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GRPO-CARE: CONSISTENCY-AWARE REINFORCE-
MENT LEARNING FOR MULTIMODAL REASONING
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    Level-1: In-distribution  |  Task Domain: Daily Life  |  Environment: Seen kitchens

       Question: Considering the progress shown in the video and my current observation shown in the
       image, what action should I take next in order to clean the sink (Task Goal)?

       
       Candidate Actions: 
       A. pick up cloth                                            B. wring cloth
       C. close tap                                             D. rinse cloth
 

12Current ObservationTask Progress      

Level-2: Cross-environment
Task Domain: Daily life
Environment: Unseen kitchens

Level-3: Cross-task & Cross-environment
Task Domain: Hobbies, Daily life, Recreation, Work
Environment: Unseen in-door and out-door scenes

Hierarchy of SEED-Bench-R1 (SB-R1)’s Validation Set Model Performance
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<think>The person has just washed the cloth under running water … 
The next logical step would be to wring out the cloth to remove
excess water …. This aligns with the typical cleaning process where
the cloth is used to wipe down surfaces after being rinsed. </think>
 <answer> D. rinse cloth </answer>

GRPO

<think> Let me think through this step by step. I've just washed the
cloth under running water. The image shows me standing at the sink
with the tap running. The task is to ensure the cloth is thoroughly
cleaned. The natural next step is to close the tap after rinsing. </think>
<answer> C . close tap </answer>

GRPO-CARE (ours)

Figure 1: (a) SEED-Bench-R1 (SB-R1) provides a systematic, three-level evaluation of post-training
methods for MLLMs in video understanding, encompassing tasks that require both perception and
reasoning to tackle complex real-world scenarios. (b) Our analysis identifies a key limitation of
standard outcome-supervised GRPO: while it improves answer accuracy, it often compromises logical
consistency between reasoning and answers. By introducing an adaptive, group-relative consistency
bonus via reference-likelihood calibration, our GRPO-CARE achieves higher answer accuracy
across all difficulty levels and improves interpretability, as reflected by increased consistency rates.

ABSTRACT

Recent reinforcement learning (RL) approaches, such as outcome-supervised
GRPO, have advanced Chain-of-Thought reasoning in large language models
(LLMs), yet their adaptation to multimodal LLMs (MLLMs) remains underex-
plored. Progress has been further limited by the lack of evaluation settings that
jointly test perception and reasoning under controlled generalization challenges. To
enable such analysis, we reorganize prior benchmarks featuring complex real-world
videos that demand intricate visual understanding and commonsense planning into
SEED-Bench-R1, a structured testbed with large-scale training data and hierarchi-
cal evaluation across in-distribution, cross-environment, and cross-environment-
task scenarios. Using this setting, we conduct a systematic experimental analysis
of post-training methods, which reveals a key limitation of outcome-supervised
GRPO: while it improves answer accuracy, it often compromises the logical co-
herence between reasoning and final answers, yielding only a 57.9% consistency
rate. This stems from optimizing exclusively for final-answer rewards, which
encourages shortcuts, and from rigid KL divergence penalties, which overly con-
strain adaptive reasoning. To address these issues, we propose GRPO-CARE,
a novel consistency-aware RL framework that jointly optimizes correctness and
coherence without requiring explicit process supervision. GRPO-CARE introduces
a two-tiered reward: (1) a base reward for accuracy, and (2) an adaptive consistency
bonus derived from a slowly evolving reference model that calibrates reasoning-to-
answer likelihoods within peer groups. This mechanism rewards reasoning paths
that are both correct and logically consistent, while removing the constraints of KL
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penalties. Experiments on SEED-Bench-R1 show that GRPO-CARE consistently
outperforms standard GRPO, achieving a 6.7% gain on the hardest evaluation
level and a 24.5% increase in reasoning consistency. Moreover, models trained
with GRPO-CARE transfer effectively to diverse video understanding and even
language-only reasoning benchmarks, highlighting its robustness and generality.

1 INTRODUCTION

Recent progress in Large Language Models (LLMs) (Guo et al., 2025; ope, 2024; Team et al.,
2025) has been driven by advances in long Chain of Thought (CoT) generation, with reinforcement
learning (RL) (Shao et al., 2024; Ouyang et al., 2022; Yeo et al., 2025) emerging as an effective
post-training technique that improves complex problem-solving and generalization. Multimodal
LLMs (MLLMs) extend these capabilities to process multimodal inputs (Zhang et al., 2025; Liu et al.,
2025b; Meng et al., 2025), inheriting strong reasoning abilities while tackling richer, more complex
data. However, current evaluations of RL-like post-training for MLLMs are fragmented: some focus
narrowly on perception (e.g., detection, grounding) (Liu et al., 2025b), others on logical reasoning
(e.g., multimodal math) (Huang et al., 2025), or else rely on broad datasets without structured
generalization assessment (Feng et al., 2025).

We argue that studying post-training for MLLMs requires evaluations that balance perception
and logical reasoning, while rigorously testing generalization. To this end, we reorganize prior
benchmarks (Chen et al., 2023; Qiu et al., 2024) featuring complex real-world videos that demand
intricate visual understanding and commonsense planning, and construct SEED-Bench-R1 as a
structured testbed. As shown in Fig. 1, SEED-Bench-R1 requires models to comprehend open-form
task goals, track long-horizon visual progress, perceive complex environmental cues, and reason
about next actions using world knowledge. It features hierarchical evaluation across three levels—(1)
in-distribution, (2) OOD cross-environment, and (3) OOD cross-environment-task—with large-scale
training data and verifiable ground-truth answers, making it suitable for supporting research in
RL-like post-training methods for MLLMs.

