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Figure 1: Overview of AgentWorld. AgentWorld simulation platform features several core abili-
ties for embodied AI: (1) Procedural scene construction supporting various layout generation. (2)
Abundant semantic 3D assets repository with realistic visual material and physical properties. (3)
Mobile-based Teleoperation system for robotic manipulation.

Abstract: We introduce AgentWorld, an interactive simulation platform for de-
veloping household mobile manipulation capabilities. Our platform combines au-
tomated scene construction that encompasses layout generation, semantic asset
placement, visual material configuration, and physics simulation, with a dual-
mode teleoperation system supporting both wheeled bases and humanoid loco-
motion policies for data collection. The resulting AgentWorld Dataset captures
diverse tasks ranging from primitive actions (pick-and-place, push-pull, etc.) to
multistage activities (serve drinks, heat up food, etc.) across living rooms, bed-
rooms, and kitchens. Through extensive benchmarking of imitation learning meth-
ods including behavior cloning, action chunking transformers, diffusion policies,
and vision-language-action models, we demonstrate the dataset’s effectiveness for
sim-to-real transfer. The integrated system provides a comprehensive solution for
scalable robotic skill acquisition in complex home environments, bridging the gap
between simulation-based training and real-world deployment. The code, datasets
will be available at https://yizhengzhang1.github.io/agent_world/
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1 Introduction

Recent advancements in embodied AI and robotic manipulation have highlighted the need for scal-
able, interactive simulation environments that support both scene construction and data collection
for training autonomous agents. While existing platforms [1, 2, 3, 4] offer partial solutions, such
as scene generation[5, 3, 4] or task-specific manipulation datasets [6, 7, 8], few provide a unified
framework that integrates high-fidelity scene construction with flexible mobile robotic data collec-
tion system. To bridge this gap, we present AgentWorld, an interactive simulation platform de-
signed for procedural scene construction and mobile-based teleoperation, enabling efficient data
collection for imitation learning in complex household environments.

AgentWorld addresses two critical challenges in embodied AI research: (1) stable and diverse
scene generation, ensuring that the simulated environments are visually realistic and physically
plausible, and (2) a comprehensive data collection system in simulation, which allows seamless
control of mobile bases and robotic arms for data collection. AgentWorld is built upon NVIDIA’s
Omniverse Isaac Sim [9] and Unreal Engine [10], allowing it to inherit both strengths including the
physics engine for robot parallel training and realistic rendering effects.

For procedural construction of diverse household scenes, our platform supports four key compo-
nents: (i) Layout Generation, which procedurally generates different room layouts with walls,
stairs and floors; (ii) Semantic Asset Selection and Placement, leveraging a rich 3D asset reposi-
tory and arranging objects in semantically meaningful configurations; (iii) Visual Material Config-
uration, enabling fine-grained semantic object material appearances; and (iv) Interactive Physics
Simulation, ensuring dynamic interactions of robots and assets remain stable and accurate.

Beyond scene construction, AgentWorld introduces a Mobile-based Data Collection system that
combines keyboard-controlled mobile base navigation with arm and hand manipulation. For facil-
itating the collection of diverse robotic interaction data for both wheel-based and legged robots,
we implement a reinforcement learning method for lower-limb control of humanoid robots. A VR-
based teleoperation system is employed for arm control and hand keypoint detection, and we use a
retargeting approach for operating both grippers and dexterous hands.

We validate our platform by constructing the AgentWorld Dataset, in which we generate 150 house-
hold scenes with more than 9000 assets and 4 different embodiments with either gripper or dexterous
hand as end effectors. Utilizing our data collection system, we collect more than 1000 robot ma-
nipulation trajectories with tasks from simple object interactions to long-horizon, multistage chal-
lenges. Using imitation learning algorithms (BC, ACT[11], Diffusion Policy[12], and π0 [13]), we
demonstrate successful policy training and sim-to-real transfer with few-shot real data finetuning,
highlighting the utility of our dataset for real-world robotic applications.

Our primary contributions include:

(1) A procedural scene construction framework supporting diverse layout generation and seman-
tic object placement, features by an extensive 3D asset library with realistic visual and physical
properties, enhancing simulation fidelity.

