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ABSTRACT

To address the bottleneck of accurate user intent interpretation within current
video generation community, we present Any2Caption, a novel framework for
controllable video generation from any condition. The key idea is decoupling var-
ious condition interpretation steps from the video synthesis step. By leveraging
modern multimodal large language models (MLLMs), Any2Caption interprets
diverse inputs—text, images, videos, and specialized cues such as region, mo-
tion, and camera poses—into dense, structured captions that offer backbone video
generators with better guidance. We also introduce Any2CapIns, a large-scale
dataset with 337K instances and 407K conditions for any-condition-to-caption
instruction tuning. Comprehensive evaluations demonstrate significant improve-
ments in our system’s controllability and video quality compared to existing video
generation models. Codes and resources will be released upon acceptance.

1 INTRODUCTION

Video serves as a fundamental medium for capturing real-world dynamics, making diverse and con-
trollable video generation a key capability for modern artificial intelligence (AI) systems. Recently,
video generation has gained significant attention, driven by advancements in Diffusion Transformers
(DiT) Zheng et al. (2024b); Jiang et al. (2024); Singer et al. (2023); Ma et al. (2024a); kua (2024),
which have demonstrated the ability to generate realistic, long-duration videos from text prompts.
These advancements have even led to industrial applications, such as filmmaking. However, we
observe that a major bottleneck in the current video generation community lies in accurately inter-
preting user intention, so as to produce high-quality, controllable videos.

In text-to-video (T2V) generation, studies Yang et al. (2024c); Ju et al. (2024); Hong et al. (2023)
have suggested that detailed prompts, specifying objects, actions, attributes, poses, camera move-
ments, and style, significantly enhance both controllability and video quality. Thus, a series of works
have explored video recaption techniques (e.g., ShareGPT4Video Chen et al. (2024a), MiraData Ju
et al. (2024), and InstanceCap Fan et al. (2024)) to build dense structural captions for optimizing
generation models. While dense captions are used during training, in real-world inference scenar-
ios, users most likely provide concise or straightforward input prompts Fan et al. (2024). Such a gap
inevitably weakens instruction following and leads to suboptimal generation due to an incomplete
understanding of user intent. To combat this, there are two possible solutions, manual prompt refine-
ment, or automatic prompt enrichment Fan et al. (2024); Yang et al. (2024c) using large language
models (LLMs). Yet, these approaches either require substantial human effort or risk introducing
noise from incorrect prompt interpretations. As a result, this limitation in precisely interpreting
user intent hinders the adoption of controllable video generation for demanding applications such as
anime creation and filmmaking.

On the other hand, to achieve more fine-grained controllable video generation, one effective strat-
egy is to provide additional visual conditions besides text prompts—such as reference images Wu
et al. (2023); Guo et al. (2024a), identity Yuan et al. (2024); He et al. (2024b); Ma et al. (2024c),
style Ye et al. (2024); Liu et al. (2024a), human pose Ma et al. (2024b); Karras et al. (2023), or
camera He et al. (2024a); Zheng et al. (2024a)—or even combinations of multiple conditions to-
gether Zhao et al. (2023); Lin et al. (2024b); Wang et al. (2023). This multimodal conditioning
approach aligns well with real-world scenarios, as users quite prefer interactive ways to articulate
their creative intent. Several studies have examined video generation under various conditions, such
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Figure 1: We propose Any2Caption, an efficient and versatile framework for interpreting diverse
conditions to structured captions for highly controllable video generation.

as VideoComposer Wang et al. (2023), Ctrl-Adapter Lin et al. (2024b), and ControlVideo Zhao et al.
(2023). Unfortunately, these methods tend to rely on the internal encoders of Diffusion/DiT to parse
rich heterogeneous input conditions with intricate requirements (e.g., multiple object IDs and com-
plex camera movements). Before generation, the model must accurately interpret the semantics of
varied visual conditions in tandem with textual prompts. Yet even state-of-the-art (SoTA) DiT back-
bones have limited capacity for reasoning across different input modalities, resulting in suboptimal
generation quality.

This work is dedicated to addressing these bottlenecks of any-conditioned video generation. Our
core idea is to decouple the first job of interpreting various conditions from the second job
of video generation, motivated by two important observations: a) SoTA video generation models
(e.g., DiT) already excel at producing high-quality videos when presented with sufficiently rich text
captions; b) Current MLLMs have demonstrated robust vision-language comprehension. Based on
these, we propose Any2Caption, an MLLM-based universal condition interpreter designed not
only to handle text, image, and video inputs but also equipped with specialized modules for motion
and camera pose inputs. As illustrated in Fig. 1, Any2Caption takes as inputs any conditions (or
combinations) and produces a densely structured caption, which is then passed on to any backend
video generator for controllable, high-quality video production. As Any2Caption disentangles
the role of complex interpretation of multimodal inputs from the generator, it advances in seamlessly
integrating into a wide range of well-trained video generators without the extra cost of fine-tuning.

To facilitate the any-to-caption instruction tuning for Any2Caption, we construct Any2CapIns,
a large-scale dataset that converts a concise user prompt and diverse non-text conditions into de-
tailed, structured captions. Concretely, the dataset encompasses four main categories of conditions:
depth maps, multiple identities, human poses, and camera motions. Through extensive manual la-
beling combined with automated annotation by GPT-4V Gpt (2023), followed by rigorous human
verification, we curate a total of 337K high-quality instances, with 407K condition annotations, with
the short prompts and structured captions averaging 55 and 231 words, respectively. Additionally,
we develop a comprehensive evaluation strategy to thoroughly assess the model’s ability to interpret
user intent under various conditions.

Experimentally, we first validate Any2Caption on our Any2CapIns, where results demonstrate
that it achieves an impressive captioning quality that can faithfully reflect the original input con-
ditions. We then experiment with integrating Any2Caption with multiple SoTA video gener-
ators, finding that (a) the long-form semantically rich prompts produced by Any2Caption are
pivotal for generating high-quality videos under arbitrary conditions, and (b) Any2Caption con-
sistently enhances performance across different backbone models, yielding noticeably improved
outputs. Furthermore, Any2Caption demonstrates a pronounced advantage when handling mul-
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tiple combined conditions, effectively interpreting and synthesizing intricate user constraints into
captions that closely align with user expectations. Our contributions are threefold:

• We for the first time pioneer a novel any-condition-to-caption paradigm for video gener-
ation, which bridges the gap between user-provided multimodal conditions and structured
video generation instructions, leading to highly controllable video generation.

• We propose Any2Caption to effectively integrate and comprehend diverse multimodal
conditions, producing semantically enriched and structured captions, which consistently
improve both condition flexibility and video quality. Any2Caption can also be widely
integrated as a plug-in module for any existing video generator.

• We introduce Any2CapIns, a large-scale, high-quality dataset for any-condition-to-
caption task, and establish a suite of evaluation metrics to rigorously assess the quality
and fidelity of condition-based caption generation.

2 RELATED WORK

Controllable video generation Sun et al. (2024); Chen et al. (2024d); Fang et al. (2024); He et al.
(2024a) has long been a central topic in AI. Recent advanced DiT methods, such as OpenAI’s Sora
sor (2024) and HunyuanVideo Kong et al. (2024), yield photorealistic videos over extended du-
rations. Early work focused on text-controlled video generation Singer et al. (2023); Hong et al.
(2023), the prevalent approach. Yet, text prompts alone may insufficiently capture user intent,
spurring exploration of additional inputs including static images Wu et al. (2023); Guo et al. (2024a),
sketches Zhao et al. (2023); Wang et al. (2023), human poses Zhong et al. (2024); Ma et al. (2024b);
Karras et al. (2023), camera views Zheng et al. (2024a); He et al. (2024a), and even extra videos
Kara et al. (2024); Deng et al. (2024); Zhang et al. (2023). Thus, unifying these diverse conditions
into an “any-condition” framework is highly valuable.

Recent works such as VideoComposer Wang et al. (2023), Ctrl-Adapter Lin et al. (2024b), and
ControlVideo Zhao et al. (2023) have explored any-condition video generation. However, they face
challenges in controlling multiple modalities due to the limited interpretability of text encoders in
Diffusion or DiT. Motivated by existing MLLMs’ multimodal reasoning Liu et al. (2024b); Lin et al.
(2024a); Wang et al. (2024a), we propose leveraging an MLLM to consolidate all possible conditions
into structured dense captions for better controllable generation. SoTA DiT models already exhibit
the capacity to interpret dense textual descriptions as long as the input captions are sufficiently
detailed in depicting both the scene and the intended generation goals. Thus, our MLLM-based
encoder alleviates the comprehension bottleneck, enabling the generation of higher-quality videos.
To our knowledge, this is the first attempt in the field of any-condition video generation. Moreover,
as the captioning stage is decoupled from backbone DiT, Any2Caption can integrate with existing
video generation solutions without additional retraining.

Our approach also relates to video recaptioning, as our system generates dense captions under spe-
cific conditions. In text-to-video settings, prior work Fan et al. (2024); Yang et al. (2024c); Nan
et al. (2024); Islam et al. (2024) shows that recaptioning yields detailed annotations that improve
DiT training. For instance, ShareGPT4Video Chen et al. (2024a) uses GPT-4V Gpt (2023) to rein-
terpret video content, while MiraData Ju et al. (2024) and InstanceCap Fan et al. (2024) focus on
structured and instance-consistent recaptioning. Unlike these methods, we avoid retraining power-
ful DiT models with dense captions by training an MLLM as an any-condition encoder on pairs of
short, dense captions that are easier to obtain. Moreover, recaptioning entire videos can introduce
noise or hallucinations that undermine DiT training, whereas our framework sidesteps this risk. Fi-
nally, while previous studies rely on dense-caption-trained DiT models, the real-world user concise
prompts might create a mismatch that degrades generation quality.