Using SEED-Bench-R1, we conduct a comprehensive analysis comparing representative post-training
approaches. Our experiments confirm that RL—specifically GRPO with outcome supervision (Shao
et al., 2024)—is highly data-efficient and significantly outperforms supervised fine-tuning (SFT)
on both in-distribution and OOD questions. However, we identify a key limitation: while outcome-
supervised GRPO improves perception and answer accuracy for MLLMs, it often sacrifices logical
coherence between reasoning chains and final answers, with a consistency rate of only 57.9%. This
restricts interpretability and limits the potential performance ceiling. It originates from the fact that
optimizing solely for final answer rewards creates a shortcut, where models prioritize correctness
over maintaining logical reasoning, while strict KL penalties hinder adaptive adjustment of causal
relations between reasoning and answers.

To overcome this, we propose GRPO-CARE, a novel RL framework with Consistency-Aware
Reward Enhancement that jointly optimizes answer correctness and logical consistency without
relying on explicit process supervision. As illustrated in Fig. 3, in addition to the base reward for
answer correctness, we introduce a consistency bonus derived from a slowly-updated reference model
through likelihood calibration. This bonus incentivizes the model to produce reasoning traces that
are not only accurate but also logically coherent with the final answer. Specifically, GRPO-CARE
maintains a reference model updated via exponential moving average (EMA) of the online model’s
parameters, calibrating reasoning-to-answer consistency likelihoods. Samples that achieve both high
accuracy and strong consistency are rewarded with an adaptive group-relative bonus, replacing rigid
KL penalties and enabling more effective exploration of coherent reasoning paths.

Extensive evaluation shows that GRPO-CARE consistently outperforms standard GRPO across all
difficulty levels, especially in challenging OOD scenarios, improving performance by 6.7% on Level-
3 and increasing reasoning consistency by 24.5%. Ablation studies confirm that the consistency-aware
reward is critical for balancing overall performance and interpretability, while transfer experiments
to diverse video understanding benchmarks and even purely language-based reasoning tasks further
demonstrate robustness and generality.

In summary, our main contributions are:
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• A systematic reorganization of prior benchmarks into SEED-Bench-R1, providing a hierarchical
and rigorous evaluation setting for studying post-training methods in multimodal reasoning.

• A comprehensive experimental study of post-training methods for MLLMs, revealing the limitations
of outcome-supervised RL in maintaining logical coherence.

• A novel RL framework, GRPO-CARE, that introduces consistency-aware rewards to significantly
improve reasoning interpretability and overall performance without explicit process supervision.

2 RELATED WORK

RL for LLMs/MLLMs. RL from human feedback (RLHF) aligns LLM outputs with human
preferences via reward models trained on human preference data (Ouyang et al., 2022; Schulman
et al., 2017). To enhance complex reasoning, generating long CoT is effective (Guo et al., 2025;
Team et al., 2025; ope, 2024). RL methods like GRPO (Shao et al., 2024) and its variants DAPO (Yu
et al., 2025b) and Dr.GRPO (Liu et al., 2025a) optimize CoT generation using outcome-based
rewards. However, outcome-only supervision can yield inconsistent reasoning despite correct answers.
Addressing this, some works train additional process supervision reward models with costly step-wise
annotations (Lightman et al., 2023; Uesato et al., 2022; Chen et al.; Luo et al., 2024; Wang et al.,
2023), incorporate LLM judges (Gao et al., 2024; Xia et al., 2025; Zhang et al., 2024a), or adaptive
regularization via EMA-updated reference models (Ramé et al., 2024). In MLLMs, outcome-based
RL may cause “Thought Collapse,” mitigated by stronger correctors (Wei et al., 2025) or step-wise
reward matching (Zhang et al., 2025). Our GRPO-CARE employs a slowly updated reference model
to provide bonus feedback on logically consistent and accurate responses, improving reasoning and
accuracy without extra annotations or stronger correctors.

Benchmarks for MLLM Post-training. Recent RL-based post-training methods for MLLMs
have primarily targeted image tasks—from perception (e.g., classification) to reasoning (e.g., visual
math) (Huang et al., 2025; Liu et al., 2025b; Zhang et al., 2025; Sun et al., 2024). In contrast, video
understanding, a more complex and general scenario, remains underexplored. Early RL-based efforts
on video benchmarks (Wang & Peng, 2025; Zhao et al., 2025a) are limited by narrow tasks (e.g.,
emotion recognition) (Liu et al., 2022; Jiang et al., 2020) or scarce training data (Wu et al., 2024),
hindering scalable analysis. Existing benchmarks (Li et al., 2024b; Liu et al., 2024b; Fang et al.,
2024) mostly evaluate models post-trained on diverse general-domain data (e.g., Video-R1 (Feng
et al., 2025)) but lack rigorous generalization assessment. To date, no comprehensive benchmark
provides (1) large-scale training data for robust post-training, (2) structured validation sets across
multiple generalization levels, and (3) multimodal questions balancing perception and reasoning in
real-world scenarios. To address this, we propose SEED-Bench-R1, a video understanding benchmark
with large-scale training data and a validation set partitioned into three generalization tiers, enabling
comprehensive evaluation of MLLM post-training methods.

3 PILOT STUDY WITH SEED-BENCH-R1

3.1 SEED-BENCH-R1

Benchmark Overview. As shown in Fig. 1, SEED-Bench-R1 is built to systematically study how
post-training methods affect multimodal reasoning in MLLMs. Building on EgoPlan-Bench (Chen
et al., 2023) and EgoPlan-Bench2 (Qiu et al., 2024), it features: 1) real-world egocentric visual inputs,
2) diverse questions requiring commonsense reasoning for practical tasks, 3) a hierarchical validation
design to assess robustness and generalization, and 4) large-scale, automatically constructed training
questions with verifiable ground-truth answers.