(2) A mobile teleoperation system for data collection, enabling precise control of both mobile bases
and manipulators with grippers and dexterous hands.

(3) The AgentWorld Dataset, a large-scale benchmark for robotic manipulation, was validated
through imitation learning and sim-to-real experiments.

2 Related Work

Simulation Platform for Embodied AI Recent progress in embodied AI has been driven by sim-
ulation platforms that balance realism, scalability, and task diversity. [14, 15] establish robotic
simulation environments with Unity and extend the Python-Unity communication interface, while
still lacking programmatic scene construction and accurate physics simulation. [2] employs proce-
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dural generation to create large-scale interactive environments, while [16, 17] focus on manipulation
tasks with physically realistic interactions. Similarly, [18] provides a benchmark for robotic learn-
ing with a suite of predefined tasks, and [19] extends scene complexity by simulating human-like
activities. [20] introduces a social interaction layer, enabling NPC-driven task allocation, and [21]
emphasizes household robotics with large-scale object interactions. While these platforms excel in
specific domains, AgentWorld distinguishes itself by integrating procedural scene construction with
mobile teleoperation, offering a more holistic approach to embodied AI research.

Scene Construction Effective scene construction requires both geometric diversity and physical
realism. Prior works [5, 3, 1, 4] have explored procedural generation with primitive methods or
large language models. However, many existing systems rely on static assets with limited material
customization. SceneCAD [22] introduces a data-driven approach for indoor scene synthesis, while
3DTopia-XL [23] leverages generative models for diverse 3D asset creation. In contrast, Agent-
World introduces a dynamic asset repository with PBR materials, ensuring realistic visual and phys-
ical behaviors. Our platform also supports automated layout generation, allowing users to define
semantic rules for object arrangement.

Data Collection for robotic manipulation Data collection methodologies in robotics have
evolved from scripted demonstrations [24] to human teleoperation [25]. While [11] synthesizes
manipulation data via motion retargeting, it lacks mobile base integration. AgentWorld advances
this domain by combining keyboard-controlled mobility with arm and hand teleoperation, enabling
the collection of long-horizon, multistage tasks. Our approach aligns with recent trends in imitation
learning [12, 26] while addressing the sim-to-real gap through physics-aware simulation.

3 AgentWorld Simulation Platform

Name
Asset Robotic Platforms Data Collection

Num of Material Physics Fixed-B Mobile-B Legged Tele- Dexterous Num of
Assets Selection Config Operation Hand Trajectories

Maniskill2[17] 2144 ! ! ! ! % % % 30k
ProcTHOR[2] 3578 ! % % ! % % % –
RLBench[18] 28 % ! ! % % % % –

BiGym[7] <200 % ! ! ! ! J + FB % >2000
Behavior-1K[19] 5215 ! ! % ! % % % –

MimicGen[6] 40 % ! ! ! ! % % 50k
RoboCasa[21] 2509 % ! ! ! ! J + FB % 100k

InfiniteWorld[5] >10000 % ! ! ! ! % % –
GRUtopia[20] ≈25000 % ! ! ! ! FB % –

AgentWorld >9000 ! ! ! ! ! J + FB + L ! >1000

Table 1: Comparison of robotic simulation platforms in terms of asset properties, robotic platform
support, and data collection capabilities. Fixed-B and Mobile-B stands for fixed and mobile base
robots. The teleoperation colomn demonstrates support for joint action control (J), floating base
control (FB), and locomotion control (L) for humanoid robots. AgentWorld represents our proposed
platform integrating all key capabilities.

We introduce the AgentWorld simulation platform, which mainly consists of two parts: Procedural
Scene Generation, and Data Collection with Teleoperation. Our simulation system can pro-
grammatically construct various types of household scene with abundant 3D assets, and provides a
VR-based data collection system for recording human-demonstrate manipulation data. We compare
the AgentWorld simulation platform with popular platforms in Tab. 1.