3 ANY2CAPINS DATASET CONSTRUCTION

While relevant studies recapturing target videos for dense captions for enhanced T2V generation
Chen et al. (2024a); Fan et al. (2024); Ju et al. (2024), these datasets suffer from two key limita-
tions: 1) the absence of non-text conditions, and 2) short prompts that do not account for inter-
actions among non-text conditions, potentially leading to discrepancies in real-world applications.
To address these limitations, we introduce a new dataset, Any2CapIns, specifically designed to
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Figure 2: The pipeline for constructing the Any2CapIns dataset involves three key steps: 1) data
collection, 2) structured video caption generation, and 3) user-centric short prompt generation.

incorporate diverse multimodal conditions for generating structured video captions. The dataset is
constructed through a three-step process (cf. Fig. 2).

Category #Num. #Condition #Avg. Len. #Total Len.

Depth 182,945 182,945 9.87s 501.44h
Human Pose 44,644 44,644 8.38s 108.22h
Multi-Identities 68,255 138,089 13.01s 246.69h
Camera Movement 41,112 41,112 6.89s 78.86h

Table 1: Statistics of the collected dataset across four types
of conditions. #Num. / #Condition means the number of
instances / unique conditions. #Avg. / #Total Len. indicate
the average and total video durations, respectively.

Step-1: Data Collection. We be-
gin by systematically categorizing
conditions into four primary types:
1) Spatial-wise conditions, focus
on the structural and spatial proper-
ties of the video, e.g., depth maps,
sketches, and video frames. 2)
Action-wise conditions, emphasize
motion and human dynamics in the
target video, e.g., human pose mo-
tion. 3) Composition-wise condi-
tions, focus on scene composition, particularly in terms of object interactions and multiple identities
in the target video. 4) Camera-wise conditions, control video generation from a cinematographic
perspective, e.g., movement trajectories. Since it is infeasible to encompass all possible conditions
in dataset collection, we curate representative datasets Zhou et al. (2018); Chen et al. (2024c); Wang
et al. (2024b); Ma et al. (2024b) under each type, specifically including depth maps, human pose,
multiple identities, and camera motion. During the data collection process, we leverage SoTA tools
to construct conditions. For instance, Depth Anything Yang et al. (2024b) is used to generate depth
maps, DW-Pose Yang et al. (2023) provides human pose annotations, and Sam2 Ravi et al. (2024)
is utilized for segmentation construction. In total, we collect 337K video instances and 407K con-
ditions, with detailed statistics of the dataset presented in Tab. 1.

Step-2: Structured Video Caption Generation. The granularity of a caption, i.e., the spe-
cific elements it encompasses, plays a critical role in guiding the model to produce videos that
closely align with desired descriptions while preserving coherence and realism. Drawing inspiration
from Ju et al. (2024); Liu et al. (2024d), we design a structured caption format consisting of (1)
Dense caption, (2) Main object caption, (3) Background caption, (4) Action
caption, (5) Style caption, and (6) Camera caption. Following Wang et al. (2024b),
we leverage GPT-4V and a fine-tuned LLaVA to generate the aspects of structured caption separately
and merge them into a final structured caption.
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Figure 3: Distribution of the short/structured caption
length (in words) in Any2CapIns.

Step-3: User-centric Short Prompt
Generation. In this step, we con-
struct short prompts from a user-
centric perspective, considering how
users naturally express their in-
tentions. Firstly, our analysis
highlights three key characteristics
of users prompts: 1) Concise-
ness and Simplicity: Users favor
brief and straightforward wording;
2) Condition-Dependent Omission:
Users often omit textual descriptions
of certain attributes (e.g., camera
movement) when such conditions are already specified; and 3) Implicit instruction of Target
Video: Users convey their intent indirectly (e.g., specifying multiple identities without detailing
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Figure 4: The Architecture of Any2Caption (a) uses Qwen2-LLM as the backbone, paired with
text, image, video, motion, and camera encoders to generate structured captions. After alignment
learning, a progressive mixed training strategy (b) is employed, progressively adding vision/text
instruction datasets for joint training. For input short captions, a sentence-level random dropout
mechanism is used to enhance robustness.

interactions). Guided by these observations, we tailor GPT-4V to precisely infer potential user
prompts under condition-specific constraints. We also explicitly control the prompt length to main-
tain conciseness and refine the dataset through manual verification and filtering. Fig. 3 presents the
length distribution of the resulting short and structured prompts.

4 ANY2CAPTION MODEL

In this section, we present Any2Caption, a novel MLLM designed to comprehensively interpret
arbitrary multimodal conditions into controllable video captions, as illustrated in Fig. 4(a). Formally,
given a short text prompt T along with non-text conditions C = [c1, · · · , cn], where the non-text
conditions can be either none, a single condition, or multiple conditions. The objective of this task
is to generate a detailed and structured caption that serves as a control signal for video generation.

Architecture. Similar to existing MLLMs Liu et al. (2024b); Wu et al. (2024); Lin et al. (2024a),
Any2Caption incorporates an image encoder FI , a video encoder FV , a motion encoder FM and
a camera encoder FC} to process non-text conditions. These encoders are then integrated into an
LLM backbone FLLM (i.e., Qwen2-LLM) to facilitate structured video captioning. Specifically,
we leverage a ViT-based visual encoder from Qwen2-VL as FI and FV for the unified modeling
of images and videos, achieving effective interpretation of input conditions represented in image or
video formats, such as depth maps and multiple identities. To enable human pose understanding,
we represent the extracted human pose trajectories as H={(xk

n, y
k
n)|k = 1, · · · ,K, n = 1, · · · , N},

where N denotes the number of video frames and K is the number of keypoints. These trajecto-
ries are then visualized within video frames to enable further processing by the motion encoder,
which shares the same architectural structure and initialization as the vision encoder. For camera
motion understanding, inspired by He et al. (2024a), we introduce a camera encoder that processes
a plücker embedding sequence P ∈ RN×6×H×W , where H , W are the height and width of the
video. This embedding accurately captures camera pose information, enabling precise modeling
of camera trajectories. Finally, in line with Qwen2-VL, we employ special tokens to distinguish
non-text conditions from texts. Besides the existing tokens, we introduce <|motion start|>,
<|motion end|>, <|camera start|>, <|camera end|>, to demarcate the start and end
of human&camera pose features.

Training Recipes. To accurately interpret user generation intent under arbitrary conditions and
yield structured target video captions, large-scale pretraining and instruction tuning are required. To
this end, we adopt a two-stage training procedure: Stage-I: Alignment Learning. In this stage, as
image and video encoders have been well-trained in Qwen2-VL, we only focus on aligning human
pose features from the motion encoder and camera movement features with the word embeddings
of the LLM backbone. To achieve this, we freeze the LLM and vision encoder, while keeping the
motion encoder trainable and optimize it on a human pose description task. Similarly, for cam-
era movement alignment, we unfreeze the camera encoder and train it on a camera movement de-
scription task, ensuring that camera-related conditions are embedded into the model’s latent space.
This alignment phase establishes a strong foundation for effective representation learning for these
conditions. Stage II: Condition-Interpreting Learning Building upon the aligned encoders and
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pretrained Qwen2-VL weights, we fine-tune the model on Any2CapIns for multimodal condition
interpretation. However, direct fine-tuning leads to catastrophic forgetting due to the fixed output
structure. To address this, we propose a progressive mixed training strategy. Specifically, the model
is first trained on a single condition to establish a strong condition-specific understanding. As new
conditions are introduced, we gradually incorporate vision-language instructions such as LLaVA-
instruction Liu et al. (2024b) and Alpaca-52K Taori et al. (2023). This stepwise strategy ensures
robust multimodal condition interpretation while preventing knowledge degradation.

5 EVALUATION SUITE

In this section, we introduce the evaluation suite for comprehensively assessing the capability of
Any2Caption in interpreting user intent and generating structured captions.

Lexical Matching Score. We employ standard evaluation metrics commonly used in image/video
captioning tasks, including BLEU Papineni et al. (2002), ROUGE Lin (2004), and METEOR Banerjee
& Lavie (2005). We also introduce a Structural Integrity score to verify whether the
generated captions adhere to the required six-component format, thereby ensuring completeness.

Semantic Matching Score. To evaluate the semantic alignment of generated captions, we employ
BERTSCORE Zhang et al. (2020), which computes similarity by summing the cosine similarities
between token embeddings, effectively capturing both lexical and compositional meaning preserva-
tion. Additionally, we utilize CLIP Score Hessel et al. (2021) to assess the semantic consistency
between the input visual condition and the generated videos.

Intent Reasoning Score. Inspired by Chai et al. (2025), we introduce the Intent Reasoning Score
(IRSCORE) to assess the fidelity of generated captions that capture user intents. The IRSCORE
evaluation framework involves four steps: (1) User Intention Extraction: Categorize user intent
into six aspects: subject, background, movement, camera, interaction, and style. (2) Gold QA
Pair Construction: Create aspect-specific QA pairs with defined requirements (e.g., object count,
appearance). (3) Answer Prediction: Prompt GPT-4V to answer the questions solely based on the
predicted caption. (4) Answer Evaluation: GPT-4V scores each answer for correctness and quality,
averaged across all QA pairs. More details are in Appendix §G.