Visual Inputs and Question Design. SEED-Bench-R1 leverages realistic egocentric videos (Damen
et al., 2022; Grauman et al., 2022) of daily activities. Correctly answering its questions requires mod-
els to understand open-ended goals, track long-horizon task progress, perceive real-time environment
states from an egocentric view, and apply world knowledge to infer the next action. The ground-truth
answer comes from the actual next action occurring right after the current observation in the original
uncropped video, with the negative options sampled from the same video. This challenging setting of
candidate options demands a deep understanding of the environment state from dynamic visual input
and world knowledge, such as action dependencies, rather than just semantic matching, to discern the
correct action plan. Moreover, the derivation of golden answers is traceable and easy to verify.
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Table 1: Statistics of SEED-Bench-R1, including a training set and a hierarchical three-level validation
set for in-distribution, cross-environment, and cross-environment-task evaluations.

Split # Samples Domain Cross-Env. Cross-Task Video Source Benchmark Source

Train 50,269 Daily life - - Epic-Kitchens EgoPlan-Bench
Val-L1 2,432 Daily life × × Epic-Kitchens EgoPlan-Bench
Val-L2 923 Daily life

√
× Ego4D EgoPlan-Bench

Val-L3 1,321 Hobbies, Daily life,
Recreation, Work

√ √
Ego4D EgoPlan-Bench2

Dataset Composition and Validation Levels. As shown in Tab. 1, SEED-Bench-R1 includes both
training and validation sets. The training set is automatically generated from Epic-Kitchens (Damen
et al., 2022), covering daily household tasks. The validation set is human-verified and divided
into three levels: L1: In-distribution evaluation with the same source and domain as training. L2:
Cross-environment evaluation, using unseen kitchen environments from Ego4D (Grauman et al.,
2022). L3: Cross-environment-task evaluation with the full Ego4D set, spanning hobbies, recreation,
work, and daily life in diverse indoor and outdoor contexts, thus testing broader generalization.

3.2 EXPERIMENT SETUP

We use Qwen2.5-VL-Instruct-7B (Bai et al., 2025) as the backbone to study post-training on SEED-
Bench-R1. Additional evaluation on different base models can be found in Appendix B.2. We adopt
outcome-supervised GRPO (Shao et al., 2024) as a representative RL method and compare it with
supervised finetuning (SFT). Each video is down-sampled to 16 frames at resolution 128× 28× 28,
plus one frame indicating the current observation. For SFT, training data is augmented with CoT
reasoning distilled from Qwen2.5-VL-Instruct-72B and 7B via rejection sampling. GRPO instead
relies on rule-based rewards without explicit CoT annotations. Following Guo et al. (2025), reasoning
and answers are formatted within <think> </think> and <answer> </answer> tags.

Given a multimodal question x ∼ D, GRPO samples G responses {og = (τg, ag)}Gg=1 from the
policy πθold , where τg and ag denote reasoning and answer. Unlike SFT, GRPO does not rely on
predefined responses. The policy is optimized by maximizing:

JGRPO(θ) = Ex,{og}
1

G

G∑
g=1

1

|og|

|og|∑
i=1

min

[
πθ(og,i|x, og,<i)

πθold(og,i|x, og,<i)
Âg,i,

clip

(
πθ(og,i|x, og,<i)

πθold(og,i|x, og,<i)
, 1− ε, 1 + ε

)
Âg,i

]
− βDKL[πθ||πref]

Here, ε and β are hyperparameters, and DKL is the KL divergence between policy πθ and reference
πref. The per-token advantage is set to the normalized reward Âg,i = r̃g =

rg−mean({r1,...,rG})
std({r1,...,rG}) , with

rg computed by rules (e.g., rg = 1 if the extracted answer matches ground truth, else 0).

3.3 RESULT ANALYSIS

Tab. 2 summarizes the performance of MLLMs trained with various methods on SEED-Bench-R1.
Notably, compared to SFT, reinforcement learning with GRPO significantly improves data efficiency
and boosts MLLM performance on both in-distribution (L1) and OOD (L2, L3) questions, despite
relying only on a simple outcome-based reward without specialized CoT annotations.

Our analysis shows that GRPO mainly enhances perceptual abilities rather than reasoning. As shown
in Fig. 2, the SFT-trained model is more prone to perceptual hallucinations, such as describing “a
ball being hit from a tee” when this event does not occur. Attention map analysis reveals that GRPO-
trained models generate CoT tokens that act as dynamic queries, attending to visual content more
thoroughly—especially in OOD scenarios. For example, the GRPO model better highlights key visual
observations and allocates more attention to critical objects (e.g., the ball on the tee), even if these are
not explicitly referenced in the reasoning. We hypothesize that RL methods like GRPO encourage
broader visual exploration via CoT, while SFT tends to produce superficial, pattern-memorized CoT
with limited visual grounding. This likely underpins GRPO’s superior generalization.

However, outcome-supervised GRPO training for MLLMs has key limitations: unlike LLMs, MLLM
reasoning does not improve proportionally during RL, often resulting in logical inconsistencies.
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Table 2: Performance comparison on SEED-Bench-R1’s hierarchical validation set.

Models L1 (In-Distribution) L2 (Cross-Env) L3 (Cross-Task, Cross-Env)

Daily Life Daily Life Daily Life Hobbies Recreation Work Overall

Qwen2.5-VL-7B 38.4 40.1 35.8 31.2 26.8 28.5 31.3
SFT 46.2 46.3 46.7 41.7 44.3 38.4 42.7
GRPO 52.3 53.2 51.9 43.7 55.2 39.4 46.7
GRPO-CARE (ours) 57.0 57.0 57.6 51.2 57.4 48.5 53.4

Question: Considering the progress shown in the video and my current observation shown in the image, what action should I take
next  in order to play golf (Task Goal)?