3.1 Procedural Scene Generation

To construct large-scale, realistic simulation environments for household scenarios and tasks, we
employ a programmatic approach with an interactive interface for scene generation. As illustrated
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Figure 2: Pipeline of the scene construction module in AgentWorld.

in Fig. 2, our pipeline mainly comprises four key stages: Layout Generation, Semantic Asset
Selections and Placement, Visual Material Configuration, and Interactive Physics Simulation.
The first three stages are implemented in Unreal Engine [10], leveraging its superior rendering capa-
bilities and intuitive blueprint system for efficient scene design. For the Interactive Physics Simula-
tion stage, we utilize NVIDIA’s Omniverse Isaac Sim [9], which provides enhanced physics engine
performance crucial for sim-to-real transfer and enables efficient parallel training of robotic agents.

3.1.1 Layout Generation

The first stage of our pipeline generates complete room layouts based on user-specified room types.
Our system currently supports three fundamental room categories: Living room, Kitchen, and Bed-
room. The procedural generation module automatically constructs architectural elements including
walls, ceilings, and floors, with support for both single-room configurations and multi-room combi-
nations. Additionally, as demonstrated in Fig. 2, our framework can generate multi-floor environ-
ments interconnected by staircases.

Following the architectural layout, the system populates the scene with category-appropriate func-
tional assets such as furniture and decorative elements. The asset selection mechanism and its un-
derlying methodology are detailed in the following section.

3.1.2 Semantic Asset Selections and Placement

To enable diverse scene construction, our simulation platform integrates a comprehensive collection
of open-source 3D assets sourced from repositories including ProcTHOR [2] and Behavior-1K [19].
Each asset has been manually annotated with semantic metadata describing its functional properties.
We classify these assets into two primary categories: Basic Assets and Interactable Assets.

Basic Assets constitute the fundamental elements of room layouts and are automatically generated
during the initial scene construction phase with contextually appropriate placements. This category
encompasses room-specific furnishings, such as sofas and TV sets in the living room, beds and
chairs in the bedroom, and tables in the kitchen, etc.

Interactable Assets represent objects that serve functional purposes and can be manipulated by
robotic agents. Our scene generation module supports dynamic addition and adjustment of these
assets during the second construction phase. We further distinguish several object types: articulated
assets like microwaves, refrigerators and closets that have doors, and rigid objects such as household
tools (knives, broomsticks, etc.) and common items like fruits, bottles and toys, etc. Leveraging this
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extensive interactable asset repository enables the simulation of numerous household manipulation
tasks, which we detail in Section 4.1.

Our system incorporates intelligent placement algorithms that position assets according to their se-
mantic functions (e.g., placing food items on dining surfaces, pillows on bedding). The interactive
interface provides fine-grained control over asset positioning and orientation adjustments.

3.1.3 Visual Material Configuration

To better facilitate the sim-to-real paradigm, our platform incorporates a diverse selection of vi-
sual materials to enhance scene generalization through effective data augmentation. We implement
an extensive library of high-fidelity Physically Based Rendering (PBR) materials covering various
categories of common household surfaces. As shown in Fig. 2, our system supports material cus-
tomization at multiple levels: for architectural components like walls and floors, we provide realistic
material options such as marble and brick textures; for 3D assets, we enable property-appropriate
material adjustments including wood grains, ceramic finishes, fabric textures, and metallic coatings.
This comprehensive material system allows for precise visual customization while maintaining phys-
ical accuracy in rendering, significantly expanding the variety of achievable visual appearances for
robust robotic training.

3.1.4 Interactive Physics Simulation

The Interactive Physics Simulation module implements AgentWorld’s robotic interaction layer using
NVIDIA Isaac Sim with its GPU-accelerated PhysX 5.0 engine. Our system automatically config-
ures physical properties for all 3D assets based on semantic annotations, generating optimized col-
lision primitives (convex hulls, convex decomposition or SDF meshes, etc.) and assigning material
properties including friction coefficients, restitution values, and mass distributions.

For articulated mechanisms such as doors and drawers, the system precisely configure joint param-
eters including: joint types (revolute for cabinets/doors, prismatic for drawers), movement ranges,
material-specific friction coefficients (wood: 0.4 ± 0.1, metal: 0.2 ± 0.05), and actuation models.
The simulation environment incorporates Isaac Sim’s advanced lighting system, providing photo-
metrically accurate illumination (50 - 20, 000 lux) with programmable color temperature (2700K -
6500K) and light exposure (−5.0 - 5.0) through various light sources.