Video Generation Quality Score. We also employ several metrics to evaluate the quality of
videos generated from structured captions. Following Huang et al. (2024); Ju et al. (2024), we
evaluate video generation quality across four key dimensions: motion smoothness, dynamic
degree, aesthetic quality, and image integrity. To further verify adherence to specific non-
text conditions, we use specialized metrics: RotErr, TransErr, and CamMC He et al. (2024a)
for camera motion accuracy; Mean Absolute Error (MAE) for depth consistency Guo et al.
(2024b); DINO-I Ruiz et al. (2023), CLIP-I Ruiz et al. (2023) Score to evaluate identity preser-
vation under multiple identities, and Pose Accuracy (Pose Acc.) Ma et al. (2024b) to access the
alignment in the generated videos.

6 EXPERIMENTS

6.1 SETUPS

Dataset. We manually construct 200 test cases for each type of condition (i.e., depth, human pose,
multiple identities, camera, and compositional conditions) to evaluate the model’s performance.
Additionally, we assess the model on publicly available benchmarks (e.g., Ye et al. (2024); Lin et al.
(2024b)). For further details, please refer to the Appendix §H.

Implementation Details. We leverage Qwen2VL-7B Wang et al. (2024a) as the backbone of our
model, which supports both image and video understanding. The human pose in the input condi-
tions is encoded and processed in the video format. The camera encoder adopts the vision encoder
architecture, with the following settings: in channels set to 96, patch size of 16, depth of 8, and 8 at-
tention heads. During training, to simulate the brevity and randomness of user inputs, we randomly
drop sentences from the short caption with a dropout rate of 0.6; a similar dropout strategy is applied
to non-textual conditions. We conducted the training on 8×A800 GPUs. For further details on the
training parameters for each stage, please refer to the Appendix §H.
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Category Structural Integrity Lexical Matching Semantic Matching Intent Reasoning

B-2 R-L METER BERTSCORE Accuracy Quality

Entire Structured Caption 91.25 54.99 48.63 52.47 91.95 68.15 3.43
Dense Caption - 44.24 42.89 49.51 92.42 78.47 3.47
Main Object Caption - 38.54 47.46 52.48 92.02 56.28 2.74
Background Caption - 44.65 46.73 48.87 92.90 69.37 2.69
Action Caption - 31.91 39.83 45.25 91.44 57.98 2.13
Style Caption - 41.71 47.70 55.9 93.48 63.75 3.05
Camera Caption - 60.21 96.10 94.32 99.31 66.31 3.75

Table 4: Quantitative results of structured caption generation quality under four aspects: structural
Integrity, lexical matching, semantic matching, and intent reasoning. We demonstrate the overall
caption generation capability and the performance of individual components within the structure.
“B-2” and “R-L” denotes BLEU-2 and ROUGE-L, respectively.

6.2 EXPERIMENTAL RESULTS AND ANALYSES

In this section, we present the experimental results and provide in-depth analyses to answer the
following six key research questions, revealing how the system advances.

Prompt Enrichment Text Video Generation

DINO-I↑ Smoo.↑ Aest.↑ Inte.↑

Multi-IDs+Prompt. 43.72 93.46 5.32 55.39
Multi-IDs+Prompt+IDs Cap. 43.96 93.41 5.41 54.91
Multi-IDs+Structured Cap. 45.77 94.38 5.46 57.47
Only Structured Cap. 38.45 94.43 5.19 56.09

Table 2: Quantitative results comparing multi-identity video
generation using different prompt enrichment methods.

RQ-1: Is the structured caption
necessary? We compare our struc-
tured caption approach with a sim-
pler method, where we first caption
the input condition (e.g., multiple
identity images) and then concatenate
that caption with the original short
prompt, as shown in Tab. 2. Our re-
sults indicate that merely appending
the condition’s caption to the short
prompt can reduce video smoothness
and image quality. One likely reason is that the identity images may contain extraneous details be-
yond the target subject, potentially conflicting with the original prompt and causing inconsistencies.
Consequently, controllability in the final output is compromised. In contrast, our structured caption
method accurately identifies the target subject and augments the prompt with relevant information,
yielding more controllable video generation (cf. §I.3).

Training
Strategy

Caption Vieo Generation

B-2↑ Accuracy↑ Smoo.↑ Dyna.↑ Aest.↑

Any2Caption 47.69 67.35 94.60 17.67 5.53
w/o Two-Stage 33.70 51.79 93.31 16.36 5.10
w/o Dropout 49.24 69.51 94.16 14.54 5.51

Table 3: Ablation study on training strategy. “w/o Two-
stage” means no alignment learning, and “w/o Dropout” de-
notes short captions are not randomly dropped.

RQ-2: How effective is the train-
ing strategy? Next, we investigate
the contribution of the training mech-
anism, and the results are shown in
Tab. 3. During training, we employ a
two-stage training approach, consist-
ing of alignment learning followed by
instruction-tuning. When alignment
learning is omitted, and the model
proceeds directly to instruction tun-
ing, both captioning and video gener-
ation performance degrade significantly. A possible explanation is that bypassing alignment learning
disrupts the encoder’s adaptation process which has been aligned to the LLM backbone, leading to
suboptimal results in subsequent stages. Additionally, we compare the performance of the model
without the dropout mechanism. Although removing dropout yields a marked improvement in cap-
tioning quality, the benefit to video generation is marginal. This suggests that without dropout, the
model may rely on shortcuts from the input captions rather than fully understanding the underlying
intent, thereby increasing the risk of overfitting.

RQ-3: How well is the structured caption generation quality? We first evaluate whether our
proposed model could accurately interpret user intent and generate high-quality structured captions.
From a caption-generation perspective, we compare the predicted captions with gold-standard cap-
tions across various metrics (see Tab. 4). We observe that our model successfully produces the de-
sired structured content, achieving 91.25% in structural integrity. Moreover, it effectively captures
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Diffusion Models Diffusion Models

Example-2: A serene winter backyard with snow-covered ground and 
bare trees, revealing a blue shed with a white garage door and a doghouse

Example-1: A man gestures while the woman listens. They sit in a sunny 
park. The camera captures close-up shots of their heads and shoulders.

Short Cap. + IDs 

Example-4: A woman walks in a minimalist, modern room. She is holding 
two mugs and looks slightly displeased. The room has natural light.

Example-3: A young man carrying a messenger bag runs down a narrow, 
cobblestone street filled with sandbags and crates, suggesting a wartime.

Structured Cap. Video Short Cap. + ID Structured Cap. Video

Short Cap. + IDs + Depth Structured Cap. VideoShort Cap. + Camera + Depth Structured Cap. Video
Any2Caption

Any2Caption

Camera

Any2Caption

Any2Caption

IDs DepthDepth

ID

CogVideoX-2B

CogVideoX-2B

HunyuanVideo

HunyuanVideo

IDs

Figure 5: Illustrations of generated videos where only the structured captions yielded by
Any2Caption are fed into the CogVideoX-2B (Left), and HunyuanVideo (Right). We can observe
that some key features of the input identity images, such as the background and main object, can be
accurately visualized in the generated videos.

Model Text Camera Identities Depth Human Pose Overall Quality

CLIP-T↑ RotErr↓ TransErr↓ CamMC↓ DINO-I↑ CLIP-I↑ MAE↓ Pose Acc.↑ Smoo.↑ Dyna.↑ Inte.↑

• Camera to Video
MotionCtrl 19.67 1.54 4.49 4.80 - - - - 96.13 9.75 73.69
+ Structured Cap. 20.16 1.45 4.37 4.78 - - - - 96.16 11.43 74.63
CameraCtrl 18.89 1.37 3.51 4.78 - - - - 94.11 12.59 71.84
+ Structured Cap. 21.70 0.94 2.97 4.37 - - - - 95.16 13.72 72.47

• Depth to Video
Ctrl-Adapter 20.37 - - - - - 25.63 - 94.53 20.73 46.98
+ Structured Cap. 23.30 - - - - - 21.87 - 95.54 15.14 54.20
ControlVideo 22.17 - - - - - 30.11 - 92.88 5.94 63.85
+ Structured Cap. 24.18 - - - - - 23.92 - 94.47 18.27 66.28

• Identities to Video
ConceptMaster 16.04 - - - 36.37 65.31 - - 94.71 8.18 43.68
+ Structured Cap. 17.15 - - - 39.42 66.74 - - 95.05 10.14 49.73

• Human Pose to Video
FollowYourPose 21.11 - - - - - - 30.47 91.71 14.29 58.84
+ Structured Cap. 21.39 - - - - - - 31.59 92.87 16.47 56.30

Table 5: Performance on camera, depth, identities, and human pose conditions for using short vs.
structured captions, evaluated using various video quality metrics. Better results are in bold.

the key elements of the gold captions, attaining a ROUGE-L score of 48.63 and a BERTSCORE of
91.95. Notably, the model demonstrates the strongest performance in interpreting camera-related
details compared to other aspects. Finally, regarding user intent analysis, we found that the model
reliably incorporated user preferences into its structured outputs.

To further showcase the model’s capacity to understand and leverage input conditions, we directly
feed the structured captions—derived from our model’s interpretation—into downstream text-to-
video generation systems (e.g., CogvideoX Yang et al. (2024c) and Hunyuan Kong et al. (2024)), as
illustrated in Fig. 5. Even without explicit visual conditions (e.g., identities), the resulting videos
align well with the input prompts, such as hair color and clothing style in Example 1, indicating
that our captions successfully capture intricate visual details. In particular, the model is able to
accurately grasp dense conditions, such as depth sequences, or compositional requirements in Ex-
ample 4, ultimately enabling controllable video generation. Although some subtle attributes may be
under-specified in text, occasionally leading to mismatches, overall controllability remains robust.