Candidate Actions: 
A. move ball to golf tee
B. place club in cart bag 
C. hit ball with club
D. move towards golf balls 

GRPO-CARE
<think>Let me think through this step by step. The video shows me at a driving range, and I've just selected a golf ball from the cart.
The image confirms that I‘m standing at the tee, ready to hit. The question asks what to do next. The options provided suggest I should
either move the ball to the tee, place the club in the cart bag, hit the ball with the club, or move towards the golf balls. The image
clearly shows the golf ball on the tee, and the question asks what to do next. The answer is straightforward.</think>

<answer>
C. hit ball with club
</answer>

Qwen2.5-VL-7B
<think>The video shows a golf driving range with a golf cart and a golf ball dispenser. The golf ball dispenser is full of golf balls, and the
golf cart is positioned in front of it. This suggests that the next logical step is to move towards the golf balls to start playing golf. </think>

<answer>
D. move towards golf balls 
</answer>

GRPO

<think>Let me think. The video shows a golf driving range with a golf cart and a golf ball dispenser. The ball dispenser is full of golf
balls, and the cart is positioned on the driving range. …, which is typically done by picking up a golf ball from the dispenser and
placing it on the tee. Therefore, the most appropriate action to take next is to move the ball to the golf tee. </think>

<answer>
C. hit ball with club
</answer>

SFT
<think>The video shows a golf driving range where a ball is being hit from a tee. The next logical step after hitting the ball would be to
move towards the golf balls to retrieve another one for the next shot. </think>

<answer>
D. move towards golf balls 
</answer>

Figure 2: Case study of an L3 question from SEED-Bench-R1, showing a video of task progress,
a final observation image, and attention maps (output-to-visual tokens). The SFT model tends to
memorize reasoning patterns and exhibits perceptual hallucinations. The GRPO model attends more
comprehensively to the highlighted key visual observation while lacking logical consistency in the
generated content. The GRPO-CARE model further balances visual perception and logical reasoning.

While the GRPO-trained model frequently reaches correct answers, its CoT reasoning often lacks
coherence. For instance, as shown in Fig. 2, initial reasoning steps mirror those of the base model
(Qwen2.5-VL-7B), but later steps diverge and may contradict each other—e.g., suggesting “move
the ball to the golf tee” but ultimately answering “hit ball with club.” Such inconsistencies, though
sometimes yielding correct answers, undermine transparency.

Limited reasoning also constrains overall performance, as effective reasoning is crucial for integrating
world knowledge with perception. For example, in Fig. 1, the GRPO model correctly identifies

5
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Figure 3: GRPO-CARE uses a two-tier reward system: a base reward for answer correctness (rb∗) and
an adaptive consistency bonus (rc∗). The consistency bonus is given to high-accuracy samples whose
reasoning-to-answer likelihood—estimated by a slowly updated (EMA) reference model—is higher
than that of their group peers, conditioned on the multimodal question. The total reward, the sum of
base and consistency rewards, is then used to compute advantages for updating the online model.

“running water” but fails to infer that the next logical step after cleaning is “turning off the faucet.”
These reasoning-answer mismatches further complicate interpretability.

4 CONSISTENCY-AWARE REWARD-ENHANCED GRPO (GRPO-CARE)

While outcome-supervised GRPO enhances visual perception in MLLMs, our analysis on SEED-
Bench-R1 uncovers a critical trade-off: it often produces less logically coherent reasoning chains,
thereby limiting interpretability and performance. This issue arises from two main limitations.
First, the standard reward focuses exclusively on final-answer accuracy, overlooking the quality
of intermediate reasoning steps. This can incentivize shortcut solutions—correct answers reached
via inconsistent reasoning. Second, the KL penalty disproportionately constrains reasoning traces,
typically longer than answers, thereby stifling exploration of diverse and coherent reasoning paths.

To address these challenges, we propose GRPO-CARE (Consistency-Aware Reward Enhancement),
a method that jointly optimizes for both answer correctness and logical consistency, without requiring
explicit supervision of the reasoning process. As shown in Fig. 3, GRPO-CARE introduces a two-
tiered reward system: a base reward for answer correctness, and an adaptive consistency bonus. The
consistency bonus is calculated by comparing the likelihood that a reasoning trace leads to the correct
answer, as estimated by a slowly evolving reference model. For each high-accuracy sample generated
by the online model, this likelihood is compared with those of its peers within the same group,
encouraging the exploration of reasoning traces that are logically consistent with correct answers.

The training process, detailed in Algorithm 1, involves two-stage filtering. (1) First, we generate
multiple reasoning traces per input and retain only those that exceed an accuracy baseline. (2) For
these high-accuracy candidates, we assess how well each reasoning trace supports the final answer by
calibrating its likelihood using a slowly evolving reference model.

Reference Model and Likelihood Calibration. The key insight is that a stable reference
model—when conditioned on the online model’s reasoning trace—should assign a higher likeli-
hood to the correct answer if the reasoning is logically grounded in the multimodal input. Specifically,
the reference model is initialized from the same pretrained weights as the online model and up-
dated smoothly via exponential moving average (EMA) to ensure stable likelihood estimation and
self-adaptation. This setup encourages gradual self-evolution from a weaker to a stronger model
without relying on a stronger external teacher, unlike methods that depend on fixed, stronger LLM
judges. To avoid reinforcing “consistent-but-wrong” reasoning, we compute this likelihood only for
trajectories with correct answers. Additionally, we cap the likelihood at a maximum threshold to
prevent over-optimization toward artificially high values.

Consistency Bonus Calculation. Based on the clipped reference likelihoods, we compute a group-
relative consistency baseline as the mean clipped likelihood (minus a small margin to avoid penalizing
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Algorithm 1 Consistency-Aware Reward Enhanced GRPO
Require:

πθ: Online policy model (initialized from pretrained weights)
πϕ: Reference model with EMA updates (ϕ← θ initially)
D: Multimodal training dataset {(x, y∗)}
λcons: Consistency reward coefficient (e.g., 0.5)
γacc: Minimum accuracy threshold (e.g. 0.1)
γp: Maximum likelihood threshold (e.g. 0.95)
ϵp: Consistency margin (e.g. 0.01)

1: procedure TRAINING(πθ,D, T )
2: for t← 1 to T do
3: for each multimodal input x in batch D do
4: Phase 1: Trajectory Generation & Reward Computation
5: Generate G reasoning traces + answers: {τg, ag}Gg=1 ∼ πθ(·|x)
6: Compute accuracy rewards: racc,g = accuracy_score(ag, y