3.2 Mobile-based Teleoperation for data collection

Dex        Retargeting

Hand 
Keypoint

Mobile-base Control Arm & Hand Control
Normed distanceRelative

Pose

Close

A S D

Q W E

Q E

A

WD

S Closed Loop
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Figure 3: Data collection system of AgentWorld. For the mobile-base control, we allow the users
to use the keyboard to to control robots, both wheel-based and legged. For arm & hand control, we
use the VR head set to get the hand pose and compute IK for obtaining the arm action, and utilize
re-targeting methods to drive robotic hands.
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Teleoperation serves as an effective method for collecting robotic manipulation data, though it
presents particular challenges for long-horizon tasks in expansive household environments. These
challenges primarily stem from the need for coordinated mobile navigation between multiple loca-
tions. Our teleoperation system addresses these difficulties through the integrated pipeline shown in
Fig. 3, which comprises two key components: Mobile-base Control and Arm & Hand Control.

Mobile-base Control. In order to realize mobile manipulation tasks data collection, we aim to
make the mobile-based robot move around in the room. Basically, for every time step t, we tend to
control the robot with an action at = (vx, vy, vθ) ∈ A with A = R3 a 3 DOFs action space , where
vx and vy is the robot velocity of the movement on the plane, and vθ is the velocity of the yaw angle
of the robot floating base.

For wheeled or direct controllable floating base robots, movement control is straightforward. For
legged humanoids, we employ IsaacLab’s reward-driven locomotion policy [27], adapted for dual-
arm stability. The model enables robot movement control via keyboard as demonstrated in Fig. 3.
We can switch the robot between locomotion and manipulation by fixing or freeing its base link.
The training details will be discussed in the supplementary material.

Arm & Hand Control. We implement the OpenTeleVision system [28] in IsaacLab to control
robotic arms with grippers or dexterous hands. The VR headset captures hand keypoints in its
coordinate frame. With the headset camera fixed on the head of a humanoid robot (or a certain
reasonable location for other embodiments), we calibrate the relative pose between hand wrists and
headset in real world to match the camera-end effector relationship in simulation. Arm joint poses
are computed using a Closed-loop Inverse Kinematics (CLIK) algorithm based on Pinocchio [29].

For different types of end effectors, as shown in Fig. 3, the gripper action is controlled by nor-
malizing the thumb-to-index fingertip distance, and we employ dex-retargeting [30] to convert hand
keypoints to joint actions of the dexterous hands.

4 AgentWorld Dataset

Based on our AgentWorld simulation platform, we construct a comprehensive dataset containing di-
verse household activities performed by different embodiments. This section details our task settings
across different scene layouts and the collected dataset specifications.

4.1 Scene & Task Description

We focus on daily household activities involving both bimanual and single-arm manipulation tasks.
Our environment features three primary room layouts: Living room, Bedroom, and Kitchen. For
each room type, we generate 10 distinct base layouts using our scene generation module. After
establishing the basic structure, we randomly populate each room with inter-actable 3D assets with
reasonable placements, ultimately creating 150 unique room configurations. To cover most of the
household activities, we separate our task settings in two kinds: Basic Tasks and Multistage Tasks.

Basic Tasks. We collect sequences of data on basic manipulation tasks in order to enable robots to
learn some basic human operations, including but not limited to:

• Pick & Place: Simple pick & place tasks are basic ability for robots to master. In our dataset,
we control the gripper jaw or dexterous hand of the robot to pick cups, fruits, plates and toys,
etc, and place the objects in boxes, sinks, trash bins or racks.

• Open & Close: We teleoperate the robot to conduct articulated manipulation tasks, including
opening doors of refrigerators, cabinets, and the ovens, followed by closing actions to bring
articulation knowledge to manipulation models.