RQ-4: Is the video generation quality enhanced with a structured caption? Here, we investi-
gate whether integrating structured captions consistently improves controllable video generation in
multiple methods. We investigate the impact of incorporating camera, depth, identities, and human
pose conditions into various controllable video generation methods. As shown in Table 5, all tested
models exhibit consistent gains in overall video quality, including smoothness and frame fidelity,
after incorporating structured captions, without requiring any changes to the model architectures
or additional training. Moreover, these models show enhanced adherence to the specified condi-
tions, suggesting that our generated captions precisely capture user requirements and lead to more
accurate, visually coherent video outputs. Additional examples can be found in Appendix §I.3.
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Conditions Text Camera Identities Depth Overall Quality

CLIP-T↑ RotErr↓ TransErr↓ CamMC↓ DINO-I↑ CLIP-I↑ MAE↓ Smoo.↑ Dyna.↑ Aest.↑ Inte.↑

C+I 14.81 1.37 4.04 4.24 25.63 64.14 - 94.43 28.87 4.99 59.81
+ Structured Cap. 19.03 1.30 4.36 4.03 26.75 68.45 - 94.38 34.99 5.25 63.02
C+D 20.80 1.57 3.88 4.77 - - 32.15 95.36 30.12 4.82 63.90
+ Structured Cap. 21.19 1.49 4.41 4.84 - - 25.37 95.40 30.10 4.96 65.05
D+I 20.01 - - - 35.24 57.82 23.00 93.15 32.21 4.96 61.21
+ Structured Cap. 20.76 - - - 36.25 63.48 24.78 92.50 36.43 5.18 60.81
C+I+D 18.49 2.05 7.74 8.47 35.86 64.25 18.37 92.02 30.09 3.91 60.62
+ Structured Cap. 19.52 1.57 7.74 8.20 38.74 64.37 17.41 93.03 32.81 4.99 61.22

Table 6: Quantitative comparison across compositional conditions on FullDiT Ju et al. (2025). C, D,
and I denote camera, depth and multiple identities conditions, respectively

RQ-5: How well does the model perform on compositional conditions? We examine the im-
pact of structured captions under compositional conditions. As shown in Tab. 6, we compare the
combined camera, identities, and depth on our customized model and observe that structured cap-
tions consistently enhance its performance. Moreover, from Examples 2 and 4 in Fig. 5, our model
demonstrates a thorough understanding of the interactions among various conditions, for instance,
capturing a woman’s hair color and the position of a mug, accurately guiding the production of
videos that align with the specified requirements. This finding further highlights that our approach
can automatically equip existing T2V models with the ability to handle compositional conditions
without requiring additional training.

CLIP-T

Motion 
Smoothness

Aesthetic Quality

Image 
Quality

Short Cap. Structured Cap.

(a) Segmentation

CLIP-T

Aesthetic Quality

CLIP-T

Aesthetic Quality

Motion 
Smoothness

Image 
Quality

(b) Style

Motion 
Smoothness

Image 
Quality

CLIP-T

Aesthetic Quality

Motion 
Smoothness

Image 
Quality

(c) Masked Image (d) Sketch

Figure 6: Quantitative results on unseen conditions (i.e., segmen-
tation Wang et al. (2023), style Ye et al. (2024), masked image
Wang et al. (2023), and sketch Wang et al. (2023)) when using
short and structured captions, respectively.

RQ-6: How well is the gen-
eralization capability of
Any2Caption? Finally, we
investigate the model’s gener-
alization ability by evaluating
its performance on “unseen”
conditions, including style, seg-
mentation, sketch, and masked
images. As demonstrated in Fig.
6, the structured captions gener-
ated by our model consistently
enhance existing T2V frame-
works, offering benefits such as
increased motion smoothness,
aesthetics quality, and more
accurate generation control.
We attribute these advantages
to two primary factors: the
strong reasoning capabilities
of our MLLM backbone and
our training strategy, i.e., pro-
gressive mixed training, which
leverages existing vision and
text instructions for fine-tuning
while mitigating knowledge
forgetting, thereby ensuring robust generalization.

7 CONCLUSION

In this work, we focus on addressing the challenge of accurately interpreting user generation inten-
tions under various conditions for controllable video generation. We introduce Any2Caption, a
framework that decouples the interpretation of multimodal conditions from video synthesis. Built
based on an MLLM, Any2Caption converts diverse inputs into dense captions that drive high-
quality video generation. We further present Any2CapIns, a large-scale dataset for effective
instruction tuning. Experiments show that our method improves controllability and video quality
across various backbones.
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APPENDIX OVERVIEW

The appendix presents more details and additional results not included in the main paper due to page
limitations. The list of items included is:

• Clarification on the Usage of Large Language Models in Section §A.
• Limitation in Section §B.
• Ethic Statement results in Section §C.
• Reproducibility Statement in Section §D.
• Extended Related Work in Section §E.
• Extended Dataset Construction Details in Section §F.
• More Statistics Information of IRSCORE in Section §G.
• Detailed Setups in Section §H.
• Extended Experiment Results and Analyses in Section §I.

A THE USAGE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we employed GPT-4o for data construction and, separately, leveraged large language
models (LLMs) as auxiliary tools to improve the clarity and readability of the manuscript. Specifi-
cally, LLMs were utilized to refine sentence structure, correct grammatical errors, and enhance the
overall presentation of the draft. All technical content, including research ideas, algorithm design,
experimental setup, analysis, and conclusions, was entirely conceived, implemented, and validated
by the authors without reliance on LLMs.

B LIMITATION

Despite the advancement of our proposed framework, several limitations may remain:

Firstly, the diversity of annotated data is constrained by the capabilities of the current annotation
tools, which may limit the variety of generated content. Moreover, the scarcity of real-world data
introduces potential domain gaps, reducing the model’s generalizability in practical scenarios.

Secondly, due to inherent model limitations, hallucinations may occur, resulting in inaccurate struc-
tured captions and consequently degrading the quality of generated videos. A possible direction to
mitigate this issue is to develop an end-to-end approach that jointly interprets complex conditions
and handles video generation.

Lastly, the additional condition-understanding modules inevitably increase inference time. However,
our empirical results suggest that the performance gains from these modules are substantial, and
future work may explore more efficient architectures or optimization techniques to balance speed
and accuracy.

C ETHIC STATEMENT

This work relies on publicly available datasets and manually constructed datasets, ensuring that
all data collection and usage adhere to established privacy standards. We recognize that automatic
annotation processes may introduce biases, and we have taken measures to evaluate and mitigate
these biases. Nonetheless, we remain committed to ongoing improvements in this area.

By enhancing video generation capabilities, Any2Caption could inadvertently facilitate negative
societal impacts, such as the production of deepfakes and misinformation, breaches of privacy, or
the creation of harmful content. We, therefore, emphasize the importance of strict ethical guide-
lines, robust privacy safeguards, and careful dataset curation to minimize these risks and promote
responsible research practices.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made a concerted effort to provide all necessary
details and materials. We provide comprehensive details of the proposed Any2Caption framework,
including its definition and input–output formulation (Section §4). The model backbone and train-
ing methodology are described in detail in Section §4 and Appendix §H.3. We further report all
hyperparameter settings and training configurations in Section §6.1 and Appendix §H, using fixed
random seeds to ensure the replicability of the experiments. All datasets used in this study are pub-
licly available open-source resources, and the data construction process, along with the amount of
data used at each training stage, is thoroughly documented in Section §3 and Appendix §F. Finally,
we will release the full codebase and data processing scripts to the community upon acceptance.

E EXTENDED RELATED WORK

E.1 TEXT-TO-VIDEO GENERATION

The development of video generation models has progressed from early GAN- and VAE-based ap-
proaches Brooks et al. (2022); Wang et al. (2020); Haim et al. (2022); Chu et al. (2020); Gur et al.
(2020) to the increasingly popular diffusion-based methods Blattmann et al. (2023b;a); Zhang et al.
(2024c); Qing et al. (2024). Among these, diffusion-in-transformer (DiT) architectures, such as
OpenAI’s Sora sor (2024) and HunyuanVideo Kong et al. (2024), have demonstrated remarkable
performance, producing photorealistic videos over extended durations. Controllable video genera-
tion Sun et al. (2024); Chen et al. (2024d); Fang et al. (2024); He et al. (2024a) has become an essen-
tial aspect of this field. Initially, research efforts centered predominantly on text-to-video generation
Singer et al. (2023); Hong et al. (2023), which remains the most common approach. However,
relying solely on text prompts can be insufficient for accurately capturing user intent, prompting
exploration into other conditioning inputs such as static images Wu et al. (2023); Guo et al. (2024a),
user sketches Zhao et al. (2023); Wang et al. (2023), human poses Zhong et al. (2024); Ma et al.
(2024b); Karras et al. (2023), camera perspectives Zheng et al. (2024a); He et al. (2024a), and even
additional videos Kara et al. (2024); Deng et al. (2024); Zhang et al. (2023). Given this diversity
of potential conditions, unifying them into a single “any-condition” video generation framework is
highly valuable.