∗)
7: Compute format rewards: rfmt,g = format_score(τg, ag)
8: Phase 2: Relative High-Accuracy Trajectory Selection
9: Calculate relative accuracy baseline: r̂acc = max(Eg[racc,g], γacc)

10: Select trajectories where racc,g ≥ r̂acc
11: Phase 3: Relative Consistency Evaluation
12: for selected trajectories (τg, ag) do
13: Compute reference likelihood: pg = 1

|ag|
∑|ag|

i=1 πϕ(ag,i | x, τg, ag,<i)

14: Clip likelihood: p̃g = min(pg, γp)
15: end for
16: Calculate relative consistency baseline: µ̂p = Eg[p̃g]− ϵp
17: Select consistent trajectories where p̃g ≥ µ̂p

18: Phase 4: Enhanced Reward Calculation
19: for each trajectory g do
20: Rg = racc,g + rfmt,g︸ ︷︷ ︸

base reward

+λcons · racc,g · I[consistent]︸ ︷︷ ︸
consistency bonus

21: Normalize advantage: Âg = (Rg − µR)/σR

22: end for
23: end for
24: Phase 5: Model Update
25: Update πθ via GRPO policy gradient (without KL penalty)
26: if t mod k = 0 then ▷ EMA update every k = 10 steps
27: ϕ← αϕ+ (1− α)θ ▷ α=0.995 typical
28: end if
29: end for
30: return optimized policy πθ

31: end procedure

near-average samples). Trajectories that exceed this baseline receive a sparse consistency bonus,
weighted by their accuracy, ensuring that rewards prioritize both correctness and logical coherence.

Model Update. To promote exploration of diverse reasoning paths, we remove the KL penalty from
the GRPO’s training objective. Instead, we rely on the consistency bonus—added to the base reward
to form the total reward—to guide online model updates toward higher-quality outputs. The reference
model is updated via EMA every few steps, allowing it to gradually inherit improvements from the
online model (e.g., better visual grounding or more complex reasoning) while maintaining stability
against sampling noise. This balanced optimization process enhances multimodal understanding
without sacrificing logical consistency, ultimately improving both performance and interpretability.

4.1 EVALUATION ON SEED-BENCH-R1

We first evaluate our method on SEED-Bench-R1. As shown in Tab. 2, GRPO-CARE significantly
outperforms GRPO across all three difficulty levels, with a particularly notable improvement of nearly
10% on the most challenging L3 evaluation in domains such as Hobbies and Work, which exhibit
substantial distributional divergence from the training data.
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To thoroughly assess the effectiveness of GRPO-CARE, we compare it against two families of
baseline methods: KL-oriented baselines, which modify the application of divergence constraints,
and reward-based alternatives, which replace KL penalties with consistency-aware rewards.

• KL-Oriented Baselines. 1) KL-EMA introduces an EMA-updated reference model for adaptive
constraints, following the implementation of WARP (Ramé et al., 2024). 2) KL-EMA-HA
selectively applies KL penalty only to high-accuracy samples, applying regularization on where
alignment matters most. 3) SepKL-EMA-HA further decomposes KL into separate terms for
reasoning and answer tokens to alleviate disproportionately penalizing lengthy reasoning tokens
while potentially overlooking answer-reasoning inconsistencies. 4) NoKL removes the KL penalty,
demonstrating the raw optimization potential absent any regularization.

• Reward-Based Alternatives. 5) DenseCons applies continuous likelihood weighting to derive
dense consistency rewards: rcons = λcons ·racc ·pϕ(a|x, τ). 6) RefGen takes a more explicit approach
by having the reference model regenerate answers from sampled reasoning paths, using the regen-
erated answer’s accuracy as the consistency signal: rcons = λcons · accuracy(a′ ∼ πϕ(·|x, τ), y∗).

Table 3: Ablation results of KL-oriented and
reward-based baselines on SEED-Bench-R1.

Models L1 L2 L3 Consistency

GRPO 52.3 53.2 46.7 57.9

KL-EMA 54.7 54.1 49.4 60.0
KL-EMA-HA 55.1 53.8 49.2 61.7
SepKL-EMA-HA 54.8 54.9 47.5 76.8
NoKL 55.4 54.4 51.3 70.0

DenseCons 56.6 55.5 50.6 80.3
RefGen 55.2 54.2 49.4 86.4
CARE (ours) 57.0 57.0 53.4 82.4

As shown in Tab. 3, we report both benchmark
performance and the consistency rate between
generated reasoning and final answers, where
consistency is evaluated by GPT-4.1 to assess
whether the reasoning sufficiently supports the
answer. The details for consistency evaluation
is described in Appendix B.3. Our analysis
shows that while the EMA-updated reference
model improves both accuracy and consistency,
restricting KL penalties to high-accuracy sam-
ples (KL-EMA-HA) boosts in-domain (L1) re-
sults but slightly reduces OOD (L2/L3) general-
ization. Decomposing KL penalties (SepKL-EMA-HA) mitigates reasoning-answer inconsistency,
yielding minor gains on L2 but limited impact on L3. Notably, none of the KL-based variants
outperform NoKL, indicating that standard KL regularization may hinder the performance ceiling in
this context.

Among reward-based methods, DenseCons surpasses NoKL on L1 and L2 with improved consistency,
but slightly underperforms on L3, likely due to over-reliance on reference model calibration. RefGen
greatly increases consistency but introduces instability from sampling-based answer regeneration,
ultimately reducing overall performance. Our proposed GRPO-CARE uses sparse consistency
rewards to achieve robust improvements across all levels. Its two-stage filtering—leveraging adap-
tive EMA-updated reference likelihoods to provide relative, sparse feedback for high-accuracy
samples—effectively enhances logical consistency and answer accuracy. This demonstrates that
group-relative sparse rewards deliver more reliable learning signals, avoiding overfitting to imperfect
likelihoods (as in DenseCons) or sampling noise (as in RefGen).