• Push & Pull: The dataset includes manipulation tasks where the robot interacts with drawers
(pulling them open or pushing them shut), slides objects (such as boxes or books) across tables,
and operates buttons or switches, to teach precise position controls to the robot.
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Multistage Tasks. After introducing basic tasks of the robots, we believe it is crucial for the robots
to learn how to perform household activities that are more meaningful. Therefore, we design and
record multistage tasks in three typical home environments:

• Living Room: Tasks include Organizing books (put the books on shelves), serving drinks (pick
up the pitcher and the cup and pour the drink), and cleaning tables (put trash in trash cans).

• Bedroom: We simulate activities like making a bed (Put the objects on the bed away, placing
pillows), organizing a wardrobe (open/close closets, hang the clothes rack), and setting an
alarm clock (pressing buttons or sliding switches).

• Kitchen: Complex interactions such as Store the food (pick up food on the table and store it
into the fridge), heat up the food (pick up food and put it into the microwave, and then press
the button), and Clean the dishes (use a sponge to clean the dishes and place them into a rack).

These tasks require sequential decision-making and combine primitive skills (pick & place, Open &
Close and push & pull) to achieve higher-level goals, mimicking real-world household demands.

4.2 Dataset Details

We employ four different embodiments: Unitree G1 [31], H1 [32], Franka Emika panda with a wheel
base, and a DOBOT X-Trainer [33] with a fixed platform. The end effectors of the two humanoid
robots are set to be either the 2F-85 Gripper [34] or the TRX-Hand5 [35]. For the basic tasks, we
have provided 10 different assets of every task category, and recorded 10 sequences of each robot
manipulating a certain asset with different poses, with the length of the sequences from 80 to 150
steps. As for the multistage tasks, we recorded 30 to 50 sequences for every task, with the length
from 300 to 800 steps. The control frequency is fixed to 30 fps. In our settings, a Wrist Camera
is attached on each end effector on the robot arms, and a Head Camera is set immobile on the
humanoid robots. For the X-Trainer, two Wrist Cameras and a fixed Third-person Camera are
set to align with the real-world setting. For each frame, we record the current robot joint poses,
the action to take, and RGB-D output of the cameras. More dataset details will be discussed in the
supplementary material.

5 Experiments

5.1 Imitation Learning for AgentWorld Dataset

To comprehensively evaluate our AgentWorld dataset, we benchmark multiple imitation learning
paradigms: (1) conventional Behavior Cloning (BC) as our baseline; (2) Action Chunking Trans-
formers (ACT) [11] for sequence-aware action prediction; (3) Diffusion Policies (DP) [12] for
stochastic action modeling; and (4) π0 [13] that integrates language instructions with visual inputs.
All models process synchronized multi-view RGB images, with π0 additionally using language task
descriptions. The unified output space comprises: (1) dual-arm joint and end effector actions, (2)
3-DOF velocity commands for mobile base navigation, and (3) a binary locomotion-manipulation
mode selector that determines whether to prioritize mobile navigation or stationary manipulation.
The velocity commands will be forwarded to the mobile-base controller in our data collection sys-
tem, either a wheel-base driver or a pretrained legged locomotion policy.

For Basic Tasks, we train per-category models and evaluate with unseen assets/surroundings. For
Multistage Tasks, we train on single tasks and evaluate with varied asset poses and materials. We
evaluate 50 episodes of each task with every model, and use success rate to assess the models’ per-
formances. The average success rates of every task category are demonstrated in Tab. 2. For basic
manipulation tasks, ACT [11] achieves the most consistent performance (62-76% success rate) due
to its action chunking mechanism effectively handling short-horizon action sequences. In multistage
tasks, π0 [13] shows superior results (20-30% v.s. others’ 4-16%), benefiting from its pretrained rep-
resentation that captures long-horizon task structures. However, all methods struggle with complex
mobile manipulation, where both precise control and long-term planning are simultaneously re-
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Algo.
Task Basic Tasks Multistage Tasks

Pick & Place Open & Close Push & Pull Living Room Kitchen Bedroom

BC 52% 62% 58% 10% 4% 6%
ACT[11] 66% 84% 72% 16% 12% 14%
DP[12] 64% 78% 76% 28% 20% 24%
π0[13] 64% 82% 70% 30% 20% 18%

Table 2: Quantitative results for different imitation learning algorithms in AgentWorld Dataset.

quired. Several demonstrations for the inference results of imitation learning algorithms are shown
in Fig. 4. The training details will be elaborated in our supplementary material.

