
Published as a Tiny Paper at ICLR 2024

DFWLAYER: DIFFERENTIABLE FRANK-WOLFE OPTI-
MIZATION LAYER

Zixuan Liu1, Liu Liu2, Xueqian Wang1, Peilin Zhao2
1Tsinghua University, 2Tencent AI Lab
{zx-liu21@mails,wang.xq@sz}.tsinghua.edu.cn,
{leonliuliu,masonzhao}@tencent.com

ABSTRACT

Differentiable optimization has received a significant amount of attention due
to its foundational role in the domain of machine learning based on neural net-
works. This paper proposes a differentiable layer, named Differentiable Frank-
Wolfe Layer (DFWLayer), by rolling out the Frank-Wolfe method, a well-known
optimization algorithm which can solve constrained optimization problems with-
out projections and Hessian matrix computations, thus leading to an efficient way
of dealing with large-scale convex optimization problems with norm constraints.
Experimental results demonstrate that the DFWLayer not only attains competitive
accuracy in solutions and gradients but also consistently adheres to constraints.

1 INTRODUCTION & RELATED WORK

Recent years have witnessed a variety of combining neural networks and conventional optimization
as differentiable optimization layers to integrate expert knowledge into machine learning systems.
With objectives and constraints deriving from that knowledge, the output of each differentiable opti-
mization layer is the solution to a specific optimization problem whose parameters are outputs from
previous layers (Amos & Kolter, 2017; Agrawal et al., 2019; Sun et al., 2022; Landry, 2021). Never-
theless, adapting the implicit functions (mapping parameters to solutions) to the training procedure
of deep learning architecture is not easy since the explicit differentiable closed-form solutions are
not available for most conventional optimization algorithms. On top of directly obtaining differen-
tiable closed-form solutions, one alternative is to recover gradients respect to some parameters after
solving for the optimal solution (Landry, 2021).

In this study, we introduce a novel differentiable unrolling optimization layer designed to enhance
the speed of both optimization and backpropagation processes in the presence of norm constraints.
Drawing inspiration from the Frank-Wolfe algorithms (Frank et al., 1956), also known as condi-
tional gradient algorithms, we have developed the Differentiable Frank-Wolfe Layer (DFWLayer).
This layer is specifically tailored to efficiently handle norm constraints where projection onto the
corresponding feasible region is computationally expensive.

In terms of related work, two main categories of recovering gradients for optimal solutions have
emerged: differentiating the optimality conditions (Amos & Kolter, 2017; Agrawal et al., 2019) and
rolling out solvers (Donti et al., 2020). Furthermore, Sun et al. (2022) leverage on alternating direc-
tion method of multipliers (ADMM) (Boyd et al., 2011) to differentiate the optimality conditions at
each iterative step. However, these existing methods often encounter challenges. They can be com-
putationally intensive or suffer from prolonged convergence times, leading to suboptimal solutions
that potentially diminish the overall system performance (Bambade et al., 2023).

2 METHODOLOGY

In this section, we consider such an convex optimization problem with norm constraints,
minx f(x; θ) s.t. ∥w ◦ x∥ ≤ t, where f : Rn → R is convex and L-smooth, and C(θ) is the
convex feasible region; x ∈ Rn is the variable, and θ ∈ Rm are the parameters of the optimization
problem; w ∈ Rn is a weight vector, t ∈ R+ is a non-negative constant, and ◦ denotes the Hadamard
production.

1

Published as a Tiny Paper at ICLR 2024

Given the widespread use of ℓp-norm constraints1 in various applications, we considering ℓp-
norm constraints, ∥w ◦ x∥p ≤ t, so that the linear approximation of the original objective prob-
lem, argmins∈C⟨ ∇xf(xk), s⟩, can solved by sk,i = −αt

w · sign(gtw,i(xk)) · |gtw,i(xk)|
p
q , where

gtw(·) = t
w ◦ ∇xf(·), i = 1, ..., n stands for the ith entry of the vector, q is a positive constant

such that 1
p + 1

q = 1, and α is a constant such that ∥sk∥q = 1. It is noted that, when p > 1, sk,i is
differentiable and can directly integrated into automatic differentiation.