Table 4: Impact of different refer-
ence models on GRPO-CARE.

Reference L1 L2 L3

Frozen 51.6 50.4 51.1
EMA updated 57.0 57.0 53.4
Online policy 52.7 53.5 51.2

Effect of the EMA Reference Model. To investigate the
role of the EMA reference model in consistency assessment
for reward shaping, we conduct additional analysis in Tab. 4.
Using an EMA-updated reference yields significantly better
performance than a frozen reference, suggesting that EMA ef-
fectively adapts the reference model to the evolving reasoning
process of the online policy. Importantly, the EMA-updated
reference does not simply converge to the online policy: per-
formance with the EMA reference surpasses that of using the online policy itself, confirming that it
remains a distinct and stable reference.

Table 5: Ablation results on key hyperparameters.
Hyperparameter Values Performance

Consistency margin 0.0 / 0.01 / 0.05 / 0.1 56.2 / 57.0 / 56.6 / 50.5
Likelihood cap 1.0 / 0.99 / 0.95 / 0.90 54.0 / 56.1 / 57.0 / 56.0
EMA frequency 1 / 10 / 50 /∞ 54.1 / 57.0 / 56.8 / 51.6
EMA decay 0 / 0.99 / 0.995 / 0.999 52.9 / 56.1 / 57.0 / 52.5

Hyperparameter Sensitivity. We
use the same hyperparameters across
different benchmarks: EMA update
every 10 steps, EMA decay 0.995,
likelihood cap 0.95, and consistency
margin 0.01. We further validate the
robustness of GRPO-CARE by ab-
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Table 6: Performance of different models on general video understanding benchmarks
Models VSI-Bench VideoMMMU MMVU MVBench TempCompass VideoMME

GPT-4o (Hurst et al., 2024) 34.0 61.2 75.4 - - 71.9

LLaMA-VID (Li et al., 2024c) - - - 41.9 45.6 -
VideoLLaMA2 (Cheng et al., 2024) - - 44.8 54.6 - 47.9
LongVA-7B (Zhang et al., 2024b) 29.2 23.9 - - 56.9 52.6
VILA-1.5-8B (Lin et al., 2024) 28.9 20.8 - - 58.8 -
Video-UTR-7B (Yu et al., 2025a) - - - 61.1 62.5 56.0
LLaVA-OneVision-7B (Li et al., 2024a) 32.4 33.8 49.2 56.7 - 58.2
Kangeroo-8B (Liu et al., 2024a) - - 61.1 62.5 69.9 55.4
Video-R1-7B (Feng et al., 2025) 35.8 52.3 63.8 63.9 73.2 59.3

Qwen2.5-VL-7B 30.1 48.1 60.0 59.0 72.6 56.6
CARE-7B (SB-R1) 34.3 51.6 66.2 63.2 74.3 58.1
CARE-7B (Video-R1) 35.8 50.4 65.8 65.1 73.5 59.6

lating key hyperparameters. Table 5 reports L1 performance on SEED-Bench-R1 under different
settings, confirming that our default choices are stable and effective.

4.2 GENERALIZATION AND TRANFERABILITY BEYOND SEED-BENCH-R1

To comprehensively evaluate our model’s capabilities, we conduct extensive experiments on both
general video understanding and language-only reasoning benchmarks beyond SEED-Bench-R1.

For video understanding, we benchmark our model on six challenging datasets spanning diverse as-
pects: spatial reasoning (VSI-Bench (Yang et al., 2024)), knowledge-intensive QA (VideoMMMU (Hu
et al., 2025) and MMVU (Zhao et al., 2025b)), and general video understanding (MVBench (Li et al.,
2024b), TempCompass (Liu et al., 2024b), and VideoMME (Fu et al., 2024)). As shown in Tab. 6,
our CARE-7B (SB-R1) achieves significant performance improvements over the base model across
all benchmarks after training on SEED-Bench-R1. These consistent gains validate the quality of our
benchmark’s training data, the robustness of our methodology, and the comprehensiveness of our
evaluation protocol. Furthermore, we conduct additional experiments following Video-R1 (Feng
et al., 2025), training our model using GRPO-CARE with 16-frame video inputs on general-domain
data (Video-R1-260k) for 1k RL steps and testing with 32-frame inputs. The comparative results
from other baselines are taken from the Video-R1 paper. Notably, even when trained solely with
RL, our model achieves competitive or superior performance compared to Video-R1-7B on most
benchmarks. This is particularly remarkable given that Video-R1-7B benefits from explicit temporal
order grounding constraints via GRPO rewards and supplementary supervised fine-tuning with addi-
tional data. Our model’s ability to match or outperform this strong baseline with a more streamlined
training pipeline underscores the efficiency of our method.

Table 7: Performance on language-
only reasoning benchmarks.

Method GSM8k GPQA

Qwen2.5-VL-7B 72.10 28.79
GRPO 74.07 24.24
GRPO-CARE 81.58 30.81

Beyond video understanding, we further evaluate whether our
approach generalizes to purely language-based reasoning tasks.
Specifically, we test Qwen2.5-VL-7B on GSM8k (Cobbe et al.,
2021) and GPQA (Rein et al., 2024) benchmarks, compar-
ing the base model with variants trained using GRPO and
GRPO-CARE on SEED-Bench-R1. As reported in Tab. 7,
GRPO-CARE yields consistent improvements over both the
base model and vanilla GRPO. Interestingly, while GRPO alone slightly degrades performance on
GPQA, incorporating CARE effectively reverses this trend and produces consistent gains. These
results suggest that our method not only strengthens multimodal reasoning but also enhances general
reasoning capabilities in purely textual domains.