Pick up the food Turn around and walk to the microwave Open the microwave and put the food in

Pick up the trash from the table Walk towards the trash bin Throw the trash

Pick up the dish and the sponge Clean the dish Put down the dish and the sponge

Pick up the pitcher and the cup Pour the water Put down the pitcher and the cup

Task Progress

Serve
Drinks

Clean 
Dishes

Organize
Table

Heat up
Food

Sim-to-Real Transfer

Pick up the banana and 
put it into the bowl

Simulation Real

Image Crop

Figure 4: Qualitative results for different imitation learning algorithms in AgentWorld Dataset, and
a Sim-to-real transfer example to validate the availability and generalizability of our data.

5.2 Real-world Experiment

To validate the sim-to-real transfer capability of our platform, we conducted real-world basic task
experiments involving placing various objects into a bowl. We trained the π0 policy using a sim-real-
combined paradigm: initial training on simulation data (10 assets with 10 trajectories each) followed
by fine-tuning with limited real-world demonstrations (3 objects - banana, apple, mug - with 3
trajectories each with varied object positions). This combined approach achieved a 29.3% success
rate, and as illustrated in Fig. 4, the policy successfully handles basic manipulation tasks despite
the reality gap. These results suggest that AgentWorld’s realistic material rendering and physical
simulation properties provide an effective foundation for sim-to-real transfer, while highlighting the
importance of targeted real-world fine-tuning for practical deployment.

6 Conclusion

We present AgentWorld, a versatile simulation platform that bridges the gap between procedural
scene construction and mobile robotic data collection for embodied AI research, which addresses
key challenges in robotic learning, demonstrated through successful imitation learning experiments
and sim-to-real validation. Our experiments with the AgentWorld Dataset show that the platform’s
flexible scene configuration and comprehensive teleoperation system enable effective training of
manipulation policies. Future work will expand the platform’s capabilities to include more complex
physical interactions and multi-agent scenarios, further enhancing its utility for robotics research.
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7 Limitations

Despite the comprehensive capabilities of AgentWorld, we identify two key technical limitations in
the current implementation:

• Limited Deformable Object Support: Due to constraints in the underlying Isaac Sim physics
engine, our platform currently has limited support for simulating deformable objects (e.g.,
cloth, ropes, or soft bodies). This restricts the range of manipulation tasks that can be ac-
curately modeled and transferred to real-world scenarios involving such objects.

• Pure Sim-to-Real Realization: The significant domain gap between simulation and reality re-
quires extensive manual tuning of rendering parameters to achieve visual alignment. While we
have demonstrated successful sim-to-real transfer for simple tasks through simulation pretrain-
ing followed by few-shot real-world fine-tuning, it’s still difficult for real-world deployment
with policies trained on pure simulation data. Previous work[36] has shown an improvement in
real-world performance when combined synthetic data with real data, and Isaac Sim’s validated
physics and rendering assure the effectiveness of our platform. Besides, multistage manipula-
tion tasks still demand substantially more real-world demonstrations to bridge the reality gap
effectively. Future works include verifying the effectiveness of the introduction of the simu-
lation data, realizing sim-to-real transfer for long-horizon tasks based on pure synthetic data,
etc.

These limitations point to important future research directions, including integration of more ad-
vanced physics engines and development of robust domain adaptation techniques for challenging
manipulation scenarios.
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A Supplementary Video

The supplementary video presented in our website provides dynamic visualizations of AgentWorld’s
core capabilities, organized as follows:

• Scene Construction Demonstration (0:00-0:45):

– 0:00-0:13: Layout generation showcasing different room organization with stairs.
– 0:13-0:20: Semantic asset selection and placement demonstration.
– 0:20-0:29: Visual material configuration with walls, floors and assets with various mate-

rials.
– 0:29-0:45: Interactive physics simulation demonstrating inter-actable assets with physics

properties like collisions and joints, etc.