When p = 1, a differentiable expression of vertex is ŝk = − t
w ◦ sign(gtw(x̂k)) ◦ softmax(r(x̂k)/τ)

with probability approximation, where r(·) = |gtw(·)|, and p̂k(τ) = p̂(· | r(x̂k); τ) for simplicity,
and τ is the temperature. According to Theorem 2.1, an annealing temperature is designed as τk =
2−k//T , which decreases per T steps, to obtain reliable solutions and gradients at the same time.
Theorem 2.1. Let f : Rn → R be a L-smooth convex function on a convex region C with diameter
M and x∗ = argminx∈C f(x). Under Assumption A.1, the suboptimality gap of DFWLayer for ℓ1
norm constraints is bounded by

h(x̂k) = f(x̂k)− f(x∗) ≤ δ(τk) +
5LM2

2k + 4
. (1)

The proof of Theorem 2.1 is left to Appendix A.2. Therefore, through the differentiable step size
γk = min{ ⟨∇xf(x̂k),x̂k−ŝk⟩

L∥x̂k−ŝk∥2 , 1} and the Frank-Wolfe update x̂k+1 = (1− γk)x̂k + γkŝk
2, the auto-

matic differentiation can be involved to obtain the derivatives ∂x̂∗

∂θ for general ℓp-norm constraints.

3 EXPERIMENTAL RESULTS

In this section, we evaluate DFWLayer with several experiments to validate its performance to solve
different-scale quadratic programs regarding the efficiency and accuracy, compared with state-of-
the-art methods. Besides, the results for robotics tasks are left to Appendix A.3.2. We choose
CvxpyLayer (Agrawal et al., 2019) and Alt-Diff (Sun et al., 2022) as the baselines. The code is
available in https://github.com/Panda-Shawn/DFWLayer.

As is shown in Table 1, DFWLayer performs much more efficiently than other two baselines and
the speed gap becomes larger as the problem scale, namely the dimension of variable, increases.
Meanwhile, DFWLayer also has a competitive accuracy and results can be found in Appendix A.3.1.

Table 1: Comparison of running time (s) between different-scale optimization problems. The aver-
age and standard deviation are obtained over 5 trials. Lower values are better for the running time.

Small Medium Large
Dimension of variable 500 1000 2000

CvxpyLayer 7.68 ± 0.07 59.02 ± 0.16 481.78 ± 2.54
Alt-Diff 1.05 ± 0.14 3.84 ± 0.12 22.51 ± 0.13

DFWLayer 0.18 ± 0.01 0.21 ± 0.01 0.31 ± 0.02

4 CONCLUSIONS

In this paper, we have proposed DFWLayer for solving convex optimization problems with L-
smooth functions and norm constraints in an efficient way. Naturally derived from the Frank-Wolfe,
DFWLayer accelerates to obtain solutions and gradients based on first-order optimization meth-
ods which avoid projections and Hessian matrix computations. Especially for ℓ1-norm constraints,
DFWLayer modifies non-differentiable operators with probabilistic approximation so that gradients
can be efficiently computed through the unrolling sequence with automatic differentiation. Also,
an annealing temperature is designed to guarantee the quality of both solutions and gradients. In
future work, we plan to address a significant limitation of the DFWLayer: its current restriction to
handling only norm constraints. We aim to explore and adapt the DFWLayer for a broader range of
assumptions, thereby expanding its applicability in more diverse computational scenarios.

1As for others, for instance, trace norm can be considered with its dual norm: operator norm.
2x̂k = xk and ŝk = sk for p > 1 without probability approximation.

2

https://github.com/Panda-Shawn/DFWLayer

Published as a Tiny Paper at ICLR 2024

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems,
32, 2019.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Antoine Bambade, Fabian Schramm, Adrien Taylor, and Justin Carpentier. Qplayer: efficient differ-
entiation of convex quadratic optimization. Optimization, 2023.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends® in Machine learning, 3(1):1–122, 2011.

Gábor Braun, Alejandro Carderera, Cyrille W Combettes, Hamed Hassani, Amin Karbasi,
Aryan Mokhtari, and Sebastian Pokutta. Conditional gradient methods. arXiv preprint
arXiv:2211.14103, 2022.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Guillaume Dalle, Léo Baty, Louis Bouvier, and Axel Parmentier. Learning with combinatorial
optimization layers: a probabilistic approach. arXiv preprint arXiv:2207.13513, 2022.

Priya L Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with
hard constraints. In International Conference on Learning Representations, 2020.

Benjamin Ellenberger. Pybullet gymperium. https://github.com/benelot/
pybullet-gym, 2018–2019.

