pascal VOC, respectively.

Source
Venue

Caltech ImageNet Pascal

Avg.-256 ILSVRC VOC

Target I P C P C I

RMMD-I [55] TNNLS’23 93.2 78.3 95.7 79.5 95.5 92.0 89.0

RSDA-MSTN [58] TPAMI’24 93.3 79.3 97.8 80.5 96.8 94.2 90.3

SPL [50] AAAI’20 95.7 80.5 96.7 78.3 96.3 94.5 90.3

SPL+Our - 96.3 81.4 96.7 80.5 96.7 95.0 91.1

OGL2P [51] TIP’25 95.8 81.2 96.8 82.2 97.2 95.7 91.5

OGL2P+Our - 96.5 81.8 97.4 83.5 97.8 96.0 92.2
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(NCP‡) [50] on the Office-Caltech10 dataset with SURF features (average classification results on 12
DA tasks). As can be seen from Tab. 5, JMMD and HSIC perform better than the original features
as JMMD matches the distributions of the source domain and target domain, and HSIC enhances
domain-specific discriminative structures. The proposed JMMD-HSIC could achieve the best results
no matter what classifiers or labels are, which shows the effectiveness of JMMD-HSIC and indicates
that it is necessary to jointly consider JMMD and HSIC for a better DA capacity. Here, the symbol
‘Soft’ denotes the probability soft label and the symbol ‘Hard’ is the hard (one-hot) label. Notably,
1-NN could not produce a soft label thus only ‘Hard’ is reported. It can be seen that the performance
of the ‘Soft’ label is even worse than that of the ‘Hard’ label, and it may be because the performance
heavily depends on the quality of predicted soft labels of the target domain [62, 63].

We compare our proposed approach with existing state-of-the-art shallow (SPL [50], PGCD [54],
RMMD [55]) and deep DA approaches (RSDA-MSTN [58], OGL2P [51]) on D1 and D2. As
can be seen from Tabs. 6 and 7, our proposed approach is better than the baseline methods SPL
and OGL2P on average, and has achieved 1.5%/0.4% and 0.8/0.7% improvements on the two
datasets, respectively. Besides, OGL2P+JMMD-HSIC could achieve the best average results among
all compared approaches, which has achieved 0.4% and 0.7% improvements compared with the
second-best methods, i.e., OGL2P. Generally speaking, these results can show the effectiveness and
competitiveness of our proposed JMMD-HSIC.

‡https://github.com/hellowangqian/domainadaptation-capls
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