E.2 CONTROLLABLE VIDEO GENERATION

Recent methods like VideoComposer Wang et al. (2023), Ctrl-Adapter Lin et al. (2024b), and Con-
trolVideo Zhao et al. (2023) have investigated any-condition video generation. Nevertheless, they
still struggle with comprehensive controllability due to the complexity of multiple modalities and
the limited capacity of standard diffusion or DiT encoders to interpret them. Inspired by the strong
multimodal reasoning capabilities of modern MLLMs Liu et al. (2024b); Lin et al. (2024a); Wang
et al. (2024a), we propose leveraging an MLLM to consolidate all possible conditions into a unified
reasoning process, producing structured dense captions as inputs to a backbone Video DiT. SoTA
DiT models already exhibit the capacity to interpret dense textual descriptions, as long as the in-
put captions are sufficiently detailed in depicting both the scene and the intended generation goals.
Building on this, our MLLM-based condition encoder directly addresses the comprehension bottle-
neck, theoretically enabling higher-quality video generation. To our knowledge, this work is the first
to develop an MLLM specifically tailored for any-condition video generation. Because the caption-
generation mechanism is decoupled from DiT, our proposed Any2Caption can be integrated into
existing DiT-based methods without additional retraining.

E.3 VIDEO CAPTIONING

Our approach is closely related to video recaptioning research, as our MLLM must produce dense
captions based on the given conditions. In text-to-video settings, prior work Fan et al. (2024); Yang
et al. (2024c); Nan et al. (2024); Islam et al. (2024) has demonstrated the benefits of recaptioning
videos to obtain more detailed textual annotations, thereby improving the training of longer and
higher-quality video generation via DiT. ShareGPT4Video Chen et al. (2024a), for example, em-
ploys GPT-4V Gpt (2023) to reinterpret video content and produce richer captions. MiraData Ju
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Type #Inst. #Condition Short Caption (#Avg. Len.) #Structured Caption(#Avg. Len.)

Identities 200 350 65.28 284.97
Camera 200 200 50.25 208.01
Depth 200 200 54.22 225.09
Human Pose 200 200 58.38 259.03
Camera+Identities 200 622 53.41 209.17
Camera+Depth 200 400 51.43 208.81
Identities+Depth 200 555 53.14 286.83
Camera+Identities+Depth 200 756 58.35 289.21

Table 7: Statistics of the constructed test datasets. #Inst. denotes the number of instances, and
#Condi. indicates the number of unique conditions. Short Cap. #Avg. Len represents the average
caption length of short captions, and Structured Cap. #Avg. Len. represents the average caption
length of structured captions.

et al. (2024) introduces structured dense recaptioning, while InstanceCap Fan et al. (2024) focuses
on instance-consistent dense recaptioning. Although we also pursue structured dense captions to en-
hance generation quality, our method diverges fundamentally from these previous approaches. First,
because DiT models are already sufficiently powerful, we directly adopt an off-the-shelf Video DiT
without incurring the substantial cost of training it with dense captions. Instead, we train an MLLM
as an any-condition encoder at a comparatively lower cost; in the text-to-video scenario, for in-
stance, we only need to train on pairs of short and dense captions, which are far easier and more
abundant to obtain. Second, prior methods that recapturing the entire video risk introducing noise or
even hallucinated content due to the current limitations of MLLMs in video understanding, poten-
tially undermining DiT training quality, whereas our framework avoids this issue. Most importantly,
while these approaches may rely on dense-caption-trained DiT models, real-world inference often
involves very concise user prompts, creating a mismatch that can diminish final generation quality.

E.4 MULTIMODAL LARGE LANGUAGE MODELS

Recent advances in Large Language Models (LLMs) Yang et al. (2024a) have catalyzed a surge of
interest in extending their capabilities to multimodal domains Lin et al. (2024a); Li et al. (2024a);
Zhang et al. (2024b). A number of works integrate a vision encoder (e.g., CLIP Liu et al. (2024b),
DINOv2Tong et al. (2024), OpenCLIPLi et al. (2024b)) with an LLM, often through a lightweight
“connector” module (e.g., MLP Liu et al. (2024b), Q-former Li et al. (2023)), enabling the model
to process image and video inputs with minimal additional training data and parameters Liu et al.
(2024b); Wu et al. (2024); Lin et al. (2024a). These approaches have demonstrated promising per-
formance on tasks such as image captioning, visual question answering, and video understanding.
Beyond purely visual data, some researchers have investigated broader modalities, such as 3D mo-
tion Chen et al. (2024b); Jiang et al. (2023) or audio Chu et al. (2024); Wu et al. (2024), thereby ex-
panding the application range of multimodal LLMs. Despite these advances, most existing MLLMs
focus on a limited set of visual modalities and do not readily accommodate more specialized inputs
like human pose or camera motion. This gap restricts their ability to handle more diverse and com-
plex conditions in the controllable video generation field. In contrast, our work targets a broader
spectrum of modalities, aiming to build a single model capable of interpreting and unifying image,
video, human pose, and camera conditions. Specifically, we augment an existing MLLM with ded-
icated encoders for motion and camera features, thereby equipping the model to process arbitrary
multimodal conditions and facilitate controllable video generation.

F EXTENDED DATASET DETAILS

Visualization of Short and Structured Caption. Here, we visualize the short and structured
caption in Fig. 7, 8. Notably, the structured caption captures the video content in greater detail and
across multiple aspects. In contrast, the short caption deliberately omits any information already
supplied by a non-text condition—for example, camera movement is excluded in Fig. 7’s short
caption but included in Fig. 8 because it is not specified by the provided multiple-identity images.
Moreover, we visualize the word distribution of the structured captions in Any2CapIns in Fig. 9.
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Diffusion Models Diffusion Models

 Short Caption: A cozy and well-lit home. Start by showing a dining table with chairs and a chandelier, then capture the living 
room with a sofa and fireplace. Move towards the large windows to reveal the deck outside and the grassy area. Emphasize 
the warm and inviting atmosphere.

 Structured Caption: 
1. Dense caption: An elegantly composed interior scene unfolds, where the dining and living areas are interwoven through warm 

tones and architectural cohesion. The narrative begins with a glimpse of a chandelier-lit dining table, then flows organically 
toward a plush seating arrangement and a glowing fireplace. A slow and smooth camera shift unveils tall glass windows that 
eventually open up to a serene deck, gracefully bridging interior comfort with exterior peace.

2. Main object caption: Key interior elements include a traditional dining ensemble centered under a sparkling chandelier, and a 
living room anchored by a soft sofa and an old-fashioned fireplace—framed by panoramic glass windows that serve as portals 
to nature.

3. Background caption: The setting is enriched by a timeless ambiance: gentle upholstery, a vintage-style wall clock, and natural 
daylight pouring through large windows. Outside, a sunlit wooden patio bordered by greenery extends the space beyond the 
glass.

4. Camera caption: Captured with a steady cam at eye-level. Begins with a lateral sweep from the dining corner before 
proceeding with a slow dolly movement toward the windowed wall, culminating in a reveal of the outdoor patio.

5. Style caption: Cozy and classic, with a warm color palette, soft lighting gradients, and a slightly rustic design aesthetic. The 
stylistic cohesion evokes a calm and welcoming atmosphere.

6. Action caption: Executing a deliberate leftward pan, the camera surveys the interior before advancing forward, transitioning 
the viewer’s perspective from indoor warmth to the outdoor environment.

Short Caption + Camera Video

Figure 7: Illustrations of constructed short and structured captions under the camera-to-video gen-
eration.

Diffusion Models Diffusion Models

 Short Caption: A person stands in a vast field under a stormy sky. They raise their hands to their face, then above their head, 
transforming their headpiece into a horn-like structure. The camera moves backward, capturing the gloomy atmosphere and 
their confident stance.

 Structured Caption: 
1. Dense caption: Amid a thunderous, cloud-laden sky, a lone figure clad in futuristic, obsidian-colored armor stands motionless 

at the center of an expansive, empty field. The moment intensifies as the individual lifts their arms toward their face in a 
calculated motion. Gradually, their helmet morphs into an imposing, horned structure. As this metamorphosis completes, the 
figure returns to a commanding stance, now equipped with two elegant, blade-like weapons—one held firmly in each hand.

2. Main object caption: The armored character—fully suited in sleek, dark tech-gear—occupies the center of the frame. Their 
headgear shifts shape, evolving into horn-like extensions as they raise their hands in a slow, deliberate movement.

3. Background caption: Sweeping grasslands stretch beneath a foreboding sky, with rolling hills far in the distance. The 
atmosphere is heavy with tension, and the setting remains still, emphasizing the transformation's magnitude and isolating the 
character in a vast, ominous world.

4. Camera caption: Camera begins with a mid-range, centered composition. As the sequence unfolds, it subtly dollies backward 
to reveal more of the character’s form while maintaining a consistent eye-level perspective.

5. Style caption: Dramatic and futuristic, with a moody color palette dominated by greys and blacks. The visual tone draws from 
dystopian cinema, focusing on solitude, metamorphosis, and subtle power.

6. Action caption: A solitary warrior lifts her arms toward her helmet, triggering its transformation. Once reformed into a 
horned shape, she lowers her arms, retrieves dual blades, and assumes a poised, forward-facing stance.

Short Caption + Multi-IDs Video

Figure 8: Illustrations of constructed short and structured captions under the multiIDs-to-video gen-
eration.

Prompt Visualization for Short Caption Construction. In Tab. 8 and 9, we show the system
prompts used by GPT-4V to generate short captions. The prompt explicitly instructs GPT-4V to
consider the given conditions comprehensively and produce short prompts that focus on information
not covered by the non-textual inputs. For instance, when multiple identities are specified, the short
prompt should avoid repeating their appearance attributes and instead highlight interactions among
the identities. Conversely, when depth is the input condition, the short prompt should include more
detailed appearance-related information.
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Diffusion Models Diffusion Models

(1) Dense Caption (2) Main Object Caption (3) Background Caption

(4) Action Caption (6) Camera Caption(5) Style Caption

Figure 9: Word cloud of different structured captions in Any2CapIns dataset, showing the diver-
sity.