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

Kazumi Kasaura, Shuwa Miura, Tadashi Kozuno, Ryo Yonetani, Kenta Hoshino, and Yohei Hosoe.
Benchmarking actor-critic deep reinforcement learning algorithms for robotics control with action
constraints. IEEE Robotics and Automation Letters, 2023.

Benoit Landry. Differentiable and Bilevel Optimization for Control in Robotics. Stanford University,
2021.

Haixiang Sun, Ye Shi, Jingya Wang, Hoang Duong Tuan, H Vincent Poor, and Dacheng Tao. Al-
ternating differentiation for optimization layers. In The Eleventh International Conference on
Learning Representations, 2022.

3

 https://github.com/benelot/pybullet-gym
 https://github.com/benelot/pybullet-gym

Published as a Tiny Paper at ICLR 2024

A APPENDIX

A.1 ALGORITHM DETAILS

The DFWLayer for ℓ1-norm constraints is presented in Algorithm 1.

Algorithm 1 Differentiable Frank-Wolfe Layer
Input: Parameters θ from the previous layers.
Parameter: Parameters w and t.
Output: The optimal solutions to the problem: minx f(x; θ) s.t. ∥w ◦ x∥1 ≤ t.

1: Forward:
2: Let x0 ∈ C and x̂0 = x0
3: for k = 0, ...,K do
4: Compute ŝk using Equation (3).
5: Obtain γk = min{ ⟨∇xf(x̂k),x̂k−ŝk⟩

L∥x̂k−ŝk∥2 , 1}.
6: Update x̂k+1 by x̂k+1 = (1− γk)x̂k + γkŝk.
7: end for

8: Backward:
9: Obtain ∂x̂∗

∂θ with automatic differentiation.

A.2 THEORETICAL RESULTS

In this section, we provides convergence analysis for DFWLayer dealing with ℓ1-norm constraints.
The exploration begins on a modest assumption, keeping the analysis approachable and generaliz-
able.

Inspired by (Dalle et al., 2022) turning combinatorial optimization layers into probabilistic layers,
searching vertex of the feasible region can be regarded as the expectation from S = {s1, ..., s2n},
which denotes the vertices of C, over a probabilistic distribution p(· | ∇xf(xk)),

sk = Es∼p(·|∇xf(xk))[S] =
∑
s∈∫

s · p(s | ∇xf(xk)). (2)

Intuitively, the probabilistic distribution can be chosen as the Dirac mass p(· | ∇xf(xk)) = δs∗(s)
with s∗ = argmins∈S⟨∇xf(xk), s⟩, though sharing the lacks of differentiability with argmax.
Thus, we aim to find a differentiable p̂(· | ∇xf(xk)) so that the Jacobian matrix of sk is
tractable, and the Boltzmann distribution is an appropriate candidate, leading to p̂(ei | ∇xf(xk)) ∝
e∇xf(xk)

T ei = e∇x,if(xk). Thus, we can derive Equation (2) as

ŝk = Es∼p̂k(τ)[s]

= − t

w
◦ sign(gtw(x̂k)) ◦

∑
i

ei ·
eri(x̂k)/τ∑
i e
ri(x̂k)/τ

= − t

w
◦ sign(gtw(x̂k)) ◦ softmax(r(x̂k)/τ), (3)

Assumption A.1. The Maximum Mean Discrepancy (MMD) between the approximating distribu-
tion p̂ and the target distribution p is upper bounded by

MMD(Ψ, p̂k(τ), pk)

= sup
ψ∈Ψ

Ep̂k(τ)[ψ(s)]− Epk [ψ(s)] ≤ δ(τ), for all k, (4)

where δ(τ) is a positive constant related to temperature τ .

4

Published as a Tiny Paper at ICLR 2024

Considering the temperature τ of the softmax function, Assumption A.1 is reasonably modest be-
cause the softmax function can always approach the hardmax function with a small temperature
and thus δ(τ) → 0 when τ → 0.

Implication A.2. Under Assumption A.1, for all pk, there exists a temperature τk for p̂k(τk) such
that δ(τk) ≤ O(1k).

The relationship between the hardmax and the softmax function makes Implication A.2 directly
follow Assumption A.1. With the implication, we can further understand Theorem 2.1.

The theorem has shown that the suboptimality is bounded by the approximation gap and the origin
gap. According to Implication A.2, if δ(τk) ≤ O(1k) through a certain τk, we can say DFWLayer
converges at a sublinear rate. In section 2, we discuss an annealing temperature τk = 2−k//T which
decreases per T steps, and validate its improvement compared to constant temperatures.