• Teleoperation System (0:45-2:04):

– 0:45-1:05: An example of VR-based arm and gripper teleoperation.
– 1:05-2:04: An example of dexterous hand control with manipulation of objects and artic-

ulated assets.

• Learning Results (2:04-2:56):

– 2:04-2:42: Imitation learning performance in simulation for multistage tasks.
– 2:42-2:56: A Sim-to-real transfer demonstration of simple pick & place task.

The video complements our paper by providing real-time demonstrations of AgentWorld’s interac-
tive features and experimental outcomes. Each segment highlights key functionalities of our simu-
lation platform.

B Details on Procedural Scene Generation

Our procedural scene generation framework is fully automatic for scenes constructed from existing
assets, requiring no manual intervention for object placement or physics configuration. For new
assets, only minimal one-time human input is needed during initialization: assigning categorical
labels, room types, and optional co-occurrence constraints (following ProcTHOR[2] design princi-
ples). Subsequent bounding box calculations and physics property assignments (e.g., mass, friction)
are handled automatically. With this approach, unlimited scenes can be generated without additional
human effort once assets are annotated.

The system extends ProcTHOR’s rule-based algorithms by integrating Unreal Engine’s Procedu-
ral Content Generation (PCG) framework, enabling real-time scene generation (2–3 seconds per
scene) with visual feedback. Key technical improvements include:

• Geometric realism: Wall thickness simulation and optimized room layouts using metrics like as-
pect ratio, floor-to-bounding-box area ratio, and L-shape expansion to produce natural, rectangular
spaces.

• Layout pragmatism: Enhanced inter-room connectivity checks to avoid impractical designs (e.g.,
isolated rooms) and support for multi-floor structures.

• Physics automation: Rule-based material properties (e.g., “wood” → predefined mass/friction)
triggered by semantic asset tags.

While scene generation and physics are fully automatic after asset setup, the initial semantic tag-
ging of new assets (e.g., labeling a chair as “furniture”) remains the sole manual step. These en-
hancements collectively advance environmental realism beyond ProcTHOR’s original implementa-
tion while maintaining computational efficiency.
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C Training Details

C.1 Locomotion Policy for Humanoid Robots

As shown in Table C.1, we define a series of rewards to encourage humanoid robots to achieve
walking with different terrain adaptation such as flat planes and stairs of varying steepness, etc.
Meanwhile, we define relevant termination conditions to end a certain current episode, as shown in
Table C.1. In addition, we use the foot trajectory generator[37] to generate a reference trajectory
for robot feet. The output of the locomotion policy network will be added as an increment to this
reference trajectory. In this way, we can narrow the exploration range of the action and accelerate the
training process. During the training process, we randomly set different joystick control commands
within a certain period, enabling the robot to encounter as many different control commands as
possible. The goal of the training is to make the robot follow these commands to train the robot’s
locomotion policy.

Reward Description

track angle vel z exp Encourages the robot to follow the rotation commands in the yaw di-
rection.

track linear vel xy exp Encourages the robot to follow the translation commands in the x and
y directions.

linear vel z l2 Penalizes the robot for fluctuations in the z - direction.
feet air time Encourages the robot to lift its feet rather than drag them on the ground.
feet slide Penalizes the robot for foot sliding.
dof acc l2 Penalizes the robot’s joint accelerations to ensure smooth joint move-

ments.
dof torques l2 Penalizes the robot’s joint torques to keep the joint torques as stable as

possible.
dof pos limits Penalizes the robot when its joints exceed the defined limits.
joint deviation arms Penalizes the deviation of the robot’s arm joints from their default po-

sitions, guiding the policy to explore around the default positions.
joint deviation hip Penalizes the deviation of the robot’s hip joints from their default po-

sitions, guiding the policy to explore around the default positions.
joint deviation torso Penalizes the deviation of the robot’s torso joints from their default

positions, guiding the policy to explore around the default positions.