Multi-IDs Here is the scenario: We have an MLLM model that supports a text image-conditioned intrinsic-video-
caption generation task. The system input consists of:

1. A reference image composed of 2-3 horizontally stitched images (provided by the user), each stitched
image containing one or several target objects for reference); and

2. A concise textual prompt (referred to as text B, the user’s instruction).
The model’s output is a detailed descriptive caption (**text A**) that thoroughly describes the video cor-
responding to the user’s input prompt (**text B**) in great detail. Your task is to perform a reverse engi-
neering. Based on the given reference image (the target objects) and the detailed target video caption (text
A), you need to generate a **reasonable and concise user prompt (text B)** through your understanding,
analysis, and imagination. You must adhere to the following rules:

1. Text A is a dense caption of a video, including all the key objects, their attributes, relationships,
background, camera movements, style, and more. Carefully analyze this caption for all relevant details.

2. Analyze the provided reference images in detail to identify the differences or missing details compared
to the target video description. These may include environment details, the interaction between objects, the
progression of actions, camera movements, style, or any elements not covered by the reference image.
Based on these analyses, generate the user’s instructions.

3. The user’s prompt must include the following aspects: first, an overall description of where the target
objects are and what they are doing, along with the temporal progression of their actions. Then, it should
describe the background, style, and camera movements.

4. If the target video introduces new objects not present in the reference images, the user’s prompt should
describe the attributes of the new target objects and their interactions with the other target objects.

5. If the video’s style differs from the reference, briefly describe the style in a few words.
6. When the background needs to be described, include details about people, settings, and styles present

in the background.
7. Avoid repeating information that can be inferred from the reference images, and eliminate redundant

descriptions in the user prompt.
8. The user prompt (text B) must be written in simple wording, maintaining a concise style with short

sentences.
9. The user’s instructions should vary in expression; For example, prompts do not always need to start

with the main subject. They can begin with environmental details, camera movements, or other contextual
aspects.
Here are three examples representing the desired pattern:
===========================================================================

[In-context Examples]
===========================================================================

[Input]

Table 8: Demonstration of the prompt used for GPT-4V to generate the short prompt when the input
condition is the multi-IDs.

G MORE STATISTICS INFORMATION OF IRSCORE

We generate a total of 15,378 question-answer (QA) pairs, averaging 19.2 pairs per structured cap-
tion. Fig. 10 presents the distribution of constructed questions across different aspects in the struc-
tured caption, and Tab. 10 shows representative QA pairs for each aspect. Notably, questions under
the main object category emphasize fine-grained details such as clothing color or hairstyles, while
action questions focus on object interactions and movements. This level of specificity allows us to
rigorously assess whether the generated captions are both complete and precise.
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Depth Here is the scenario: We have an MLLM model that supports a text & image-conditioned intrinsic-video-
caption generation task. The system input consists of:

1. A reference image composed of 3-5 horizontally stitched depth maps in temporal sequence (provided
by the user, each map containing depth information for reference); and

2. A concise textual prompt (referred to as text B, the user’s instruction).
The model’s output is a detailed descriptive caption (text A) that thoroughly describes the video correspond-
ing to the user’s input prompt (text B) in great detail. Now, I need you to perform a reverse engineering
task. Based on the given reference image (the depths) and the detailed target video caption (text A), you
must generate a reasonable and concise user prompt (text B) through your understanding, analysis, and
imagination. To ensure accurate and effective outputs, follow these rules strictly:

1. Text A is a dense caption of a video, including all the key objects, their attributes, relationships,
background, camera movements, style, and more. Carefully analyze this caption to extract the necessary
details.

2. Since the depth information already provides the necessary geometric outlines and layout details. Do
not repeat this information in the user prompt. Instead, focus on the aspects not covered by the depth maps.

3. The user’s instruction should highlight details not included in the depth map, such as environmental
details, the appearance of the subjects, interactions between subjects, the progression of actions, relation-
ships between the subjects and the environment, camera movements, and overall style.

4. For dense depth maps (more than 5 maps), assume the maps provide the camera movements and actions
between objects, focusing on describing the appearance of the subjects and environment, the atmosphere,
and subtle interactions between subjects and their environment.

5. For sparse depth maps (5 maps or fewer), assume the maps only provide scene outlines. Emphasize
details about the subjects’ appearance, environment, interactions between subjects, relationships between
subjects and the environment, and camera movements.

6. The user prompt (text B) must be written in simple wording, maintaining a concise style with short
sentences, with a total word count not exceeding 100.

7. Your output should be a continuous series of sentences, not a list or bullet points.
8. The user’s instructions should vary in expression; they don’t always need to begin with a description

of the main subject. They could also start with environmental details or camera movements.
Here are three examples representing the desired pattern:
===========================================================================

[In-context Examples]
===========================================================================

[Input]

Table 9: Demonstration of the prompt used for GPT-4V to generate the short prompt when the input
condition is the depth.

Main Object 
Caption: 36.84%

Background Caption: 17.54%

Action Caption: 
19.3%

Camera Caption: 
10.53%

Style Caption: 15.79%

Figure 10: QA pairs proportion in structured captions.

H DETAILED SETUPS

H.1 DETAILED TESTING DATASET

Here, we present the statistics of the test in Tab. 7, which covers four types of single conditions (e.g.,
Depth, Camera, Identities, and Human pose), and four types of compositional conditions(e.g., Cam-
era+Identities, Camera+Depth, Identities+Depth and Camera+Identities+Depth). Each category
contains 200 instances.
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Aspect QA Pairs

Main Object What is the young woman adjusting as she walks down the corridor? Her wide-brimmed hat.
What color is the young woman’s T-shirt? Light blue.
How does the young woman feel as she walks down the corridor? Happy and carefree.
What is the young woman wearing? Light blue t-shirt with pink lettering, blue jeans, and a wide-brimmed
hat.
What is the young woman’s hair length? Long.
What is the position of the young woman in the frame? In the center of the frame.
What is the main object in the video? A large shark.
What is the color of the underwater scene? Blue.
What are the two scientists wearing? White lab coats and gloves.
What is the first scientist using? A microscope.

Background Where is the young woman walking? Down a corridor.
What time of day does the scene appear to be set? Daytime.
What can be seen in the background of the corridor? Beige walls and large windows.
What is the weather like in the video? Clear.
Where is the shark located? On the ocean floor.
What surrounds the shark in the video? Smaller fish.
Where is the laboratory setting? In a brightly lit environment with shelves filled with bottles.
What detail does the background highlight? The scientific setting with static emphasis.

Camera How does the camera follow the young woman? Moving backward
What is the camera’s height relative to the person? Roughly the same height as the person.
What shot type does the camera maintain? Medium close-up shot of the upper body.
How does the camera position itself to capture the subject? At a higher angle, shooting downward.
How does the camera capture the environment? From a medium distance.
How is the camera positioned? At approximately the same eye level as the subjects, maintaining a close-
up shot.
How does the camera move in the video? It pans to the right.

Style What is the style of the video? Casual and candid.
What kind of design does the corridor have? Modern and clean design.
What style does the video portray? Naturalistic style with clear, vivid visuals.
What does the video style emphasize? Clinical, high-tech, and scientific precision.
What is the color theme of the lighting? Bright and cool.
What kind of atmosphere does the laboratory have? Professional and scientific.

Action What does the young woman do with both hands occasionally? Adjusts her hat.
What is the young woman doing as she moves? Walking forward with her hands on her hat.
What is the main action of the shark in the video? Lying motionless.
What is the movement of the fish like? Calm and occasionally darting.
What is the movement of the first scientist at the beginning? Examines a microscope.
What task is the second scientist engaged in? Handling a pipette and a beaker filled with green liquid.
How does the second scientist transfer the liquid? Carefully using a pipette into the beaker.
Are there any noticeable movements in the background? Occasional small particles floating.

Table 10: Demonstration of generated question-answer pairs utilized in IRSCORE calculation.

Configuration Stage-1: Alignment Learning Stage-2: Condition-Interpreting Learning

Camera Motion Identities Human pose Camera Depth

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Precision bfloat16 bfloat16 bfloat16 bfloat16 bfloat16 bfloat16
Learning Rate 5e5 5e5 5e5 5e5 5e5 1e5
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Joint Train Ratio 0.0 0.0 0.0 0.4 0.6 0.8
Betas (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Dropout Possibility 0.0 0.0 0.4 0.6 0.6 0.6
Dropout (Short Cap.) 0.0 0.0 0.6 0.6 0.6 0.6
Batch Size Per GPU 4 4 4 4 4 4

Training Data Camera Movement Description
Dataset (Manual)

Action Description
Dataset (Manual) MultiIDs Human Pose

LLaVA-150K
Camera

LLaVA-150K

Depth
LLaVA-150K
Alpaca-50K

Table 11: Training recipes for Any2Caption.

H.2 IMPLEMENTATION DETAILS

We leverage Qwen2VL-7B Wang et al. (2024a) as the backbone of our model, which supports both
image and video understanding. The human pose in the input conditions is encoded and processed
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in the video format. The camera encoder adopts the vision encoder architecture, with the following
settings: in channels set to 96, patch size of 16, depth of 8, and 8 attention heads. During training,
to simulate the brevity and randomness of user inputs, we randomly drop sentences from the short
caption with a dropout rate of 0.6; a similar dropout strategy is applied to non-textual conditions.
We conducted the training on 8×A800 GPUs.

H.3 DETAILED TRAINING PROCEDURE

We employ a two-stage training process to enhance the alignment and interpretability of multimodal
conditions in Any2Caption.