As for the proof of Theorem 2.1, we can first split it into two terms,

h(x̂k) = f(x̂k)− f(x∗)

= f(x̂k)− f(xk)︸ ︷︷ ︸
approximation gap

+ f(xk)− f(x∗)︸ ︷︷ ︸
origin gap

. (5)

The original gap of the Frank-Wolfe with the short path rule and its proof are provided by Braun
et al. (2022), we restate it as the following lemma.

Lemma A.3. Let f : Rn → R be a L-smooth convex function on a convex region C with diameter
M . The Frank-Wolfe with short path rule converges as follows:

h(xk) = f(xk)− f(x∗) ≤ 2LM2

k + 3
≤ 2LM2

k + 2
. (6)

Then, we need to present a useful remark, which is used for the proof of Lemma A.3 in (Braun et al.,
2022) and the following proof of Theorem 2.1.
Remark A.4. In essence, the proof of Theorem 2.1 uses the modified agnostic step size γk = 2

k+3 ,
instead of the standard agnostic step size γk = 2

k+2 , because the convergence rate for the short path
rule dominates the modified agnostic step size.

With Lemma A.3 and Remark A.4, we now start to prove Theorem 2.1.

Proof of Theorem 2.1. The original solutions xk can be recursively expressed as the combination of
initial x0 and vertex sk at each iteration,

xk = (1− γ)xk−1 + γsk−1

= (1− γ)((1− γ)xk−2 + γsk−2) + γsk−1

= (1− γ)kx0 + γ

k−1∑
o

(1− γ)k−1−isi. (7)

Similar with the original solutions, the solutions obtained by DFWLayer can also be derived as
follows:

x̂k = (1− γ)kx0 + γ

k−1∑
o

(1− γ)k−1−iŝi. (8)

And thus we subtract Equation (7) from Equation (8) and obtain

x̂k − xk = γ

k−1∑
o

(1− γ)k−1−i(ŝi − si). (9)

5

Published as a Tiny Paper at ICLR 2024

Considering the smoothness of f and Equation (9), the approximation can be derived as

f(x̂k)− f(xk) ≤ ⟨∇xf(xk), x̂k − xk⟩+
L

2
∥x̂k − xk∥2

= γ

k−1∑
0

(1− γ)k−1−i∇xf(xk)
T (ŝi − si) +

L

2
∥γ

k−1∑
0

(1− γ)k−1−i(ŝi − si)∥2

≤ γ

k−1∑
0

(1− γ)k−1−i(Es∼p̂i [∇xf(xk)
T s]− Es∼pi [∇xf(xk)

T s])

+
L

2
γ2

k−1∑
0

(1− γ)2(k−1−i)∥ŝk − sk∥2

≤ γ

k−1∑
0

(1− γ)k−1−iδ +
L

2
γ2

k−1∑
0

(1− γ)2(k−1−i)M2

= (1− (1− γ)k)δ +
LM2

2

γ

2− γ
(1− (1− γ)2k)

≤ δ +
LM2

2k + 4
. (10)

Here, we use the triangle inequality in the first inequality. Then, we bound the difference of expec-
tations by δ under Assumption A.1 and the distance between vertices by region diameter M in the
second inequality. The last equality is obtained by choosing γk = 2

k+3 via heuristic in Remark A.4.

Therefore, substituting the approximation gap from Lemma A.3 and the origin gap in Equation (5)
yields Equation (1) as claimed.

A.3 EXPERIMENTAL DETAILS

All the experiments were implemented on an Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz
with 40 GB of memory and a Tesla T4 GPU.

A.3.1 DIFFERENT-SCALE OPTIMIZATION PROBLEMS

This section details the experiments in implementing our method to tackle quadratic programs of
varying scales. We clarify the setup and discuss how our method performs in terms of both efficiency
and accuracy, as well as the softmax temperature.

Efficiency. With objective f(x; q) = 1
2x

TPx + qTx which chooses q as the parameter requiring
gradients and constraints ∥w ◦ x∥ ≤ t, all the parameters P, q, w, t are generated randomly with
symmetric matrix P ⪰ 0 and t ≥ 0. The tolerance ϵ = |f(xk+1)−f(xk)|

|f(xk)| is used to terminate
DFWLayer instead of a maximum iteration number. For all the methods, the tolerance is set as
ϵ = 1e − 4. We executed all the experiments 5 times and reported the average running time with
standard deviation in Table 1. It is shown that DFWLayer performs much more efficiently than other
two baselines and the speed gap becomes larger as the problem scale increases.