5 CONCLUSION

In this paper, we introduced SEED-Bench-R1, a structured benchmark for evaluating post-training
methods for MLLM, and proposed GRPO-CARE, a novel consistency-aware RL framework. Our
analysis shows that while outcome-supervised GRPO improves accuracy, it often sacrifices reasoning
coherence. GRPO-CARE addresses this by rewarding both correctness and consistency using
likelihood calibration, leading to stronger generalization, higher interpretability, and effective transfer
across tasks. We envision SEED-Bench-R1 and GRPO-CARE as useful tools for advancing robust
post-training methods, driving the development of more powerful MLLMs.
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A DETAILS OF SEED-BENCH-R1

The questions from SEED-Bench-R1 are presented as multiple-choice problems and organized into a
three-level hierarchy: Level 1 (in-distribution), Level 2 (cross-environment), and Level 3 (cross-task-
environment). Figure 4 shows example questions from each level, where the model is required to
reason about the next appropriate action using world knowledge, based on the specified task goal
and the visual inputs showing task progress and current observation. Specifically, Levels 1 and 2
focus on daily-life household tasks similar to those in the training data. Level 1 questions are set
in environments seen during training, while Level 2 questions are set in new, previously unseen
environments. Level 3 is the most challenging, covering a broader range of task domains—including
Work, Hobbies, and Recreation, as well as Daily Life—and takes place in a wider variety of unseen
indoor and outdoor environments. The complete annotation files are included in the attachment, and
we will make the corresponding videos publicly available after the release of this paper.

Question: Considering the progress shown in the video and my current observation shown in the image, what action should I take next in order
to add cream cheese to the soup (Task Goal)?

Candidate Actions: 
A. throw away cream cheese container  |  B. pick up cream cheese container  |  C. open tap  |  D. pick up cream cheese Answer: A

L1 (In-Distribution            )

Question: Considering the progress shown in the video and my current observation shown in the image, what action should I take next in order
to prepare a flour mixture (Task Goal)?

Candidate Actions: 
A. remove bowl from microwave  |  B. pour milk into flour bowl  |  C. open microwave  |  D. put bowl in microwave  Answer: B

L2 (Out-of-Distribution, Cross Environment            )

Question:  Considering the progress shown in the video and my current observation shown in the image, what action should I take next in order
to take measurements around the room (Task Goal)?

Candidate Actions:
A. flip papers  |  B. pick water level ruler  |  C. remove papers from pocket  | D. mark point on wall    Answer: D

L3 (Out-of-Distribution, Cross Environment and Cross Task            )

task progress
current 

observation

Figure 4: Example questions from the three-level evaluation hierarchy in SEED-Bench-R1’s validation
set, including in-distribution, cross-environment, and cross-environment-task scenarios.

B EXPERIMENTAL DETAILS

B.1 COMPUTE RESOURCES

For both SFT and GRPO, we utilize four 80GB GPUs with a batch size of 4. The generation group
size for GRPO is set to 8 per sample. To improve training efficiency, the number of video frames is
limited to 16, with each frame resized to a resolution of 128× 28× 28. In the experiments on SEED-
Bench-R1, we train the model using 6k out of 50k samples from SEED-Bench-R1’s training data for
the pilot study. For experiments involving Video-R1-260k, we follow the protocol in Video-R1 (Feng
et al., 2025) to train the model for 1,000 steps using a subset of the data. The training time is about 8
hours for GRPO and 50 minutes for SFT.
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B.2 ADDITIONAL EVALUATION ON DIFFERENT BASE MODELS

Table 8: Performance of various MLLMs on SEED-Bench-
R1. GRPO-CARE consistently improves performance
across different base models and model sizes.

Model L1 L2 L3

BLIP-2 (Li et al., 2023) 26.4 27.3 26.2
InstructBLIP (Dai et al., 2023) 27.0 25.9 26.3
Valley (Luo et al., 2023) 26.8 26.8 27.0
Yi-VL (Young et al., 2024) 30.0 29.9 23.5
LLaVA1.5 (Liu et al., 2023) 30.7 31.0 25.4
DeepSeek-VL (Lu et al., 2024) 31.5 33.2 28.5
VideoLLaMA3-7B (Zhang et al., 2023) 33.3 33.2 27.7
InternVL3-8B (Zhu et al., 2025) 38.0 37.8 31.8

Qwen2-VL-7B (Wang et al., 2024) 34.7 34.0 31.6
Qwen2-VL-7B + SFT 43.8 44.1 38.2
Qwen2-VL-7B + GRPO 46.0 50.2 44.9
Qwen2-VL-7B + GRPO-CARE 57.2 56.2 53.8
Qwen2.5-VL-3B (Bai et al., 2025) 31.3 32.7 28.2
Qwen2.5-VL-3B + SFT 35.9 39.1 33.7
Qwen2.5-VL-3B + GRPO 39.6 41.0 35.4
Qwen2.5-VL-3B + GRPO-CARE 47.1 48.8 43.5

To further validate the generality of our
method, we conduct experiments with
GRPO-CARE on multiple Qwen vari-
ants of different scales. Recent RL-based
post-training studies for MLLMs (Liu
et al., 2025b; Feng et al., 2025; Deng
et al., 2025) commonly adopt Qwen se-
ries models due to their strong open-
source ecosystem and competitive perfor-
mance on multimodal benchmarks. Fol-
lowing this trend, we select Qwen2.5-
VL-3B and Qwen2-VL-7B as alternative
base models in our evaluation.

As shown in Tab. 8, GRPO-CARE con-
sistently surpasses both SFT and vanilla
GRPO across all tested variants. The
performance improvements are not only
observed on larger models like Qwen2-
VL-7B, but also on smaller-scale ones
such as Qwen2.5-VL-3B, indicating that
our approach is both robust and scalable.

For context, we also report the performance of several representative MLLMs on SEED-Bench-R1 in
Tab. 8. These results serve as reference baselines to illustrate the overall performance range of current
models. Notably, GRPO-CARE consistently improves Qwen variants beyond their supervised and
vanilla GRPO counterparts, demonstrating potential for extension to broader multimodal architectures.