Table 3: Rewards

In practical applications, the robot’s upper limbs will grasp different objects, which means that
the positions of the upper limbs can vary widely. Therefore, to ensure that our locomotion policy is
robust enough, we have incorporated randomization of the arm positions during the training process.
Based on the given default arm position, for every 150 frames, we superimpose the result of a
uniform sampling as the arm target joint position. This approach enables the training to cover a
wide range of different positions of the upper limbs.

C.2 Implementation of Imitation Learning Algorithms

Observation & Action Space. The input RGB observations maintain a consistent resolution of
480 × 640. The robot’s proprioceptive state is defined as s = [sqpos, se, sf ], where sqpos repre-
sents joint positions of the arms, se denotes end effector poses, and sf = (x, y, θ) is the float-

Condition Description

base contact If the robot’s body collides with the ground, it indicates that the robot has fallen.
time out Limits the maximum time for each training episode.

Table 4: Termination Conditions
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ing base’s plane location and yaw angle. As previously described, the algorithm outputs the ac-
tion a = [aqpos, ae, af , 0/1], where aqpos and ae specify arm joint and end effector actions,
af = (vx, vy, vθ) represents mobile base velocity commands, and 0/1 the binary value selects
between locomotion and manipulation modes. The Unitree G1, H1, and Franka Emika Panda arm
each possess 7 degrees of freedom (DOFs), while the dual-arm X-Trainer has 6 DOFs per arm. For
end effectors, grippers are controlled via a single normalized value for opening distance, and the
TRX-Hand5 features 18 actuated DOFs.

Algorithm Architecture. Our behavior cloning algorithm utilizes a ResNet-18 [38] image en-
coder for visual feature extraction. The flattened image features are concatenated with propriocep-
tion states and processed through a 5-layer MLP for action prediction. Layer normalization and
tanh activation are applied to the output. For ACT, Diffusion Policy, and π0, we adopt the LeRobot
[39] implementation with action chunk sizes of 20 for basic tasks and 40 for multistage tasks. All
approaches incorporate temporal ensemble to enhance action smoothness.

Implementation Details. All algorithms are trained with batch size 16, except π0 which uses 8.
Training spans 50K steps for basic tasks and 150K for multistage tasks. We observe convergence
across all methods with 80K-100K steps, with no subsequent performance increases. On NVIDIA
L20 GPU, training durations are 6 hours for behavior cloning, 12 hours for ACT and Diffusion
Policy, and 18 hours for π0.

D Dataset Details

Table. D demonstrates detailed information of our datasets including concrete descriptions and
number of trajectories of each task in every category. Our dataset currently contains 1,150 trajec-
tories (”> 1000” indicates active expansion). We’re actively expanding the collection to improve
generalization and sim-to-real transfer, and our platform supports community contributions to scale
diversity.
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Category Task Description Num of Trajectories

Pick & Place

Pick some objects and place them in the bowl. 10× 10

Pick some objects and place them into the opened mi-
crowave / fridge / stove.

30× 10

Pick some objects out from the bowl. 10× 10

Pick some objects out from the opened microwave /
fridge / stove.

30× 10

Open & Close
Open & Close doors of rooms. 10× 20

Open & Close doors of the furniture: fridges, mi-
crowaves, stoves.

30× 20

Push & Pull

Pull out & Push in the drawers. 10× 20

Push the buttons on microwaves / stoves. 10× 20

Push some objects on the tables away from the robot. 10× 10

Living Room

Pick up the books on the table and walk to the shelf and
organize them.

10× 50

Pick up the pitcher and the cup and pour the drink. 5× 30

Pick up the trash on the table and walk to the trash bin
to throw them away

10× 50

Bedroom

Slide the objects on the bed away and put the pillow on
the top of the bed

10× 50

Pick up the clothes rack and open the closets and hang
them in.

10× 50

Pick up the alarm clock and push the button. 5× 30

Kitchen

Pick up dishes on the table and store it into the fridge. 5× 30

Pick up the food and turn around to open the microwave
and put the food in.

5× 50

Pick up the dishes on the rack and the sponge and clean
the dishes.

5× 50

Table 5: Dataset details for task descriptions and number of trajectories. The number of trajectories
is demonstrated as number of assets × number of recorded sequences.
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