Table 2: Comparison of accuracy w.r.t. solutions and gradients for medium-scale problems. The
average and standard deviation are obtained over 5 trials. Higher values are better for the gradients
similarity, while lower values are better for others. Constraints violation is shown in red. Gradients
similarity and solutions distance are computed with those obtained by CvxpyLayer as the reference.

Gradients Sim. Solutions Dist. Mean Violation Max Violation
CvxpyLayer 1.000 ± 0.000 0.000 ± 0.000 0.000 0.000

Alt-Diff 0.980 ± 0.040 0.001 ± 0.002 0.058 1.000
DFWLayer 0.980 ± 0.021 0.002 ± 0.001 0.000 0.000

6

Published as a Tiny Paper at ICLR 2024

Table 3: Comparison of accuracy w.r.t. solutions and gradients for small-scale problems. The
average and standard deviation are obtained over 5 trials. Higher values are better for the gradients
similarity, while lower values are better for others. Constraints violation is shown in red. Gradients
similarity and solutions distance are computed with those obtained by CvxpyLayer as the reference.

Gradients Sim. Solutions Dist. Mean Violation Max Violation
CvxpyLayer 1.000 ± 0.000 0.000 ± 0.000 0.000 0.000

Alt-Diff 0.975 ± 0.049 0.002 ± 0.003 0.063 1.000
DFWLayer 0.977 ± 0.025 0.002 ± 0.001 0.000 0.000

Table 4: Comparison of accuracy w.r.t. solutions and gradients for large-scale problems. The av-
erage and standard deviation are obtained over 5 trials. Higher values are better for the gradients
similarity, while lower values are better for others. Constraints violation is shown in red. Gradients
similarity and solutions distance are computed with those obtained by CvxpyLayer as the reference.

Gradients Sim. Solutions Dist. Mean Violation Max Violation
CvxpyLayer 1.000 ± 0.000 0.000 ± 0.000 0.000 0.000

Alt-Diff 0.978 ± 0.044 0.001 ± 0.001 0.061 1.000
DFWLayer 0.978 ± 0.023 0.001 ± 0.001 0.000 0.000

Accuracy. As for accuracy, we report the cosine similarity of gradients and the Euclidean distance
of solutions with CvxpyLayer as the reference for its stable performance. Also, constraints violation
is a significant index for constrained optimization expecially when these constraints stand for safety.
Thus, we show the results for medium problem scale in Table 2. It should be noted that we state the
maximum violation instead of standard deviation for its widely use in practice. It can be seen from
Table 2 that the solutions provided by Alt-Diff violate the constraints, although it has the higher
accuracy of solutions than DFWLayer. The constraints violation of Alt-Diff results from insufficient
iterations and a lack of projection to ensure the feasibility for its solutions, while our method enforces
the feasibility without projection and thus solves the optimization problems in much less time with
an acceptable accuracy margin.

Softmax Temperature. The softmax temperature is a crucial hyperparameter for DFWLayer,
because it can assist to approximate the target distribution, which is required by Assumption A.1.
The annealing schedule τk = 2−k//30 is used for the proposed method, so that the distance between
the target and the approximating distributions can get closer during the iteration. In order to give
a clear explanation of this choice, we plot the curve of cosine similarity and Euclidean distance
compared with different constant temperatures.

0 10 20 30 40 50 60 70
iterations k

0.000

0.005

0.010

0.015

0.020

||x
k

x
|| 2

-1.0
-0.5
-0.25
-0.125
-as

(a) Solutions distance.

0 10 20 30 40 50 60 70
iterations k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

co
s

x k
,

x

(b) Gradients similarity.

Figure 1: Gradients and solutions distance between CvxpyLayer and DFWLayer with different tem-
peratures for medium-scale problems. All the curves terminate for tolerance ϵ = 1e−4. The shaded
area for all the curves stands for standard deviation over 5 trials and x∗ stands for solutions obtained
by CvxpyLayer.

It can be seen from Figure 1a that with the decrease of temperature the accuracy of solutions obtained
by DFWLayer becomes higher, as shown in Theorem 2.1. However, the automatic differentiation

7

Published as a Tiny Paper at ICLR 2024

0 1000 2000 3000 4000 5000
training steps

0.07

0.08

0.09

0.10

0.11

0.12

0.13

M
SE

 lo
ss

CvxpyLayer
Alt-Diff
DFWLayer

(a) MSE loss.