B.3 CONSISTENCY EVALUATION

We use GPT-4.1 to assess the consistency between the model’s reasoning process and its final answer.
The detailed prompt is shown in Figure 5, where GPT-4.1 is instructed to analyze the logical flow of
the model’s response and assign a score reflecting whether the reasoning supports the final answer.

Question:{}
Procedure:{}
Answer:{}

The above is a **Question**, along with a model's Solution **Procedure** and the **Answer**. 

Please fulfill the following requirements:
1. **Consistency Analysis**. Check if the solution process supports the answer and if the answer can be logically derived 
from the process. If consistent, the score is 1, with reasons provided.
2. **Logic Flow Analysis**. For example, derive A to get answer X; refine step A to verify the correctness of answer X.
3. **Other Analysis**. Identify any other issues in the solution steps and name them to alert the solver.

Reply in JSON format:
```json
{{"consistency_analysis":{{"score": 0 or 1, "reasons":""}}, "logic_flow":"analysis of procedure", "others":""}}
```

There is no need to consider whether the answer is correct; just analyze the above indicators.

Figure 5: The detailed prompt for evaluating consistency between the reasoning process and the final
answer using GPT-4.1.

To validate GPT-4.1’s judgments, we randomly sampled 50 consistent and 50 inconsistent cases
flagged by GPT-4.1 and compared them with human annotations, achieving a Pearson correlation
of 0.82. This demonstrates that GPT-4.1 provides reliable and nuanced evaluations of consistency.
Below we present example GPT-4.1 evaluations to illustrate the evaluation process.
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Example 1.

{
"task_goal": "prepare the teapot with tea leaves",
"options": [

"A. put down teabag holder",
"B. scoop tea leaves",
"C. take bag of tea",
"D. open bag of tea"

],
"model_response": "<think>Let me think. The person has already opened

the bag of tea and is now reaching for the teapot. This suggests
that they are in the process of preparing the teapot with tea
leaves. The next logical step would be to scoop the tea leaves into
the teapot. Therefore, the most appropriate action would be to

scoop the tea leaves.</think><answer>B</answer>",
"gpt_evaluation": {

"consistency_analysis": {
"score": 1,
"reasons": "The procedure describes reaching for the teapot after

opening the bag of tea, and logically concludes that the next
action should be to scoop tea leaves. This directly supports
the chosen answer (B: scoop tea leaves)."

},
"logic_flow": "The procedure starts from the current observation (bag

of tea opened, reaching for teapot), and infers that scooping
tea leaves is the next step in preparing the teapot, which
matches the answer given. Each reasoning step directly leads to
the selected answer.",

"others": "No other major issues identified. The reasoning is clear
and follows from the initial observations and procedural logic."

}
}

Example 2.

{
"task_goal": "wash knife, cutting board, and peeler",
"options": [

"A. put cutting board onto drying rack",
"B. put knife onto drying rack",
"C. pick up cutting board",
"D. adjust tap"

],
"model_response": "<think>The person has just adjusted the tap, which

suggests they may have finished washing the cutting board. The
cutting board is currently resting on the drying rack, which
implies it may be ready to be washed.</think><answer>A</answer>",

"gpt_evaluation": {
"consistency_analysis": {
"score": 0,
"reasons": "The procedure states that the cutting board is already

resting on the drying rack, which implies that action A (put
cutting board onto drying rack) is redundant or already
completed. Therefore, the process does not support the answer,
and it cannot be logically derived from the provided reasoning
."

},
"logic_flow": "The reasoning chain concludes that the cutting board

is already on the drying rack, so logically the next step should
not be to put it there again. Instead, attention should shift to
another item (knife or peeler) or another action. This breaks the
logic flow from observation to answer.",

"others": "There is confusion in the think step: it simultaneously
claims that the cutting board is on the drying rack and that it
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may be ready to be washed, which are contradictory states.
Clearer distinction between current and next state is needed."

}
}

C LIMITATIONS

While our work introduces SEED-Bench-R1 and the GRPO-CARE framework to advance post-
training for MLLMs, several limitations remain. (1) Although SEED-Bench-R1 provides a rigorous
benchmark for video understanding with hierarchical evaluation, it does not yet encompass all
possible multimodal domains or modalities. Expanding its coverage in future iterations will be
important for further validating the generality of models. (2) The consistency-aware reward in GRPO-
CARE relies on model-internal likelihoods and group calibration, which, despite their effectiveness,
may not fully capture subtle reasoning errors or always align with human judgment. (3) Similar to
other RL-based frameworks, our method incurs additional computational costs due to the need for
maintaining reference models and performing group-based calibration. While this overhead was
manageable in our experiments, scaling to larger models or more complex tasks may necessitate
further optimization. We believe these aspects open valuable opportunities for further research built
upon our contributions.

D BROADER IMPACTS

On the positive side, the proposed consistency-aware reinforcement learning framework, GRPO-
CARE, enhances transparency in AI systems by encouraging logically coherent reasoning chains.
This is particularly important in domains such as education, healthcare, and assistive robotics, where
understanding the reasoning process is essential. Meanwhile, by mitigating shortcut learning, our
approach improves generalization to real-world scenarios, paving the way for safer and more reliable
AI applications. Moreover, the release of SEED-Bench-R1 alongside our training framework provides
valuable tools to support ongoing research in multimodal understanding.

Nonetheless, potential negative societal impacts warrant careful consideration. Although our method
enhances reasoning consistency, it does not directly address biases in training data, leaving the risk
of perpetuating or amplifying existing societal biases. Additionally, greater reliance on automated
reasoning—even when more interpretable—may lead to overconfidence in AI outputs and diminished
human oversight. Finally, the substantial computational resources required to train and evaluate large
MLLMs raise environmental concerns due to increased energy consumption.

E USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely for language editing and polishing purposes. The
LLMs were not involved in the design of research ideas, development of methods, data analysis, or
interpretation of results. All conceptual contributions, technical content, and scientific claims in this
paper are entirely the work of the authors.
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