Stage-1: Alignment learning. This stage focuses on aligning features extracted by the cam-
era encoder with the LLM feature space. To achieve this, we first extract camera movement de-
scriptions (e.g., fixed, backward, pan to the right) from the camera captions in Any2CapIns
to construct a camera movement description dataset. We then introduce two specialized tokens,
<|camera start|> and <|camera end|>, at the beginning and end of the camera feature
embeddings. During training, only the camera encoder is optimized, while all other parameters in
Any2Caption remain frozen. Similarly, for motion alignment, we construct a motion description
dataset by extracting action descriptions (e.g., walking, dancing, holding) from the action captions
in Any2CapIns. We then freeze all model parameters except those in the motion encoder to ensure
the LLM effectively understands motion-related conditions.

Stage-2: Condition-Interpreting Learning. After alignment learning, we initialize
Any2Caption with the pre-trained Qwen2-VL, motion encoder, and camera encoder weights. We
then employ a progressive mixed training strategy, updating only the lm head while keeping the
multimodal encoders frozen. The training follows a sequential order based on condition complexity:
identities ⇒ human pose ⇒ camera ⇒ depth. Correspondingly, the integration ratio of additional
vision/text instruction datasets is progressively increased, set at 0.0, 0.4, 0.6, and 0.8, ensuring a
balanced learning process between condition-specific specialization and generalization.

H.4 DETAILED IMPLEMENTATIONS

In Tab. 11, we list the detailed hyperparameter settings in two stages. All the training is conducted
on 8×A800 (80G) GPUs.

I EXTENDED EXPERIMENT RESULTS AND ANALYSES

I.1 THE EFFECTIVENESS OF THE ANYCAPTION.

We evaluate the performance of our proposed model, AnyCaption, against various baselines on
the detailed video captioning benchmark VDC Chai et al. (2025). This evaluation is designed to
inversely assess whether the model can accurately generate fine-grained content aligned with the
target video. As shown in Table 12, our model consistently outperforms all baseline video-language
models across multiple categories. In particular, it achieves the best results in detail-sensitive aspects
such as camera perspective and main object descriptions. These results highlight the strong capabil-
ity of AnyCaption in capturing fine-grained visual semantics and generating detailed, faithful video
descriptions which are an essential prerequisite for high-fidelity video generation. Furthermore, we
conduct additional comparisons on our proposed benchmark, with results presented in Table 13.
AnyCaption also outperforms all baselines across all evaluated dimensions, demonstrating its effec-
tiveness in capturing users’ core intentions and generating detailed, goal-consistent descriptions of
target videos.

I.2 THE CAPABILITY FOR UNDERSTANDING COMPLEX INSTRUCTION.

We further examine Any2Caption’s ability to handle complex user instructions, particularly re-
garding whether it accurately captures the user’s intended generation targets. From Fig. 11, we
observe that the model focuses precisely on the user-specified main objects, such as a “woman war-
rior” or a background “filled with chaos and destruction”—when producing structured captions.
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Model Camera Short Background Main Object Detailed Overall

Acc Score Acc Score Acc Score Acc Score Acc Score Acc Score

LLaMA-VID Li et al. (2024a) 39.47 2.10 29.92 1.56 38.01 1.45 31.24 1.59 25.67 1.38 32.86 1.62
Video-ChatGPT-7B Maaz et al. (2024) 37.46 2.00 28.92 1.51 35.89 1.37 30.13 1.50 25.02 1.34 31.48 1.54
Video-LLaVA-7B Lin et al. (2024a) 37.48 1.97 30.74 1.58 35.80 1.38 30.19 1.46 25.22 1.33 31.89 1.54
LongVA-7B Zhang et al. (2024a) 35.32 1.94 29.35 1.53 33.91 1.33 30.34 1.49 25.40 1.33 30.86 1.52
LLaVA-NeXT-V7B Zhang et al. (2024d) 36.93 1.96 30.59 1.56 36.10 1.43 31.79 1.50 26.01 1.35 32.28 1.56
LLaVA-1.6-7B Liu et al. (2024c) 36.56 1.91 30.94 1.59 35.62 1.38 32.06 1.51 26.31 1.34 32.29 1.55
ShareGPTVideo-8B Chen et al. (2024a) 39.16 2.06 32.61 1.70 38.90 1.99 34.89 1.68 29.81 1.52 35.07 1.79
LLaVA-OV-7B Li et al. (2025) 39.02 2.04 31.84 1.64 36.52 1.84 33.24 1.65 28.41 1.48 33.81 1.73
Qwen2-VL-7B Wang et al. (2024a) 38.25 1.98 30.58 1.61 36.79 1.86 37.49 1.96 32.23 1.61 35.07 1.80

Any2Caption 40.26 2.19 31.88 1.64 38.80 1.96 41.50 2.06 35.13 1.87 37.51 1.94

Table 12: Quantitative comparison on the VDC video captioning benchmark Chai et al. (2025). We
report VDCscore across five caption aspects: camera captions, short captions, background captions,
main object captions, and detailed captions. The final two columns show the overall performance.

Model Dense Main Object Background Action Style Camera

Acc Qual. Acc Qual. Acc Qual. Acc Qual. Acc Qual. Acc Qual.

LLaVA-NeXT-V7B Zhang et al. (2024d) 65.23 2.81 43.57 2.13 55.41 2.16 40.87 1.72 52.64 2.43 35.97 1.90
LLaVA-1.6-7B Liu et al. (2024c) 66.01 2.83 44.02 2.17 54.98 2.14 39.11 1.75 52.91 2.41 36.13 1.92
ShareGPTVideo-8B Chen et al. (2024a) 75.36 3.35 54.90 2.68 66.77 2.65 51.92 2.05 62.48 2.94 55.29 2.68
Qwen2-VL-7B Wang et al. (2024a) 71.42 3.14 51.31 2.41 63.51 2.45 50.77 1.93 59.18 2.75 51.22 2.41

Any2Caption 79.45 3.81 56.29 2.78 70.07 2.71 56.78 2.14 65.74 3.15 67.25 3.79

Table 13: Comparison between Video-LLMs baselines and Any2Caption on our proposed bench-
mark. Since the baseline models are limited to handling only video and image inputs, we conduct
experiments on the Depth and Multiple Identities benchmarks. For a fair comparison, we adopt a
one-shot setting for the baseline models, enabling them to generate detailed descriptions and struc-
tured outputs for the target videos. We report the average scores of intention reasoning accuracy
(Acc) and quality (Qual.) across all tasks.

In contrast, a short caption combined with condition captions often includes extraneous objects or
background details present in the identity images, which distract from the user’s intended targets in
the final video generation.

Additionally, we assess the model’s performance on instructions containing implicit objects or ac-
tions, as shown in Fig. 12 and 13. In these examples, the model correctly interprets phrases like “the
most right person” as “a young Black woman with long, curly brown hair, wearing a black and white
outfit” and similarly associates implicitly specified objects with the provided conditions, generating
structured captions that align with the user’s goals.

Lastly, Fig. 16 compares videos generated using different captions. The results indicate that struc-
tured captions significantly improve both the smoothness of motion and the overall consistency of
the generated videos.

I.3 MORE VIDEO VISUALIZATION

Here, we compare the results of different customized models Ju et al. (2025) after integrating struc-
tured captions. Fig. 14 shows camera-controlled video generation results, and Fig. 15 illustrates
depth-controlled outcomes. We observe that structured captions improve image quality and motion
smoothness by providing richer scene details.

For multi-identity-controlled video generation, as depicted in Fig. 16, 17, and 18, structured captions
lead to more expressive and realistic representations of the referenced identities, with more accurate
colors and smoother actions.
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Diffusion Models Diffusion Models

 Input Short Caption: A woman warrior in armor wields a shield and sword, fighting a soldier in a chaotic, battle-torn room.

Input Multiple Identities Gold Video

 Short Caption w/ Condition Caption:
A woman warrior in armor wields a shield and sword, fighting a soldier in a chaotic, battle-torn room. 
ID Image 1: A behind-the-scenes moment from a superhero film set, featuring Wonder Woman, Batman, and Superman in costume, with a 
film crew and green screen in the background.
ID Image 2: A round shield with intricate designs and a central starburst pattern. Introduce noise information

 Predicted Structured Caption:
1. Dense caption: Set in a war-torn interior littered with fractured machinery and scattered debris, a fierce confrontation unfolds between 

a battle-hardened woman and an armored soldier. Standing amid the wreckage, she brandishes a polished sword and a finely adorned 
shield, moving with the precision of a trained combatant. The surrounding space, filled with remnants of violence, amplifies the urgency 
and focus of the encounter. Despite the destruction, both fighters hold their ground, locked in a tense standoff.

2. Main object caption: A female warrior clad in segmented armor combining dark leather and polished metal stands prominently. She wields 
a sword in her right hand and a shield in her left—its ornate design featuring an embossed emblem at its center. Her posture is alert and 
deliberate, facing off against a cape-wearing soldier lurking just behind her in full tactical gear.

3. Background caption: The room is a battlefield—walls partially collapsed, wires dangling, shattered glass on the floor. Military-grade 
vehicles and fragmented gear lie overturned, and thick shadows stretch across the space, lit only by scattered sparks and faint ambient 
lighting from damaged fixtures.

4. Camera caption: The scene is captured from a static low-angle position, slightly tilted upward to magnify the warrior's authority. Framing 
is tight enough to highlight detail in the characters’ armor but wide enough to expose the chaotic environment surrounding them.

5. Style caption: Gritty and immersive, the visual aesthetic leans toward post-apocalyptic realism, employing low-key lighting and subdued 
tones to emphasize both the destruction and the emotional weight of the scene.