0 1000 2000 3000 4000 5000
training steps

-5e-03
0e+00
5e-03
1e-02
2e-02
2e-02
3e-02
3e-02
3e-02

m
ea

n
co

st

(b) Mean violation.

0 1000 2000 3000 4000 5000
training steps

0.00

0.01

0.02

0.03

0.04

vi
ol

at
io

n
ra

te

(c) Violation rate.

0 1000 2000 3000 4000 5000
training steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
SE

 lo
ss

CvxpyLayer
Alt-Diff
DFWLayer

(d) MSE loss.

0 1000 2000 3000 4000 5000
training steps

0e+00

5e-05

1e-04

2e-04

2e-04

3e-04

m
ea

n
co

st

(e) Mean violation.

0 1000 2000 3000 4000 5000
training steps

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175

vi
ol

at
io

n
ra

te

(f) Violation rate.

Figure 2: MSE loss, mean violation and violation rate for robotics tasks. The first row is for R+O03
and the second row is for HC+O. Mean violation is computed over violated samples and violation
rate is the ratio of violated samples to all samples in the testing set. The shaded area for all the
curves stands for standard deviation over 5 trials. Lower values are better for all the metrics.

involving a small temperature can be unstable after a large number of iterations. As presented
in Figure 1b, DFWLayer fails to compute accurate gradients when the temperature decreases to
τ = 0.25 and τ = 0.125. Therefore, we choose to use an annealing temperature so that our method
can obtain high-quality solutions and gradients at the same time, which is validated by the curve
”τ -as” (the purple lines) in Figure 1.

A.3.2 ROBOTICS TASKS UNDER IMITATION LEARNING

As for the field of robotics, in this subsection, we discuss the application of our method to specific
tasks under an imitation learning framework. HC+O and R+O03 are constrained HalfCheetah and
Reacher environments chosen from action-constrained-RL-benchmark 3 in Kasaura et al. (2023).
The original enviroments are from OpenAI Gym (Brockman et al., 2016) and PyBullet-Gym (Ellen-
berger, 2018–2019) and the constraints are presented as follows:

d∑
i

|wiai| ≤ pmax, (11)

where wi and ai are the angular velocity and the torques corresponding to d joints, respectively, and
pmax stands for the power constraint. Specifically, d = 6 and pmax = 20.0 are for HC+O, while
d = 2 and pmax = 0.3 are for R+O03.

Under an imitation learning framework, optimization layers are added to the neural networks as the
last layer, which aims to imitate expert policy and satisfy the power constraints Equation (11). We
first collected 1 million and 0.3 million expert demonstrations by running DPro, a variant of TD3 in
Kasaura et al. (2023), for HC+O and R+O03 respectively. Then, imitation learning was implemented
using 80% data as the training set with the MSE loss function. During the training phase, we tested
the loss, mean violation and violation rate every 200 steps using the rest 20% data as the testing set.

The architecture for previous layers is [400, 300] and the activation function is ReLU function. The
parameters are updated by Adams optimizer with 1e− 4 as the learning rate. As for batch size, we
have some experiments from {8, 16, 32, 64, 128}, and choose to use 64 considering the performance
and efficiency comprehensively.

3The benchmark can be accessed through http://github.com/omron-sinicx/
actionconstrained-RL-benchmark

8

http://github.com/omron-sinicx/actionconstrained-RL-benchmark
http://github.com/omron-sinicx/actionconstrained-RL-benchmark

Published as a Tiny Paper at ICLR 2024

As is shown in Figure 2, DFWLayer has significantly lower mean violation and violation rate than
the other two baselines with comparable MSE loss. For R+O03 whose maximum power pmax = 0.3,
the magnitude of the mean violation (about 3e-2) for Alt-Diff would have negative influence on
the robotics tasks. However, DFWLayer and CvxpyLayer (with minor violation) are able to give
feasible solutions to accomplish the tasks with accuracy and safety. For HC+O whose maximum
power pmax = 20.0, CvxpyLayer achieves the best MSE loss with minor violation and a relatively
high violation rate, while Alt-Diff satisfies the constraints all the time with the worst MSE loss. By
contrast, DFWLayer outperforms the two methods comprehesively.

9

	Introduction & Related Work
	Methodology
	Experimental Results
	Conclusions
	Appendix
	Algorithm Details
	Theoretical Results
	Experimental Details
	Different-Scale Optimization Problems
	Robotics Tasks Under Imitation Learning