6. Action caption: With sharp, calculated motions, the woman shifts between offense and defense—raising her shield to deflect and 
stepping forward to strike with her blade. Her movements convey strength, control, and combat experience.

Figure 11: Illustrations of input short caption, predicted structured caption, and short caption com-
bined with condition captions. The condition captions may introduce noisy information due to the
focus distraction of the background of input identities, for example, the Batman, Superman, film
crew.

Diffusion Models Diffusion Models

 Input Short Caption: The most right person in the 
picture 1 is dancing on the desk in picture 2.

Input Multiple Identities 

Implicit objects for generation

 Predicted Structured Caption:
1. Dense caption: Inside a sunlit modern kitchen, a young woman confidently dances atop a wooden dining table, her movements 

vibrant and self-assured. Clad in a monochrome outfit that blends fashion with flair, she glides, twirls, and gestures to an internal 
rhythm. Light pours in from generous windows, casting soft highlights on the table’s surface—where everyday elements like fruit 
and a meal serve as subtle reminders of domestic life. The warm tones of the wood and the greenery visible outside enhance the 
feeling of life, spontaneity, and celebration.

2. Main object caption: A confident Black woman with voluminous, curly brown hair performs expressive dance movements on a dining 
table. She wears a black-and-white color-block jacket, slim black pants, and ankle boots. Every motion of her body radiates joy, 
from the sway of her arms to the rhythm in her steps, all anchored at the center of the scene.

3. Background captionThe room is bright and contemporary—featuring polished wooden cabinets, clean surfaces, and a dining table 
set casually with fruit and a dish. Beyond the expansive windows lies a view of lush foliage, infusing the interior with calm, natural 
energy. Nothing in the setting feels staged—it’s a real kitchen full of warmth and life.

4. Camera caption: The scene is observed from a slightly elevated camera angle, keeping the subject fully in frame while subtly 
emphasizing the table’s height and the dancer’s grounded energy.

5. Style caption: Effortless and candid. The style emphasizes natural light, domestic textures, and a relaxed color palette, evoking 
authenticity and comfort with a hint of artistic spontaneity.

6. Action caption: She steps, spins, and gestures with increasing enthusiasm, transforming the tabletop into her stage. Her 
expressive movements seem improvised yet intentional, turning an everyday moment into a spontaneous performance.

Figure 12: Illustrations of predicted structured captions based on the input multiple identities and
the short instruction that expresses the implicit objects for the video generation.
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Diffusion Models Diffusion Models

Input Multiple Identities Input Human Pose

Input Short Caption: The right person in picture 1 is following the human pose movement in the video while the other person is 
watching beside them.

Implicit objects and action  for generation
 Predicted Structured Caption:
1. Dense caption: In a sun-drenched home interior, a young woman executes a series of delicate and measured dance-like motions. 

With arms raised and gestures flowing seamlessly from one to the next, her performance is composed and deliberate, 
harmonizing with the serene domestic surroundings. Her movement unfolds within a modest space, where light filters softly 
through sheer curtains, accentuating the gentle rhythm of the moment.

2. Main object caption: The focus is a light-skinned woman in her early twenties, wearing a pastel blue shirt and fitted dark 
jeans. Her long brown hair sways gently as she smiles and moves with rhythmic grace. Just off to the side, a man dressed in a 
black coat stands quietly, watching with a neutral expression and relaxed posture, offering a quiet counterpoint to her energy.

3. Background caption: Set in a cozy, well-maintained living room with soft white walls and a large window draped in translucent 
curtains. Minimal yet thoughtful decor—like a clean-lined sofa, a floor plant, and a small lamp-lit side table—evoke warmth and 
simplicity. Bright daylight streams in, creating a welcoming and peaceful domestic space.

4. Camera caption: Stationary low-angle setup with the lens tilted slightly upward, capturing the dancer’s full body in frame. The 
perspective subtly magnifies the performer’s presence and motion while anchoring her firmly in the surrounding domestic 
setting.

5. Style caption: Simple and unfiltered, with a naturalistic tone. The visual style mimics an everyday candid recording, 
emphasizing authenticity over polish, with even lighting and muted colors contributing to the understated charm.

6. Action caption: The woman moves with gentle enthusiasm—stretching, pivoting, and sweeping her arms in smooth arcs. Her 
expressive dance contrasts with the stillness of the man nearby, who watches calmly, contributing to the quiet intimacy of the 
scene.

Figure 13: Illustrations of predicted structured captions based on the input multiple identities and
the short instruction that expresses the implicit objects and the action for the target video generation.
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Diffusion Models Diffusion Models
Ø Short Caption: A serene video of a large house with a red roof and a spacious porch, surrounded by lush greenery. A peaceful countryside

setting with vibrant colors and a tranquil atmosphere.

Short Caption + Camera → Video

Structured Caption + Camera → Video

Ø Short Caption: A well-lit dining and living room with elegant and classic decor. The dining table is surrounded by chairs and has a chandelier 
above it. There's a wooden cabinet against the wall. The background features a hallway with a staircase and another dining area visible. The 
decor includes wooden furniture and framed pictures on the walls.

Short Caption + Camera → Video

Structured Caption + Camera → Video

Example - 1

Example - 2

Ø Short Caption: The scene is bathed in bright sunlight, emphasizing the warm and inviting atmosphere. A modern house with large windows 
and a balcony is showcased. Potted plants accent the architectural details. Distant mountains frame the view. Lush greenery surrounds the 
scene. The sky is a clear blue, dotted with scattered clouds. A dreamy lens flare effect adds to the serene quality. The overall ambiance is 
tranquil and picturesque.

Structured Caption + Camera → Video

Short Caption + Camera → Video

Example - 3

Figure 14: Illustrations of predicted structured captions based on the input multiple identities and
the short instruction that expresses the implicit objects and the action for the target video generation.
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Diffusion Models Diffusion Models

Ø Short Caption: A dark, static background enhances the brightly colored, rotating spiral of small blocks. The camera remains fixed, 
capturing the mesmerizing effect of the colors shifting subtly. The dynamic movement creates a hypnotic, abstract visual style.

Ø Short Caption: The park is sunny and lush with green trees and a small pond. A young couple in their late twenties embraces and 
shares a kiss. The woman, in a white sleeveless wedding dress and holding a bouquet, playfully touches the man's face. He is 
dressed in a black suit. The scene is romantic and intimate, with soft, natural lighting. The camera pans gently, capturing their 
affectionate interaction and the serene environment.

Short Caption + Depth → Video

Structured Caption + Depth → Video

Structured Caption + Depth → Video

Short Caption + Depth → Video

E
xam

ple
-4

E
xam

ple
-5

Figure 15: Illustrations of predicted structured captions based on the input multiple identities and
the short instruction that expresses the implicit objects and the action for the target video generation.
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Example - 6

Short Caption + Identities → Video

Structured Caption + Identities → Video

Short Caption w/ Condition Caption + Identities → Video

Ø Short Caption: A woman in a military uniform talks on the phone while holding a document, standing beside a man in a blue uniform against a wall. 
The setting is formal and professional, suggesting an official procedure in an institutional environment with light-colored walls and framed 
documents. The camera captures their upper bodies, moving backward and tilting upward, transitioning from a close-up to a medium close-up shot.

Ø Short Caption: A young woman in a traditional colorful outfit rides a galloping black horse through a lush green landscape. The camera follows her 
movements, capturing the dynamic and vibrant scene, with her hair flowing in the wind. The background is blurred to emphasize the speed and 
joy of the rider. The overall feel is natural and bright.

Short Caption + Identities → Video

Structured Caption + Identities → Video

Short Caption w/ Condition Caption + Identities → Video

Example -7

Figure 16: Illustrations of predicted structured captions based on the input multiple identities and
the short instruction that expresses the implicit objects and the action for the target video generation.
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Ø Short Caption: A martial arts dojo scene where an instructor in black demonstrates techniques, throwing a student in white to the ground. 
Students sit in a circle on the green mat floor, observing attentively. In the background, banners and signs indicate martial arts training, with a 
seated audience and standing spectators. The camera moves from a medium to a long shot, capturing the full scene with respect and focus.

Short Caption + Identities → Video

Structured Caption + Identities → Video

Short Caption w/ Condition Caption + Identities → Video
Example - 8

Ø Short Caption: A young girl wearing a school uniform and a young man in casual clothes are walking side by side along a dimly lit concrete wall at 
night. The girl walks on the left while the boy rides a bicycle on the right. The background is urban and gritty, with warm, moody lighting. The 
camera follows them closely, capturing a medium close-up shot of their upper bodies from different angles as they move. The scene has a 
nostalgic and contemplative atmosphere.

Short Caption + Identities → Video

Structured Caption + Identities → Video

Short Caption w/ Condition Caption + Identities → Video

Example - 9

Figure 17: Illustrations of predicted structured captions based on the input multiple identities and
the short instruction that expresses the implicit objects and the action for the target video generation.
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Ø Short Caption: A woman wearing fashionable clothes stands in the room, smiling and showing the goods in her hand. Then the camera zooms in and 
focuses on the details of the goods in the person's hand.

Ø Short Caption: Two cartoon characters are smiling at the camera together.

Short Caption + Identities → Video

Structured Caption + Identities → Video

Short Caption w/ Condition Caption + Identities → Video

Example - 10

Short Caption + Identities → Video

Structured Caption + Identities → Video

Short Caption w/ Condition Caption + Identities → Video

Example - 11

Figure 18: Illustrations of predicted structured captions based on the input multiple identities and
the short instruction that expresses the implicit objects and the action for the target video generation.
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